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Abstract

In machine learning, classification is the task of accurately assigning classes to yet unseen examples
by deducting information from available training data. Contrary to binary and multiclass classification,
where each example is only associated with a single class, each class can be associated with a subset of
all classes in multilabel classification. Popular application areas include tagging of texts with keywords,
biology and multimedia. For instance, the identification of scenes or objects in images – each image may
contain several scenes or objects. A distinguishing feature of multilabel classification are the possible
dependencies between labels. It is a common assumption that the predictive performance of algorithms
may greatly benefit from exploiting such dependencies. For instance, the presence of a label Genre-Best-
Rock implies the presence of label Genre-Rock. By revealing such dependencies the understanding of the
data set is improved. Hence, rules of the form head ← body are suitable for making label dependen-
cies explicit. While rules do not achieve the same performance as other approaches, they can be easily
interpreted by humans. Typically, common approaches to multilabel classification learn only rules that
make a single label prediction. However, dependencies can be lost and it can be argued that full expres-
siveness can only be achieved by learning rules that may predict more than one label at a time. Rapp
[2016] proposes an algorithm that is capable of directly learning such multilabel rules. The idea of the
algorithm is to search the best performing head for a given body. For doing so, all possible label combi-
nations have to be evaluated in theory, which grow exponentially, however. Hence, Rapp [2016] proves
anti-monotonicity and decomposability of multilabel evaluation metrics and exploits them in the search
in order to greatly increase efficiency. However, typically very few multilabel rules are learned using this
approach as a result of the strict definition of best performing head. Thus, this work relaxes the pruning
constraints of anti-montonicity and decomposability by tolerating a certain decline in the heuristic value
for rules that contain more labels in the head. The theorized hope was to induce a more predictive model
and reveal more label dependencies. The primary contribution of this work is the definition of relaxing
the pruning by lifting the label search space using relaxation lift functions and adjusting the algorithm
to suit the changes. For instance, by lifting the performance of heads with more labels in the head, the
original algorithm for pruning cannot be utilized anymore. Therefore, we present an alternative way
of pruning in this work that is based on anti-monotonicity and decomposability. Additionally, we refine
the algorithm by introducing other changes as well. We also extensively study the effects of the made
changes in the form of a sensitivity analysis, which aims at qualifying the effects of the extent of the lift
and the different relaxation lift functions, and in the evaluation, which compares the learned models and
their predictive performance to the approach by Rapp [2016]. In most cases, the learned models seem
to be an improvement – in terms of expressiveness and predictive performance. Furthermore, we iden-
tify good settings for the extent of the lift. Additionally, relaxing the pruning typically results, contrary
to initial expectation, in a shorter run time, despite more label combinations needed to be evaluated.
The reason being that fewer rules are required to cover the training data if each rule predicts more la-
bels. Nevertheless, it is unclear whether or not more label dependencies are learned by relaxed pruning.
Hence, we also introduce an alternative algorithm that utilizes relaxed pruning. The idea is to initially
assume all labels to be irrelevant and let the algorithm correct its previous predictions, including wrong
predictions made by the algorithm. While only briefly evaluated, the approach seems to be promising
and especially induces more label dependencies. However, the algorithm still requires work as it does
not employ a stopping criterion yet for instance, which is left for future work.





Zusammenfassung

In maschinellem Lernen, Klassifikation beschäftigt sich mit der Aufgabe bisher ungesehenen Beispielen
mit Hilfe von verfügbaren Trainingsdaten akkurat eine Klasse zuzuordnen. Im Gegensatz zur binären
und Multiklassen Klassifikation, bei denen ein Beispiel lediglich mit einer Klasse in Verbindung gebracht
werden kann, kann ein Beispiel bei Multilabel Klassifikation mit einer Teilmenge aller Klassen assoziiert
werden. Beliebte Anwendungsgebiete sind unter anderem das Markieren von Texten mit Schlagwörtern,
Biologie und Multimedia. Ein Beispiel ist die Identifikation von Szenen oder Objekten in Bildern – jedes
Bild könnte mehrere Szenen oder Objekte enthalten. Ein Alleinstellungsmerkmal von Multilabel Klas-
sifikation sind die möglichen Abhängigkeiten zwischen Labels. Es ist eine weit verbreitete Annahme,
dass die Vorhersagegenauigkeit der Algorithmen stark verbessert werden kann, indem solche Abhängig-
keiten ausgenutzt werden. Zum Beispiel impliziert das Vorhandensein eines Labels Genre-Best-Rock das
Vorhandensein eines Labels Genre-Rock. Durch die Aufdeckung solcher Abhängigkeiten wird zudem das
Verständnis des Datensatzes verbessert. Demnach eignen sich Regeln der Form Vorhersage← Bedingung
gut, um die Abhängigkeiten zwischen Labels explizit zu machen. Zwar erreichen Regeln nicht die glei-
che Vorhersagegenauigkeit wie andere Herangehensweisen, jedoch können diese leicht von Menschen
interpretiert werden. Gängige Herangehensweisen an das Problem lernen typischerweise nur Regeln,
welche lediglich eine Label-Vorhersage treffen. Dadurch gehen aber oft die Abhängigkeiten verloren und
es kann argumentiert werden, dass volle Aussagekraft nur von Regeln erreicht werden kann, welche
auch mehrere Labels vorhersagen können. Rapp [2016] schlägt einen Algorithmus vor, der in der Lage
ist, solche Multilabel Regeln direkt zu lernen. Die Idee des Algorithmus ist es, die beste Vorhersage in
Form einer Label-Kombination für eine gegebene Bedingung zu suchen. In der Theorie müssen dazu alle
Kombinationen getestet werden, welche jedoch exponentiell wachsen. Deswegen beweist Rapp [2016]
die Anti-Monotonität und Zerlegbarkeit von Multilabel Evaluationsmetriken und nutzt diese aus, um
die Suche stark zu beschleunigen. Leider werden durch dieses Vorgehen aufgrund der strikten Definiti-
on der besten Vorhersage typischerweise nur wenige Multilabel Regeln gelernt. Daher relaxiert diese
Arbeit die Beschränkungen durch das Pruning, indem Regeln mit einem schlechteren Wert toleriert
werden, falls diese mehr Labels vorhersagen. Das erhoffte Ergebnis war eine Regelmenge mit einer
besseren Vorhersagegenauigkeit und mehr Abhängigkeiten zwischen Labels zu lernen. Demnach liegt
der primäre Beitrag dieser Arbeit in der Definition der Relaxierung des Prunings, indem längere Vo-
hersagen im Label-Suchraum mittels Relaxierungsfunktionen bevorzugt werden und die daraus folgende
Anpassung des Algorithmus. Beispielsweise können die Label-Kombinationen nicht auf gleiche Weise
gepruned werden, weswegen ein alternatives Vorgehen präsentiert wird, welches auf Anti-Monotonität
und Zerlegbarkeit basiert. Zudem werden weitere Änderungen am Algorithms durchgeführt. Die Effekte
der Änderungen werden gründlich in Form einer Sensitivitätsanalyse und einer Evaluation studiert. In
den meisten Fällen sind die gelernten Regelmengen eine Verbesserung – in Bezug auf Aussagekraft und
Vorhersagegenauigkeit. Zusätzlich werden gute Einstellungen für die Relaxierungsfunktionen identifi-
ziert. Weiterhin resultiert das relaxierte Pruning, im Gegensatz zu den Erwartungen, meistens in einer
kürzeren Laufzeit trotz der Evaluation von mehr Label-Kombinationen. Der Grund dafür ist, dass durch
mehr Vorhersagen pro Regel weniger Regeln benötigt werden, um die Trainingsdaten abzudecken. Trotz-
dem werden nicht unbedingt mehr Abhängigkeiten zwischen Labels gelernt. Deswegen stellen wir einen
weiteren Algorithmus vor, welcher relaxiertes Pruning verwendet. Die Idee dabei ist, am Anfang alle La-
bels als irrelevant anzunehmen und den Algorithmus die Vorhersagen, inklusive seiner eigenen falschen
Vorhersagen, verbessern zu lassen. Obwohl dieses Vorgehen nur kurz evaluiert wird, scheint es vielver-
sprechend zu sein. Insbesondere werden mehr Abhängigkeiten zwischen Labels gelernt. Trotz alledem
muss an dem Verfahren weiterhin gearbeitet werden. Beispielsweise wird noch kein Abbruchkriterium
verwendet, was jedoch zukünftigen Arbeiten überlassen wird.



1 Introduction

In this initial chapter, we give a short introduction to multilabel classification and the objectives of this
work. Furthermore, the structure is outlined and a content overview of each chapter is given.

1.1 Revealing Label Dependencies by Learning Multilabel Rules

In machine learning, classification is the task of accurately assigning classes to yet unseen examples
by deducting information from available training data. The simplest form aims at distinguishing only
positive and negative examples of a single class, called binary classification. Let us assume we collect
information about patients at a hospital. A binary classification problem may then be to decide whether
or not the given patient has a certain disease, chickenpox for instance. We only decide whether he has
the disease (positive example) or not (negative example). However, more than one disease exists. As
a result, we would like to determine the disease our patient is infected with. Therefore, we determine
the disease (out of several possible diseases) our patient is infected with. This type of setting is termed
multiclass classification. Nevertheless, our patients can only have one disease at a time if using multiclass
classification. Realistically, a patient may have several diseases at a time. Therefore, we should be able
to assign several diseases to a patient as well. In cases such as this we talk about multilabel classification,
which aims at assigning a subset of all available classes (diseases) to an example (patient).

While many well performing algorithms and tools for binary and multiclass classification exist, mul-
tilabel classification is not as well researched. Due to the many conventional algorithms in existence,
the multilabel classification problem is usually transformed into multiple sub-problems, which can then
be solved more easily. These approaches are called problem transformation methods [Tsoumakas and
Katakis, 2007]. However, due to the transformation some problems arise, which are covered by Loza
Mencía [2012] in more detail. In his work, Loza Mencía [2012] identifies the number of classes, also
referred to as labels in the multilabel classification setting, as the main challenge (for pairwise learn-
ing). To outline this, just imagine an article in an online encyclopedia being tagged with keywords. In
this case, every possible existing keyword is a label that the article could possibly be tagged with. Fur-
thermore, learning algorithms may greatly benefit from revealing and exploiting dependencies between
labels [Loza Mencía and Janssen, 2016]. These label dependencies are unique to the multilabel classifica-
tion problem as they are not present in multiclass classification or binary classification. In our medical
example this would imply dependencies between certain diseases. If one is present, another cannot be
present simultaneously. Another disease might be more likely if another disease was previously identi-
fied or two diseases frequently co-occur. In an attempt to exploit label dependencies, Loza Mencía and
Janssen [2016] have proposed an algorithm using a separate-and-conquer rule learning approach. Using
this concept as a basis, Rapp [2016] has introduced a refinement of this algorithm, which learns multi-
label rules directly by finding the best performing head for a given body. Moreover, Rapp et al. [2018]
have proposed exploiting anti-monotonicity of multilabel evaluation measures for pruning the search
space and therefore finding the best head more efficiently. However, typically not many multilabel rules
are being induced using this approach, unless using precision as a base learner, as pointed out by Rapp
[2016]. Hence, this work aims at relaxing the anti-monotonic and decomposable pruning constraints by
introducing a bias towards multilabel rules. The intention of this approach is to exploit label dependen-
cies more effectively and learn better models by inducing more multilabel instead of single-label rules.
Due to the relaxed pruning, efficiency must also be considered.

1.2 Organization of the Work

In this section, the structure of the work at hand is outlined. Therefore, we briefly describe the contents
and objectives of each chapter:

• Chapter 2: This chapter introduces the fundamentals of multilabel classification and inductive rule
learning. At first, the multilabel classification problem is described formally. Following up, prob-
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lem transformation methods are presented as a way of solving a multilabel classification problem.
Furthermore, the importance and different types of dependencies between labels in the multilabel
classification setting are outlined. Afterwards, separate-and-conquer rule learning, different types
of multilabel rules and multilabel decision lists are covered. For evaluating the learned rules, we
present several multilabel evaluation metrics. Finally, some related work is compared to our ap-
proach. Summing up, this chapter lays the foundations that are required for the following chapters.
It also introduces the mathematical notations used throughout the entire work.

• Chapter 3: The presented algorithm requires to explore the label search space. As a result, chapter
3 presents two characteristics suggested by Rapp et al. [2018] that can be exploited in order to
speed up the search through the label space – anti-monotonicity and decomposability. We further
list which of the multilabel evaluation metrics presented in chapter 2 employ those characteristics.

• Chapter 4: This chapter explains the rule learning algorithm proposed by Rapp [2016], which this
works aims at refining, in detail. We also briefly mention the original algorithm by Loza Mencía and
Janssen [2016], which Rapp [2016] builds upon. The chapter explains the rule learning process,
how the label search space can be explored while exploiting anti-monotonicity and decomposability
as well as different approaches to measuring the performance of multilabel rules.

• Chapter 5: After presenting the algorithm that this work is based on in chapter 4, we explain the
need for using a relaxed pruning approach in chapter 5. The basic idea is to allow the induction
of multilabel rules if the quality of the rule does not decline significantly. Furthermore, we suggest
a way of incorporating this relaxed pruning approach into the previously presented algorithm.
Additionally, three different functions that define the extent of the allowed decline in the heuristic
value are suggested and theoretically compared.

• Chapter 6: As a result of relaxing the pruning, anti-monotonicity and decomposability, which
were introduced in chapter 3, cannot be used in the same way for speeding up the search through
the label space. In chapter 6, we give counter-examples of why this is not possible and imple-
ment an alternative way of pruning the label search space that relies on the previously introduced
characteristics of multilabel evaluation metrics. Furthermore, other changes to the algorithm are
presented.

• Chapter 7: In this chapter we study the effects of relaxing the pruning. For doing so, we perform
the rule learning process with different parameter settings on a data set and thoroughly compare
the obtained results. The sensitivity analysis aims at getting more insight on how the parameters
of the algorithm influence the performance and model characteristics of the adjusted approach.

• Chapter 8: As the relaxed pruning approach does not entirely satisfy the intentions of the adjust-
ments, we suggest and alternative approach called prepending. In this chapter, the motivation of
the approach is explained and the required changes to the algorithm are outlined.

• Chapter 9: In order to evaluate the performance and the model characteristics of the relaxed
pruning approach, we execute the adjusted algorithm on seven data sets and extensively compare
the results to the original algorithm by Rapp [2016]. The comparison also includes taking a look
at the impact the relaxed pruning has on the induced rules. Additionally, good settings for the
functions presented in chapter 5 are identified. Moreover, we show the functionality of prepending
by briefly evaluating it on several data sets. We also regard the learned rules and evaluate the
characteristics of prepending.

• Chapter 10: This final chapter summarizes the contributions of the work at hand and the results
obtained in previous chapters. Furthermore, suggestions for possible future enhancements of the
presented algorithms are given.
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2 Fundamentals of Multilabel Classification and Inductive Rule Learning

In this chapter, the basics of machine learning as well as multilabel classification and inductive rule
learning are explained. This includes the formal problem statement, a short overview over problem
transformations methods, as well as dependencies between labels. Furthermore, separate-and-conquer
algorithms are presented.

2.1 Multilabel Classification

Classification is the task of accurately assigning classes to yet unseen examples. Examples are often also
referred to as instances. In this work both terms are used synonymously. Each example is represented by
a finite number of attributes

A= {a1, . . . , ak}, k = |A|.

Attributes, which are also referred to as features, can have different values, depending on whether they
are nominal or numeric. If describing a car for instance, the brand may be a nominal attribute and the
age may be a numeric attribute. An example is then defined as

X = (x1, . . . , xk) ∈ X

where each value x i, i = 1, . . . , k is a valid value of attribute ai and X the set of all possible examples,
i.e. every possible combination of attribute values. In multilabel classification (MLC) each example
can be associated with a subset of all classes. In this setting, these classes are typically referred to as
labels. In contrast, in multiclass classification each example can only be associated with exactly one out
of several classes, whereas in binary classification only positive and negative examples of a single class
can be distinguished. The multiclass classification problem can be regarded as a multilabel classification
problem with the additional constraint of the presence of labels being mutually exclusive and is therefore
a more specific problem statement [Loza Mencía and Janssen, 2016]. Labels are represented by a label
vector (y1, . . . , yn) ∈ {0, 1}n, where

L= {λ1, . . . ,λn}, n= |L|

is a finite set of classes or labels. Each label attribute yi then represents whether or not label λi is
irrelevant (0) or relevant (1). Furthermore, we distinguish between two types of sets. The training set
T , m = |T | is used to learn a model for predicting the labels of yet unseen examples. In order to enable
learning, each example X is annotated with its true label vector Ŷ = ( ŷ1, . . . , ŷn) ∈ {0,1}n. In this work,
we distinguish between the true label vector Ŷ and the current label vector Y of an example. Hence, the
i-th entry in the training set looks as follows:

Ti = (X i, Ŷi) ∈ X× {0, 1}n

The objective is to learn a function f : X→ {0, 1}n that maps instances X to a label vector Y . Ideally, the
predicted label vector equals the true (unknown) label vector of the example. For learning a predictive
model, the learner must generalize the training set. For preventing a too close fit to the training set, an
overfitting avoidance bias [Fürnkranz, 1999] is used. The quality of f is then measured on the test set by
applying f to each instance in the test set and comparing the results to the true label vectors. This is
done by calculating the value of a loss function. Different loss function are presented in Section 2.3.3.

2.1.1 Problem Transformation Methods

The main approach to MLC is to transform the problem into one or more single-label or regression prob-
lems. The transformed problems can then be solved using the wide variety of conventional algorithms.
Approaches such as these are called problem transformation methods [Tsoumakas and Katakis, 2007].
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Binary Relevance is arguably the most intuitive solution [Zhang et al., 2018]. The multilabel problem
is decomposed into n independent binary classification problems, where n is the number of labels. Then,
for each label λi a binary classifier ci for learning the relevancy of λi is trained. In order to classify an
unseen example, predictions of all classifiers c1, . . . , cn are combined. If a binary classifier ci predicts a
label λi to be relevant for a given example, the corresponding entry yi in the label vector is set to 1 –
otherwise it is set to 0. Hence implying the prediction of a full label vector.

The prominent advantage of binary relevance is its conceptual simplicity and its linear complexity in
regard to the number of labels n. In addition, binary relevance is not restricted to a particular learning
technique and is therefore quite flexible. Moreover, binary relevance optimizes the macro-averaged mul-
tilabel evaluations metrics, i.e. performance is optimized not for all labels in combination but for each
label independently. [Zhang et al., 2018]

As each label is learned independently, however, dependencies between labels are lost. Due to this in-
formation loss, binary relevance is prone to predicting too many or too few labels, or label combinations
that would never co-occur in practice [Read et al., 2011]. As it is a consensus assumption that multil-
abel classification may greatly benefit from exploiting correlations between labels [Zhang et al., 2018;
Loza Mencía and Janssen, 2016], many correlation-enabling extensions have been proposed [Zhang
et al., 2018].

Classifier Chains are such an extension. The number of classifiers are the same as for binary relevance
(one for each label). However, classifiers are now linked along a chain c1, . . . , cn and built in ascending
order, i.e. c1 at first, followed by c2 to cn. During training, the feature space of classifier ci is extended
by the predictions of all previous links. In other words, each example X of classifier i is augmented by
i − 1 additional features, namely the predictions of the previous classifiers for X , i.e. y1, . . . , yi−1 for X .
In conclusion, label information is passed on between classifiers. Therefore enabling the exploitation of
label correlations.

While classifier chains retain the advantage of low memory and run time complexity of binary rel-
evance, they cannot be parallelized due to the dependency on preceding classifiers. Furthermore, the
question arises of how to order the chain, i.e. which labels to learn first. This problem can be tackled
by using a heuristic for selecting a chain order or by using an ensemble framework with random chain
orders (ECCs) [Read et al., 2011; Zhang et al., 2018].

Nonetheless, the fixed order of the way the labels are learned in the classifiers makes it impossi-
ble to learn dependencies in the contrary direction [Loza Mencía and Janssen, 2016]. In their work,
Loza Mencía and Janssen [2016] state they believe that for many data sets there is no possible sequence
which can capture all present dependencies.

Label Powersets are another method for dealing with multilabel classification. Each different appear-
ing label combination in the power set of the set of (relevant) labels is regarded as a separate atomic
class [Loza Mencía, 2012]. Hence, at most 2n − 1 possibilities exist, neglecting the empty set. Con-
ventional multiclass algorithms or further decomposition approaches can then be used for classification.
However, this leads to an exponentially large number of classes and few examples per class [Tsoumakas
and Katakis, 2007]. Thus, poor efficiency. In addition, only label relations and combinations which were
seen in the training data can be predicted [Loza Mencía and Janssen, 2013].
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2.1.2 Label Dependencies

Label dependencies are special to multilabel classification. In binary and multiclass classification the only
observable probabilistic dependence is between the input attributes and the output classes [Loza Mencía
and Janssen, 2016], whereas in multilabel classification labels might co-occur or be mutually exclusive
for instance.

Let us assume we have weather information about a day and want to decide whether or not to play a
certain game today. Then, three possible labels are play, playmaybe and dontplay. If we can conclude that
dontplay = 1 and we have additionally previously revealed a label dependency play = 0, playmaybe = 0
← dontplay= 1, we can further assign these labels.

This type of dependency enables building a more predictive rather than a descriptive model that is
less susceptible to be influenced by missing values or outliers in the attribute values [Loza Mencía and
Janssen, 2016]. It is a consensus assumption that multilabel classification algorithms may greatly benefit
from exploiting such correlations and dependencies [Loza Mencía and Janssen, 2016; Zhang et al.,
2018]. We distinguish two types of label dependencies. The previously shown example dependency is
what we call an unconditional or global dependency [Dembczyński et al., 2012]. It does not depend on
the attributes of a specific instance but rather solely on label conditions. Dependencies that are indeed
dependent on attributes of specific instances are called conditional or local dependencies as they are only
revealed in subspaces of the input space [Dembczyński et al., 2012; Loza Mencía and Janssen, 2016].
They model label dependencies that do only occur in certain situations, depending on the instance at
hand. A simple example for a local dependency is play = 1← playmaybe = 1∧ temperature ≤ 25. This
label dependency only comes into play if the attribute temperature of the given instance is below or
equal 25.

2.2 Inductive Rule Learning

As this thesis is about a rule learning algorithm, a short overview over inductive rule learning is given.
Rule learning is a classical machine learning field and is therefore well researched [Loza Mencía and
Janssen, 2016]. A rule learning algorithm tries to solve the concept learning problem, i.e. to differentiate
instances belonging to a certain concept from those that are not (e.g. birds from other animals) [Mitchell,
1997], using (multiple) rules. A rule r is of the form

head← body

where the body consists of a number of attribute-value tests called conditions and a head that predicts
a class affiliation if the body evaluates to true for a given example. In the case of binary and multiclass
classification the head consists of a single class value. In multilabel classification, however, the head
can consist of up to n label conditions. In this work, only conjunctive rules (in contrast to disjunctive
rules for instance) are considered, i.e. the conditions in the body must all be met in order for the rule
to fire. The imaginary ∧ is therefore omitted and replaced by a comma. An example for a rule with two
conditions in the body and two label conditions in the head is

play= 1, playMaybe= 1← windy= false, temperature≤ 25

Implying that if the value of attribute windy is false and the value of attribute temperature is less or
equal 25 for a given instance, the two labels are considered to be relevant for this specific instance. Is
this the case, i.e. the rules fires for an instance, the rule is said to cover the instance. While rules using
first order logic exist [Janssen, 2012], we are only concerned with propositional rules in this work. Due
to this restriction, conditions can be constructed using an attribute and comparing it to a certain value.
For nominal attributes this comparison amounts to an equality or inequality check against a value of this
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attribute present in the training data, whereas numerical attributes can be compared using the standard
comparative operators. The value that is tested against for numerical attributes must not occur in the
training data. In accordance to the work this thesis builds on, label conditions may be included in the
body. [Janssen, 2012]

Following the argumentation of Janssen [2012], the big advantage of rules are their easy interpretabil-
ity in comparison to more complex models. Due to their simplicity, however, they often lack behind in
accuracy as they are restricted as for instance continuous target functions can only be approximated by
discrete rules. For more information confer [Janssen, 2012]. As a result of their easy interpretability,
rules are well suited to make dependencies between labels explicit and hence further the understanding
of the data set at hand [Loza Mencía and Janssen, 2016].

2.2.1 Separate-and-Conquer Rule Learning

As it turns out, a single rule is rarely sufficient to describe a data set well [Janssen, 2012]. Therefore,
rule learning algorithms induce a set of rules R using a separate-and-conquer (SeCo) or covering approach
[Fürnkranz, 1999].

These approaches can usually be characterized by two main steps and differ in the way they learn
individual rules. First, a single rule only covering positive examples is learned (the conquer part). Which
rule is chosen is determined by maximizing some given measure for estimating the quality of a rule. Sec-
ond, all examples that the newly learned rule covers are removed from the data set (the separate part)
and the rule is added to the rule set. If there are any positive examples of the concept to learn left, the
first step is repeated. Algorithm 1 depicts the basic structure that all SeCo algorithms share. [Fürnkranz,
1999; Janssen, 2012]

Algorithm 1 Basic structure of a separate-and-conquer rule learning algorithm for concept learning.
[Fürnkranz, 1999; Janssen, 2012]

1: procedure SEPARATEANDCONQUER(Examples)
2: Theory = ;
3: while GETPOSITIVEEXAMPLES(Examples) 6= ; do
4: BestRule = FINDBESTRULE(Examples) . the conquer part
5: CoveredExamples = GETCOVEREDEXAMPLES(Examples, BestRule)
6: Examples = Examples \ CoveredExamples . the separate part
7: Theory = Theory ∪ BestRule
8: end while
9: return Theory

10: end procedure

Repeating these steps until all positive examples are covered (completeness) and all negative examples
remain uncovered (consistency) typically results in overfitting the data set. Overfitting is to be avoided
as our goal is to find a general rule set that is capable of describing a domain rather than just a spe-
cific training set [Janssen, 2012]. Therefore, the two constraints can be relaxed so that some positive
examples must not be covered and some negative examples may be covered. Methods such as stopping
criteria or post-processing can be used to learn simpler and often more predictive theories. [Fürnkranz,
1999; Loza Mencía and Janssen, 2016]

The returned rule set can be either ordered (a decision list) or unordered. Given an example X and a
decision list D = 〈r1, r2, . . . 〉, each rule of the decision list is checked in order, i.e. starting with r1 and
continuing with r2 and so on. The first rule that covers the given example is used to predict the class
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value of X . Thereafter, all subsequent rules are skipped for this example. This is sufficient for binary and
multiclass problems as each example may only be associated with a single class value. [Loza Mencía and
Janssen, 2016]

It is important to note that the SeCo strategy only works for binary data sets. A simple way of be-
ing able to handle multiclass problems is considering each class separately. Then, a separate rule set is
learned for each class and the predictions are combined. [Loza Mencía and Janssen, 2016]

2.2.2 Different Types of Multilabel Rules

Table 1 gives an overview of the different types of possible multilabel rules. While Loza Mencía and
Janssen [2016] focus on learning single-label head rules, which have only a single label in the head, this
work concentrates on learning multilabel head rules, which contain two or more label assignments in their
head. In order to model co-occurrence dependencies, several single-label head rules are required. In con-
trast, multilabel head rules conveniently allow to model such dependencies between labels [Loza Mencía
and Janssen, 2016].

Head Body Example Rule

single-label

positive
label-independent

y1← c1, c2, c3
negative y1← c1, c2, c3
positive

partially label-dependent
y3← c1, y1, y2

negative y3← c1, y1, y2
positive

fully label-dependent
y3← y1, y2

negative y3← y1, y2

multilabel

sparse
label-independent

y1, y2← c1, c2, c3
dense y1, y2, y3← c1, c2, c3
sparse

partially label-dependent
y1, y2← c1, y3

dense y1, y2, y3← c1, y4
sparse

fully label-dependent
y1, y2← y3

dense y1, y3, y4← y2

Table 1: Different types of single-label and multilabel rules. [Loza Mencía and Janssen, 2016, Table 1]

We further distinguish between sparse and dense multilabel head rules. A sparse multilabel head rule
is a multilabel head rule that does not contain all labels in the head, i.e. the prediction for some labels
are omitted and postponed for subsequent rules. This approach is often more beneficial than predicting
a full label combination. Hence, a dense multilabel head rule is a multilabel head rule that contains all
labels in the head, i.e. predicts the full label combination. [Loza Mencía and Janssen, 2016]

Typically, the conditions in the body are tests on attributes from the instance space (denoted as ci).
For reflecting label dependencies, however, labels need to be allowed in the body as well. A rule that
contains labels in the body is called label-dependent. Similarly, a rule that does not contain any label
conditions in the body is called label-independent. We furthermore distinguish between rules for which
the body contains both normal and label conditions (partially label-dependent) as well as rules for which
the body exclusively consists of label conditions (fully label-dependent). The different types of rules can
be linked with different types of dependencies. A global dependency is best reflected by fully label-
dependent rules (dependencies only exist between the labels). Local dependencies on the other hand
are characterized by partially label-dependent rules as they depend on a specific instance through the
normal condition. [Loza Mencía and Janssen, 2016]
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Moreover, we can distinguish rules by the type of label condition they predict. Just like conditions can
be constructed by selecting one of several values, labels can be set to two different types of predictions.
For once, a label condition may predict the relevancy or presence (yi = 1) of a label (positive heads). Of
course, a label condition may also predict the irrelevancy or absence (yi = 0) of a label (negative heads).
In the remainder of this work, the presence and absence of a label is denoted as yi and yi, respectively.
Due to the asymmetrical nature of multilabel data sets, i.e. labels appear relatively infrequently, multil-
abel algorithms usually focus on predicting the presence of labels. Therefore, they are often restricted to
learning only positive head rules. However, allowing negative heads may reveal additional dependencies
between labels, e.g. dontplay= 0← play= 1. [Loza Mencía and Janssen, 2016]

According to Loza Mencía and Janssen [2016], there are two major reasons for focusing on the in-
duction of label-dependent rules. First, label-independent multilabel head rules can only model co-
occurrence (or co-absence) dependencies. For instance, global dependencies are difficult to express
using only such rules. Second, using label-independent multilabel rules may require to formulate sepa-
rate rules for each distinct label combination present in the data set [Loza Mencía and Janssen, 2016]. As
a result, the number of rules can become very large even for medium sized data sets. Full expressiveness
is achieved by label-dependent multilabel rules [Loza Mencía and Janssen, 2016].

2.2.3 Multilabel Decision Lists

Regular decision lists have already been explained in Section 2.2.1. They are an ordered rule set in which
the first rule that fires determines the class value of the given example. In order to carry over the concept
of a decision list to the multilabel classification setting, some adjustments need to be made. Otherwise,
the classification process would stop with the first rule that fires, resulting in only a single label being
set for a single-label rule or multiple labels being set for multilabel rules (unless predicting full label
combinations). Even for the latter this could be problematic as an example usually has more relevant
labels than a rule has labels in the head. The solution are multilabel decision lists. Just like for normal
decision lists, rules are ordered in a sequence D = 〈r1, r2, . . . 〉. However, the classification process does
not stop as soon as the first rule fires. The process continues with the subsequent rules unless all labels
are already set for the instance or the rule that fires is explicitly marked as a stopping rule. In that case,
the classification process is terminated.

According to Loza Mencía and Janssen [2016], this mechanism allows the flexibility of assigning sev-
eral labels with a single decision list but also stop the classification if need be. Especially if only positive
heads are allowed, stopping rules become important. They prevent a bias towards predicting too many
labels as relevant. Note that once a label is set, it cannot be changed or be corrected later by subsequent
rules. We will change this behaviour in Section 8. Loza Mencía and Janssen [2016] further observe that
a multilabel decision list can be viewed as a generalization of a normal single-label decision list.

The application of a decision list D to a test example X is depicted in Algorithm 2. As described,
each rule is checked in order whether or not it covers the test example. If so, the head is applied to the
label vector of the example. In the case of a stopping rule or if all rules have been checked, the clas-
sification process is terminated and all labels that have not been set by a rule are assumed to be irrelevant.

The operation of Algorithm 2 is best illustrated with an example, which is given in Table 2. Again, the
attributes of the data set describe the weather on a day and the labels describe whether or not to play a
certain game, do not play or play maybe. Initially, the labels of the test instance are all missing values.
The first rule in the decision list covers the example. Therefore, label playmaybe is set to be irrelevant
for the test instance. The rule at position two of the decision list does not cover the test instance. Hence,
no label is set. The rule at position three covers the test instance, resulting in the application of the head
to the instance. Thus, dontplay is set to be relevant. The fourth rule does also cover the test instance.

19



Algorithm 2 Application of a multilabel decision list to a test example. [Loza Mencía and Janssen, 2016,
Figure 7]

Require: Test example X , multilabel decision list D
1: Y = (?, . . . , ?)
2: for each rule r in decision list D do . in the order of insertion
3: if r covers X then
4: apply head of r on Y if corresponding value in Y is unset
5: if r marked as stopping rule or Y is complete then
6: assume all remaining labels in Y are negative
7: return Y
8: end if
9: end if

10: assume all remaining labels in Y are negative
11: return Y
12: end for

However, the corresponding label dontplay is already set for this instance. Therefore, the prediction for
this test instance is not updated. The rule at position five is a fully label-dependent rule. The rule models
the label dependency between play and dontplay. As dontplay is currently set to be irrelevant, the rule
does not cover the test instance and we continue with the rule at position six. The currently considered
rule is a rule with no conditions and is therefore always applicable. Label dontplay is already set and
therefore not updated, which would make no difference in this case. Furthermore, label play is set to be
irrelevant due to the value still missing. Hence, the complete label set of the test instance was predicted.
No labels need to be assumed to be irrelevant.

Position Rule
1 playmaybe = 0← outlook = sunny
2 play = 1, dontplay = 0← outlook = overcast
3 dontplay = 1← humidity ≥ 82.5, humidity ≤ 95.5
4 dontplay = 0← temperature ≥ 66.5
5 play = 1← dontplay = 0
6 play = 0, dontplay = 1← ;

outlook temperature humidity windy play dontplay playmaybe
sunny 85 85 FALSE ? ? ?

Table 2: Example decision list and example test instance with initially missing values for the three labels.

2.3 Multilabel Evaluation Metrics

Evaluating multilabel classification algorithms requires different evaluation measures than evaluating
binary and multiclass classification algorithms [Tsoumakas et al., 2005]. Hence, several measures from
the latter domains as well as information retrieval were adopted and adapted for measuring the quality
of multilabel classification algorithms [Loza Mencía, 2012]. Depending on what kind of prediction an
evaluation function assesses, we can distinguish between bipartition and ranking evaluation measures
[Tsoumakas et al., 2005; Loza Mencía, 2012]. However, the latter are not considered in the work at
hand. Due to there being no generally accepted procedure [Loza Mencía, 2012], selected bipartition
evaluation measures as well as aggregation and averaging strategies are presented in this section.
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2.3.1 Bipartition Evaluation Metrics

According to Koyejo et al. [2015], a classification metric is used to measure the utility of a classifier, as
defined by the practitioner or end-user. As most bipartition evaluation measures are based on binary and
multiclass classification measures, they can always be computed from a confusion matrix [Loza Mencía,
2012]. A confusion matrix is a 2× 2 dimensional matrix where the columns are the predictions and the
rows the actual class [Loza Mencía, 2012; Chawla, 2005]. For the multilabel setting, this amounts to
whether or not they are relevant and whether a label was predicted to be relevant or irrelevant. Table 3
illustrates the structure of a confusion matrix.

C predicted not predicted
relevant TP FN

irrelevant FP TN

Table 3: The structure of a (multilabel) confusion matrix, where true positives are denoted as TP, false
negatives as FN, false positives as FP and true negatives as TN. [Loza Mencía, 2012; Chawla,
2005]

The matrix entries are integers counting the true and false positives as well as the true and false
negatives of a prediction Y = (y1, . . . , yn) in comparison to the given true label vector Ŷ = ( ŷ1, . . . , ŷn).
For a global confusion matrix, the entries are usually computed for each example and then added up. In
order to easily define aggregation and averaging operators, a finer distinction is needed. In addition to a
confusion matrix per example, we further construct a confusion matrix for each label within an example.
The atomic confusion matrix of a label λi and an instance X j is, in accordance to Loza Mencía [2012],
denoted by C i

j and further illustrated in Table 4. An atomic confusion matrix is of maximal possible
distinction and consists of a single entry only. The entries of a confusion matrix are defined as follows:

• TP: The label is relevant and is predicted to be relevant.

• FP: The label is actually irrelevant but is mistakenly predicted to be relevant.

• TN: The label is irrelevant and is predicted to be irrelevant.

• FN: The label is actually relevant but is mistakenly predicted to be irrelevant.

Note that later in this work we are going to use an alternative definition of true positives and true neg-
atives. If a rule covers an example and the prediction of the classifier matches the ground truth, the
prediction is counted as a true positive, even if both the prediction and the ground truth of the label are
irrelevant. [Chawla, 2005]

λ1 λ2 λ3 λ4

x1 C1
1 C2

1 C3
1 C4

1
x2 C1

2 C2
2 C3

2 C4
2

x3 C1
3 C2

3 C3
3 C4

3

Table 4: Confusion matrices with maximal granularity, i.e. atomic confusion matrices.

Some measures additionally require the number of positive examples P or the number of negative
examples N . We therefore define

P= TP+ FN (1)

N= TN+ FP (2)

in accordance to the notation used in Table 3. Note that both numbers can easily be computed from a
confusion matrix and that the calculation of the total number of positive or negative examples requires
a global confusion matrix.
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2.3.2 Aggregation and Averaging

The most common approach to defining multilabel evaluation metrics is to average binary evaluation
metrics [Koyejo et al., 2015]. Several possibilities for aggregating and hence obtaining a single compa-
rable value on the test set exist. Two well-known averaging strategies are micro-averaging and macro-
averaging. The main difference between the two lies in the order of aggregation and application of the
evaluation function. While micro-averaging first adds up all results (aggregation), which are then trans-
formed into a single value by the evaluation function (application), macro-averaging first applies the
evaluation function on all available results (application), followed by the aggregation by computing the
arithmetic mean of the computed values (aggregation). Let Ci, i = 1, . . . , n be a sequence of confusion
matrices. While other addable and scalable results are eligible for aggregation operators, they are not
considered in this work. We can now define the two aggregation operators

n
∑

i=1

Ci := C1 ⊕ ...⊕ Cn (3)

n
avg
i=1

Ci :=
1
n

n
∑

i=1

Ci (4)

where ⊕ denotes the cell-wise addition of confusion matrices and the averaging operator amounts to
calculating the arithmetic mean over a number of values. Averaging strategies can then be distinguished
by the order in which they apply the aggregation operators and the evaluation function δ. [Loza Mencía,
2012]

Let i iterate over all labels λ1, . . . ,λn and j over all instances X1, . . . , Xm of the training set T and let
◦ denote the concatenation of operations, then the following four mathematically distinct combinations
exist (cf. [Loza Mencía, 2012])1:

• (Label and Example-Based) Micro-Averaging: All atomic confusion matrices are added up to
a single complete matrix. Then, the evaluation function δ is applied to the complete confusion
matrix. Corresponds to averaging over both labels and examples [Koyejo et al., 2015].

δ(
∑

i

∑

j

C i
j) = δ(
∑

j

∑

i

C i
j)

• Example-Based (Macro-)Averaging: First, the atomic confusion matrices for each example (one
for each label) are added up to a confusion matrix per example (hence example-based). Second,
the evaluation function is applied to the confusion matrix per example. Hence, one value for each
example is obtained and then finally averaged over all m examples. Corresponds to classification
performance across examples [Koyejo et al., 2015]. Note that this averaging strategy values each
example equally, i.e. each example is considered with the same weight [Loza Mencía, 2012].

avg
j
◦δ(
∑

i

C i
j)

1 Note that different averaging strategies can (but do not have to) have the same result for some evaluation measures
[Tsoumakas et al., 2005].
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• Label-Based (Macro-)Averaging: At first, the atomic confusion matrices for each label (one for
each example) are added up to a confusion matrix per label (hence label-based). Then, the eval-
uation function is applied to the confusion matrix per label and averaged. Hence, one value for
each label is obtained and then finally averaged over all n labels. Corresponds to the average clas-
sification performance across labels [Koyejo et al., 2015]. Note that this averaging strategy values
each label equally, neglecting their frequency, i.e. a rare label is considered to be as important as a
frequent one [Loza Mencía, 2012].

avg
i
◦δ(
∑

j

C i
j)

• (Label and Example-Based) Macro-Averaging: First, the evaluation function is applied on each
atomic confusion matrix. Second, the obtained values are averaged over both examples and labels,
whereby the order of the averaging operations is irrelevant.

avg
i
◦ avg

j
◦δ(C i

j) = avg
j
◦ avg

i
◦δ(C i

j)

2.3.3 Selected Evaluation Functions

In this section, the multilabel evaluation metrics used in this work are described. Evaluation metrics are
also called heuristics as they only offer an approximate solution, i.e. we select the rule that seems to
currently be the best according to some measure but we do not have full knowledge for selecting the
ideal rule [Janssen, 2012]. Therefore selecting a seemingly worse rule now might lead to better results
further down the road. As Janssen [2012] explains, in order to learn a good and predictive rule set, each
individual rule must optimize two criteria simultaneously. For once, coverage, the number of covered
positive examples (in our case number of true positives), must be maximized. Secondly, consistency, the
number of covered negative examples (in our case false positives), must be minimized. The following
heuristics are used to estimate the quality of a rule or rule set:

• Precision: Computes the percentage of correctly predicted labels among the predicted labels. If no
negative heads are allowed, this amounts to the percentage of relevant labels among the predicted
labels. Precision is especially vulnerable to overfitting a data set as it tends to learn overly complex
rules. To illustrate this, consider a rule that covers one example correctly (e.g. predicts the full
label combination for an example correctly). For this rule δprec = 1. In contrast, for a rule that
covers 99 out of 100 covered examples correctly δprec = 0,99. Hence, the former rule is chosen
albeit the latter most likely being better and having better predictive qualities. Implying coverage
becomes less important the more consistent a rule is. [Janssen, 2012]

δprec(C) =
TP

TP+ FP

• Recall: Computes the percentage of relevant labels that are predicted. While precision optimizes
consistency, recall tries to maximize coverage.

δrec(C) =
TP

TP+ FN
=

TP
P
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• F-Measure: The f-measure originates in information retrieval and solves the overfitting problem
of precision by incorporating recall. Namely, it computes the harmonic mean between precision
and recall, trading off the two values. The harmonic mean definition of the f-measure is usually
referred to as the f1-measure as (for this measure) the ideal ratio of recall against precision is one,
hence both being equally important [Sasaki, 2007]. The general definition of the f-measure is

Fβ = δF(C) =
(β2 + 1) ·δprec(C) ·δrec(C)

β2 ·δprec(C) +δrec(C)

where β ≥ 0 is a parameter controlling the desired balance between precision and recall [Sasaki,
2007; Loza Mencía and Janssen, 2016]. For β > 1, the f-measure becomes more recall-oriented,
whereas for β < 1 it becomes more precision-oriented [Sasaki, 2007]. Recall that in MLC it is often
preferable to focus on correctly classifying relevant labels rather than irrelevant ones. This makes
the f-measure a good choice as maximizing it results in trying to match all the relevant labels in the
label matrix (depending on the balance defined by β) [Loza Mencía and Janssen, 2016]. Further
note that the f-measure completely ignores true negatives.

• Hamming Accuracy: Before defining hamming accuracy, we define hamming loss. The hamming
loss evaluation function computes the percentage of misclassified labels. Misclassified labels are
either relevant labels predicted to be irrelevant (false negatives) or the other way around (false
positives). Therefore, the hamming loss is defined as

δhammloss(C) =
FN+ FP
P+N

Hamming loss is a popular loss function in literature. However, it has a bias towards favoring
algorithms with high precision and low recall. For more information on this subject confer Loza
Mencía [2012]. In order to better compare hamming loss values to other heuristic values, it is
often expressed in terms of hamming accuracy. Hamming accuracy is simply defined as

δhamm(C) = 1−δhammloss =
TP+ TN

P+N

• Subset Accuracy: Subset accuracy is a very strict evaluation measure. It is related to the 0/1 loss
[Friedman, 1997] and measures the percentage of perfectly classified examples, i.e. the predicted
label vector Yi = (y1, . . . , yn) and the true label vector Ŷi = ( ŷ1, . . . , ŷn) must match exactly for an
example X i in order to be counted positively. Hence, subset accuracy is defined as

δsubset(C) =
1
m

m
∑

i

[Yi = Ŷi]

where the [x] operator is used to transform a boolean value into an integer. If x = true, then
[x] = 1. Similarly, if x = false, then [x] = 0. Despite expressing the ideal objective for a clas-
sification algorithm (correctly predicting the label set of each example), subset accuracy becomes
increasingly useless with a higher number of labels and problems that are hard to learn [Loza
Mencía, 2012]. The reason for that is the fact that the heuristic value is (almost) zero in such
cases. Differences in subset accuracy then become insignificant, although one algorithm being
better than the other for other measures. Note that subset accuracy is example-based and is not
eligible for micro-averaging for instance. [Loza Mencía, 2012; Zhu et al., 2005; Tsoumakas et al.,
2005; Loza Mencía and Janssen, 2016]
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2.4 Related Work

In Section 2.1.1, we have already seen different approaches for solving the multilabel classification
problem. However, these approaches aimed at transforming the multilabel classification problem into
a multiclass classification problem. In this section, we first cover two algorithms that aim at learning
multilabel rules. Furthermore, an alternative way of construction a decision list is presented.

2.4.1 Algorithms Learning Multilabel Rules

The first algorithm that is capable of learning multilabel rules is called multiclass, multilabel association
classification (MMAC) [Thabtah et al., 2006]. The approach is based on learning association classifica-
tion rules, which are a special case of association rule mining. MMAC utilizes association classification
rules, which are a special case of association rule mining. (Descriptive) association rules relate prop-
erties of the data in the body to other properties in the head [Loza Mencía et al., 2018]. Thus, more
than one label may appear in the head of the rule. In order to find association rules, typically an ex-
haustive search is employed [Loza Mencía et al., 2018]. Implying that all rules satisfying a minimum
support and a minimum confidence are learned. Similarly, for learning class-association rules (CARs)
frequent items have to be identified at first. Afterwards, association classification methods learn a com-
plete set of CARs for frequent items with a minimum confidence [Thabtah et al., 2006]. MMAC can
be divided into three phases: rule generation, recursive learning and classification. Following the de-
scription of Thabtah et al. [2006], the algorithm starts with scanning the training data in order to
generate a complete set of CARs. In the second phase, more rules that fit the thresholds are identified
by regarding the remaining unclassified instances. The last and final step merges rules with the same
body into multilabel rules, where the order of the labels in the head are ranked according to their fre-
quency. This is a major difference to the approach presented in this work. Whereas MMAC merges
single-label rules with the same body to multilabel rules, we directly learn the best performing head
for a given body, which may result in a multilabel rule. Additionally, Thabtah et al. [2006] employ
a different strategy for classification. While we use a multilabel decision list and typically make par-
tial predictions, MMAC uses a method that relates to regular decision lists. Implying that the first rule
that fires classifies the test instance. Hence, only a single rule classifies a test instances and thus exclu-
sively predicts the labels of said instance. Furthermore, for MMAC and most other approaches based
on association rules, it remains unclear what multilabel loss functions the discovered rules are trying to
minimize [Loza Mencía et al., 2018]. Although MMAC uses an evaluation measure that is somewhat
suitable for measuring the quality of the learned models for multilabel classification problems, they do
not utilize those measure in the learning process. In contrast, the approach presented in this work is
capable of employing different kinds of popular multilabel evaluation metrics both in the learning pro-
cess and to evaluate the learned models. Loza Mencía et al. [2018] identify this as a key advantage of
rule-based methods, i.e. that the learned rules can be flexibly adapted to suit different evaluation metrics.

Bosc et al. [2016] propose an approach that is based on an algorithm for subgroup discovery and that
can find the top-k multilabel rules. While they use a quality measure to rate rules, the measure is based
on subgroup discovery and is thus not related to popular multilabel evaluation metrics [Loza Mencía
et al., 2018]. Furthermore, Bosc et al. [2016] aim at learning descriptive rules with the intention of
gaining information on odor structures. Contrary, the algorithm presented in this work aims at learning
predictive rules, exploiting label dependencies for improving the predictive quality and making them
explicit. However, both approaches aim at exploring the exponentially growing label search space, for
which Bosc et al. [2016] opt for a beam search. They start with the most general local subgroup and
try to specialize it. The process continues until no improvements in the quality measure can be observed
anymore. This approach has similarities to the finding of the best head in this work. Especially since
they use anti-monotonicity of support in order to prune the search space. Nevertheless, the approach
presented in this work employs a still quite different strategy with different objectives.
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2.4.2 Prepending Inferred Rules

So far we have regarded two ways of learning a decision list. Regular decision list are explained in
Section 2.2.1, whereas a generalization of this concept was introduced in Section 2.2.3 in the form of a
multilabel decision list. Both types of decision lists are constructed by learning a new rule on the current
training set and appending the learned rule at the end of the list. The first rule that fires then makes the
prediction or parts of it. An alternative strategy for constructing decision lists is prepending [Webb, 1993;
Newlands and Webb, 2004]. The general idea is to learn a default rule that predicts the majority class
initially and then continue to learn rules. Contrary to the other decision lists, prepending inserts new
rules at the beginning of the list instead of at the end. Hence, the rule that was learned last is the first
rule in the decision list. This approach was hypothesized to develop smaller decision lists and improve
the predictive quality by taking the default rule into account during learning [Webb, 1993; Newlands
and Webb, 2004].

Initial experiments by Webb [1993] could not confirm these theories. Instead, the predictive accu-
racy of prepending suffered in comparison to appending the learned rules. The found reason for this
observation is the way rules that cover only a few positive cases are handled [Webb, 1993; Newlands
and Webb, 2004]. Due to such rules covering only a few positive examples, they are typically learned
last and hence placed at the front of the decision list. In contrast, appending places such rules at the
end of the decision list. However, these rules have low support and thus have a higher expected er-
ror rate. As a result of their placement at the front of the decision list by prepending, their likelihood
of firing is maximized. Thus, they contribute significantly to the global error of the decision list. Sum-
ming up, the problem is that rules with too low of a support are placed before rules with the best support.

Both by Webb [1993] and Newlands and Webb [2004] adjustments for solving this problem have been
proposed. For instance, Webb [1993] requires rules to have a certain minimum support in order to get
learned. Applying these adjustments has helped to improve the performance of prepending and has re-
sulted in more compact decision lists. However, they still lack behind in predictive performance.

In this work, we propose a similar approach to prepending in Section 8. Hence, we refer to our
approach as prepending as well. For our approach, we do also take advantage of prepending a default
rule initially. The difference is that afterwards we still append newly learned rules at the end of the list.
Thus, we consider the default rule in the learning process. Furthermore, as we learn rules in a different
manner and append them to the end of the decision list, we do not run into similar problems regarding
rules that only cover a few positive examples. Additionally, we set a condition that limits the quality of
the rule. While not exactly the same as requiring a minimum support, it can be thought of as a related
concept. For instance, Webb [1993] cuts of rules with a too low support and requires rules to have a
minimum number of covered positives.
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3 Anti-Monotonicity of Multilabel Evaluation Metrics

This work focuses on finding the best head for a given rule body. For doing so, we systematically search
through the label space L (cf. Figure 1). However, due to its exponential growth and a possibly large
number of labels this becomes infeasible [Loza Mencía, 2012]. Especially when considering that this
action must be performed for every possible candidate, i.e. every possible body of length one, and fol-
lowing refinements. In the master thesis by Rapp [2016] and subsequent publication thereof Rapp et al.
[2018], the problem is tackled by transferring anti-monotonicity to the MLC setting. Anti-montonicity is
a well known property in association rule mining and is used to limit the number of necessary evalua-
tions while still guaranteeing the best solution [Ng et al., 1998]. Using anti-monotonicity, the label space
can be pruned by leaving out unpromising label combinations without missing the head with the best
performance. In this section, the anti-monotonicity and decomposability characteristics of multilabel
evaluation measures according to Rapp et al. [2018] are introduced. Formally, we need to find the best
performing multilabel head Y as defined by

hmax =max
Y
δ(r) =max

Y
δ(Y ← B)

where h is an evaluation function (also called heuristics) and a body B [Rapp et al., 2018]. This entire
section is based on Rapp et al. [2018] and Rapp [2016]. Hence, we omit explicit references.

3.1 Anti-Monotonicity

Anti-monotonicity is the first property which can be exploited for pruning the search through the la-
bel space. Intuitively speaking, once the performance decreases by adding an additional label to the
head, the maximum performance cannot be be reached anymore by further label additions to the same
head. Hence, all supersets of the label combination in the head must not be evaluated anymore, i.e.
can be pruned without missing out on the best performing head. In order to formally define the anti-
monotonicity characteristic, let Yp← B and Ys← B denote two multilabel rules with the same body B (as
the body is fixed for one search through the label space) and heads Yp and Ys. Furthermore, let Yp ⊂ Ys,
i.e. Ys consists of all labels present in Yp as well as at least one additional label. Then, a multilabel
evaluation function δ is anti-monotonic if

Yp ⊂ Ys ∧δ(Ys← B)< δ(Yp← B) =⇒ δ(Ya← B)< hmax,∀Ya : Ys ⊂ Ya

and δ must not be monotonous, considering the averaging and evaluation strategy. The reason being
that when using a monotonous function, adding an additional label to a multilabel head never causes
the measured performance to decrease on a data set T . Formally, monotonicity is defined as

δ(Ya← B, T )≥ δ(Yp← B, T ),∀Ya : Ys ⊂ Y

Omitting the condition of not being montonous can lead to rules with full label combinations in the head.
Hence, being equivalent to an exhaustive search of the label space in terms of computational complexity.

Figure 1 illustrates how the label space can be pruned by exploiting anti-monotonicity. Naturally, all
single-label heads need to be evaluated. If the heuristic value increases, we cannot prune as the heuristic
value might still increase by adding more labels. Confer the edge of {y1} to {y1, y2}) for instance. If
the heuristic value declines (indicated by a red arrow), however, thanks to anti-monotonicity we can be
sure that the heuristic values cannot increase anymore by adding more label attributes to the head. An
example for this is the label combination {y2, y3}. By adding y3 to {y2} the heuristic value declines.
Therefore, anti-montonicity can be applied and all supersets of the head can be pruned.
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{y1, y2, y3, y4}
h= 0.63

Figure 1: Searching through the label space and pruning according to anti-montonicity. All heads below
the dashed line do not need to be evaluated. Red arrows indicate a drop in the heuristic value,
whereas green arrows indicate an improvement. [Rapp, 2016, Presentation]

3.2 Decomposability

Decomposability is the second and stronger property. Using decomposability, no deep searches through
the label space must be performed. Instead, it comes at a linear cost as multilabel heads can easily be
constructed by first evaluating each label independently and then iteratively combining the performance
measures. Intuitively speaking, decomposability states that if combining several labels to a new mul-
tilabel head, the performance of the new multilabel head drops (in comparison to the performance of
the best single label) if one single label performance is worse than the others, i.e. not all performances
are equal. Think of it as one or more labels dragging the performance of the combined multilabel head
down. Therefore, after evaluating all single label heads, we only need to combine the heads with the
maximum performance out of all single label heads (ignoring the labels dragging us down) to find the
best performing head. Keep this property in mind as we exploit it in Section 6. Using the same notation
as for the definition of anti-monotonicity, a multilabel evaluation function δ is decomposable if

• the multilabel head rule Y ← B contains a label attribute y ∈ Y for which the corresponding single
label single-label head rule yi ← B does not reach hmax, the multilabel head rule cannot reach that
performance either (and vice versa):

∃i
�

yi ∈ Y ∧δ(yi ← B)< hmax

�

⇐⇒ δ(Y ← B)< hmax

• and if all single label head rules yi ← B which correspond to the label attributes of the multilabel
head Y reach hmax, the multilabel head rule Y ← B reaches that performance as well (and vice
versa):

δ( ŷi ← B) = hmax,∀yi

�

yi ∈ Y
�

⇐⇒ δ(Y ← B) = hmax

as well as δ must not be monotonous, considering the averaging and evaluation strategy. Decompos-
ability is a stronger criterion than anti-monotonicity. Hence, if an evaluation function is decomposable,
anti-montonicity is implied as well (check Rapp [2016] for the proof). Despite, pruning according to de-
composability should always be preferred as it allows to prune more heavily, leading to a more efficient
algorithm. Anti-monotonicity is to be used if decomposability is not met, as we will see is the case for
subset accuracy for instance.
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Figure 2: Searching through the label space and pruning label combinations based on decomposability.
All heads below the dashed line do not need to be evaluated (on the training set). Red arrows
indicate a drop in the heuristic value, whereas green arrows indicate an improvement. [Rapp,
2016, Presentation]

Figure 2 illustrates how the label search space can be pruned while exploiting decomposability. Nat-
urally, all single-label heads need to be evaluated (on the training set). According to decomposability, a
head consisting of several labels cannot reach the best possible performance if one of the corresponding
single-label heads does not reach the best performance for the given body. Therefore, we can construct
the best head by first evaluating all single-label head rules and subsequently combining all single-label
heads that reach the best performance. For the example illustrated in Figure 2, a heuristic value of 1.0 is
the best performance of any single-label head. Hence, we combine all single-label heads that reach that
performance ({y1} and {y2}). Due to decomposability we can be sure that the combined head reaches
the same heuristic value. Note that as a result, we do not have to evaluate the combination on the
training set and all other label combinations do not have to be regarded and can be pruned.

3.3 Rule-Dependent Evaluation

For evaluating rules, we distinguish between two evaluation strategies as defined by Rapp [2016]. In
Section 2.3 we introduced aggregation and averaging strategies. We saw that we can either average
over labels, examples or both at the same time. For evaluating a single rule, a natural approach is to
consider all examples the rule covers and not covers in the calculation of the evaluation metric. The two
mentioned evaluation strategies differ in which labels they consider for the calculation of the evaluation
metric. They are defined as follows

• Rule-Independent: This evaluation strategy is not dependent on the labels an individual rule
predicts. Rather, all labels λ, . . . ,λn ∈ L are considered in the calculation of the performance of
a rule. As most rules do not predict a full label combination, labels not present in the head are
assumed to be irrelevant, i.e. the rule is evaluated as if containing a label attribute yi = 0 for a
label λi that is not included in the head H of a rule.

• Rule-Dependent: This evaluation strategy is dependent on the labels an individual rule predicts.
Only labels present in the head are taken into account in the calculation of the performance of the
rule, i.e. all labels λi for which a corresponding label attribute yi ∈ H.

The reason for assuming not present labels to be irrelevant for the rule-independent evaluation strategy
lies in the way the label vector is constructed for a test example. After applying the multilabel decision
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list on the test example, all remaining unset labels in the label vector are predicted to be irrelevant.
Therefore, it might be preferable to consider this in the evaluation of a rule. However, the labels that
are assumed to be irrelevant in the evaluation of a rule, might have been previously set by preceding
rules in the multilabel decision list. This situation arises due to rules mostly predicting only a few labels
instead of complete label vectors. In fact, Rapp [2016] states that in most cases performance suffers
if using a rule-independent evaluation strategy. Additionally, run time increases as well due to two
reasons. The rule-independent metrics used in this work and by Rapp [2016] are not decomposable
(cf. Section 3.4). Therefore, pruning can only be performed using anti-monotonicity, which is a weaker
criterion. Furthermore, the rule-independent evaluation strategy introduces a bias towards learning full
label combinations. Hence, only covering few examples per rule, which results in more rules needed
to describe the data set. In conclusion, in this work we focus on learning rules using a rule-dependent
evaluation strategy. If not stated otherwise, a rule-dependent evaluation strategy is used.

3.4 Anti-Monotonous and Decomposable Evaluation Metrics

Table 5 shows whether or not the in Section 2.3.3 presented evaluation functions are anti-monotonous
or decomposable for the different averaging strategies presented in 2.3.2. Recall is omitted as it is not
used in the evaluation. For detailed proofs of the characteristics confer Rapp [2016].

Evaluation Function Evaluation Strategy Averaging Strategy A-M D

Precision

Rule-Dependent

Micro-Averaging
p p

Label-Based Averaging
p p

Example-Based Averaging
p p

Macro-Averaging
p p

Rule-Independent

Micro-Averaging
p

Label-Based Averaging
p

Example-Based Averaging
p

Macro-Averaging
p

F-Measure

Rule-Dependent

Micro-Averaging
p p

Label-Based Averaging
p p

Example-Based Averaging
p p

Macro-Averaging
p p

Rule-Independent

Micro-Averaging
p

Label-Based Averaging
p

Example-Based Averaging
p

Macro-Averaging
p

Hamming Accuracy

Rule-Dependent

Micro-Averaging
p p

Label-Based Averaging
p p

Example-Based Averaging
p p

Macro-Averaging
p p

Rule-Independent

Micro-Averaging
p

Label-Based Averaging
p

Example-Based Averaging
p

Macro-Averaging
p

Subset Accuracy
Rule-Dependent

Example-Based Averaging
p

Rule-Independent

Table 5: Anti-monotonicity (A-M) and decomposability (D) of evaluation measures relevant to this work,
regarding different averaging and evaluation strategies. [Rapp, 2016, Table 11]
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4 Discovery of Multilabel Rules

In this chapter, the algorithm this work is based on is presented. The algorithm itself is a separate-and-
conquer algorithm that was proposed by Loza Mencía and Janssen [2016] and further adapted by Rapp
[2016]. In the following two sections, the conceptual changes made in each work are shortly explained.
Then, we break down the algorithm into its components and take a more detailed look at how it works.

4.1 A SeCo Algorithm For Learning Single-Label Head Rules

The algorithm suggested by Loza Mencía and Janssen [2016] aims at learning single-label head rules. It
follows the same basic structure of separate-and-conquer algorithms as shown in Algorithm 1. However,
the algorithm had to be adapted in order to be capable of handling multilabel classification problems.
According to Loza Mencía and Janssen [2016], their main motivation was to keep adjustments to the
classical SeCo algorithm at a minimum. We already covered the first change. Instead of using a regular
decision list, the algorithm uses a multilabel decision list in combination with stopping rules as outlined
in Section 2.2.3. This becomes necessary as the algorithm learns single-label head rules, which in turn
implies the need for multiple rules covering a single instance, which typically have several relevant la-
bels. Additionally, training examples can be re-included in the training process. This stands in contrast to
the approach used in a classical separate-and-conquer algorithm, where the examples are removed once
they are covered by a rule. We further differentiate between re-including partially covered examples,
those for which some but not all labels are set, and re-including fully covered examples, those for which
all labels are set for the instance. This leads to three possibilities of re-adding covered examples, namely
re-adding only partially covered-examples, re-adding partially and fully covered examples as well as re-
adding none. Removing all fully covered examples might introduce inconsistencies [Loza Mencía and
Janssen, 2016]. Following the argumentation of Loza Mencía and Janssen [2016], the reason being that
when removing fully covered examples, subsequent rules might be inconsistent with the fully covered
examples. Moreover, fully covered examples may serve as an anchor point for subsequent rules. Hence,
improving the rule induction process. Another big difference lies in the iterative nature of the algorithm.
In order to be able to learn label-dependent rules, label conditions are injected into the training process
for labels for which a rule has already been learned. Therefore enabling the modeling of label dependen-
cies. This is a key component of the algorithm as it aims at making dependencies between labels explicit
by using rules. Additionally, by allowing the learning of negative heads, the definition of whether a label
or instance is covered changes.

4.2 A SeCo Algorithm For Learning Multilabel Head Rules

Rapp [2016] adapted the algorithm by Loza Mencía and Janssen [2016] in order to be able to learn
multilabel head rules. Naturally, they share a common structure. Both induce a multilabel decision list
by successively learning rules and both eventually remove covered training examples. Nevertheless, both
algorithms significantly differ in the way they learn individual rules. While the algorithm by Loza Mencía
and Janssen [2016] is based on finding the best body for a given label, the algorithm by Rapp [2016]
is based on finding the best performing head for a given body and trying all possible bodies. For this
search, exploiting anti-monotonicity and decomposability of multilabel evaluation metrics is crucial. In
this and the following sections, the individual components of said algorithm are presented. We do only
cover the algorithm for learning multilabel head rules. However, some subroutines are identical for both
variants. For clarity, we mostly omit explicit references to Rapp [2016] and Loza Mencía and Janssen
[2016] as this entire chapter is based upon those works.

Algorithm 3 illustrates the training process of the rule learner. The algorithm takes a training data
set, containing pairs of instances X and corresponding true label vectors Ŷ as well as a set of parameters
as an input. The algorithm keeps track of two label vectors per instance. The first represents the true
label vector. The second represents the currently set labels for the instance, initialized with missing
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values as no labels are predicted in the beginning. Then, the learning algorithm runs as long as no more
than θ uncovered examples are left in the training set (cf. Algorithm 3, line 4). In each iteration, we
first learn the best possible rule r using the subroutine FINDBESTGLOBALRULE. Depending on whether
G = {1} or G = {0, 1}, we consider only positive or positive and negative heads in the rule learning
process. After the rule is learned, we append it to the multilabel decision list D. Afterwards, we split the
training set depending on the covering status using the subroutine GETCOVEREDSETS (cf. Algorithm 3, line
7). The result is a triple of sets, containing the remaining uncovered training examples T , the partially
covered examples Tpart and the fully covered examples Tfull, respectively. Depending on the parameters
set by the user, the subroutine GETREADDSETS returns the already covered examples to be re-added to the
training set. If the percentage of fully covered examples among all covered examples exceeds parameter
τ (usually close to 1), the prediction is assumed to be complete and the current rule is marked as a
stopping rule. In this case, the subroutine GETREADDSET returns an empty set (cf. Algorithm 3, lines
8-10). If the percentage of fully covered examples does not exceed the specified threshold, the partially
covered examples are re-added to the training set. Additionally, a parameter can be set as to whether
or not to re-include the fully covered examples in order to benefit from the enriched information as
mentioned previously. As soon as enough examples are covered, the loop terminates and the multilabel
decision list is returned.

Algorithm 3 Training algorithm for both variants of the multilabel iterative separate-and-conquer algo-
rithm. [Loza Mencía and Janssen, 2016, Figure 3]

Require: New training examples pairs T = {(X1, Ŷ1), . . . , (Xm, Ŷm)},
parameters θ ,τ, heuristic h, targets G (either G = {1} or G = {0,1}),
whether using stopping rules, whether re-inserting fully covered examples

1: procedure MULTILABELSECO

2: R= ;
3: T = {(X1, Ŷ1), . . . , (Xm, Ŷm)} with Yi = (?, . . . , ?), i = 1, . . . , m
4: while |T|/m≥ θ do . until, e.g. 95% of examples covered
5: r = FINDBESTGLOBALRULE(G, T ) . get best possible rule regardless the head
6: R= R∪ r
7: (T, Tpart, Tfull) = GETCOVEREDSETS(r, T ) . separate T according covering by r
8: Tadd = GETREADDSET(Tpart, Tfull) . depending on user parameters
9: if Tadd = ; then

10: mark r as stopping rule . only uncovered examples in T of next round
11: else
12: T = T ∪ Tadd . add also some covered examples, do not remove them
13: end if
14: end while
15: return multilabel decision list R
16: end procedure

4.3 Finding The Best Rule

The algorithm for finding the best global rule for the currently remaining training set is shown in Algo-
rithm 4. The best rule is searched for in a top-down fashion, i.e. starting with the most generic rule and
successively specializing it. The most generic rule is a rule with no conditions in its body. It covers all
training examples as the body evaluates to true for each example.2 The rule is then iteratively refined
by adding conditions to its body. Implying, the rule is specialized as the refined rule covers only a subset

2 The reason being that an empty conjunction evaluates to true, which can be thought of as no conditions being evaluated
to true being required.
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of examples the unrefined rule covered. Changing the body requires the head to be updated as well.
This is necessary because for the new rule, predicting another head might yield a better performance as
it now covers a different set of examples. The rule induction process stops if the performance, which
is measured by a multilabel evaluation metric, cannot be improved anymore by adding more conditions
(cf. Algorithm 4, line 4). Eventually, the best rule rbest is returned.

Algorithm 4 Algorithm FINDBESTGLOBALRULE for inducing a new multilabel head rule, based on the
current training set. [Rapp, 2016, Algorithm 8]

Require: Original training data set T , current training data set Tcurrent,
targets G (either G = {1} or G = {0, 1}), evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure FINDBESTGLOBALRULE

2: rbest = ;
3: rbest.h= −∞ . initialize performance of new rule
4: improved= true
5: while improved do . until no improvements possible
6: r = REFINERULE(T, Tcurrent, rbest, G,δ) . refine rule by adding condition and updating head
7: if r.h> rbest.h then
8: rbest = r . replace by better rule
9: else

10: improved = false
11: end if
12: end while
13: return best rule rbest
14: end procedure

4.4 Refinement of Rule Conditions

The subroutine REFINERULE, as depicted in Algorithm 5 and called by the subroutine FINDBESTGLOBALRULE

(cf. Algorithm 4), is responsible for refining the rule in the best possible way as well as finding the best
performing corresponding multilabel head. In order to find the best possible refinement, the algorithm
appends each possible condition, be it an attribute or a label condition, to the body (cf. Algorithm 5,
lines 2 and 5). Moreover, for each possible refinement, the best head must be discovered (cf. Algorithm
5, line 6). The best refinement is chosen in regard to a performance evaluation on the remaining training
instances. The conditions considered in the refinement of the rule are extracted from the attributes and
the labels of the given training set. The regular attribute-value test conditions result from calling the
subroutine GETATTRIBUTECONDITIONS. They check whether or not the attributes of a given example have
certain values. The label conditions result from calling the subroutine GETLABELCONDITIONS. Contrary to
attribute conditions, label conditions check whether or not an example is associated with certain labels.
Hence, enabling the induction of label-dependent rules and therefore exploiting dependencies between
labels.

4.4.1 Attribute Conditions

The subroutine GETATTRIBUTECONDITIONS (cf. Algorithm 6) retrieves all possible attribute conditions from
the training set T . These conditions can then be used to specialize a body in the refinement process of
a rule (cf. Algorithm 5). Naturally, all available conditions are considered. The value that the attribute
is tested against depends on whether the attribute is nominal or numeric. For a nominal attribute, a
condition is created for each value the attribute can obtain (e.g. sunny, rainy or overcast for an attribute
weather outlook, cf. Algorithm 6, lines 4-6). In case of a numeric attribute, the creation of conditions
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Algorithm 5 Algorithm REFINERULE for refining the body of a multilabel head rule by adding additional
conditions. Each refinement requires to update the rule’s head as well. [Rapp, 2016, Algorithm 9]

Require: Original training data set T , current training data set Tcurrent,
rule r, targets G, evaluation function δ, the averaging strategy to use,
whether to use rule-dependent or rule-independent evaluation strategy

1: procedure REFINERULE

2: rbest = r
3: for each possible condition c ∈ GETATTRIBUTECONDITIONS(T )∪GETLABELCONDITIONS(Tcurrent) do
4: if c /∈ r.body then
5: rrefined = r
6: rrefined.body= rrefined.body∪ c . add condition to rule’s body
7: rrefined = FINDBESTHEAD(T, Tcurrent, rrefined, G,δ)
8: if rrefined.h> rbest.h then
9: rbest = rrefined . replace by refined rule

10: end if
11: end if
12: end for
13: end procedure

is dependent upon the values present in the training set T . At first, the training examples need to be
sorted in ascending order in regard to the attribute value (cf. Algorithm 6, line 9). Then, a split point
is calculated for each pair of neighboring examples (cf. Algorithm 6, line 10). At each split point, the
sorted attribute values are separated using the ≤ and the ≥ operator, respectively. Hence, creating two
conditions for each split point. Ideally, split points discriminate between positive and negative examples
for the prediction of a rule. For instance, let a rule predict whether or not to eat ice cream on a certain
day. Let us furthermore consider an attribute temperature, which models the temperature on a given
day. Then, an ideal split point, say 25, splits the examples in a way that, for instance, all examples
with a temperature value ≥ 25 are days on which ice cream was eaten (positive examples) and all
examples with a temperature value ≤ 25 are counter-examples, i.e. days on which no ice cream was
eaten (negative examples).3 For that reason, it is not necessary to create conditions for split points
between two neighboring examples, for which the associated label vectors are identical (cf. Algorithm
6, line 11). The reason being that the condition would inadequately discriminate between examples for
which the same prediction is correct.

4.4.2 Label Conditions

Including label conditions in the rule learning process allows the induction of label dependent rules.
Algorithm 7 determines which label conditions to include. Once a rule is learned, its head is applied to
the examples it covers, i.e. the initially empty label vector is set piece by piece. This process is discussed
in more detail in the next section. Therefore, the already predicted labels, those that are available for
creating conditions, can be extracted from the current training set Tcurrent. For each already predicted
label two conditions are created, testing whether or not the label is relevant or irrelevant for an example
(cf. Algorithm 7, line 5). Due to the way the multilabel decision list is applied, label conditions for which
the respective label has not been predicted yet, cannot be used to enhance the rule learning process.
As already discussed, the decision list is applied successively to an example. Initially, all labels of said
example are unset. Implying they are neither relevant nor irrelevant. Let us then assume the multilabel
decision list contains a rule that is dependent on a label which has not been predicted yet. Hence, there
is no chance of the label being set. Implying the condition evaluates to false as a test for relevancy

3 Note that often such an ideal split is not possible. Rather, we try to find the split with the best discrimination.
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Algorithm 6 Algorithm GETATTRIBUTECONDITIONS for retrieving all possible conditions, which are based
on the training data set’s attributes. [Rapp, 2016, Algorithm 10]

Require: Training data set T
1: procedure GETATTRIBUTECONDITIONS

2: C = ; . start with empty set of conditions
3: for each attribute ak do
4: if Ak is nominal then
5: for each value v of ak do . add condition for each nominal value
6: C = C ∪ (ak = v )
7: end for
8: else . attribute is numeric
9: sort examples (X j, Ŷj) ∈ T by values vk ∈ X j in increasing order

10: for each example (X j, Ŷj) ∈ T with j > 1∧ j < |T | do
11: if Ŷj−1 6= Ŷj then . only consider neighbours with different label vectors
12: v = vk−1 + (vk − vk−1)/2 with vk−1, vk ∈ X j . calculate split point
13: C = C ∪ (ak ≥ v )∪ (ak ≤ v ) . add two conditions for each split point
14: end if
15: end for
16: end if
17: end for
18: return attribute conditions C
19: end procedure

or irrelevancy is impossible on an unset label. Consequently, the rule can never cover the example,
rendering the rule useless. In contrast, once a preceding rule predicts a label, there is a chance that the
label is set, making it useful.

Algorithm 7 Algorithm GETLABELCONDITIONS for retrieving all possible conditions, which are based on
already predicted labels. [Rapp, 2016, Algorithm 11]

Require: Current training set Tcurrent
1: procedure GETLABELCONDITIONS

2: C = ; . start with empty set of conditions
3: for each example (X j, Ŷj) ∈ Tcurrent do
4: for each label attribute ŷi ∈ Ŷj with ŷi 6= ? do
5: C = C ∪ (yi = 0)∪ (yi = 1) . add two conditions for each already learned prediction
6: end for
7: end for
8: return label conditions C
9: end procedure

4.5 Re-Adding Covered Examples

After learning and adding the best rule to the multilabel decision list (cf. Algorithm 3, lines 5 and 6),
the learned rule is applied to the training examples it covers in the subroutine GETCOVEREDSETS (cf. Al-
gorithm 8), i.e. the label vectors are updated in regard to the new rule. Hence, the coverage status of
the training examples changes. To do so, each uncovered example (examples in the current training set
Tcurrent) is checked whether it is covered by the new rule. If so, the example is removed from the training
set containing the uncovered examples Tcurrent, because it is now covered. Then the head is applied to
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the label vector of the covered example. Afterwards, depending on whether the newly covered example
is partially or fully covered, it is added to the set of partially covered training examples Tpart or the set of
fully covered training examples Tfull. For deciding the coverage status of an example, we must consider
whether negative heads can be learned, i.e. whether G = {1} or G = {0, 1}. In the case of allowing neg-
ative heads, the irrelevant labels of the example must be set as well in addition to the relevant ones, in
order to be considered fully covered. The result of the subroutine is a triple of sets, containing the remain-
ing uncovered examples, partially covered examples and fully covered examples (cf. Algorithm 3, line 7).

Algorithm 8 Algorithm GETCOVEREDSETS for computing the covering status of examples for a given rule.
[Loza Mencía and Janssen, 2016, Figure 5]

Require: Original training data set T , current Training data set Tcurrent, rule r
1: procedure GETCOVEREDSETS

2: Tpart = ;, Tfull = ;
3: for each example (X , Ŷ ) ∈ Tcurrent do . compute covering status for each example
4: if r covers X then
5: Tcurrent = Tcurrent \ (X , Ŷ ) . remove since it may not be re-added
6: apply head of r on Y . replace corresponding value in Y if it was unset
7: if Y is fully set then . depending on B, consider also unset zeros
8: Tfull = Tfull ∪ (X , Ŷ )
9: else

10: Tpart = Tpart ∪ (X , Ŷ )
11: end if
12: end if
13: end for
14: return uncovered (T), partially covered (Tpart) and fully covered (Tfull) training examples
15: end procedure

One of the main differences of the algorithm in comparison to the classical separate-and-conquer
algorithm is the re-inclusion of training examples. The subroutine GETREADDSET (cf. Algorithm 9)
determines the set of covered examples that is re-added to the training set. Depending on coverage
status and parameters, none, only partially covered examples or fully covered examples are re-included.
The algorithm requires two sets of examples as an input, the set of partially covered examples Tpart and
the set of fully covered examples Tfull. Both have been determined by the previously executed subroutine
GETCOVEREDSETS (cf. Algorithm 8). If no stopping rules are to be used, only the partially covered
examples Tpart are added to the set of examples to be re-added (cf. Algorithm 9, line 13). Otherwise,
the full coverage rate is calculated. If the rate of fully covered examples among all covered examples is
greater than parameter τ (usually close to 1), the prediction is assumed to be complete for the covered
examples and no covered examples are re-included or, in other words, they are omitted from future
iterations, i.e. Tadd = ; (cf. Algorithm 9, lines 4 and 5). In the other case, i.e. the fully coverage rate
is below the given parameter, the partially covered examples are re-added. Furthermore, depending on
the preferences of the user, fully covered examples are re-inserted into the training set as well. Finally,
the algorithm returns the set of examples to be re-added Tadd.

4.6 Finding The Best Head For A Rule

The subroutine REFINERULE uses the subroutine FINDBESTHEAD (cf. Algorithm 10) to determine the best
performing multilabel head for a given rule body. Naively, this requires an exhaustive search through
the label space, i.e. evaluating each possible combination of labels in the head. As discussed in Section
3, however, the anti-monotonicity and decomposability properties of multilabel evaluation metrics can
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Algorithm 9 Algorithm GETREADDSET for deciding whether covered examples are re-added to the train-
ing set. [Loza Mencía and Janssen, 2016, Figure 6]

Require: Partially and fully covered examples Tpart, Tfull, parameter τ,
whether using stopping rules, whether re-inserting fully covered examples

1: procedure GETREADDSET

2: Tadd = ;
3: if use stopping rules then
4: if full coverage rate |Tfull|/(|Tfull|+ |Tpart|)≥ τ then . e.g. 90%
5: Tadd = ; . do not re-add any example although Tpart, Tfull non empty
6: else . too many partially covered examples
7: Tadd = Tpart . re-add partially covered examples
8: if re-insert fully covered examples then
9: Tadd = Tadd ∪ Tfull . also re-add fully covered examples

10: end if
11: end if
12: else
13: Tadd = Tpart . no stopping rules: re-add partially covered examples
14: end if
15: return partially or fully covered examples Tadd to be re-added to the training set
16: end procedure

be exploited in order to avoid such an exponential computational complexity, which is aggravated by a
huge number of labels. Consequently, the following algorithms prune searches through the label space
according to those properties. Algorithm 10 depicts how we decide which property to use. If the eval-
uation function δ in combination with the utilized evaluation and averaging strategy is decomposable,
we opt for the subroutine DECOMPOSITE, which is capable of exploiting decomposability. Otherwise, if the
used evaluation function only satisfies the anti-monotonicity criterion, the subroutine PRUNEDSEARCH is
chosen, which is capable of exploiting anti-monotonous evaluation functions. Preferring the decompos-
ability metric is critical as it allows for heavier pruning of the label space. Both algorithms further prefer
heads with more labels in the head as the objective of the algorithm is to learn more multilabel head
rules instead of single-label head rules. Note that metrics fulfilling neither property are not supposed to
be employed with the algorithm. The properties of selected evaluation function are depicted in Table 5.

Algorithm 10 Algorithm FINDBESTHEAD for finding the best multilabel head for a given rule’s body.
[Rapp, 2016, Algorithm 12]

Require: Original training set T , current training set Tcurrent,
current rule r, targets G, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure FINDBESTHEAD

2: r.head= ;
3: if δ is decomposable using the given evaluation and averaging strategy then
4: return DECOMPOSITE(T, Tcurrent, r, G,δ)
5: else
6: return PRUNEDSEARCH(T, Tcurrent, r, G,δ,;)
7: end if
8: end procedure
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4.6.1 Pruning Based On Anti-Monotonicity

Algorithm 11 illustrates the subroutine PRUNEDSEARCH. While in theory a breadth-first search is feasible as
well, the depicted algorithm performs a depth-first search for finding the best multilabel head. Implying
the algorithm recursively adds label attributes to the initially empty head of the given rule r. Meanwhile,
it keeps track of the head with the best performance. Depending on the specified targets G, either only
positive (e.g. yi = 1) or positive as well as negative heads (e.g. yi = 0, yi = 1) are considered (cf.
Algorithm 11, lines 3 and 6). Naturally, labels present in the body of the rule are not allowed to be added
to the head (cf. Algorithm 11, line 3). In order to avoid unnecessary evaluations, the algorithm prunes
the search according to the anti-monotonicity criterion (cf. Section 3.1). Hence, once the performance of
the rule decreases by adding a label attribute, the subroutine PRUNEDSEARCH is not executed recursively
any further as further additions cannot reach the best performance anymore (cf. Algorithm 11, lines 20
and 21). Instead, the algorithm continues with the next label (cf. Algorithm 11, line 3). Furthermore,
the (initially empty) set H keeps track of the already evaluated heads. This prevents equivalent heads
from unnecessarily being evaluated. Heads are considered to be equivalent if they contain the same label
attributes, neglecting the attribute values and the order in which they appear. Excluding supersets of
heads contained in H ensures that pruned heads are omitted in later iterations (cf. Algorithm 11, line
11). Due to heads being prevented from being evaluated by placing them in H, the corresponding search
tree is unbalanced, where nodes of the tree correspond to the evaluation of a certain label combination
and edges correspond to adding an additional label.

4.6.2 Exploiting Decomposable Evaluation Metrics

Deriving the best performing head is much more efficient if using a decomposable evaluation metric,
as deep searches through the label space can be avoided. In fact, determining the best multilabel head
comes at a linear cost. Given a training set with n labels, depending on whether to only learn positive
heads or negative heads as well, exactly n or 2n single-label head rules must be evaluated, respectively.
Algorithm 12 illustrates the exploitation of decomposability. Recall that decomposability states that the
performance of a multilabel head can be derived by considering each single-label head performance.
Furthermore, if a multilabel head contains a single-label for which the performance does not reach the
best performance, the multilabel head cannot reach the best performance either. The algorithm uses
this knowledge by keeping track of the so far best performing head. If the next evaluated single-label
head reaches a better performance than the currently best performing head, the previous best head is
discarded and the single-label head is the new best head (cf. Algorithm 12, lines 16 and 17). The
previous best head can easily be discarded as it cannot be part of the best performing head anymore,
as it would drag the performance of the combined head down, i.e. the performance would be worse
than the performance of the single-label head. If the next evaluated single-label head reaches a worse
performance, we do not need to consider it for the same reasons. If the next evaluated single-label head
reaches the same performance as the currently best head, however, we can add the single-label to the so
far best performing head (cf. Algorithm 12, lines 18 and 19). The combined head then reaches the same
performance despite containing more labels. Implying, we combine the single-labels head which reach
the maximum performance. The algorithm terminates if all single-label heads have been considered. In
the case of using targets G = {0, 1}, it is asserted that only one of both label attributes is included in the
head. A head cannot set a label to two different values simultaneously. Again, label conditions already
contained in the body are not considered.

4.7 Measuring The Performance

Previously shown algorithms depend on the subroutine EVALUATERULE, which measures the performance
of multilabel head rules. Hence, the subroutine enables the comparison of different rules to each other.
Throughout this work, several parameters, which influence the evaluation of a single rule, have been
presented: The evaluation function δ, the averaging strategy and whether to use a rule-dependent or
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Algorithm 11 Algorithm PRUNEDSEARCH, which performs a pruned search through the label space, ac-
cording to the properties of anti-monotonicity. [Rapp, 2016, Algorithm 13]

Require: Original training set T , current training set Tcurrent, current rule r,
targets G, evaluation function δ, already considered heads H,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure PRUNEDSEARCH

2: rbest = r
3: for each label λi not already contained in r.body do . for each label, all targets are considered
4: rcurrent = r . currently considered label attribute
5: rcurrent.h= −∞
6: for each target t ∈ G do
7: yi = t
8: if label attribute yi is not already in r.head then
9: rrefined = r

10: rrefined.head= rrefined.head∪ yi . add label attribute to head
11: if no head in H is a subset of rrefined.head then . prunes label combinations
12: rrefined.h= EVALUATERULE(T, Tcurrent, rrefined,δ)
13: if rrefined.h> rcurrent.h then . determines the best prediction for each label
14: rcurrent = rrefined
15: end if
16: end if
17: end if
18: end for
19: if rcurrent.h 6= −∞ then . if label combination has not been pruned
20: if rcurrent.h≥ rbest.h then . recursively add label attributes, unless performance decreases
21: rrec = PRUNEDSEARCH(rcurrent, G, T,δ, H)
22: if rrec.h> rbest.h or (rrec = rbest.h and |rrec.head|> |rbest.head|) then
23: rbest = rrec . heads with more label attributes are preferred
24: end if
25: end if
26: H = H ∪ rcurrent.head
27: end if
28: end for
29: return rule rbest with best head
30: end procedure
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Algorithm 12 Algorithm Decomposite, which exploits the properties of decomposable evaluation metrics
to determine the best possible multilabel head for a specific rule. [Rapp, 2016, Algorithm 14]

Require: Original training set T , current training set Tcurrent, current rule r, targets G, evaluation func-
tion δ,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure DECOMPOSITE

2: rbest = r
3: for each label λi not already contained in r.body do
4: rcurrent = r
5: rcurrent.h= −∞
6: for each target t ∈ G do . for each label, all targets are taken into consideration
7: yi = t . currently considered label attribute
8: if label attribute yi is not already in r.head then
9: rsingle = yi ← r.body

10: rsingle.h= EVALUATERULE(T, Tcurrent, rsingle,δ)
11: if rsingle.h> rcurrent.h then . determines the best prediction for each label
12: rcurrent = rsingle
13: end if
14: end if
15: end for
16: if rcurrent.h> rbest.h then . if outperformed, discard previous head
17: rbest = rcurrent
18: else if rcurrent.h= rbest.h then . best performance is reached, label attribute added to head
19: rbest.head= rbest.head∪ rcurrent.head
20: end if
21: end for
22: return rule rbest with best head
23: end procedure
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rule-independent evaluation strategy (cf. Section 2.3 and 3.3). These parameters influence how the con-
fusion matrix of a rule is constructed and how each entry is combined to calculate the heuristic value.
The subroutine EVALUATERULE, which is depicted in Algorithm 13, measures the performance of a mul-
tilabel rule r on the training set T . At first, the set of relevant labels is retrieved using the subroutine
GETRELEVANTLABELS, which is dependent on the evaluation strategy. These are the labels that are taken
into account for the subsequent performance evaluation. Depending on the chosen averaging strategy,
one out of the four subroutines MICROAVERAGING, LABELBASEDAVERAGING, EXAMPLEBASEDAVERAGING and
MACROAVERAGING is called.

Algorithm 13 Algorithm EVALUATERULE for measuring the performance of a multilabel head rule. [Rapp,
2016, Algorithm 15]

Require: Original training set T , current training set Tcurrent, rule r, targets G, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure EVALUATERULE

2: L = GETRELEVANTLABELS(r)
3: if use micro-averaging then
4: MICROAVERAGING(T, Tcurrent, r,δ, L)
5: else if use label-based averaging then
6: LABELBASEDAVERAGING(T, Tcurrent, r,δ, L)
7: else if use example-based averaging then
8: EXAMPLEBASEDAVERAGING(T, Tcurrent, r,δ, L)
9: else if use macro-averaging then

10: MACROAVERAGING(T, Tcurrent, r,δ, L)
11: end if
12: end procedure

The algorithm employs more criteria for comparing multilabel head rules than shown in Algorithm 13,
which solely relies on the heuristic value. These criteria are omitted in favor of simplicity. For instance,
the algorithm does not benefit from inducing rules, which do not cover any examples – regardless the
heuristic value. Moreover, a situation in which two or more rules reach the same performance can occur.
Hence, a strategy for dealing with this situation is required – typically referred to as tie breaking. Com-
monly, rules that cover more positives or contain fewer conditions in their body are preferred. If those
additional criteria are not sufficient to determine a better rule, one rule is chosen randomly.

Algorithm 14 Algorithm GETRELEVANTLABELS for retrieving all relevant labels according to the used eval-
uation strategy. [Rapp, 2016, Algorithm 16]

Require: Rule r, whether to use rule-dependent or rule-independent evaluation strategy
1: procedure GETRELEVANTLABELS

2: if use rule-dependent evaluation strategy then
3: return {λi|λi ∈ L∧ yi ∈ r.head} . return labels, which are predicted by the given rule
4: else
5: return {λi|λi ∈ L} . return all available labels
6: end if
7: end procedure

Algorithm 14 illustrates the subroutine GETRELEVANTLABELS, which retrieves all labels that must be
used in the evaluation of a rule. Which labels are returned is dependent on the utilized evaluation strat-
egy. For a rule-dependent evaluation the algorithm returns the labels contained in the head of the rule, in
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confirmation with the definition in Section 3.3. For a rule-independent evaluation the algorithm returns
the complete set of labels L, regardless of the rule.

All four subroutines MICROAVERAGING, LABELBASEDAVERAGING, EXAMPLEBASEDAVERAGING and MACROAV-
ERAGING have to resort to the subroutine AGGREGATE for building a confusion matrix (cf. Algorithm 15).
The algorithm calculates the atomic confusion matrix for a prediction of a rule and a label of a given
training example, i.e. it determines whether or not the prediction is counted as a true positive, false
positive, true negative or false negative. As a follow up, the respective entry in the confusion matrix
is increased by one. The algorithm differentiates between rules that cover an example and rules that
do not. If a rule does not cover an example, relevant labels are counted as false negatives, whereas
irrelevant labels are counted as true negatives. If a rule does cover an example, the prediction of the
rule for the regarded label needs to be considered. In such cases, the prediction is counted as a true
positive if it is correct, regardless whether the label is a relevant or an irrelevant one. Similarly, an in-
correct prediction is counted as a false positive. Note that this definition contradicts the definition given
in Section 2.3.1, which is supposed to be used for evaluating the quality of a rule set on a test data set.
The definition given in this section, however, is supposed to be used for evaluating the performance of
an individual rule during the rule induction process. Rapp [2016] states that the reason for the altered
semantics is the believe that every label present in the head of a rule should be treated equally and that
relevant labels should not be preferred over irrelevant ones. For demonstrating the intention behind this
change, consider using precision as an evaluation function and the definition in Section 2.3.1. A label
attribute yi = 0 in the head of a rule would never have a positive impact on said rule. This is the case
due to precision being exclusively calculated from true and false positives as well as the prediction being
counted as either a true or false negative.

4.7.1 Micro-Averaging

The subroutine MICROAVERAGING is called if micro-averaging is to be used for the performance evaluation
of a rule. The subroutine is depicted in Algorithm 16 and performs according to to the definition of
micro-averaging in Section 2.3.1. The algorithm iterates over all examples in the training set. For each
example, the covering status determines whether or not the example is included in the construction of
the global confusion matrix. Covered examples for which all labels are already predicted are excluded
from the building process (cf. Algorithm 16, line 4). This check can be performed on the current train-
ing set Tcurrent. The exact same condition, which was used in by Loza Mencía and Janssen [2016] in
their separate-and-conquer algorithm, is also utilized in the subroutines LABELBASEDAVERAGING, EXAMPLE-
BASEDAVERAGING and MACROAVERAGING. It was introduced in order to prevent identical rules from being
learned in subsequent iterations of the algorithm in the case that no examples are removed from the
training data set after inducing a new rule. If an example is eligible to be taken into account for the
construction of the confusion matrix, the subroutine AGGREGATE is called for every relevant label that was
retrieved by the subroutine GETRELEVANTLABELS. Eventually, Algorithm 16 applies the evaluation function
δ to the built global confusion matrix.

4.7.2 Label-Based Averaging

Algorithm 17 illustrates the label-based averaging, which was introduced in Section 2.3.2. For every
averaging strategy subroutine presented in this work, the main components are very similar. However,
they differ in the order of execution. For label-based averaging, do not build a global confusion matrix
but one for each relevant label. For each label, the algorithm iterates over all examples and calls the
subroutine AGGREGATE if the previously described conditions are met. Eventually, the evaluation function
δ is applied to the label confusion matrix and the individual heuristic for this label is added to a global
value. In the end, the global heuristic value is divided by the number of labels in order to average the
performance label-wise.
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Algorithm 15 Algorithm AGGREGATE for aggregating the true positives, false positives, true negatives and
false negatives of a confusion matrix. [Rapp, 2016, Algorithm 17]

Require: Rule r, training example (X j, Ŷj), label λi, confusion matrix C
1: procedure AGGREGATE

2: if r covers X j then
3: if r.head contains a label attribute yi then
4: if yi 6= ŷi ∈ Ŷj then
5: C .fp+ = 1 . prediction is incorrect
6: else
7: C .tp+ = 1 . prediction is correct
8: end if
9: else

10: if ŷi ∈ Ŷj then is set
11: C .fp+ = 1 . relevant label predicted as irrelevant
12: else
13: C .tp+ = 1 . irrelevant label predicted as irrelevant
14: end if
15: end if
16: else
17: if ŷi ∈ Ŷj is set then
18: C .fn+ = 1
19: else
20: C .tn+ = 1
21: end if
22: end if
23: end procedure

Algorithm 16 Algorithm MICROAVERAGING for measuring the performance of a multilabel head rule using
micro-averaging. [Rapp, 2016, Algorithm 18]

Require: Original training data set T , current training data set Tcurrent,
rule r, evaluation function δ, relevant labels L

1: procedure MICROAVERAGING

2: C = (0, 0,0, 0) . initialize global confusion matrix
3: for each example (X j, Ŷj) ∈ T do
4: if r does not cover X j or not all labels yi ∈ r.head are set in Yj ∈ Tcurrent then
5: for each relevant label λi ∈ L do
6: AGGREGATE(r, (X j, Ŷj),λi, C)
7: end for
8: end if
9: end for

10: h= δ(C) . apply evaluation function on confusion matrix
11: return performance h
12: end procedure
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Algorithm 17 Algorithm LABELBASEDAVERAGING for measuring the performance of a multilabel head rule
using label-based averaging. [Rapp, 2016, Algorithm 19]

Require: Original training data set T , current training data set Tcurrent,
rule r, evaluation function δ, relevant labels L

1: procedure LABELBASEDAVERAGING

2: h= 0
3: for each relevant label λi ∈ L do
4: C = (0,0, 0,0) . initialize confusion matrix for each label
5: for each example (X j, Ŷj) ∈ T do
6: if r does not cover X j or not all labels yi ∈ r.head are set in Yj ∈ Tcurrent then
7: AGGREGATE(r, (X j, Ŷj),λi, C)
8: end if
9: end for

10: h+ = δ(C) . apply evaluation function on confusion matrix
11: end for
12: h= h/|L| . average performance label-wise
13: return performance h
14: end procedure

4.7.3 Example-Based Averaging

While the subroutine LABELBASEDAVERAGING constructs a confusion matrix for every label and then aver-
ages the performance over those, the subroutine EXAMPLEBASEDAVERAGING, whose operation is illustrated
in Algorithm 18, constructs a confusion matrix for every example and then averages over those. Again,
true positives, false positives, true negatives and false negatives are counted using the subroutine AGGRE-
GATE. Furthermore, the same conditions apply as for MICROAVERAGING and LABELBASEDAVERAGING in order
to prevent identical rules from being learned in subsequent iterations of the algorithm. The operation of
the algorithm corresponds to the definition of example-based averaging given in Section 2.3.2.

Algorithm 18 Algorithm EXAMPLEBASEDAVERAGING for measuring the performance of a multilabel head
rule using example-based averaging. [Rapp, 2016, Algorithm 20]

Require: Original training data set T , current training data set Tcurrent,
rule r, evaluation function δ, relevant labels L

1: procedure EXAMPLEBASEDAVERAGING

2: h= 0
3: for each example (X j, Ŷj) ∈ T do
4: if r does not cover X j or not all labels yi ∈ r.head are set in Yj ∈ Tcurrent then
5: C = (0,0, 0,0) . initialize confusion matrix for each example
6: for each relevant label λi ∈ L do
7: AGGREGATE(r, (X j, Ŷj),λi, C)
8: end for
9: end if

10: h+ = δ(C) . apply evaluation function on confusion matrix
11: end for
12: h= h/|T | . average performance example-wise
13: return performance h
14: end procedure
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4.7.4 Macro-Averaging

The final averaging strategy is macro-averaging, which averages over both labels and examples. The
operation of the subroutine MACROAVERAGING is illustrated in Algorithm 19. At first, an atomic confusion
matrix is constructed for each example and label. Subsequently, the heuristic value for this atomic
confusion matrix, which is obtained by applying the evaluation function δ, is added up for each label
within the example and the arithmetic mean is calculated. Similarly, after iterating over all examples,
the added up heuristic value is averaged example-wise. Hence, the heuristic value is averaged over both
labels and examples. The calculation could also be done the other way around, i.e. first iterate over
all labels and then for each label iterate over all examples and consequently first average example-wise
followed by a label-wise averaging. However, both possibilities return the same result as the averaging
is commutative. Again, examples for which all labels are already set by previous rules are omitted from
the confusion matrix building process.

Algorithm 19 Algorithm MACROAVERAGING for measuring the performance of a multilabel head rule using
macro-averaging. [Rapp, 2016, Algorithm 21]

Require: Original training data set T , current training data set Tcurrent,
rule r, evaluation function δ, relevant labels L

1: procedure MACROAVERAGING

2: h= 0
3: for each example (X j, Ŷj) ∈ T do
4: if r does not cover X j or not all labels yi ∈ r.head are set in Yj ∈ Tcurrent then
5: h j = 0
6: for each relevant label λi ∈ L do
7: C = (0,0, 0,0) . initialize confusion matrix for each example and label
8: AGGREGATE(r, (X j, Ŷj),λi, C)
9: h j+ = δ(C) . apply evaluation function on confusion matrix

10: end for
11: h+ = h j/|L| . average performance label-wise
12: end if
13: end for
14: h= h/|T | . average performance example-wise
15: return performance h
16: end procedure
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5 Discovery of Multilabel Rules by Relaxed Pruning

This chapter explains the basics of discovering multilabel rules by relaxed pruning. At first, the gen-
eral idea behind relaxing the pruning constraints is outlined. Afterwards, relaxation lift functions are
introduced as a way of performing the relaxation. Furthermore, three different types of functions are
suggested and shortly theoretically compared.

5.1 Relaxing The Pruning Constraints

Multilabel classification may greatly benefit from exploiting dependencies between labels [Loza Mencía
and Janssen, 2016]. As the binary relevance approach does not consider these dependencies and only
considers each label independently, it is not capable of modeling label dependencies. However, several
changes have been made in order to enable exploiting label dependencies, such as classifier chains for
instance [Zhang et al., 2018; Read et al., 2011]. These approaches are somewhat restricted in the order
in which they learn label dependencies, i.e. they cannot learn dependencies in both directions. For
instance, a classifier chain may learn a dependency λi → λk but it is impossible to learn the reverse
relationship in the same model. Hence, Loza Mencía and Janssen [2016] argue that for full expressive-
ness, multilabel head rules in combination with label conditions are required. Rapp [2016] therefore
adapted the single-label head rule algorithm proposed by Loza Mencía and Janssen [2016] in order to
learn multilabel head rules. The basic idea is to find the best possible head (out of all possible heads,
i.e. all label combinations) for a given rule body in the hope that his leads to the best model. His work
is especially concerned with the efficiency of searching through the space of possible (multilabel) heads.
The label search space is pruned according to the decomposability and anti-monotonicity characteristics
[Rapp et al., 2018]. Therefore guaranteeing finding the best possible head and pruning as much as
possible. However, Rapp [2016] concluded that using this algorithm, in most cases, the best possible
head is a single-label head, unless using the precision metric as a baseline learner. As precision is not
necessarily the best metric for learning rules, in his future work section he proposed introducing a bias
towards longer heads by relaxing the pruning constraints. The idea being that a longer multilabel head
is tolerated if the heuristic value of the rule does not decrease significantly.

h Rule
0.479 red = 1← landmass = 3
0.475 white = 1← landmass = 3

Table 6: Example of two single-label heads for the same body, taken from the rule learning process per-
formed on the data set FLAGS.

A good but extreme example of why a relaxed pruning approach is needed is depicted in Table 6. The
example shows two single-label head rules that were evaluated for the same body. The second rule has
a just minimally worse heuristic value. Pruning based on decomposability would, however, learn the
first head as it is the one with the highest heuristic value and combining it with the second head would
worsen the heuristic value. Especially for this example it makes sense to learn the combination of both
heads, despite the decline in the heuristic value. By learning a longer head, coverage is increased as
two labels in the head cover twice the number of entries in the training set matrix in comparison to a
single-label head rule. Hence, we trade off coverage and the heuristic quality of the rule on the training
set. Thus, we relax the strict pruning constraints of the original algorithm so that we allow the induction
of longer heads if the performance of the rule does not decrease significantly.

5.2 Challenges

Several challenges arise by introducing a bias towards multilabel head rules. For once, it may be hard
to decide how much of a lift to apply, i.e. how much of a decrease in the heuristic value is tolerable.
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If the lift is too small, a potentially good rule might not be generated. If the lift is too big, a seemingly
bad rule might be discovered. Considering there are many such cases during a training phase, even a lift
difference of only one percent can have a huge impact. Furthermore, the question arises of how many
labels in the head are desired or optimal – where to draw the line? Sometimes a rule with five labels in
the head may seem good. Other times, one with two is bad. As the label cardinality (average number
of labels per example) of data sets is usually rather small, learning of too large multilabel head rules
must be prevented. For instance, for a data set with 100 labels and a label cardinality of five it might
be unwise to learn rules with 50 labels in the head. When also learning negative heads, determining
the right amount of labels in the head becomes even more difficult. In addition, efficiency must be
considered as it is not possible to find the best possible lifted head and simultaneously prune as Rapp
et al. [2018] does. This problem is further discussed and solutions are presented in Section 6.

5.3 Relaxation Lift Functions

In this work, we relax the pruning constraints by lifting the heuristic value of each rule depending on
the number of label in its head. The lift is performed by multiplying the heuristic value with a certain
multiplier, which we call relaxation lift. In order to introduce a bias towards rules with longer multilabel
heads, the extent of the relaxation lift must increase with the number of labels in the head. Hence,
offsetting the decline in the heuristic value, which commonly occurs by extending the head. Due to the
multiplication, each rule is lifted relative to its performance. Implying, rules with a high heuristic value
are lifted more than rules with low heuristic values. Therefore, a relaxation lift of 1.00 does not lead to
any changes in the heuristic value, a relaxation lift of smaller than 1.00 and greater than 1.00 decreases
and increases the heuristic value, respectively. In order to reasonably search through the label space, we
need to define a relaxation lift for every possible head length. For a data set with n labels this amounts to
defining a relaxation lift for labels 1, . . . , n. To simplify the process of defining the extent of the relaxation
lift, we use relaxation lift functions. Using this concept, other properties can be expressed comfortably as
well. Formally, a relaxation lift function

ρ : R+→ R

maps a number of labels to a number representing the relaxation lift. Naturally, the number of labels in
the head cannot be negative. Although the function is only evaluated for whole numbers (heads with 2.5
labels do not exist), expressing the function with real numbers facilitates the definition. By expressing
the relaxation lift in terms of a relaxation lift function, we do not have to define the lift individually for
each number of labels. Instead, parameterizable functions enable an easier handling of the relaxation
lift values and serve as an orientation. Using this definition, relaxation lift functions can be visualized
by portraying the number of labels on the x-axis and portraying the corresponding relaxation lift on the
y-axis. In the remainder of the work, we will often refer to a relaxation lift function as a lift function and
to relaxation lift as lift. Furthermore, when applying a relaxation lift of 1.17 for instance, we often refer
to it as a lift of 17 percent.

5.4 Lifted Heuristic Value

In the remainder of this work, we distinguish between two types of heuristic values – the normal heuristic
value and the lifted heuristic value. The lifted heuristic value is the value that emerges from multiplying
the normal heuristic value h of a rule r with the relaxation lift. As a result, the lifted heuristic value,
denoted by ~h, of the heuristic value h, obtained by applying a multilabel evaluation function, of a rule r
with x labels in its head is defined as

~h= h ·ρ(x)

The lifted heuristic value is then used to find the best performing head. By using this new value, we
change the definition of "best performing". Previously, finding the best performing head amounted to
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finding the head with the best (normal) heuristic value. Form now on, finding the best performing head
amounts to finding the head with the best lifted heuristic value. This is a major difference. In Section 6
we will see further consequences of utilizing the lifted heuristic value for finding the best head.

An example may illustrate the concept of lift and lift function. Let us consider the three rules with
different head lengths that are depicted in Table 7. By adding more labels to the head, the heuristic
value decreases. Furthermore, we assume a lift function that prefers heads with three labels over heads
with two labels. Then, we can calculate the lifted heuristic values as shown in Table 7.

Head h Relaxation Lift ~h
red = 1 0.70 ρ(1) = 1.00 0.7 · 1.0= 0.7
red = 1, white = 1 0.67 ρ(2) = 1.07 0.67 · 1.07= 0.7169
red = 1, white = 1, orange = 0 0.63 ρ(3) = 1.12 0.63 · 1.12= 0.7056

Table 7: Calculation of the lifted heuristic value ~h by multiplying the heuristic value h with the relaxation
lift function value for three rules of different head lengths.

As a result, despite having a (slightly) worse heuristic value than the first rule, the second rule is
better performing in terms of lifted heuristic value and is considered to be better by the find best head
subroutine as it covers more labels. Nevertheless, the head of length three does not get chosen as the
decline in the heuristic value is too big to be offset by this specific relaxation lift.

5.5 Desired Characteristics of Relaxation Lift Functions

In this section, we shortly and rather informally describe some desired characteristics of relaxation lift
functions. Our intention is to learn more multilabel heads. Therefore, we only lift heads with more than
one label. Implying the relaxation lift for a head length of one should have no effects on the heuristic
value. Hence, ρ(1) = 1. Consequently, when visualizing a lift function, it should be fixed in (1,1).
Moreover, in order to prevent too large heads from being learned, the relaxation lift function should
ideally flatten with more labels. Implying the increase in the lift should decrease the more labels are
added. Formally, this implies

∀x : (x > 1∧ x < n)→ (ρ(x)−ρ(x − 1)≥ ρ(x + 1)−ρ(x))

Furthermore, the lift function should be easily computable to ensure minimal overhead in that regard.
In Section 6 we will see that it is important for pruning that the lift function is (easily) computable in
advance.

5.6 The Peak Relaxation Lift Function

The peak relaxation lift function takes the desired characteristic of preventing too many labels in the head
to an extreme. The function starts off by monotonously increasing the lift up until the peak, the point
with the highest lift. Starting from the peak, however, the lift starts to (monotonously) decline again.
Implying, heads with the peak amount of labels in the head are allowed to have a bigger decline in the
heuristic value than heads with more labels. The peak lift function is a parameterizable function that
can be used to specifically target a desired number of labels in the head. Parameter m ≥ 1 defines the
number of labels for which the relaxation lift is maximal – the peak label. As a result, ρ(m) is the highest
achievable lift. Parameter l ≥ 1 defines the relaxation lift at the peak label, i.e. ρ(m) = l. Finally,
the curvature can be set using the parameter k ≥ 0. The higher k, the steeper the curvature and the
lower, the flatter the curvature. Note that k = 1 corresponds to a linear gradient. Moreover, the function
requires the number of labels in the data set n. The peak relaxation lift function is then defined as

ρpeak(x) =

¨

f (x) if x ≤ m
g(x) if x > m
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Figure 3: The function x1/k for the values k = 2.2 (left) and k = 0.6 (right).

f (x) = 1+ (
x − 1
m− 1

)1/k · (l − 1) (5)

g(x) = 1+ (
n− x
n−m

)1/k · (l − 1) (6)

In order to further the understanding of this function, we will cover the individual components in
more detail. Initially, this function was a logarithmic function. By setting parameters, the peak label
and the lift could be changed. However, allowing the curvature to be adjusted posed a problem. As
a result, the foundation of the peak label relaxation function needed to be changed. Figure 3 depicts
the basic component of the new function. Adjusting the curvature using x1/k becomes very easy – just
change parameter k. By stretching and shifting the depicted function it is possible to model the desired
peak label function with parameters m and l. First, we shift the function by one so that the lift for a
single label is always one. Moreover, the desired property of x1/k is limited to [0, 1] on the x- and y-axis.
Hence, we stretch the function in the direction of the y-axis by (l − 1). By doing so, we achieve the
desired maximal lift. Note that we only need to stretch by (l − 1) and not l due to previous shift by one.
At last, we stretch the function in the direction of the x-axis by normalizing the scale according to

x − xmin

xmax − xmin

For g(x), the denominator is further multiplied by −1 as from the peak onward the function should de-
crease. Figure 4 shows that the relaxation lift function is not differentiable at the peak. As the function
is only evaluated for whole numbers and as we have no intention to differentiate it, this does not pose a
problem.

5.7 The KLN Relaxation Lift Function

Another function that can be used to relax the pruning constraints is the KLN relaxation lift function.
In comparison to the peak lift function, it is a rather simple function. The KLN lift function consists of
a natural logarithm, which is multiplied with a parameter k ≥ 0. In order to ensure that single-label
heads are not lifted, we shift the function by one in the direction of the y-axis. In this regard, note that
ln(1) = 0. Thus, the KLN relaxation lift function is defined as

ρ(x)KLN = 1+ k · ln(x)

The higher the parameter k, the higher the extent of the lift. Typically, k should under no circumstances
have to be bigger than one. Due to the natural logarithm, the function flattens with an increasing num-
ber of labels, as described in Section 5.5. Figure 5 (1) illustrates the KLN relaxation lift function.
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Figure 4: The peak relaxation lift function with parameters (1) m= 5, l = 1.5, k = 1.0 and n= 9 and (2)
m= 3, l = 1.3, k = 2.0 and n= 9.

Figure 5: The (1) KLN relaxation lift function with parameter k = 0.2 and (2) the root relaxation lift
function with parameter k = 5.2.

50



Figure 6: The difference between the KLN (blue) and the root (red) relaxation lift function. The lift is set
to be the same for both functions – a lift of two at label four.

Defining the relaxation lift by setting parameter k is not intuitive. Therefore, the KLN relaxation lift
function is typically set by stating a label x and a desired lift for said label l, i.e. ρKLN(x) = l. The
parameter is then given by

k =
l − 1
ln(x)

5.8 The Root Relaxation Lift Function

The last relaxation lift function is called the root relaxation lift function. The origin of the name lies in
the usage of the root function. This function is quite similar to the KLN relaxation lift function. The root
relaxation lift function is defined as

ρroot(x) = x1/k

where parameter k ≥ 1 defines the extent of the lift. A higher value of k implies a lower relaxation lift.
Note that this is the complete function of the function depicted Figure 3. The root relaxation lift function
is visualized in Figure 5 (2). Again, setting k directly is not intuitive. As a result, by stating a label x and
a desired lift for said label l, i.e. ρroot(x) = l, the parameter is given by

k =
ln(x)
ln(l)

5.9 Comparing The KLN and Root Relaxation Lift Function

Theoretically, the KLN and root relaxation lift functions differ in their curvature. Figure 6 visualizes the
difference between both functions. For doing so, the lift has been set to the exact same value for both
functions (a lift of two at label four). Hence, parameters are k = 0.721 for the KLN and k = 2 for the root
relaxation lift function. We can observe that the lift increase is steeper for the KLN lift function. At the
defined lift, both functions intersect. After that, the root function rises much quicker in value. However,
such high lift values do not usually occur in practice. Therefore, Figure 7 illustrates the KLN and the root
lift function for a lower lift – a lift of 1.3 at label four. This is a much more realistic setting, although the
lift is still rather high. Nevertheless, we can observe that both functions are practically identical in the
relevant section (from one onward) until the defined lift. The difference is so small it can be neglected.
Afterwards, the root lift function rises more quickly again. Hence, implying too big of a lift. As a result,
we will limit ourselves to utilizing the KLN relaxation lift function in the evaluation in Section 9.
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Figure 7: The similarity between the KLN (blue) and the root (red) relaxation lift function. The lift is set
to be the same for both functions – a lift of 1.3 at label four.

5.10 Comparing The Peak Relaxation Lift Function

The big advantage of the peak relaxation lift function is its efficiency, especially for a small peak label.
Due to the peak and the corresponding decline of the lift, we can prune heavier. Furthermore, we can
define the curvature of the peak relaxation lift function – something which is not possible for the others.
The peak lift functions also allows us to specifically target a number of labels in the head in a simple
way. A disadvantage of the peak relaxation lift function is that it is more complex. Moreover, the peak
relaxation lift function might be more susceptible to mistakes. Due to the importance of the peak label
and the additional definition of the curvature, setting the correct values is more difficult. In contrast,
setting the lift for the KLN and root lift functions is rather simple and requires only minimal knowledge
of the concept. Nevertheless, the KLN and root relaxation lift functions are more susceptible to lifting
too much as the lift continues to increase, especially in the case of the root lift function.

5.11 Discussion

We have suggested three relaxation lift functions – the peak lift function, the KLN lift function and the
root lift function. All three relaxation lift functions can be used to lift the label search space, therefore
preferring longer multilabel heads and enable an easier definition of the extent of the lift than setting
the relaxation lift for each label individually. Depending on the data set at hand and the desired number
of labels in the head, the choice which relaxation function to use varies. We have furthermore described
advantages and disadvantages of each function. While configurating the KLN and root relaxation lift
function is easier, the peak relaxation lift function can be used to specifically limit the number of labels
in the head and thus increase efficiency of the search for the best performing head. Due to the similarity
of the KLN and root relaxation lift function, we restrict the evaluation to the KLN relaxation lift function.
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6 Pruning A Lifted Label Search Space

This chapter explains why we cannot prune a lifted label search space as easily as a normal label search
space and further outlines how we perform the pruning for anti-monotonous and decomposable evalua-
tion functions. Moreover, additional changes to the separate-and-conquer algorithm are presented.

6.1 Suboptimal Pruning

By changing the definition of the best performing head to be the head with the highest lifted heuristic
value, we cannot prune as easily as proposed by Rapp [2016]. The reason being that the definition of
anti-monotonicity does not hold for the lifted heuristic value. A counter-example for pruning a lifted
label search space with anti-monotonicity can be found in Table 8. If we apply pruning according to anti-
monotonicity in this example, we would evaluate the heads of length one and two and then stop because
from length one to two the lifted heuristic value decreased. However, the lifted heuristic value does
increase for the head of length three. Hence, pruning a lifted search space simply with anti-monotonicity
does not guarantee finding the best performing head. Similarly, we can also construct counter-examples
for higher depths, i.e. that the heuristic value decreases for a certain number of times before reaching
its highest value. Thus, we must use the fact that anti-monotonicity holds for the normal heuristic value
for pruning the lifted label search space.

Head h Lift ~h
{y1} 0.8 1 0.8

{y1, y2} 0.65 1.2 0.78
{y1, y2, y3} 0.63 1.3 0.819

Table 8: Counter-example for pruning with anti-monotonicity while using lifted heuristic values for search-
ing the best performing head.

Exploiting decomposability in the same way as proposed by Rapp [2016] is not possible either. Previ-
ously, we could determine the head with the highest heuristic value by evaluating all single-label heads
and then combining the single-label heads that all reach the highest performance. With a lifted label
search space this is not possible as easily. The same strategy cannot be employed as combining the high-
est performing single-label head with a worse performing single-label head might still increase the lifted
heuristic value as the combined head is multiplied with the relaxation lift.

Head h Lift ~h
{y1} 0.8 1 0.8
{y2} 0.75 1 0.75

{y1, y2} 0.775 1.1 0.8525

Table 9: Counter-example for determining the best performing head by exploiting decomposability while
using lifted heuristic values for searching the best performing head.

A counter-example for this scenario is given in Table 9. The algorithm by Rapp [2016] would deter-
mine the head consisting of y1 to be the best performing head as it reaches the highest heuristic value
and cannot be combined with y2 as the heuristic value of the combined head would decrease in com-
parison to the single-label head. Using the lifted heuristic value, however, the combined head is lifted
and hence is considered better performing than either single-label head. Hence, we additionally need an
adjusted algorithm for finding the best head while taking advantage of decomposability.
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6.2 Decomposability

Rapp [2016] exploits decomposability by first evaluating every possible single-label head rule, deter-
mining the best performance and finally combining all heads that reach the best performance. Pruning
in such a way is possible because decomposability guarantees that the performance of a rule decreases
by adding another worse performing label to its head. As a result of using the lifted heuristic value,
however, we cannot exploit decomposability in the same way as shown in Algorithm 12. While we can
still be sure that the normal heuristic value decreases by adding a worse performing label to the best
performing head, the same does not hold for the lifted heuristic value. Due to the applied relaxation lift,
the performance in terms of lifted heuristic value may increase by adding a label to the head of a rule.
Even if the label that is added has a worse performance than the head it is added to. Hence, another
way of exploiting decomposability is required.

For exploiting decomposability in order to prune a lifted label search space, two observations are im-
portant. First, the best lifted head of length n results from applying the lift to the head with the highest
normal heuristic value of length n. As all heads of length n are multiplied with the same lift, a head
of length n with a worse normal heuristic value cannot possibly achieve a higher lifted heuristic value.
Therefore, by determining the best head of a certain length in terms of normal heuristic value, we ad-
ditionally attain the best lifted head of that length as well. Second, we can construct the best head of
length n by combining the n best single-label heads. Table 10 underlines the construction of the best
head of length n. If we combined y1 with y3 instead of y2, the heuristic value would be 0.37 – a worse
performing head than {y1, y2}. By using these two observations, we can exploit decomposability for
pruning a lifted label search space.

n Head h
1 {y1} 0.390
2 {y1, y2} 0.380
3 {y1, y2, y3} 0.370
4 {y1, y2, y3, y4} 0.353
5 {y1, y2, y3, y4, y5}, 0.336

Single-Label Head h
{y1} 0.39
{y2} 0.37
{y3} 0.35
{y4} 0.30
{y5} 0.27

Table 10: Constructing the best head of length n by combining the n best single-label heads.

6.2.1 An Algorithm For Exploiting Decomposability With Relaxed Pruning

Algorithm 20 illustrates the operation of finding the best lifted head while exploiting decomposability
of multilabel evaluation metrics. We start off by evaluating all possible single-label heads for the given
body and ordering them in decreasing order according to their normal heuristic value (cf. Algorithm
20, line 2). In the case that two or more rules have the same heuristic value, we use the same tie
breaking as described in Section 4.7. We furthermore keep track of the best candidate so far and initialize
the current candidate with an empty head rule (cf. Algorithm 20, lines 3 and 4). In the worst case,
we need to construct all n heads – one for each possible head length. In each iteration of the for-
loop (cf. Algorithm 20, line 5), we add the best performing remaining label to the current candidate
using the subroutine REFINECANDIDATE, i.e. we construct the best performing head of the current length.
Additionally, we update the best lifted head if need be (cf. Algorithm 20, lines 7 and 8). In each
iteration, we check whether or not a higher lifted heuristic value is still achievable using the subroutine
PRUNABLEWITHDECOMPOSABILITY. If a higher lifted heuristic value is possible, the algorithm constructs the
next longer head. Otherwise, the algorithm terminates and returns the highest performing multilabel
rule for the given body. Furthermore, we add a lower boundary for the quality of the rule. Each rule must
have at least as many true positives as false positives in order to be eligible to be induced. Hence, we
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filter out rules that make more mistakes than correct predictions. By introducing this condition, we also
decrease the chances of inducing too bad rules due to a mistakenly set too high lift. By setting too high
of a relaxation lift, a label that would otherwise would not be learned, could theoretically be induced if
it is combined with a very good label. Additionally, we do not want to make too bad predictions as we
cannot correct wrong predictions later on. The condition of requiring at least as many true positives as
false positives will play an important role in Section 8. Note that the condition is not explicitly depicted
in the algorithm in favor of simplicity and clearness.

Algorithm 20 Algorithm DECOMPOSABLE, which exploits decomposability to determine the head with the
highest lifted heuristic value.

1: procedure DECOMPOSABLE(; ← B)
2: S := {λ= t ← B : λ ∈ L∧ t ∈ {0, 1}} . sorted single label heads for each target value
3: c := ; ← B
4: cbest := c
5: for 1,. . . ,n do . for all head lengths
6: c = REFINECANDIDATE(S, c)
7: if c.~h≥ cbest.~h then . update best lifted head
8: cbest = c
9: end if

10: if PRUNABLEWITHDECOMPOSABILITY(cbest, c) then
11: return cbest . return rule if TP ≥ FP
12: end if
13: end for
14: return cbest . return rule with the highest lifted heuristic value if TP ≥ FP
15: end procedure

The subroutine REFINECANDIDATE, which is depicted in Algorithm 21, is responsible for adding the best
remaining label to the head of the given rule. The algorithm first retrieves the best remaining label from
the sorted set (cf. Algorithm 21, line 2). Naturally, all labels that are already present in the head are not
eligible to be added, regardless the label condition. Implying, the algorithm checks for a label λi whether
or not a label attribute λi = 0 or λi = 1 is already contained in the head. This check is important as a
head can only contain one label attribute yi for a label λi. Afterwards, the head is extended by the best
remaining label condition (cf. Algorithm 21, line 3). Finally, the rule is evaluated, the lifted heuristic
value is set (cf. Algorithm 21, line 4) and the new candidate is returned.

Algorithm 21 Algorithm REFINECANDIDATE, which extends the head of a rule by merging it with the best
remaining single-label head.
Require: sorted single label heads for each target value in decreasing order S, rule r

1: procedure REFINECANDIDATE

2: s = TOP(S \ r.head) . get best remaining single label target (excluding labels already in head)
3: c = (r.head∪ s)← r.body . add to head
4: c.~h= EVALUATE(c)
5: return c
6: end procedure

Algorithm 22 shows how a rule is evaluated. At first, the rule is evaluated as usual using the subroutine
EVALUATERULE, which evaluates the rule according to the chosen averaging and evaluation strategy as well
as evaluation function. Following the evaluation, the lifted heuristic value is calculated from the heuristic
value and the chosen relaxation lift function (cf. Algorithm 22, line 3). Finally, the rule value is set to the
heuristic or lifted heuristic value and the lifted heuristic value is returned. The need for this distinction
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might be unclear at first. While finding the best head for a given body, we consistently utilize the lifted
heuristic value as a performance measure. However, after finding the best head, we have two choices of
how to rate a rule. According to this rating (the rule value), the best rule among all rules in this iteration
is chosen (cf. Algorithm 5). By setting the rule value to either the normal or lifted heuristic value,
the remaining algorithm for searching the best rule remains unchanged. An example may illustrate the
distinction further.

Rule h ~h
orange = 1← landmass = 3 0.7 0.7

red = 1, white = 0← area ≥ 0 0.72 0.80
blue = 0, yellow = 1, green = 1← language = 4 0.65 0.76

Table 11: Three example rules with their heuristic and lifted heuristic values.

Table 11 shows three rules with different heuristic and lifted heuristic values. If we set the rule
value of those rules to their respective lifted heuristic value, the third rule get chosen by the subroutine
REFINERULE as its lifted heuristic value is the best. If we set the rule value to the normal heuristic
value instead, the second rule gets chosen. Of course, it might also be the case that a single-label head
rule achieves the highest normal heuristic value. While still introducing a bias towards longer heads,
rating rules with their normal heuristic value leads to the algorithm being quite difficult to understand.
Furthermore, rating rules with their lifted heuristic values is more transparent and more in line with
our intention. That is why in the remainder of this work, we always rate rules with their lifted heuristic
value, unless stated otherwise.

Algorithm 22 Algorithm EVALUATE, which evaluates a rule and calculates its lifted heuristic value as well
as sets the rule value accordingly.
Require: relaxation lift function ρ, rule r, whether to rate rules by their lifted or normal heuristic value

1: procedure EVALUATE

2: hunlifted = EVALUATERULE(T, Tcurrent, r,δ) . get (unlifted) heuristic value
3: ~h= hunlifted ·ρ(|r.head|) . apply relaxation lift
4: if use lifted heuristic value as rule value then
5: r.h= ~h
6: else
7: r.h= hunlifted
8: end if
9: return ~h

10: end procedure

Algorithm 23 shows how we decide whether to evaluate more heads or stop the search. The check
is based on calculating an upper boundary for the highest yet achievable lifted heuristic value. By
constructing the best head of a certain length the way we do, we can be sure that the normal heuristic
value cannot increase by adding more heads. As a result, we can use the heuristic value of the currently
regarded head as an upper boundary for the heuristic value for the remaining head sizes. In order to
calculate an upper bound for the lifted heuristic value, we additionally need an upper bound for the
relaxation lift. This upper boundary can simply be attained by calculating the highest lift value of all
head sizes to come, which is done by the subroutine GETMAXIMUNLIFT. Thus, we can calculate the upper
boundary for the lifted heuristic value (cf. Algorithm 23, line 3). If the upper boundary is smaller than
the so far seen highest lifted heuristic value, we can be sure that we cannot achieve a higher lifted
heuristic value for the remaining possible head sizes. Hence, we can safely prune at this point. Note that
the upper boundary must be strictly smaller (cf. Algorithm 23, line 4). Otherwise, we could still attain
the best lifted head as we prefer longer heads if the lifted heuristic value is equal.
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Algorithm 23 Algorithm PRUNABLEWITHDECOMPOSABILITY, which determines whether or not the label
space can be pruned for a certain relaxation lift function.

1: procedure PRUNABLEWITHDECOMPOSABILITY(Rule rbest, Rule r)
2: ρmax = GETMAXIMUMLIFT(|r.head|) . get the maximum remaining lift (of succeeding head sizes)
3: ~hmax = r.hunlifted ·ρmax . calculate maximal achievable lifted heuristic value
4: if ~hmax < rbest.~h then . if maximal achievable lifted heuristic value worse than best value
5: return true
6: else
7: return false
8: end if
9: end procedure

The subroutine GETMAXIMUMLIFT, which is depicted in Algorithm 24, is used in order to determine the
highest lift of the remaining head sizes. Naturally, it requires the current head size as an input. In the
case that the peak relaxation lift function is utilized, we can return the lift function value at the peak
label if the current head size is smaller than the peak label. Otherwise, we search the highest lift for all
longer head sizes (cf. Algorithm 24, line 6). Finally, we return the so found maximum lift value. As this
calculation is performed very often, the lift function values for all head lengths are calculated in advance
and then retrieved from a hash map when needed.

Algorithm 24 Algorithm GETMAXIMUMLIFT, which determines the maximum relaxation lift value of the
remaining head sizes.
Require: the current head size s, the relaxation lift function ρ

1: procedure GETMAXIMUMLIFT

2: if using the peak lift function and s smaller than the peak label l then
3: return ρ(l)
4: end if
5: ρmax = −1
6: for i = s+ 1, . . . , n do
7: ρcurrent = ρ(i)
8: if ρcurrent > ρmax then
9: ρmax = ρcurrent

10: end if
11: end for
12: return ρmax
13: end procedure

6.2.2 Example

An example may illustrate the operation of the algorithm. In order to demonstrate the operation, we
apply the algorithm on the example depicted in Table 10. The data set the example was taken from
contains seven labels. However, we only regard five labels in our example. Furthermore, we are lifting
the label space with the peak relaxation lift function with peak label three and a relaxation lift of 1.13 at
the peak (cf. Table 12).

n 1 2 3 4 5 6 7
Lift 1 1.09 1.13 1.11 1.09 1.07 1

Table 12: Values of the peak relaxation lift function with a peak label of three, a lift of 1.13 at the peak
and a curvature of two for a data set with seven labels.

57



The algorithm starts with constructing the best head of length one, which is {y1} with h = 0.390. For
this head, we can now calculate the lifted heuristic value: ~h = 0.390 · 1 = 0.390. As we know that the
heuristic value cannot get better than this value and that the highest remaining lift value is 1.13, we can
calculate an upper bound for the lifted heuristic value:

~hupperBound = 0.390 · 1.13= 0.441

Due to the upper bound on the lifted heuristic value being greater than the best lifted heuristic, we cannot
prune yet as the lifted heuristic value may still increase by adding more labels. Thus, the algorithm
continues with constructing the best head of length two {y1, y2} with a heuristic value of 0.380 and a
resulting lifted heuristic value of ~h = 0.380 · 1.09 = 0.414. As a result of the increased lifted heuristic
value, the best performing head is updated. Again, we know that the heuristic value cannot be greater
than 0.380 by adding more labels and that the highest remaining relaxation lift value is 1.13. Therefore,
we can calculate the upper bound as follows:

~hupperBound = 0.380 · 1.13= 0.42941

As the upper boundary on the lifted heuristic value is still higher than the best seen lifted heuristic value
so far, we cannot terminate the algorithm yet if we want to guarantee finding the best performing head.
Hence, the algorithm constructs the head of length three with the highest normal heuristic value {y1, y2,
y3} with a heuristic value of 0.370 and a resulting lifted heuristic value of ~h = 0.370 · 1.13 = 0.418 as
we are at the peak label. Again, the best performing head is updated. From now on, the relaxation lift
starts to decrease. Therefore, the highest remaining relaxation lift value is 1.11 and for the upper bound
follows:

~hupperBound = 0.370 · 1.11= 0.4107

As the upper bound on the lifted heuristic value is strictly smaller than the one of the best performing
head so far, we can be sure that the lifted heuristic value cannot increase anymore. As a result, we
can terminate the algorithm and do not have to check the remaining heads. If we had used the KLN
relaxation lift function with the same lift at head length three, the highest remaining lift value would be
1.19. Thus, for the upper bound would follow:

~hupperBound = 0.370 · 1.19= 0.4403

Due to the upper bound being higher still, we would not be able to prune with another relaxation lift
function. This is the reason why the peak relaxation function is more efficient. Note that the constructed
heads do not actually have to be evaluated on the training set as the heuristic values can be calculated
from the heuristic values of the single-label heads.

6.3 Anti-Monotonicity

Exploiting anti-monotonicity in pruning a lifted label search space is based on the same basic check
whether or not the lifted heuristic value may still increase. Algorithm 25 illustrates the adjusted sub-
routine PRUNEDSEARCH. The subroutine now searches the best performing head according to the lifted
heuristic value (cf. Algorithm 25, lines 13 and 20-22). Otherwise, the algorithm stays the same. Again,
we introduce a lower boundary for the quality of the rule by requiring a rule to have at least as many
true positives as false positives. The search for the best head is continued if either the lifted heuristic
value increased or we cannot prune the remaining path in the label space yet, which is determined by
the PRUNABLEWITHANTIMONOTONICITY subroutine (cf. Algorithm 25, line 20).
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Algorithm 25 Algorithm ANTIMONOTONOUS, which performs a pruned search through the lifted label
space according to the properties of anti-monotonicity.

Require: Original training set T , current training set Tcurrent, current rule r,
targets G, evaluation function δ, already considered heads H,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure ANTIMONOTONOUS

2: rbest = r
3: for each label λi not already contained in r.body do . for each label, all targets are considered
4: rcurrent = r . currently considered label attribute
5: rcurrent.~h= −∞
6: for each target t ∈ G do
7: yi = t
8: if label attribute yi is not already in r.head then
9: rrefined = r

10: rrefined.head= rrefined.head∪ yi . add label attribute to head
11: if no head in H is a subset of rrefined.head then . prunes the evaluation of label combinations
12: rrefined.~h= EVALUATE(T, Tcurrent, rrefined,δ)
13: if rrefined.~h> rcurrent.~h then . determines the best prediction for each label
14: rcurrent = rrefined
15: end if
16: end if
17: end if
18: end for
19: if rcurrent.~h 6= −∞ then . if label combination has not been pruned
20: if rcurrent.~h≥ rbest.~h or !PRUNABLEWITHANTIMONOTONICITY(rbest, rcurrent) then
21: rrec = ANTIMONOTONOUS(rcurrent, G, T,δ, H) . performance did or can increase further
22: if rrec.~h> rbest.~h or (rrec.~h= rbest.~h and |rrec.head|> |rbest.head|) then
23: rbest = rrec . heads with more label attributes are preferred
24: end if
25: end if
26: H = H ∪ rcurrent.head
27: end if
28: end for
29: return rbest . return best rule if TP ≥ FP
30: end procedure

Algorithm 26 shows how we decide whether or not the remaining path in the label space is prunable if
using an anti-monotonous evaluation function. The subroutine is dependent upon a parameter d, which
trades off efficiency and guaranteeing finding the best lifted head. If d = −1, finding the best head is
guaranteed, but more heads might need to be evaluated. Otherwise, for calculating the upper boundary
of the lifted heuristic value, the next d lift values are checked. This is in contrast to our previous
approach for decomposability, which utilizes the highest possible remaining lift value. For instance, if
parameter d = 2, the algorithm checks whether or not a higher lifted heuristic value can be achieved by
the next two head lengths. A higher value of d induces less pruning and therefore a lower efficiency but
also increases the chances of finding the best possible head in accordance to the lifted heuristic value.
Likewise, a lower value induces more pruning and therefore a higher efficiency but also increases the
chances of missing the best possible head. Hence, we let the user decide and trade off efficiency and
increasing the chance of missing the best performing head. The calculation of the highest remaining
lift value is again performed by the subroutine GETMAXIMUMLIFT (cf. Algorithm 24). For d 6= −1 we
utilize the subroutine GETMAXIMUMLOOKAHEADLIFT. Again, we calculate the (upper) boundary for the
lifted heuristic value (cf. Algorithm 26, line 7) and check whether or not the lifted heuristic value could
still increase, depending on parameter d (cf. Algorithm 26, line 8). For pruning with anti-monotonicity
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an additional condition is required. We may only prune if the heuristic value has previously decreased
on the path in the label search space. If that is the case, we can be sure that the normal heuristic value
does not reach the best performance anymore due to definition of anti-monotonicity.

Algorithm 26 Algorithm PRUNABLEWITHANTIMONOTONICITY, which determines whether or not the label
space can be pruned for a certain relaxation lift function and parameter d.
Require: the best rule rbest, rule r, the relaxation lift function ρ, parameter d

1: procedure PRUNABLEWITHANTIMONOTONICITY

2: if (d = −1) then . guarantee finding of best head
3: ρmax = GETMAXIMUMLIFT(|r.head|) . get the maximum remaining lift
4: else . get the highest lift out of the next d values
5: ρmax = GETMAXIMUMLOOKAHEADLIFT(|r.head|, d)
6: end if
7: ~hmax = r.hunlifted ·ρmax . calculate maximal achievable lifted heuristic value
8: if ~hmax < rbest.~h and h decreased on path then
9: return true . maximal achievable lifted heuristic value worse than best value

10: else
11: return false
12: end if
13: end procedure

Algorithm 27 illustrates the operation of the subroutine GETMAXIMUMLOOKAHEADLIFT, which determines
the highest lift value of the next d head lengths. If using the peak relaxation lift function and the peak
label is within the checked head lengths, we can just return the lift function value at the peak label (cf.
Algorithm 27, line 2). Otherwise, we iterate over the next d head lengths and keep track of the highest
seen lift value (cf. Algorithm 27, line 6). Finally, the highest lift within the specified interval is returned.

Algorithm 27 Algorithm GETMAXIMUMLOOKAHEADLIFT, which determines the maximum relaxation lift
value of the next d head sizes.
Require: current head size s, relaxation lift function ρ, parameter d

1: procedure GETMAXIMUMLOOKAHEADLIFT

2: if using the peak lift function and s < the peak label l ≤ s+ d then
3: return ρ(l)
4: end if
5: ρmax = −1
6: for i = s+ 1, . . . , s+ d do
7: ρcurrent = ρ(i)
8: if ρcurrent > ρmax then
9: ρmax = ρcurrent

10: end if
11: end for
12: return ρmax
13: end procedure

Finally, after introducing both adjusted algorithms for finding the head with the highest lifted heuristic
value, we can adjust the subroutine FINDBESTHEAD. Instead of using the subroutines proposed by Rapp
[2016], we utilize the adjusted algorithms that are capable of handling the lifted heuristic value. In the
implementation, which is done using the SECO-Framework [Janssen and Fürnkranz, 2010; Janssen and
Zopf, 2012], the user can specify whether to use the relaxed pruning approach or not. The adjusted
subroutine FINDBESTHEAD is illustrated in Algorithm 28.
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Algorithm 28 Adjusted algorithm FINDBESTHEAD for finding the best (lifted) multilabel head for a given
body of a rule.

Require: Original training set T , current training set Tcurrent,
current rule r, targets G, evaluation function δ, whether to use relaxed pruning,
whether to use rule-dependent or rule-independent evaluation strategy, the averaging strategy to use

1: procedure FINDBESTHEAD

2: r.head= ;
3: if use relaxed pruning then
4: if δ is decomposable using the given evaluation and averaging strategy then
5: return DECOMPOSABLE(T, Tcurrent, r, G,δ)
6: else
7: return ANTIMONOTONOUS(T, Tcurrent, r, G,δ,;)
8: end if
9: else

10: if δ is decomposable using the given evaluation and averaging strategy then
11: return DECOMPOSITE(T, Tcurrent, r, G,δ)
12: else
13: return PRUNEDSEARCH(T, Tcurrent, r, G,δ,;)
14: end if
15: end if
16: end procedure

green = 0, yellow = 0, red = 0← area ≤ 9462.0 (13, 6)
yellow = 0, red = 0, white = 1← area ≤ 9462.0, circles ≤ 1.0 (14, 4)
white = 1← area ≤ 9462.0, circles ≤ 1.0, colours ≥ 2.0 (4, 1)
red = 1, white = 1← colours ≥ 2.5 (166, 38.0)
red = 1, white = 1← colours ≥ 2.5, crescent = 0 (164, 36.0)
red = 1, white = 1← colours ≥ 2.5, crescent = 0, bars ≤ 3.0 (163, 35)
red = 1← colours ≥ 2.5, crescent = 0, bars ≤ 3.0, area ≤ 2641.5 (85, 9)

Figure 8: Negative examples for the rule refinement process without fixing the head. True positives and
false positives are depicted by (TP, FP).

6.4 Fixed Head During Rule Refinement

The intention of the relaxed pruning was to learn more multilabel head rules in the hope of also learning
more label dependencies and a more expressive model as a result. An observation that often occurred
is depicted in Figure 8. During the refinement process, in which we would like to specialize the found
rule, the learned multilabel head rule is lost. By specializing the rule too much, the (lifted) heuristic
value increases at the expense of coverage. The first refinement process in Figure 8 shows two multilabel
heads being learned. During the third refinement step, however, the algorithm now considers a single-
label head to be the best performing head. Therefore, coverage decreases and the multilabel head is not
refined, which might have yielded a better performance than that of the second multilabel head.

The second refinement process in Figure 8 shows a similar observation. We refine a multilabel head
three times before the algorithm decides to drop it in favor of a single-label head. Of course, in terms
of performance the single-label head might be slightly better, but we lose a label co-occurrence and cov-
erage of the rule. Again, it might have been better to refine the multilabel head rule more instead of
settling for a single-label head.
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black = 0← stripes ≤ 1.0 (24.0 8.0)
black = 0, blue = 1, orange = 0← stripes ≤ 1.0, colours ≥ 3.0 (58, 26)
black = 0, blue = 1, orange = 1← stripes ≤ 1.0, colours ≥ 3.0, bars ≤ 0.0 (50, 15)
black = 0, blue = 1← stripes ≤ 1.0, colours ≥ 3.0, bars ≤ 0.0, orange = 0 (48, 13)

Figure 9: Positive example for the rule refinement process without fixing the head. True positives and
false positives are depicted by (TP, FP).

It should be mentioned that this observation, especially the second refinement process in Figure 8, can
also be countered by increasing the relaxation lift. If we increase the lift enough, the refined rule does
also learn the combination of both labels. While this approach might be a good idea for refining this
rule, the quality of the rules in the other iterations of the rule learning process might suffer from this
increased lift. Thus, the refinement process may benefit, but we are likely to learn worse rules in the
other iterations of the algorithm.

In order to tackle this problem, we fix the head during the rule refinement. Therefore, we can focus
on refining the found multilabel head rule and do not lose coverage. A nice side effect of this change is a
faster run time of the algorithm. As a result of fixing the head, we do not need to perform the subroutine
FINDBESTHEAD for all possible refinements. Contrary to evaluating at least all single-label heads, we only
need to evaluate exactly one head for each refined body.

Of course, the change is not always beneficial. In Figure 9 we can observe that a better rule could
be found by searching for the best head for each refined body. After the first refinement, the number of
labels in the head increases. Hence, so does coverage. Another interesting observation for this example
is the placement of the label orange. In the first multilabel head, it is predicted to be irrelevant. After
adding another condition to the body, the best head predicts the same labels, but predicts orange to
be relevant now. Finally, the prediction of label orange reverts again and is additionally moved to the
body of the rule instead of the head. In this case, the final head in combination with the refined body is
preferable to the initial found rule.

Although we can see that fixing the head is not always the better choice, we use the fixed heads for the
evaluation in Section 9. The reason being that the case shown in Figure 9 is rare and not typical for the
rule refinement process. Often, we can observe that the number of labels in the head does not increase
by refining the body of the rule. Therefore, the chance of missing out on good rules is low. In contrast
to that, we may learn more expressive rules and may refine the multilabel rules further. While we think
that fixing the head is an improvement, we allow the user to toggle this feature and therefore be able to
use the original refinement process.

6.5 Discussion

In this chapter, we have given two examples of why anti-monotonicity and decomposability do not hold
for the lifted heuristic value. Thus, we proposed a different way of pruning the lifted label search space,
which relies on anti-montonicity and decomposability of the heuristic value and the calculation of a
upper bound for the lifted heuristic value. Additionally, the reason for rating rules with their lifted
heuristic value has been explained. Finally, fixing the head was presented as a way better way of refining
and inducing multilabel rules.
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7 Sensitivity Analysis

The objective of this sensitivity analysis is to characterize the influence of the relaxation lift parameters
and thus further the understanding of the concept of relaxed pruning. Naturally, different lifting settings
have to be evaluated and compared. Therefore we take a look at different settings for the data set FLAGS.
The reason for choosing FLAGS lies in its practicality. It is easy to understand and can be executed quickly,
simplifying the conduct of the sensitivity analysis. As we have already shown that for our purpose the
KLN and the root boost function are very similar, we restrict ourselves to utilizing the KLN lift function
in this analysis.

7.1 Setup

The parameter setting is, for the sake of comparison, the same as for the evaluation in Section 9. For
the KLN relaxation lift function, we start off with a lift of 1.01 and increase it by steps of 0.02 until a lift
of 1.29. For the peak lift function, we start off with the peak at label two and proceed identical as for
the KLN lift function. After reaching the maximum lift of 1.29, the peak label is increased by one. The
process is repeated until label five is reached. The heuristic that was used for learning the models is the
micro-averaged f-measure as we try to focus on the relevant labels. Furthermore, we set the curvature of
the peak lift function to a value of two. It is important to differentiate between using only positive heads
and additionally allowing negative heads to be induced. As a result, we perform the analysis for both
settings. By allowing negative heads, the chance of learning multilabel head rules increases. Especially
if the data set has a low label cardinality.

7.2 Negative and Positive Head Rules

This section covers the sensitivity analysis for the approaches that aim at explicitly predicting the rele-
vancy as well as irrelevancy of labels using rules. We start with the analysis of the KLN relaxation lift
function and proceed to analyze the effects of the peak relaxation lift function. At last, the fit of the
learned models on the training set is regarded.

7.2.1 KLN Relaxation Lift Function

In this section, the results attained from utilizing the KLN relaxation lift function are presented. We first
take a look at the characteristics of the learned models, followed by the heuristic values.

Model Characteristics
At first, we regard the characteristics of the learned models when using the KLN relaxation lift func-

tion. The most important and maybe obvious effect of the relaxation lift can be observed in Figure 10
(1). We can see that utilizing the relaxation lift does indeed lead to more multilabel head rules being
learned, as was intended. Additionally, a higher lift results in longer heads being learned, as Figure
10 (2) illustrates. This is the result of the KLN lift function being monotonously increasing, i.e. the
lift does steadily increase for a higher number of labels. By increasing the lift we strengthen the bias
towards longer heads. Due to more labels being covered by a single (multilabel) rule, fewer rules are
needed for covering the training data. For instance, a rule with two labels in the head covers twice
as many entries in the training set label matrix as the same rule with a single-label head. This is a
huge factor in run time as the rule learning process does not need to be executed as often. In fact,
we will see that despite the need to evaluate more heads, the relaxed approach is often faster than
its unrelaxed counterpart. Furthermore, in comparison to only utilizing single-label head rules for ex-
pressing a concept, more compact models can be learned. This is especially the case for subsequent
rules without any conditions. As they are always applicable, the heads of these rules can easily be
combined without information loss if none of the rules are stopping rules. Hence, expressing the same
information with fewer rules. A downside of this behaviour is illustrated in Section 9.7.2. Figure 10 (3)
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shows the relationship between the relaxation lift and the number of learned rules. Contrary to the num-
ber of rules, the number of stopping rules does not decrease but stays mostly constant (cf. Figure 10 (4)).

Similarly, the average number of conditions per rule declines (cf. Figure 11 (1)). A rule with more
labels in the head is more difficult to refine as conditions need to be found that improve the performance
of the rule with all three labels in the head (for a fixed head). Likewise, fewer label conditions are
learned. Exposing these label conditions was one of the main intentions of exploring the concept of
relaxation lift. However, not only are fewer label conditions learned, but also a smaller percentage
of label conditions among all conditions are learned (cf. Figure 11 (2)). Whether this is because of the
specific data set or because of the algorithm remains unclear when only considering one data set. We will
examine this finding further in Section 9. Nevertheless, let us cover possible reasons. A simple reason
could be that perhaps there are just not sufficiently enough dependencies between a label and several
others. Especially for the data set FLAGS, the absence of a color might not indicate the presence or absence
of another color. Single-label heads express dependencies between two labels, e.g. red= 1← white= 1.
By introducing the relaxation lift, we prefer rules with more labels in the head. As a result, a rule
with a long head that is not dependent on any label conditions might decline less than one that is label
dependent. For instance, let us consider the rules

black= 1, red= 1, yellow= 0← blue= 1 (7)

black= 1, red= 1, yellow= 0← population≥ 80 (8)

The first rule is then likely to be worse, as the dependency does not actually exist or is not that strong.
Hence, the latter rule is the better rule with three labels in the head and would therefore be preferred by
the algorithm. Albeit a fewer percentage of label conditions, the impact of the conditions might increase.
If we indeed learn a label condition in a rule with several labels in the head, the label condition has
impact on more labels than a label condition with a single-label head. Moreover, we need to consider
the position in the decision list at which the rule with the label condition is learned. A rule in the later
stages of the rule learning process covers much fewer examples than a rule in the early stages. Hence,
the former is less useful in generalizing the training data.

Heuristic Evaluation
Secondly, we regard the quality of the learned models, i.e. how well they perform on the test data.

Theoretically, allowing worse rules should decrease precision and increase recall (on the training set).
Figure 12 (1) depicts the hamming loss and subset accuracy values for the learned models. Considering
these heuristics, a lift between 7 and 15 percent performs best. For a lower lift, we seem to not lift enough
in order to induce the good rules. For a bigger lift, we tolerate too much of a decline in the heuristic value.

Figure 12 (2) shows the micro-averaged values for precision, recall and f-measure. The range for
which hamming loss and subset accuracy does perform well also reaches the highest f-measure values.
After declining slightly for a small lift, the values pick up again and increase slightly. Especially recall is
higher in the range from 7 to 15 percent lift, resulting in the higher f-measure. After this range, recall
drops for several values and then reaches its maximum. However, due to the very high recall, preci-
sion drops at this point. Resulting in a worse f-measure value. Here, the values are far from balanced.
Interestingly, the theoretic expectation does not hold for the micro-averaged values as both recall and
precision increase (on the test data). A reason for this could be better generalization properties of the
learned model by inducing rules with a slightly worse performance on the training set. However, it is
difficult to judge whether said effects are a result of the relaxation lift or the introduced lower boundary
of the quality of the rule.

The macro-averaged values for precision, recall and f-measure, as shown in Figure 12 (3), behave
differently. Precision and recall and therefore also the f-measure (almost) constantly decline until a lift
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Figure 10: The (1) percentage of multi head rules among all rules, (2) average number of labels in the
head, (3) number of rules and (4) number of stop rules for each model in comparison to
the relaxation lift applied while using the KLN relaxation lift function as well as positive and
negative heads.
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Figure 11: The (1) average rule length, i.e. the average number of conditions, and the (2) percentage
of label conditions for each model in comparison to the relaxation lift applied while using the
KLN relaxation lift function as well as positive and negative heads.

of 21 percent is achieved. From there on, we have a similar picture as for the micro-averaged values. The
decline in the macro-averaged values may very well be as frequent labels are preferred over infrequent
values the higher the lift or the fact that due to the condition of requiring at least as many true positives as
false positives not all relevant labels can be learned. Hence, the infrequent labels dragging the heuristic
value down in the case of the former reason.

7.2.2 Peak Relaxation Lift Function

In this section, the results attained from utilizing the peak relaxation lift function are presented. We
again first take a look at the characteristics of the learned models, followed by the heuristic values.
Furthermore, we compare and distinguish the results for different peak values.

Model Characteristics
The general behaviour regarding the percentage of learned multi head rules is identical to the previ-

ous analysis. What changes, however, is the number of induced rules. Whereas only four rules are being
learned starting with a lift of 17 percent when utilizing the KLN lift function, more rules are generated
when utilizing the peak function. Nevertheless, with a higher peak label the number of rules approaches
the, it seems, minimum number of rules (for this data set). For peak label five, the same number of
rules as for the KLN lift function is reached, but only for a lift of 29 percent. Moreover, the average rule
length and the number of stop rules are alike as well. That the peak value does indeed have an effect on
the length of the heads is depicted in Figure 13. Thus, the peak label sets a threshold on the maximum
number of labels in the head. Note that in the beginning, for a rather small lift, the order is reversed,
i.e. peak label two has longer heads than peak label five. The reason for this lies in the relaxation lift
function. For the peak lift function with peak label five and lift five percent, the lift at label two is a lot
smaller than for the function with peak label two and lift five percent. Hence, the induction of multilabel
head rules is less likely.
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Figure 12: The values for (1) hamming loss and subset accuracy (2) micro-averaged precision, recall and
f-measure as well as (3) macro-averaged precision, recall and f-measure for each model in
comparison to the relaxation lift applied while using the KLN relaxation lift function as well as
positive and negative heads.

67



Figure 13: The average number of labels per multilabel head rule in the head for each peak label in
comparison to the relaxation lift applied while using the peak relaxation lift function as well
as positive and negative heads.

Figure 14: The percentage of label conditions for each peak label in comparison to the relaxation lift
applied while using the peak relaxation lift function as well as positive and negative heads.

Interestingly, a slightly bigger percentage of label conditions seems to be induced for a small lift (cf.
Figure 14). The most likely reason is that as a result of the lift, fewer rules and thus fewer conditions
are learned. Hence, if the number of label conditions stays constant, the percentage of label conditions
increases. Another possible reason is the increased coverage. Due to more labels being set by the first
few rules, they can be utilized more effectively in the exploitation of label dependencies as more entries
in the label matrix are set. For a higher lift, no label conditions are learned anymore. The reasons are
similar to the reasons of why fewer conditions per rule are learned in general with a higher lift, which
was explained in the previous section. As previously mentioned, rules with more labels in the head are
not as easily refined as with more labels the chances of improving the performance declines.

Heuristic Evaluation
For hamming loss and subset accuracy, the peak relaxation lift function with peak label four seems

to achieve the best results (cf. Figure 15 (1)). Although, for the other peak functions the results are
equally good in comparison to the KLN relaxation lift function. The main difference between Figure 12
(1) and 15 is where the maximum performance is reached. For the peak lift function with peak label
four, the arguably best performance is reached for a bigger lift. This is not the case because of less lift
being applied but rather a difference in the expression of the lift. For the KLN lift function, the lift is set
differently – fixed at label three the lift is steadily increased, resulting in the overall lift increase. For the
peak lift function, the lift is set according to the peak label and interpolated in between the other labels.

Figure 15 (2) shows the micro-averaged evaluation results for the peak relaxation function with peak
label two. It becomes apparent that the variance of the values is very constant. The same is true for the
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Figure 15: (1) The values for hamming loss and subset accuracy for peak label four and (2) the values for
micro-averaged precision, recall and f-measure for peak label two in comparison to the relax-
ation lift applied while using the peak relaxation lift function as well as positive and negative
heads.

hamming loss and subset accuracy value for this peak label. Due to the limit imposed on the number of
labels in the head, a bigger lift does not make a difference anymore from some point on. If all or most
rules are rules with two labels in the head already, an increased lift will not change the rule set. Hence,
the very constant values. A similar observation emerges for the macro-averaged values for peak label
two. For both averaging-strategies, however, recall is higher than precision.

The micro-averaged prevision, recall and f-measure values for the peak relaxation lift function with
peak label three are rather constant again (cf. Figure 16 (1)). Starting with a lift of 21% things start to
change. Recall increases and precision decreases. Nevertheless, the f-measure rises. Especially for a lift
of 29%, where precision picks up again. For this peak label it might be interesting to investigate what
happens beyond a lift of 29%. However, it is possible that shortly after the same situation as for peak
label two arises, the values become constant. For the macro-averaged values a slightly different picture
than for peak label two presents itself (cf. Figure 16 (2)). While for peak label two all values are rather
constant, the function for peak label three varies more for the bigger lifts. Interestingly, precision and
recall change roles for a lift of 21%. The same lift at which the micro-averaged values start to change.
Before this lift value, precision dominates and is significantly higher than recall. Afterwards, recall does.
In the end, however, the macro-averaged values drop slightly. A reason for the change starting with
about a lift of 19 % might be that from there on, multilabel heads with three labels in the head get
induced more often. This theory is supported by the average number of labels per head, as shown in
Figure 17. We can see that from a lift of 19% on, more rules with three labels in the head are induced
due to the average number of labels per head significantly rising above a value of two. In this case, the
average number of labels is a better indicator than the average number of labels per multilabel head
rule, as it incorporates the number of such rules.
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Figure 16: The values for (1) micro-averaged precision, recall and f-measure as well as (2) macro-averaged
precision, recall and f-measure for peak label three in comparison to the relaxation lift applied
while using the peak relaxation lift function as well as positive and negative heads.

Figure 17: The average number of labels for peak label three in comparison to the relaxation lift applied
while using the peak relaxation lift function as well as positive and negative heads.
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Figure 18: The values for (1) micro-averaged precision, recall and f-measure as well as (2) macro-averaged
precision, recall and f-measure for peak label four in comparison to the relaxation lift applied
while using the peak relaxation lift function as well as positive and negative heads.

Figure 18 (1) shows the micro-averaged heuristic values for the peak relaxation lift function with peak
label four. Again, we see that for a bigger lift recall seems to generally increase and precision seems to
generally decrease. What becomes apparent is that there always seems to be a trade off between the two.
If one rises, the other suffers. In Figure 18 (2) we can see the macro-averaged values. It appears to be
the case that lift increases the micro-averaged f-measure values at the cost of the macro-averaged values.
Generally, the micro- and macro-averaged values change likewise, i.e. if micro-averaged precision drops,
so does macro-averaged precision. Note that out of all tested peak labels, the function with peak label
four reaches the highest f-measure values. For peak label five, the behaviour is rather similar and is
therefore not covered in detail. The micro- and macro-averaged values can be regarded in Figure 19 (1)
and Figure 19 (2), respectively. Note that this peak relaxation lift function reaches the second highest
f-measure values.

7.2.3 Training Set Fit

Next, we take a look at the effects of the relaxation lift on the fit on the training set. This may be
important in order to understand for which settings the approach overfits or generalizes the training
data too much. Table 20 shows the performance on the training set for the peak relaxation lift function
with peak label four. In general, we can observe that the fit seems to decrease with a higher relaxation
lift. This is the case for hamming and subset accuracy, as well as the micro- and macro-averaged values.
The micro- and macro-averaged values start to increase again at some point, but do not reach as good of
a fit as previously. A reason for this behaviour might be that starting with a lift of 1.25, more rules with
four or five labels in the head get learned (cf. Figure 13). Moreover, the behaviour of subset accuracy on
the training data somewhat matches the behaviour of subset accuracy on the test set (cf. Figure 15). For
a lower lift, the behaviour is reversed, i.e. a worse fit on the training set implies a better performance
on the test set. Hence, due to an increased generalization, the predictive performance also increases.
For the other peak labels, a similar behaviour can be observed. However, the higher the peak label, the
more does the learned model generalize the training set. This can be observed in Figure 21, which shows
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Figure 19: The values for (1) micro-averaged precision, recall and f-measure as well as (2) macro-averaged
precision, recall and f-measure for peak label five in comparison to the relaxation lift applied
while using the peak relaxation lift function as well as positive and negative heads.

the macro-averaged evaluation function values for peak label five and three. For peak label five, we can
identify the point at which rules with three or more labels in the head start to get induced – a relaxation
lift of 17 percent. The values for peak label three do not decline as much as the values for peak label
five. Hence, we can conclude that the longer heads are learned, the more the training set is generalized.
This might also be the result of the previously mentioned declining average number of conditions per
rule. With fewer conditions per rule, the rule sets becomes more general.

7.2.4 Summary

For this data set and the utilization of negative heads, a higher number of peak labels seems to be
preferable. In general, the higher the peak label, the higher the lift should be in order to achieve good
results. The reason being the interpolation between the first and the peak label. Often, a high peak label
is more robust to inducing bad rules as due to the interpolation, i.e. a lower lift for a lower label but
maintaining a high lift for a high label, only the best rules with a high number of labels in the head get
induced. Usually, the quality of a rule suffers the more labels are added to the head. By regarding this
observation, the question arises why the KLN relaxation lift function does not deliver the best results.
The reason being that, despite the additional lift declining for each additional label, there is no maximum
lift. Hence, we do not risk inducing rules with simply too many labels in the head. Of course, this is
dependent on the label cardinality of the data set at hand. However, for FLAGS we have a medium label
cardinality of 3.392. For the peak relaxation lift function and peak label three or higher, a lift of at least
10% should be applied.

7.3 Positive Head Rules

This section covers the sensitivity analysis for the approaches that can only explicitly predict the relevancy
of labels. We start with the analysis of the KLN relaxation lift function and proceed to analyze the effects
of the peak relaxation lift function. At last, the fit of the learned models on the training set is regarded.
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Figure 20: The (1) hamming loss and subset accuracy, (2) micro-averaged precision, recall and f-measure
values and (3) macro-averaged precision, recall and f-measure values on the training set in
comparison to the relaxation lift applied while using the peak relaxation lift function with
peak label five and learning positive as well as negative heads.
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Figure 21: Macro-averaged precision, recall and f-measure values on the training set in comparison to the
relaxation lift applied while using the peak relaxation lift function with peak label (1) five and
(2) three while learning positive as well as negative heads.

7.3.1 KLN Relaxation Lift Function

In this section, the model characteristics and the values of the heuristic functions when using the KLN
relaxation lift function and exclusively learning positive heads are interpreted.

Model Characteristics
Applying the pruning relaxation on the data set FLAGS and only utilizing positive heads does not induce

as many multilabel head rules as when also using negative heads, as can be observed in Figure 22 (1).
Figure 22 (2) further shows that the average number of labels per multilabel head rule does not change
throughout the lifts 1.05 to 1.23. Only for a very high lift the algorithm starts to induce heads of length
three or higher. The consistency of the head length may very well be a reason for the relatively high
(constant) percentage of label conditions. This stays in contrast to the heavy drop in the percentage of
label conditions when also inducing negative heads.

Heuristic Evaluation
In comparison to the analysis for negative heads, recall is quite high and stays a lot higher than

precision (cf. Figure 23) because no negative heads are predicted and the algorithm thus focuses on
the relevant labels. This can be observed for later values as well. For the data set FLAGS, the heuristic
values when utilizing only positive heads are slightly better than for the setting that also uses negative
heads. Increasing the lift results in a slight increase in micro-averaged and macro-averaged values, before
dropping rather heavily for a lift of 1.27 due to an especially high recall and therefore lower precision
(cf. Figure 23 (2) and (3)).

7.3.2 Peak Relaxation Lift Function

In this section, the model characteristics and the values of the heuristic functions when using the peak
relaxation lift function and exclusively learning positive heads are interpreted.
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Figure 22: The (1) percentage of multi head rules, (2) average labels per multi head rule and (3) per-
centage of label conditions in comparison to the relaxation lift applied while using the KLN
relaxation lift function and only positive heads.
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Figure 23: The (1) hamming loss and subset accuracy, (2) micro-averaged precision, recall and f-measure
values and (3) macro-averaged precision, recall and f-measure values in comparison to the
relaxation lift applied while using the KLN relaxation lift function and only positive heads.
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Figure 24: The (1) average labels per multi head rule and (2) percentage of label conditions for each peak
label in comparison to the relaxation lift applied while using the peak relaxation lift function
and only positive heads.

Model Characteristics
Figure 24 depicts an important finding for this data set and the utilization of positive heads. No rules

with more than two labels in the head are learned. Even for a lift of almost 30 percent at peak label
three. Therefore, as we observed in Figure 22 (1), more multilabel head rules are learned but they
always contain two labels in the head. This may also explain why the percentage of label conditions
does, in contrast to the utilization of negative heads, not decrease as much (cf. Figure 24 (2)).

Heuristic Evaluation
Figure 25 shows the hamming loss and subset accuracy values for the peak lift function with peak

labels two and three, respectively. The best setting can be deduced easily – a lift of 1.13 for peak label
two and a lift of 1.19 for peak label three. For this data set and only positive head rules, the peak label
seems to just shift the best lift value to the right. Another sign for this theory is the drop at lift 1.07
for peak label two and the drop at lift 1.09 for peak label three. A similar observation can be done for
peak labels four and five. The reason for this observation can be concluded from regarding the average
number of labels per multi head rule (cf. Figure 24 (1)). Due to two labels being the longest reasonable
head length for this data set and only positive heads, a higher peak label does not make a difference. The
lift is just expressed differently. Therefore, for a higher peak label, the same lift is achieved at a higher
lift than for a lower peak label. Resulting in the observed shift.

In contrast to the macro-averaged values when utilizing negative heads, the macro-averaged values
when only using positive heads do not drop significantly but instead increase (cf. Figure 26 (2)). The
micro-averaged values, as depicted in Figure 26 (1), stay rather constant. Again, the reason for both
observations being that the head length seems to be limited to a maximum of two labels. As a result,
utilizing only positive heads and relaxing the pruning should be further analyzed on another data set (cf.
Section 9).
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Figure 25: The hamming loss and subset accuracy values for (1) peak label two and (2) peak label three
in comparison to the relaxation lift applied while using the peak relaxation lift function and
only positive heads.

Figure 26: The (1) micro-averaged and (2) macro-averaged precision, recall and f-measure values for peak
label two in comparison to the relaxation lift applied while using the peak relaxation lift func-
tion and only positive heads.
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Figure 27: The (1) hamming loss and subset accuracy, (2) micro-averaged precision, recall and f-measure
values and (3) macro-averaged precision, recall and f-measure values on the training set in
comparison to the relaxation lift applied while using the peak relaxation lift function with
peak label five and only positive heads.

7.3.3 Training Set Fit

Contrary to the fit on the training set while learning positive and negative head rules, the fit on the
training set learning only positive heads does not decrease as much. Figure 27 illustrates the behaviour
of the peak relaxation function with peak label five on the training data. We can observe that while the
values still decline, they do not decline as much. The behaviour is a bit different for subset accuracy,
however. When learning also negative heads, subset accuracy increased again for some values (cf. Figure
20). A likely reason for both observations is that rules with fewer labels in the head are learned when
only learning positive head rules. We have discovered earlier that for positive head rules only multilabel
rules with a head of length two get induced at maximum. Thus, the training set does not get generalized
too much, as is the case when learning also negative heads, which typically results in longer heads. This
may also be the reason why subset accuracy increases at some point again. If more labels are learned
and set simultaneously, the chances of learning and setting frequently co-occurring labels so that they
perfectly classify some of the examples increases. Thus, the setting of the labels is not as dependent on
individual rules for each label. Rather, the labels are set in groups. Due to the maximum head length
being two for positive multilabel head rules, the behaviour of other peak labels is very similar.
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7.3.4 Summary

Despite a label cardinality of 3.392 for the data set FLAGS, at maximum rules with two label in the head
get induced. This is a trend that is also observable in the evaluation in Section 9. As a result, utilizing the
peak relaxation lift function with peak label two seems to be advantageous. A bigger peak label does not
imply longer heads, the lift is just expressed differently. However, with a peak label of two, efficiency is
better than for higher peak labels as we can start pruning regularly from the peak onward. For the data
set FLAGS, utilizing only positive heads seems to be better. The micro-averaged heuristic values slightly
increase and the macro-averaged values stay rather constant and do not drop significantly, as is the case
for negative heads.

7.4 Discussion

In this chapter, we have analyzed the effects of different parameters on the learned models and the
predictive performance. We have seen that the relaxation lift does indeed result in more multilabel
heads and thus in most cases in a faster run time. Furthermore, the average number of conditions per
rule decreases for a higher lift. The most likely reason being that a longer head in combination with
fixing the head is more difficult to refine. Moreover, the percentage of label conditions does not increase
significantly for a higher lift, but rather approaches zero. Additionally, we have studied the fit on the
training set and concluded that a higher lift results in a more general model, which may very well be
due to fewer conditions per rule. Another important finding is that no rules with more than two labels
in the head are induced when only learning positive heads. Hence, making the utilization of the peak
relaxation lift function with peak label two a very good idea. In general, (micro-averaged) precision
seems to increase while recall decreases. This is the case due to the lower boundary on the quality of
the rule. For some of the observations it is not entirely clear whether they are a result of the lift or
the condition of requiring at least as many true positives as false positives or fixing the head during the
refinement process. While we have only performed the sensitivity analysis for the data set FLAGS, we
expect similar results from other data sets in general.
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8 Prepending

In this chapter, we pursuit another idea for the separate-and-conquer algorithm – prepending. At first,
the motivation behind prepending is described, followed by the required changes in the algorithm and a
brief comparison between the in this work presented approaches on the basis of a rule set.

8.1 Motivation

Sadly, learning more multilabel head rules using a relaxed pruning approach does not necessarily lead
to more label conditions in the rule set. Furthermore, the presented algorithm still has some problems
with more difficult data sets. For those, the algorithm predicts every label to be irrelevant or relevant,
resulting in a bad model. Another reason for trying a different approach is the fact that due to the
updated coverage and therefore excluded examples, later rules might be more difficult to understand
in comparison to previously induced rules. This fact can also lead to somewhat contradictory rules be-
ing learned. Moreover, due to the relaxed pruning approach, we make more mistakes (on the training
set) – especially for a high lift. As a result of these reasons, we try to use an approach we call prepending.

The general idea is to initially set all labels in the training set to be irrelevant, to learn the default
rules in the beginning so to speak. Hence the name prepending (cf. [Webb, 1993]). After the initial
default rules, we let the algorithm correct its (wrong) predictions, which can then also take in account
the default rules in the learning process. Thus, we mainly focus on the relevant labels, because all labels
are considered to be irrelevant initially. By correcting previous predictions, the rule set might also be
more expressive and easier to understand because later predictions do directly incorporate previously
made predictions. Additionally, we are able to correct the incorrectly set labels not only by the relaxed
approach, but also the not avoidable mistakes of the original algorithm. Furthermore, we hope to learn
more label dependencies by using prepending. A possible reason for more label conditions could be the
explicit modeling of exceptions for instance.

8.2 Correction of Predictions

In order to be able to effectively correct the predictions of the classifier, we need to redefine the semantics
of the entries in the confusion matrix. With our new semantics we aim at correcting the values in a
reasonable way as described in the motivation. As a result, we redefine:

• TP: The value is corrected by the new prediction.

• FP: The value was correct but our new prediction distorts the value.

• FN: The value needs yet to be correct, which also includes uncovered examples.

• TN: We do not use true negatives in this context.

Note that the definition of true positives and false positives only applies to examples covered by a rule.
By changing the semantics of the confusion matrix entries we also change the semantics of the multilabel
evaluation metrics:

• Precision is defined as TP
TP+FP . Applying our new semantics, precision calculates the percentage of

predictions that do indeed correct the value.

• Recall is defined as TP
TP+FN . Applying our new semantics, recall calculates the percentage of correct-

ing predictions among the values that needed correction.
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Consequently, the f-measure trades off these two values with their new semantics, i.e. trying to maxi-
mizing the total number of corrections as well as the percentage of correcting predictions.

Now that we have informally described the new semantics, we need to define the entries of the con-
fusion matrix more formally. The conditions and how they are counted can be gathered from Table 13.
The value of the true label vector for the given label is denoted as True Value, which is available as all
calculations are executed on the training data. Set Value describes the value that is currently set for
an example and label – zero initially. Our objective is then to match the set value and the true value.
Furthermore, Prediction represents the value of the label attribute for the current label of the rule to be
evaluated. Note that the rule must cover the given example for the rule to be applicable.

True Value Set Value Prediction Type
0 0 0 -
0 1 0 TP
0 0 1 FP
0 1 1 FN
1 0 0 FN
1 1 0 FP
1 0 1 TP
1 1 1 -

Table 13: Definition of true positives, false positives and false negatives if an example is covered according
to whether or not they correct a previous prediction.

In the case that all values match for a covered example, the value is already correct. As a result, no
correction can be made and we do not count this case in the confusion matrix. If the true value and the
set value of a covered example do not match and the prediction would set the value to the true value, we
count this case as a true positive as the value is corrected. If the true value and the set value match for
a covered example and we would distort this value so that it is not correct anymore, we count this case
as a false positive. Moreover, if a rule covers an example, the true value does not match the set value
and the prediction does not correct the value, we count this case as a false negative. Furthermore, if a
rule does not cover an example and the true value does not match the set value, it is counted as a false
negative as well. Hence implying the change in the semantics.

8.3 Algorithm Adjustments

This section covers the necessary changes to the previously presented separate-and-conquer algorithm
and their resulting effects. At first, the implementation of the default rules for prepending and required
changes to construction of the confusion matrix are explained. Moreover, the overwriting of values in
the training and test set is elaborated. As a result, we also need to make some adjustments in terms of
coverage of examples. Finally, the adjustments of the subroutines for finding the best head are discussed.

8.3.1 Prepending Default Rules and Aggregation

There are two possibilities for implementing the default rules for setting all labels to be irrelevant initially.
The first possibility is to initially generate a rule with no condition in the body and a label condition in
the head that sets the label to be irrelevant for every label. Then, the rule can be applied to the data
set. Using this approach, we would need to change the way we calculate rule statistics. The second
approach, which we use in the implementation, is to interpret missing values in the training data as
zeros in the subroutine AGGREGATE. In order for this approach to work, we need to set all labels to
be eligible to be used as label conditions initially. This requires adjusting or completely removing the
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subroutine GETLABELCONDITIONS. By allowing all label conditions from the beginning, we theoretically
also allow label conditions that require a label to be relevant. Despite the fact that no labels are set to
be relevant yet, this is not a problem as these rules do not cover any example in the training set. Hence,
these rules cannot have any true positives, which prevents the induction of these rules.

Algorithm 29 The adjusted algorithm AGGREGATE for aggregating the true positives, false positives, true
negatives and false negatives of a confusion matrix if using prepending.

Require: Rule r, training example (X j, Ŷj), label λi, confusion matrix C
1: procedure AGGREGATE

2: if r covers X j then
3: if r.head contains a label attribute yi then . always true for rule-dependent evaluation
4: if ẏi ∈ Yj 6= ŷi ∈ Ŷj then . set value of example does not match true value
5: if yi = ŷi ∈ Ŷj then
6: C .tp+ = 1 . value is corrected
7: else
8: C .fn+ = 1 . value still needs correction
9: end if

10: else
11: if yi 6= ŷi ∈ Ŷj then
12: C .fp+ = 1 . value was correct, distorted by prediction
13: end if
14: end if
15: end if
16: else
17: if ẏi ∈ Yj 6= ŷi ∈ Ŷj then
18: C .fn+ = 1 . still needs correction
19: end if
20: end if
21: end procedure

Algorithm 29 illustrates how the true positives, false positives, true negatives and false negatives are
counted in accordance to the definition in Section 8.2. The current label vector of training example
(X j, Ŷj), which we keep track of, is denoted as Yj. Furthermore, the fact that missing values are con-
sidered to be irrelevant is omitted in the depicted algorithm due to simplicity. Basically, if ẏi ∈ Yj = ?,
we treat the value like it was zero. Moreover, it should be mentioned that the depicted algorithm does
only work for rule-dependent evaluation, because the subroutine AGGREGATE is then only called for labels
contained in the head. Otherwise, we would need to consider the case if the label attribute is not present
in the head, which occurs if using a rule-independent evaluation strategy. Additionally, a rule-dependent
evaluation seems to make more sense for prepending, because the other labels are typically already set
to be irrelevant.

In order for the true positives, false positives and false negatives to be counted correctly, we also
need to adjust the subroutines MICROAVERAGING, LABELBASEDAVERAGING, EXAMPLEBASEDAVERAGING and
MACROAVERAGING, which were presented in Section 4.7. Exemplary, we adjust the subroutine MICROAVER-
AGING to be usable by prepending. The other subroutines can be adjusted analogously. In each algorithm,
we need to remove the condition that prevents fully covered examples from being considered in the con-
struction of the confusion matrix (cf. Algorithm 16, line 4). Again, the reason being that we may still
correct values, even for fully covered examples. That being said, the adjusted subroutine MICROAVER-
AGING is illustrated in Algorithm 30. Similarly, the condition can be removed from the other averaging
subroutines.
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Algorithm 30 Adjusted algorithm MICROAVERAGING for measuring the performance of a multilabel head
rule using micro-averaging if using prepending.

Require: Original training data set T , current trainign data set Tcurrent,
rule r, evaluation function δ, relevant labels L

1: procedure MICROAVERAGING

2: C = (0, 0,0, 0) . initialize global confusion matrix
3: for each example (X j, Ŷj) ∈ T do
4: for each relevant label λi ∈ L do
5: AGGREGATE(r, (X j, Ŷj),λi, C)
6: end for
7: end for
8: h= δ(C) . apply evaluation function on confusion matrix
9: return performance h

10: end procedure

8.3.2 Overwriting of Values

In order to apply the corrections, previously set values must be overwritten. This stands in contrast to
the approach of the separate-and-conquer algorithm, for which each label in every example can only be
set once. Furthermore, in the original algorithm, once an example is covered sufficiently, it is removed.
The overwriting of values must be permitted on the training set as well as on the test set. Hence, we
need to change the application of the multilabel decision list, which was introduced in Section 2.2.3.

Algorithm 31 Adjusted application of a multilabel decision list to a test example if using prepending.

Require: Test example X , multilabel decision list D
1: Y = (?, . . . , ?)
2: for each rule r in decision list D do . in the order of insertion
3: set all labels in Y to be irrelevant initially
4: if r covers X then
5: apply head of r on Y
6: if r marked as stopping rule then
7: return Y
8: end if
9: end if

10: return Y
11: end for

The adjusted application of the multilabel decision list is illustrated in Algorithm 31. First of all, the
condition for applying the head on the label vector needed to be removed (cf. Algorithm 31, line 4). This
corresponds to the overwriting of the values. Moreover, just as we learn rules with the assumption that
all label entries are irrelevant initially, we need to do the same for the test examples. Otherwise, label
conditions that depend on irrelevant labels in the body of a rule do not get applied correctly to the test
example. Hence, instead of assuming all remaining labels in Y to be irrelevant in the end, we prepend
this assumption to the beginning of the classification process. Furthermore, the possibility of stopping
rules has to be regarded. More information on the induction of stopping rules can be found in the next
section. By possibly trying and applying all learned rules on each test example, the classification process
of test examples is expected to take longer than for the unadjusted multilabel decision list.

84



Sunset = 0← FallFoliage = 1
FallFoliage = 0← FallFoliage = 1, Att110

Figure 28: Example of why the head should not be fixed in the rule refinement process of prepending.
The second rule is the refinement of the first rule, taken from the learning process of the
algorithm.

8.3.3 Coverage

Prepending requires to overwrite previously set values of labels. As a result, we may not remove exam-
ples from the training set because even if the example is fully covered we could still correct predictions.
This leads to numerous complications. For once, we cannot rely on coverage as a stopping criterion.
Previously, once we cover all labels of an example or most of the training set, we remove the example or
terminate the algorithm, respectively. Thus, prepending does not have a stopping criterion currently – it
learns rules until there are no rules left to learn. Due to the lower bound on the quality of the rule, the
number of rules are limited and the algorithm terminates at some point. As coverage cannot be used in
the same way as by Loza Mencía and Janssen [2016] and Rapp [2016], we need to remove all coverage
related parts in Algorithm 3. This includes, as mentioned, the stopping criterion that is dependent on the
percentage of covered examples (cf. Algorithm 3, line 4) as well as the re-inclusion of training examples,
which is not required for prepending (cf. Algorithm 3, lines 7 and 8). Additionally, stopping rules cannot
be learned as they are based on coverage as well. Summing up, we need a new way of terminating the
algorithm and inducing stopping rules, which we will address again in the evaluation and the future
work section. Nevertheless, having all training examples available for the induction of label-dependent
rules might result in the revelation of more valid dependencies between labels.

8.3.4 Finding The Best Head

Contrary to the relaxed approach, we do not fix the head for prepending. The reason for that lies in the
rule learning process and the correction of predictions. The rule learning process starts with evaluating
each possible body of length one. After determining the best rule (with the best body of length one), the
algorithm tries to refine the rule by adding more conditions. Therefore, if we fix the head we cannot ex-
ploit the specialized body. For prepending, this is important because we try to correct predictions. These
corrections are often exceptions to certain other rules or label values. Especially after setting labels to
be relevant, we typically want to correct some values that have been incorrectly set to be relevant. Thus,
by not fixing the head, we increase the chances of finding a body that models these exact exceptions.
Figure 28 illustrates the need for allowing the head to change. Note that we omit the exact value of
the attribute for clearness. In the shown rule refinement process, we first learn a fully label-dependent
rule. If FallFoliage is relevant for an example, label Sunset is irrelevant. By trying all refinements of this
label condition, we hit a condition that models an exception to the relevancy if FallFoliage is relevant. As
a result, the head needs to be changed to be predict the irrelevancy of FallFoliage. If we had fixed the
head, we would probably not have found this interesting rule, which further models a label dependency.
Of course we may also reveal exceptions without label conditions by allowing the head to change again,
as is the case in the original algorithm by Rapp [2016].

A key change to the subroutines for finding the best lifted head is the lower boundary for the quality of
the rule. In Section 6.2 we introduced the condition that a rule must have at least as many true positives
as false positives in order to be induced. For prepending, however, rules must have more true positives
than false positives. By requiring this condition, we prevent infinite loops in the rule learning process,
because we make sure that there is always some progress in the correction of the values. We cover this
problem in more detail in Section 8.4
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Class12 = 1, Class13 = 1 (2250, 750)
Class4 = 1, Class5 = 1← Att61 (230, 94)
Class2 = 1, Class3 = 1 (1280, 1720)
Class2 = 0, Class3 = 0 (1720, 1280)
Class2 = 1, Class3 = 1 (1280, 1720)
Class2 = 0, Class3 = 0 (1720, 1280)

Figure 29: Example of an infinite loop while learning a model for the data set CAL500 and omitting the
lower boundary.

Instrument-Drum-Set = 0, NOT-Song-Very-Danceable = 0 (269, 269)
Instrument-Drum-Set = 1, NOT-Song-Very-Danceable = 1← NOT-Emotion-Angry-Agressive = 1 (269, 269)
Instrument-Drum-Set = 0, NOT-Song-Very-Danceable = 0 (269, 269)
Instrument-Drum-Set = 1, NOT-Song-Very-Danceable = 1← NOT-Emotion-Angry-Agressive = 1 (269, 269)
Instrument-Drum-Set = 0, NOT-Song-Very-Danceable = 0 (269, 269)

Figure 30: Example of an infinite loop while learning a model for the CAL500 data set and using only a
condition that requires at least as many true positives as false positives.

8.4 Loop Prevention

As a result of allowing values to be overwritten, we need to prevent loops from occurring. Otherwise,
the algorithm can get stuck infinitely by always switching the values of the same labels. For preventing
loops, the lower boundary for the quality of the rule is crucial. By requiring more true positives than
false positives, we make sure the algorithm makes progress. Implying, we always correct more values
than we distort. Therefore, the algorithm terminates at some point. If we excluded this condition, a
situation such as shown in Figure 29 is likely to occur. Again, each rule is augmented with its number of
true positives and false positives (TP, FP). Due to the missing condition on the true and false positives,
the algorithm always switches the same labels back and forth. Resulting in no progress being made and
therefore an infinite loop.

To prove that the number of true positives must actually be strictly greater than the number of false
positives, contrary to the lower boundary in the separate-and-conquer algorithm, we regard the exam-
ple given in Figure 30. We observe that an infinite loop can still occur. Therefore, we need to change
the implementation of the subroutines DECOMPOSABLE, ANTIMONOTONOUS and REFINERULE. Instead of
requiring the condition for each individual rule, we enforce the strictly greater condition when the al-
gorithm is done with refining a rule. Before that, the rules are allowed to have as many true positives
as false positives. This results in better rule sets as it is very likely that rules with an equal number
of true positives and false positives are still refined so that, in the end, the number of true positives
is strictly greater than the number of false positives. If that is not the case after refining the rule, the
learned rule is removed from the rule learning process and the learning process iteration is repeated.
In this repeated iteration, the strictly greater condition is enforced for every rule. Afterwards, the al-
gorithm continues as usual. Pseudocode for this operation is omitted due to clarity. To simplify the
implementation and not having to implement (almost) the same subroutines twice, it might make sense
to just use the same procedure in the separate-and-conquer algorithm using the relaxed approach as well.

Due to this condition not present in the original separate-and-conquer algorithm for learning multil-
abel head rules by Rapp [2016], it cannot be used for prepending. In order to change that, said condition
must be included in the subroutines DECOMPOSITE and PRUNEDSEARCH.
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8.5 Rule Set Comparison

In this section, we briefly compare the rule sets for the different approaches presented in this work and
give an example of how prepending works. Table 14 shows the rule sets obtained by executing the
original algorithm, the relaxed pruning approach and prepending on the data set WEATHER. The data set
WEATHER is a small toy data set and has three labels that represent whether or not to play a game, do not
play a game or maybe play a game on a day given the weather forecast.

The rule sets show the differences between the algorithms (cf. Table 14). The rule set learned by
the original approach has the most rules. We can see that the relaxed approach learns more multilabel
rules. The first two rule sets furthermore both learn the implication that if dontplay = 0, then play =
1. However, the relaxed pruning approach learns this rule a bit later. Nevertheless, the relaxed pruning
approach learns another label dependency (the last rule), whereas the original algorithm learns the same
label-dependent rule twice. Moreover, the relaxed pruning approach models more label co-occurrences.
For instance, the original algorithm learns no rules that relate the label playmaybe to the other two labels,
whereas the relaxed pruning approach learns three such rules. Nevertheless, the first two rule sets are
more difficult to understand as we have to consider the removed training examples and thus learned
label dependencies do not apply globally.

dontplay = 1← outlook = sunny, humidity ≥ 82.5 (3, 0)
dontplay = 0← temperature ≥ 71.5 (5, 0)
playmaybe = 0← outlook = sunny (5, 0)
play = 1← dontplay = 0 (5, 0)
play = 0, dontplay = 1← temperature ≥ 70.5 (5, 0)
play = 1, dontplay = 0← temperature ≥ 66.5 (6, 0)
dontplay = 1← temperature ≥64.5 (1, 0)
dontplay = 0 (1, 0)
play = 1← dontplay = 0 (1, 0)
play = 0 (1, 0)
playmaybe = 1← temperature ≤ 70.5, play = 1 (3, 0)
playmaybe = 1← temperature ≥ 82.0 (1, 0)
playmaybe = 0 (5, 0)
playmaybe = 0← outlook = sunny (5, 0)
play = 1, dontplay = 0← outlook = overcast (8, 0)
dontplay = 1← humidity ≥ 82.5, humidity ≤ 95.5 (4, 0)
dontplay = 0← temperature ≥ 66.5 (5, 0)
play = 1← dontplay = 0 (5, 0)
play = 0, dontplay = 1 (6, 0)
dontplay = 0, playmaybe = 0← temperature ≥ 70.5, temperature ≥ 72.0, temperature ≤ 82.0 (6, 0)
play = 0, playmaybe = 1← dontplay = 0 (4, 0)
play = 0, dontplay = 0, playmaybe = 0 (2, 0)
play = 1← humidity ≤ 80.0, temperature ≥ 66.5 (5, 0)
play = 1← outlook = overcast (3, 0)
play = 1← humidity ≥ 95.5 (1, 0)
play = 1, playmaybe = 1← temperature ≤ 70.5, humidity ≥ 80.0, humidity ≥ 80.0 (2, 0)
play = 1, playmaybe = 1← temperature ≤ 64.5, temperature ≤ 84.0 (1, 0)
play = 0, dontplay = 1← outlook = sunny, humidity ≥ 72.5 (3, 0)
play = 1, playmaybe = 1← temperature ≥ 82.0, humidity ≥ 85.5 (1, 0)
play = 0, dontplay = 1, playmaybe = 0← temperature ≤ 66.5, humidity ≥ 70.0 (1, 0)

Table 14: Three rule sets obtained by executing (1) the original algorithm, (2) the relaxed pruning ap-
proach with peak label three and a lift of 1.10 and (3) prepending (same lift setting) on the
data set WEATHER.
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In comparison, prepending learns far more rules that focus on the relevant labels. This is because we
set all labels to be irrelevant initially and then correct the wrong values. While no explicit label con-
ditions are learned, we can observe frequently co-occurring labels and that play and dontplay seem to
exclude themselves. The algorithm focuses specifically on predicting the relevancy of play as this seems
to be the label that has the most relevant entries in the data set, whereas dontplay is mostly irrelevant and
therefore mostly ignored in the rule set as it is set to be irrelevant initially. A reason for not learning any
label-dependent rules might be that they are not required for this data set. The algorithm is perfectly
capable of correcting every value without the help of label dependencies. Interestingly, the attribute
windy is not used once as a condition and does not seem to be relevant for the prediction. Sadly, the
algorithm also learns some redundancies in the bodies of the rules.

In order to further the understanding of prepending, we apply the learned rule set depicted in Table 14
on a test example. The process is depicted in Table 15. At first, the labels of the test example are all set
to be irrelevant. Then, we check for every rule whether it is applicable. The first rule that is applicable
is the second one. Hence, play is predicted to be relevant. Due to the attribute temperature, the fifth
rule is the next applicable one. Therefore, both play and playmaybe are set to be relevant. Note that the
setting of play does not make a difference in this case. The remaining rules do not cover the example.
Thus, the classification process terminates.

outlook temperature humidity windy play dontplay playmaybe
overcast 64 65 TRUE 0 0 0
overcast 64 65 TRUE 1 0 0
overcast 64 65 TRUE 1 0 1

Table 15: Example of the application of a learned rule set to a test example.

8.6 Discussion

In this chapter, we have regarded an alternative approach to learning multilabel rules, which also takes
advantage of the relaxed pruning. We have further presented the necessary changes to the previously
introduced algorithm. The most important changes include the inclusion of all examples in the entire
learning process, i.e. no examples are removed, and the loop prevention, for which we require each
learned rule to have more true positives than false positives, i.e. correct more values than it distorts.
For prepending, it is also important to allow the head to contain the same label as the body as long as
the condition is different. As a result of including all examples, we cannot simply rely on coverage as a
stopping criterion as the values might still be corrected later. This is something that will need to be fixed
in future works.
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9 Evaluation

By evaluating the relaxed pruning approach on multiple data sets and comparing the results to the orig-
inal approach, we hope to further explore the influence of the relaxation lift and determine whether
or not searching the best performing head according to the lifted heuristic value achieves the desired
effects. The implementation is based on the implementation of the original algorithm by Rapp [2016],
which utilizes the SECO-framework4 for rule learning, which has been developed at Technische Univer-
sität Darmstadt [Janssen and Fürnkranz, 2010; Janssen and Zopf, 2012]. As stated by Rapp [2016],
the implementation does not focus on high-performance computations, but is rather a proof-of-concept.
Similarly, this work does not focus on high-performance computations either. As a result, the algorithm
is not applicable on large data sets. The data sets, which have been used for the evaluation of the relaxed
pruning approach, are listed in Table 16. These multilabel data sets are provided by the developers of
MULAN5, which is a Java library for multilabel learning. Each data set listed in Table 16 comes with a
pre-separated training and test set, which are used in this evaluation. The listed data sets cover several
domains, nominal as well as numeric features, different number of labels and, maybe most importantly,
different label cardinalities (average number of relevant labels per example). The label cardinality is
important because for a data set with a label cardinality of almost one, it may not make sense to use the
relaxed approach if learning only positive heads. Learning reasonable multilabel head rules, i.e. heads
with two or more labels in the head, seems to be unlikely in the case that each example only has one
relevant labels on average.

Name Domain Instances Nominal Numeric Labels Cardinality Density Distinct
CAL500 Music 502 0 68 174 26.044 0.150 502

EMOTIONS Music 593 0 72 6 1.869 0.311 27
MEDICAL Text 978 1449 0 45 1.245 0.028 94

FLAGS Images 194 9 10 7 3.392 0.485 54
SCENE Image 2407 0 294 6 1.074 0.179 15
BIRDS Audio 645 2 258 19 1.014 0.053 133
YEAST Biology 2417 0 103 14 4.237 0.303 198

Table 16: Characteristics of the data sets, which are used in the evaluation. The columns from left to right
specify the name of the data sets, the domain of the instances, the number of instances, the
number of nominal and numeric features, the total number of labels, the average number of
labels per instance (cardinality), the average percentage of relevant labels (label density) and
the number of distinct labelsets in the data. CAL500, SCENE and YEAST were discretized in order
to allow the experiments to complete.

In the remainder of this chapter, we use said data sets in combination with different settings of the
relaxed and normal pruning approach. Henceforth, the relaxed pruning approach is denoted by an R
and the normal approach by an N . Furthermore, an important setting is whether or not to only learn
only positive or also negative heads, which is indicated by + or +−, respectively. For each approach,
we use different multilabel evaluation metrics for the calculation of heuristic values of rules. Except
for precision and recall, all evaluation functions presented in Section 2.3.1 are utilized. We forgo those
metrics as we believe they are not as suited for the induction of good models as the other metrics.
However, both metrics are used in combination by the f-measure, for which we set parameter β = 0.5,
which implies a more precision-oriented measure. According to Rapp [2016], this decision has been
made with the intention of preventing too many labels from being predicted as relevant. Using recall
for learning rules would similarly result in too many labels being predicted, because it does not penalize
wrong predictions. In the remainder of the evaluation, we use the following short notations:

4 http://www.ke.tu-darmstadt.de/resources/SeCo
5 The used data sets as well as others can be found at http://mulan.sourceforge.net/datasets-mlc.html.
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• HA: Denotes hamming accuracy as defined in Section 2.3.1, i.e. the percentage of correctly pre-
dicted labels among all labels. In this work, we use the micro-averaged hamming accuracy as a
base learner for the induction of the model.

• SA: Denotes subset accuracy as defined in Section 2.3.1, i.e. the percentage of perfectly classified
examples. We use example-based averaging in combination with subset accuracy in order to be
able to take advantage of anti-monotonicity.

• F: Denotes the f-measure with β = 0.5 as defined in Section 2.3.1. The f-measure trades off
precision and recall. As a result of the parameter β , we use a more precision-oriented metric.

• Mic: Denotes micro-averaging as defined in Section 2.3.1. Thus, for a evaluation function using
micro-averaging, a global confusion matrix is constructed before applying the evaluation metric.

• Mac: Denotes macro-averaging as defined in Section 2.3.1. Thus, an evaluation function is applied
on each atomic confusion matrix and then averaged over both labels and examples.

Moreover, we always use a rule-dependent evaluation strategy for our experiments. This decision has
been made because Rapp [2016] discovered that a rule-dependent evaluation of rules typically results in
better models and is more in line with the process of applying the learned multilabel decision list on a test
set. In the following sections, we first regard some characteristics of the learned models using the relaxed
approach and the separate-and-conquer algorithm. Afterwards, we interpret the predictive performance
of the classifiers. Then, we regard some exemplary rule sets and try to determine good relaxation
lift values. Finally, the in Section 8 introduced approach prepending is evaluated on a smaller scale.
All experiments have been carried out on the Lichtenberg high performance computer at Technische
Universität Darmstadt.6

9.1 Setup

For the evaluation of the discovery of multilabel rules by relaxed pruning, we need to try different re-
laxation lift settings and values. As previously mentioned, due to the similarity of the KLN and root
relaxation lift function, we only use the former one in the evaluation. This furthermore also significantly
reduced the number of lift settings to be tested, which was a problem initially. For the same reasons, we
restrict ourselves to evaluating the normal pruning approach on a single parameter setting – the default
settings. Otherwise, we we would need to try all these settings for the relaxed pruning approach as well.
This would result in far too many possible combinations needed to be executed. For the relaxed pruning
approach, we use the same basic parameter settings. Hence, a certain comparability of the results is
given. For the relaxation lift parameters, we explore the peak and the KLN relaxation lift function. For
each function, we further try multiple extents of the lift and, in the case of the peak lift function, also
different peak labels. However, we only use a single curvature. The effects of the curvature are still
unclear and it is questionable whether they have a significant impact. A different value for the curvature
might not make a difference for similar reasons why the KLN and the root lift functions are so similar:
As the relaxation lift values are rather low (typically not bigger than 1.3) and we additionally only need
to evaluate the functions for whole numbers, the difference in the values is low as well. Henceforth, we
utilize a curvature of 2.0 for the peak relaxation lift function.

In order to be able to set the extent of the lift for the KLN relaxation lift function in a comparable way,
we set the parameter k of the function in accordance to the desired relaxation lift for a specific head
length. In this evaluation, we set this head length to be three. The extent of the lift is then raised by
increasing the desired lift for this head length. To be precise, we start with a lift of 1.01 and increase
the lift in steps of 0.02 until a lift of 1.19, after which we stop. We only increase the lift in steps of 0.02

6 https://www.hhlr.tu-darmstadt.de/hhlr/
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instead of steps of 0.01 in order to reduce the number of parameter settings. Otherwise, the experiments
take too long and require too many resources. Of course, one could also express the extent of the relax-
ation lift differently but for the evaluation this setting seems fitting.

For the peak relaxation lift function we need to increase the peak label and for every peak label we
need to try the same lift values as for the KLN lift function. Therefore we start with a peak label of two
and increase this peak label by one until a maximum peak label of five. Additionally, we omit peak label
four in the evaluation as it might be quite similar to utilizing peak label five. Then, for every possible
peak label value we increase the lift from 1.01 to 1.19 in steps of 0.02, identical to the procedure for the
KLN relaxation lift function.

Using these parameter settings, 40 combinations need to be tested for each data set. For each data
set, the best parameter setting is determined on the training set. Initially, the idea was to do a ten-fold
cross-validation on the training set in order to determine the best parameter setting. However, due to
run time restrictions, a five-fold cross-validation was employed. After determining the best lift setting
on the training set, the algorithm with the best parameter setting is applied to the test set. The best
setting during the search was measured according to the base learner chosen. For instance, if using the
micro-averaged f-measure as a base learner, the micro-averaged f-measure is the decisive measure for
determining the best setting. In the case that these values are the same for two or more values, hamming
accuracy and subset accuracy are the tie breakers. If the values are still the same, something which rather
frequently occurred, we settle for the parameter setting with the lowest lift value. The idea behind this
criterion is that a lower lift might lead to a more accurate model instead of a higher lift because the bias
towards rules with a lower heuristic value is smaller.

9.2 Model Characteristics

The intention of the relaxed approach was to increase the number of learned multilabel rules and hence
hopefully increase the number of learned label conditions as well. Both objectives are part of the model
characteristics, which are covered in this section. We only regard some selected characteristics that
are relevant to our context. Tables 36, 37, 38, 39, 40, 41 and 42 in the appendix show the following
characteristics of learned models for different approaches and data sets:

• #Rules: The number of learned rules.

• %MHR: The percentage of multilabel (head) rules among all learned rules, i.e. the percentage of
rules with two or more labels in the head among all rules.

• #Labels/MHR: The average number of labels contained in the head of learned multilabel rules.

• #Conditions: The average number of conditions contained in the body per learned rule.

• %LabelConditions: The percentage of label conditions among all learned conditions.

The following observations have been made about the learned models:

• The number of learned rules typically decreases when using the relaxed pruning approach. There
are two noteworthy exceptions to this observation. For once, sometimes the best relaxation lift
setting for a data set is the lowest possible lift value. In cases such as this, the number of learned
rules does not necessarily decrease. Second, there are cases in which the normal approach achieves
a considerably worse performance in terms of evaluation functions than the relaxed approach.
Hence, the relaxed approach requires more rules because the normal approach learned too few
rules to model the data set effectively. The decrease in the number of rules plays an important part
in the run time of the algorithm. As a result, the rule learning process does not have to be executed
as often, including searching the best head for each possible body or refinement. Thus, the relaxed
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approach is often faster than its counterpart. The reason for requiring fewer rules is the increased
coverage of each rule. Due to more labels in the head of each rule on average, the label entries in
the training set can be covered by fewer rules and the algorithm terminates earlier.

• The percentage of learned multilabel (head) rules does naturally increase. This is a direct result
of introducing a bias towards multilabel rules and utilizing the lifted heuristic value for searching
the best performing head. Another effect of this observation is the reduced number of learned
rules. Furthermore, the percentage of learned multilabel rules when also learning negative heads
is usually higher than when only learning positive heads. When also learning negative heads, the
learner has more label attributes to choose from. Additionally, by allowing negative heads, the
restriction by the label cardinality is loosened. There exists no such restriction as label cardinality
for negative heads. Moreover, they express irrelevant ones instead of relevant ones. Thus, they may
be combined with positive heads more easily as they predict different dependencies. Similarly, the
average number of labels per multilabel head rule for learning positive and negative heads is bigger
than when only learning positive heads.

• When learning only positive heads, the average number of labels per multilabel head rule is almost
always 2.00, unless the respective data set has a very high label cardinality, such as CAL500.
Therefore it makes sense to utilize the peak relaxation lift function with a peak label of two in such
cases. Rules with more labels seem to not get induced, so we might as well take the increased
efficiency in terms of pruning.

• Similar as in the sensitivity analysis in Section 7, the average number of conditions per rule seems
to decrease for the relaxed pruning approach. This could be a sign of inducing a more general
model (fewer conditions per rule) by relaxing the pruning constraints (or the other way around).
This assumption is supported by the reduced fit on the training set, which was observed in the
sensitivity analysis.

• More often than not the percentage of label conditions decreases. While this must not necessarily
be a bad thing, the percentage often drops to zero. If a label condition that only applies to a few
examples is removed and another head of a rule containing a label condition grows, the latter label
condition becomes more expressive. However, the percentage of label conditions decreases. For
label conditions, the position in the decision list is also crucial. The earlier in the decision list (but
also not too early), the more of an impact said condition has. Nevertheless, the percentage of label
conditions does also regularly increase, especially for the micro-averaged f-measure. It should be
noted that for mentioned reasons as well as the fact that the number of rules declines, statements
about the percentage of label conditions need to be treated carefully.

As a result, we can safely assume using the relaxed approach leads to more multilabel head rules and
thus fewer rules as well as often decreased run time. Furthermore, the decline in the average rule length
seems to hold as well in most cases. Due to each multilabel rule having more labels on average when
learning positive and negative heads, the corresponding lift must be bigger than for when only learning
positive heads. This must also be regarded when defining a peak label. A slightly higher peak label is
required when also learning negative heads instead of only positive ones. In terms of label conditions,
no precise statements can be made. In order to gain more insight into the models, we will regard some
exemplary rule sets in Section 9.4.

9.3 Predictive Quality

We have observed that using the relaxed approach does indeed result in more multilabel heads being
learned. In this section, we explore the effects this has on the predictive performance of the learned
models. We further investigate for which data sets it makes sense to use the relaxed approach and what
can be expected by searching the best performing head according to the lifted heuristic value. Moreover,
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we need to consider that applying the relaxation lift was not the only change to the algorithm. For
instance, we fix the head for the refinement of the rules and require each rule to have at least as many
true positives as false positives. The predictive quality of each approach can be found in Table 43, 44,
45, 46, 47, 48 and 49, respectively. Each value is further augmented with its rank among the results for
the respective data set at hand in order to better compare the values. This also allows us to calculate the
average ranks for different approaches and data sets. While ranks do not incorporate the magnitude of
the difference in the values between approaches, they can be utilized to make statements about trends.
Due to some experiments not running through for some data sets when using subset accuracy as a base
learner, we first regard the average ranks for each approach excluding subset accuracy. The average
ranks with the micro-averaged f-measure, macro-averaged f-measure and hamming accuracy as a base
learner are listed in Table 17.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F Rank
Mic F N+ 10.14 10.79 10.14 3.43 3.71 6.00 3.00 2.71 6.84
Mic F R+ 6.00 7.57 7.86 4.93 3.14 5.43 5.43 5.00 5.43
Mic F N+− 6.93 7.14 7.29 9.64 9.21 8.07 9.79 8.64 7.98
Mic F R+− 4.64 6.93 4.79 10.50 8.21 7.21 10.36 9.79 7.39
Mac F N+ 14.29 13.07 13.29 1.00 12.57 10.57 1.00 7.86 11.95
Mac F R+ 9.64 9.64 9.86 6.14 5.71 8.43 6.00 6.14 7.79
Mac F N+− 8.93 9.00 9.86 13.36 13.21 13.36 13.29 13.36 11.13
Mac F R+− 5.07 4.36 5.14 11.07 9.07 10.50 11.14 11.36 7.46

HA N+ 11.14 8.79 10.86 2.86 4.00 6.86 3.29 2.43 6.59
HA R+ 5.00 6.50 3.36 10.86 9.86 8.43 10.86 10.71 8.02
HA N+− 4.36 6.93 4.00 10.00 8.71 2.00 10.14 8.57 7.14
HA R+− 6.14 7.36 4.00 11.43 10.57 10.57 11.14 11.00 8.77

Table 17: Average ranks for each approach (excluding subset accuracy) across all sevens tested data sets.
Furthermore, the combined averaged ranks calculated by combining the average ranks for ham-
ming and subset accuracy as well as micro- and macro-averaged f-measure (in grey).

For determining a trend in the values, we average the average ranks depicted in Table 17 over the
evaluation metric. Table 18 shows the average ranks of the normal and relaxed pruning approach for
each evaluation function. We can observe that the ranks for hamming and subset accuracy become
significantly better when using the relaxed pruning approach. Hence, we can conclude that using the
relaxed approach usually results in an increase in hamming and subset accuracy. Furthermore, micro-
averaged precision increases while micro-averaged recall decreases. The relaxation lift hence seems to
trade-off the two values. This observation is somewhat contradictory to the expected outcome of ap-
plying the relaxation lift. By preferring rules with longer heads, we also tolerate less precise rules in
theory. However, these calculations are done on the training set. Thus, reducing the fit on the training
set seems to increase the precision on the test sets but lowers the recall. A reason for the decreased
recall might be the condition on the lower boundary of the quality of a rule. Because of this condition,
not all occurrences of relevant labels in the training data can be represented by a rule. Only rules with
a minimum precision get induced, which in turn increases (micro-averaged) precision. Remember that
the number of conditions per rule does also decrease by applying the relaxation lift, which is a sign or
a reason for the increased generalization. As a consequence of the increased micro-averaged precision
and decreased micro-averaged recall, the micro-averaged f-measure seems to increase slightly on aver-
age. Note that we use the f-measure with β = 0.5 and thus use a more precision-oriented evaluation
function. Redoing the experiments with another value for β and a not as strongly precision-oriented
f-measure might be interesting. The question is whether or not the observed behaviour is typical for
the approach in general or a result of the precision-oriented f-measure. By regarding, the values for
hamming and subset accuracy, a general trend of the approach seems likely. However, the average
value does not tell the whole story. If we regard the average ranks in Table 17, we can see that the
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micro-averaged f-measure increases (the ranks decrease) considerably when using the f-measure as a
base learner. Just with hamming accuracy as a base learner, the micro-averaged f-measure plummets –
especially when learning only positive heads. This is a trend that can be observed for the other relevant
values as well. While hamming and subset accuracy become better, the micro- and macro-averaged val-
ues decrease rather significantly when using hamming accuracy as a base learner. Consequently, using
the relaxed approach in combination with hamming accuracy as a base learner should mostly be avoided.

Both macro-averaged precision and recall decrease on average. Therefore, the macro-averaged f-
measure suffers as well. Again, we regard the ranks for the individual base learners. By doing so, we
observe that the macro-averaged f-measure does indeed rise when using the macro-averaged f-measure
as a base learner. In the other cases it worsens considerably. The best macro-averaged values are achieved
with hamming accuracy and the micro-averaged f-measure as a base learner when only learning positive
heads (cf. Table 17). Across all base learners, we can conclude that the micro-averaged f-measure seems
to increase slightly, the macro-averaged f-measure seems to suffer. Hamming and subset accuracy benefit
most from the relaxed pruning approach.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
Normal 9.3 9.3 9.2 6.7 8.6 7.8 6.8 7.3
Relaxed 6.1 7.1 5.8 9.2 7.8 8.4 9.2 9.0

Table 18: Average ranks depicted in Table 17 averaged over the evaluation function (excluding subset
accuracy).

We furthermore calculate an average rank for each approach in order to determine the respective qual-
ity. In this calculation, we omit micro- and macro-averaged precision and recall so that they not distort
the ranking. The results can be found in Table 17. The relaxed approach seems to benefit most when
using the micro- and macro-averaged f-measure as a base learner. For those, the rank decreases signif-
icantly. Moreover, we also show that the relaxed approach does not seem to be suitable for hamming
accuracy as a base learner.

Previously, we stated that the relaxed pruning approach should not be utilized for data sets with a
label cardinality of almost one. In order to further investigate this statement, we calculate the average
ranks for two separate data set groups. The first group consists of data sets with a label cardinality of
almost one, which are only two out of the seven tested data sets – BIRDS and SCENE. The second group
consists of the remaining five data sets. Average ranks for both groups are depicted in Table 19 and 20,
respectively.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
Mic F N+ 10.50 9.00 8.00 3.00 2.00 6.00 2.50 2.00
Mic F R+ 6.50 8.00 5.50 5.00 4.50 3.50 5.50 5.00
Mic F N+− 8.25 10.50 11.25 10.25 9.25 10.25 9.75 9.25
Mic F R+− 7.00 8.25 9.25 10.75 9.75 7.75 10.75 9.75
Mac F N+ 14.00 13.00 11.50 1.00 10.0 10.50 1.00 8.50
Mac F R+ 11.00 11.00 8.50 7.50 9.00 9.00 8.00 9.00
Mac F N+− 6.25 9.50 13.25 13.25 13.25 13.25 13.25 13.25
Mac F R+− 4.75 7.50 8.75 11.75 10.75 10.75 11.75 11.25

HA N+ 12.50 9.00 10.00 3.00 4.50 7.50 3.00 3.00
HA R+ 2.00 6.00 1.50 11.00 9.50 8.00 11.50 11.00
HA N+− 4.25 6.50 3.50 9.50 9.00 1.50 9.50 8.50
HA R+− 2.00 3.75 2.00 10.00 9.50 9.00 9.50 9.50

Table 19: Average ranks for each approach (excluding subset accuracy) across data sets with a label car-
dinality of almost one – BIRDS and SCENE.
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Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
Mic F N+ 10.00 11.50 11.00 3.60 4.40 6.00 3.20 3.00
Mic F R+ 5.80 7.40 8.80 4.90 2.60 6.20 5.40 5.00
Mic F N+− 6.40 5.80 5.70 9.40 9.20 7.20 9.80 8.40
Mic F R+− 3.70 6.40 3.00 10.40 7.60 7.00 10.20 9.80
Mac F N+ 14.40 13.10 14.00 1.00 13.60 10.60 1.00 7.60
Mac F R+ 9.10 9.10 10.40 5.60 4.40 8.20 5.20 5.00
Mac F N+− 10.00 8.80 8.50 13.40 13.20 13.40 13.30 13.40
Mac F R+− 5.20 3.10 3.70 10.80 8.40 10.40 10.90 11.40

HA N+ 10.60 8.70 11.20 2.80 3.80 6.60 3.40 2.20
HA R+ 6.20 6.70 4.10 10.80 10.00 8.60 10.60 10.60
HA N+− 4.40 7.10 4.20 10.20 8.60 2.20 10.40 8.60
HA R+− 7.80 8.80 4.80 12.00 11.00 11.20 11.80 11.60

Table 20: Average ranks for each approach (excluding subset accuracy) across data sets with a higher
cardinality than the BIRDS and SCENE data set.

Mic F Mac F HA
Cardinality N+ R+ N+− R+− N+ R+ N+− R+− N+ R+ N+− R+−

Low 5.88 6.00 9.31 8.69 11.38 10.00 10.56 8.56 7.25 7.13 7.06 6.19
Higher 7.23 5.20 7.45 6.88 12.18 6.90 11.35 7.03 6.33 8.38 7.18 9.80

Table 21: Average ranks for each approach and label cardinality (excluding subset accuracy), calculated
by combining the average ranks for hamming and subset accuracy as well as micro- and macro-
averaged f-measure.

In order to better compare the values for data sets of a label cardinality of almost one and higher, we
again calculate average ranks for each approach (combining hamming and subset accuracy as well as
micro- and macro-averaged f-measure). The average ranks can be found in Table 21. For data sets with
a cardinality of almost one, the relaxed approach does not seem to perform significantly better. Instead,
they seem to perform almost equally good or the relaxed approach is slightly better. Contrary to the
average rank across all data sets, the performance with hamming accuracy as a base learner increases
minimally. In contrast, hamming accuracy for the relaxed approach is ranked significantly worse than the
normal approach for data sets with a higher label cardinality. Comparing both data set groups, we can
observe that the data sets with a higher label cardinality benefits considerably more from the relaxed
approach. Summing up, utilizing the relaxed approach for data sets with a very low label cardinality
should be treated carefully. We cannot definitely decide whether or not we should always advise against
using it based on average ranks for two data sets. However, we can see that the performance increase is
only very slight and that the data sets with higher label cardinality benefit considerably more from the
bias towards multilabel rules. Again, relaxed pruning and hamming accuracy as a base learner seems to
be a bad combination.

9.3.1 Performance According To Best Lift Setting

In this section, we regard the predictive performance of the normal and relaxed approach for different
lift settings. For that, we calculate a table in which all values are taken from base learners with a lift of
one or three percent (cf. Table 22). Each such relaxed pruning approach is then compared to the same
base learner and the normal pruning. The second table contains the averaged values for base learners
with a lift greater than three percent (cf. Table 23). By separating according to the best lift setting, we
can determine whether or not a lower or higher lift value is to be preferred and we might get an insight
into the effects of fixing the head and requiring each rule to have at least as many true positives as false
positives. The best lift settings for the evaluation are listed in Table 30.

95



Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F Rank
Mic F N+ 10.33 8.00 9.67 4.00 3.33 5.33 3.33 3.67 6.33
Mic F R+ 4.83 5.33 6.00 4.67 3.67 3.67 5.00 4.67 4.63
Mic F N+− 6.63 9.00 7.00 10.63 10.13 10.88 11.38 11.13 9.22
Mic F R+− 5.50 8.25 5.38 10.88 9.63 9.88 10.38 9.88 8.31
Mac F N+ 16.00 14.75 13.50 1.00 12.50 13.50 1.00 10.50 13.44
Mac F R+ 13.00 12.50 10.50 6.00 8.00 11.50 6.00 7.50 10.25
Mac F N+− 6.90 8.00 9.00 12.50 12.10 12.30 12.20 12.30 9.83
Mac F R+− 5.90 5.30 5.20 11.50 10.30 10.90 11.20 11.10 8.15

HA N+ 11.40 9.10 11.20 2.80 4.20 8.20 3.40 2.60 6.83
HA R+ 5.80 6.70 3.70 11.20 10.00 7.60 10.80 10.80 8.33
HA7 N+− 7.00 8.00 7.00 6.00 5.00 5.00 6.00 6.00 6.50
HA R+− 6.00 8.00 6.00 7.00 6.00 7.00 7.00 7.00 6.75

Table 22: Average ranks for each approach across base learners (evaluation function in combination with
positive/negative heads) with a low lift value, i.e. a lift of one or three percent. Furthermore,
the combined averaged ranks calculated by combining the average ranks for hamming and
subset accuracy as well as micro- and macro-averaged f-measure (in grey).

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F Rank
Mic F N+ 10.00 12.88 10.50 3.00 4.00 6.50 2.75 2.00 7.22
Mic F R+ 6.88 9.25 9.25 5.13 2.75 6.75 5.75 5.25 6.03
Mic F N+− 7.33 4.67 7.67 8.33 8.00 4.33 7.67 5.33 6.33
Mic F R+− 3.50 5.17 4.00 10.00 6.33 3.67 10.33 9.67 6.17
Mac F N+ 13.60 12.40 13.20 1.00 12.60 9.40 1.00 6.80 11.35
Mac F R+ 8.30 8.50 9.60 6.20 4.80 7.20 6.00 5.60 6.80
Mac F N+− 14.00 11.50 12.00 15.50 16.00 16.00 16.00 16.00 14.38
Mac F R+− 3.00 2.00 5.00 10.00 6.00 9.50 11.00 12.00 6.00

HA N+ 10.50 8.00 10.00 3.00 3.50 3.50 3.00 2.00 6.00
HA R+ 3.00 6.00 2.50 10.00 9.50 10.50 11.00 10.50 7.25
HA N+− 3.92 6.75 3.50 10.67 9.33 1.50 10.83 9.00 7.25
HA R+− 6.17 7.25 3.67 12.17 11.33 11.17 11.83 11.67 9.10

Table 23: Average ranks for each approach across base learners (evaluation function in combination with
positive/negative heads) with a higher lift value, i.e. a lift of higher than three percent. Further-
more, the combined averaged ranks calculated by combining the average ranks for hamming
and subset accuracy as well as micro- and macro-averaged f-measure (in grey).

The combined average ranks (cf. the marked ranks in Table 22 and 23) follow the previously seen
trend. When using the f-measure as a base learner, the relaxed approach performs considerably better
on average than with hamming accuracy as a base learner. We can further observe that the relaxed
approach seems to benefit most when using the f-measure as a base learner and if the best setting is a
higher lift value. Especially for the macro-averaged f-measure, the relaxed approach seems to be a good
fit. Not only does the rank improve, but also the average ranks are rather good, except for the macro-
averaged f-measure. However, the macro-averaged f-measure for learning positive as well as negative
heads and using normal pruning always predicts all labels to be irrelevant for data sets for which the best
lift setting is high. Nevertheless, the relaxed approach improves upon this and makes better predictions.
Again, the macro-averaged values seem to mostly suffer from utilizing the relaxed pruning approach.

The average ranks for the relaxation lift settings with a very low lift value (cf. Table 22) need to be
regarded in more detail. While the average combined rank increases with the f-measure as a base learner,
the micro- and macro-averaged f-measure value employ a slightly different behaviour. For instance, with
the micro-averaged f-measure as a base learner, the micro-averaged f-measure worsens a bit or increases
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only minimally. The same observations can be made about the macro-averaged f-measure for this base
learner. Hence, the increased subset and hamming accuracy do somewhat distort the ranking in this
case. Thus we can say that the f-measure values with the f-measure as a base learner do not differ
significantly, but hamming and subset accuracy do. As a consequence, we can conclude that the increase
in hamming and subset accuracy might be the result of requiring at least as many true positives as false
positives. However, we cannot really be entirely sure about this as the lift still plays a role. Furthermore,
precision typically increases and recall typically decreases for both groups.

9.3.2 Subset Accuracy

So far we have left out subset accuracy because some of the experiments did not complete.8 In this
section, we regard the ranks for the approaches with subset accuracy as a base learner. The average and
combined average ranks are depicted in Table 24. Note that we only use the ranks for data sets for which
both the normal and relaxed approach completed.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F Rank
SA N+ 11.50 8.63 10.50 6.00 4.50 6.25 5.75 4.75 7.34
SA R+ 13.75 8.50 13.00 4.50 7.00 8.25 4.25 3.00 8.06
SA N+− 4.88 4.63 6.50 9.00 7.50 5.75 8.75 8.25 6.31
SA R+− 2.88 4.13 5.25 8.38 4.00 3.75 8.75 7.75 4.69

Table 24: Average ranks for subset accuracy as a base learner across data sets for which the experiments
ran through. Furthermore, the combined averaged ranks calculated by combining the average
ranks for hamming and subset accuracy as well as micro- and macro-averaged f-measure (in
grey).

We can observe that the relaxed approach does not perform well when only learning positive heads.
Interestingly, micro- and macro-averaged precision decreases while recall increases. This is in contrast
to the other base learners, for which precision and recall behave the opposite way. However, hamming
accuracy and the micro-averaged f-measure both worsen, while subset accuracy basically stays the same
and the macro-averaged f-measure increases. Summing up, the performance of the relaxed approach
when only learning positive heads and using subset accuracy as a base learner seems to drop.

Subset accuracy in combination with also learning negative heads shows a different picture. All values
increase, which results in considerably improved ranks. Thus, the relaxed approach seems to be a good
fit for this setting, although only tested on four data sets. Furthermore, the combined average rank of
4.69 is the best among all tested approaches (cf. Table 17), followed by the micro-averaged f-measure
as a base learner and only learning positive heads. Only the macro-averaged f-measure values for the
subset accuracy approach and negative heads does not rank among the best, but is still improved in
comparison to the normal pruning approach.

9.4 Rule Set Characteristics

In order to get more insight into the effects of the relaxation lift, we regard several rule sets in this
section. At first, we regard two examples in which the application of the relaxation lift resulted in a
worse performing model. Then, we regard three examples in which the relaxed pruning approached
improved the learned model. For both version, we analyze as to why the relaxed pruning has a positive
or negative effect.

8 The data sets for which the experiments did not complete are BIRDS, MEDICAL, CAL500.
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9.4.1 Worsened by Relaxed Pruning

The first rule set is learned by hamming accuracy as a base learner and positive as well as negative heads
on the data set YEAST. The rule sets for the normal and relaxed pruning approach are given in Table 25.
For the relaxed pruning, the best settings from the evaluation are used. The relaxed approach performs
worse in terms of hamming and subset accuracy as well as micro- and macro-averaged f-measure. This
base learner combination is additionally the only setting in which a peak label of five and a relaxation lift
of greater than 1.01 was learned. The main difference between the data sets seems to be the predictions
for Class2 and Class5. While the normal approach sets Class5 to be relevant if Att61 has a certain value,
followed by setting the remaining unset label of said class to be irrelevant, the relaxed approach sets
Class5 to be irrelevant initially and proceeds to focus on predicting the relevancy of Class5. However,
the subsequent rules are useless as they cannot overwrite the irrelevant label for Class5, because they
are already set. Nevertheless, the algorithm continues learning similar rules. The reason is most likely
the re-inclusion of training examples. Another main difference can be observed by regarding Class2.
While the normal pruning approach focuses heavily on this class, Class2 is set to be irrelevant initially
as well. As a result, the relaxed approach performs worse. Reducing the peak label to two or three does
not lessen this problem.

A likely reason is the refinement process in combination with a rule with several labels in the head.
The normal pruning approach learns only single-label heads and is therefore capable of refining these
single-label heads more. An example for this is Att61 in the condition of the rule that sets Class5 to be
relevant. This is also true for the other classes. On the other hand, the relaxed pruning approach initially
learns a rule with three labels in the head. In the refinement process, each possible refinement is tried.
As we fix the head, the head may not change. Therefore, refinements are likely to be worse performing
because the algorithm cannot find a good refinement for the head with three labels, because no condi-
tions are reasonably applicable to the combination of the three labels. Hence, the rule is not refined and
the initial rule with no conditions is learned. Additionally, if a fitting condition exists, it would have likely
been learned in the initial search for the next rule, in which all bodies of length one as well as the empty
body is tried. As a result, the rule set is too general. The remaining rules with heads of length five can
be explained similarly. Due to the bias towards rules with five labels in the head, the learned rules might
be the only ones for which a refinement is possible (each rule has at least two refinements) and thus
increases the quality of the rule, in comparison to other possible rules. The algorithm continues to learn
354 rules, which later on focus on different labels. Hence, the algorithm terminates. It should be further
mentioned that due to the complication with refinements, no label conditions are learned. Furthermore,
this problem seems solvable by not fixing the head anymore. Additionally, this may be fixed by applying
prepending on the data set.

The second rule set is learned by the micro-averaged f-measure as a base learner and only positive
heads on the data set SCENE. The rule set for the normal and relaxed pruning approach are given in
Table 26. For the relaxed pruning, the best settings from the evaluation are used. The relaxed approach
performs better in terms of hamming and subset accuracy, but worse in terms of micro- and macro-
averaged f-measure. By regarding both rule sets, the reason becomes apparent quickly. The relaxed
approach stops inducing rules too early because none with as many true positives as false positives are
left. In this case, the extra condition on the lower bound of the quality of the rule is not beneficial.
The increased hamming accuracy can be accounted to predicting most irrelevant labels correctly, as the
not predicted labels are assumed to be irrelevant. Additionally, subset accuracy increases from 7.53% to
19.31%. This result from allowing only the best rules for each label to be learned.
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Class14 = 0 (1481, 19) Class10 = 0, Class11 = 0, Class14 = 0, Class9 = 0 (5538, 462)
Class9 = 0 (1391, 109) Class12 = 1, Class13 = 1, Class6 = 0, Class7 = 0, Class8 = 0 (5842, 1658)
Class10 = 0 (1341, 159) Class4 = 0, Class5 = 0, Class1 = 0 (3041, 1459)
Class11 = 0 (1325, 175) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att611 (698, 112)
Class7 = 0 (1241, 259) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att45, Att80 (90, 5)
Class8 = 0 (1211, 289) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att66, Att59 (91 24)
Class6 = 0 (1140, 360) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att45, Att95 (57, 13)
Class12 = 1 (1129, 371) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att81 (69, 11)
Class13 = 1 (1121, 379) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att62, Att31 (47, 13)
Class5 = 1← Att61 (112, 50) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att24, Att941 (36, 4)
Class5 = 0 (992, 346) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att62, Att44 (17, 3)
Class1 = 1← Att88, Class5 = 0 (99, 38) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att80, Att711 (53, 2)
Class1 = 0 (993, 370) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att66, Att651 (58, 12)
Class4 = 1← Att61 (118, 44) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att62, Att58, Att34 (15, 0)
Class4 = 0 (924, 414) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att712 (13, 2)
Class3 = 1← Att351 (104, 49) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att24, Att82 (23, 2)
Class3 = 0 (827, 520) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att62, Att13, Att942 (15, 0)
Class2 = 1← Att9, Class4 = 0 (91, 53) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att35 (9, 1)
Class2 = 1← Att51, Class3 = 0 (78, 50) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att52, Att612, Att36 (45, 15)
Class2 = 1← Att79, Class3 = 0 (66, 46) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att89 (8, 2)
Class2 = 1← Att352 (69, 54) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att62, Att5 (17, 3)
Class2 = 1← Att331, Att46 (8, 0) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att652 ’, Att51 (33, 7)
Class2 = 1← Att332, Att1 (11, 2) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att70(5, 0)
Class2 = 1← Att34, Att93 (8, 2) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att24, Att101, Att28 (15, 0)
Class2 = 1← Att27, Att2 (2, 1) Class2 = 0, Class10 = 0, Class3 = 0, Class5 = 1, Class14 = 0← Att79, Att53 (5, 0)
Class2 = 0 (636, 313) · · ·

Table 25: Learned models for the data set YEAST, hamming accuracy as a base learner and learning posi-
tive as well as negative heads using the normal (left) and the relaxed (right) pruning approach
(peak relaxation lift function with peak label five and a lift of 1.13). For the relaxed approach,
only a part of the rule set is depicted (continues very similarly). Each rule is annotated with its
number of true and false positives (TP, FP). The exact attribute values are abstracted.

Field = 1← Att237, Att238, Att2361 (73, 10) Field = 1← Att237, Att238, Att2361 (73, 10)
Sunset = 1← Att112, Att1061 (70, 12) Sunset = 1← Att112, Att106 (70, 12)
FallFoliage = 1← Att148, Att155 (52, 19) FallFoliage = 1← Att148, Att155 (52, 19)
Beach = 1← Att381 (78, 47) Beach = 1← Att38 (78, 47)
Sunset = 1← Att481, Att43, Att49 (36, 11) Field = 1← Att2362 (56, 52)
Field = 1← Att2362 (56, 52) Mountain = 1← Att221 (66, 61)
FallFoliage = 1← Att210 (49, 51)
Mountain = 1← Att221 (66, 61)
Urban = 1← Att97 (56, 66)
FallFoliage = 1← Att167 (33, 43)
Mountain = 1← Att99 (47, 53)
Beach = 1← Att482 (30, 33)
Sunset = 1← Att1062, Att142 (18, 9)
Urban = 1← Att240 (43, 77)
Mountain = 1← Att164 (37, 51)
Field = 1← Att243 (14, 16)
Beach = 1← Att382 (35, 62)
FallFoliage = 1← Att207 (20, 31)
Urban = 1← Att219 (31, 63)
. . .

Table 26: Learned models for the data set SCENE, micro-averaged f-measure as a base learner and learn-
ing positive as well as negative heads using the normal (left) and the relaxed (right) pruning
approach (peak relaxation lift function with peak label three and a lift of 1.01). For the normal
approach, only a part of the rule set is depicted. Each rule is annotated with its number of true
and false positives (TP, FP). The exact attribute values are abstracted.
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9.4.2 Improved by Relaxed Pruning

Despite the setbacks mentioned in the previous section, relaxed pruning does improve the learned mod-
els relatively often. In this section, we regard three different such rule sets. The first rule set is learned
by the macro-averaged f-measure as a base learner and positive as well as negative heads on the data set
FLAGS. The rule set for the normal and relaxed pruning approach are given in Table 27. For the relaxed
pruning, the best settings from the evaluation are used. The relaxed approach performs better across
all evaluation metrics except for recall. By regarding Table 27 we can observe that the normal pruning
approach learns a rule with no condition for every label. Each rule predicts the majority class of the
label, i.e. if more than 50% of the labels are relevant or irrelevant, it predicts relevant or irrelevant,
respectively. Afterwards, the algorithm stops. This rule set does neither reasonably generalize, nor does
it help to gain information about the data set. The rule set learned by the relaxed approach performs
very well in terms of micro- and macro-averaged f-measure. Additionally, subset and hamming accuracy
are improved. Due to a peak label of two and a rather high lift of 1.19 at the peak label, rules with a head
length of two are learned exclusively. We can further observe co-occurrences of labels. For instance, red
and white seem to be present in most cases if there are a certain number of colours. This is something
that was not evident in the rule set of the normal pruning approach. Similarly, green and yellow seem
to also co-occur. Three rules with the combination of both labels in the head are learned, predicting
the same values for both labels. Despite no label conditions being learned, we can gain considerably
more information about the data set than with the original algorithm. A possible reason why the relaxed
approach does also usually increase subset accuracy is the fact that frequently co-occurring labels are
learned and thus set together. If each label is learned individually, both rules might predict something
different in different conditions. However, if the combination of the labels is learned, they are set si-
multaneously and the rule models the occurrence of both labels. Therefore, the chances of setting both
labels correctly increases in comparison to when setting each label individually.

The second rule set is learned by the micro-averaged f-measure as a base learner and only positive
heads on the data set YEAST. The rule set for the normal and relaxed pruning approach are given in
Table 28. For the relaxed pruning, the best settings from the evaluation are used. The relaxed approach
performs significantly better in terms of hamming and subset accuracy and achieves the highest micro-
averaged f-measure value for this data set. The macro-averaged f-measure values decline a bit, however.
While the normal approach learns 148 rules, the relaxed approach only learns 17. It appears that the
normal approach learns far too many rules that often have considerably more false positives than true
positives. The result is low precision but a very high recall. Due to the condition of requiring at least
as many true positives as false positives, the relaxed pruning approach does not learn as many rules.
Thus, a more compact model is induced. Additionally, the algorithm learns better rules. They are more
precise but do not capture every single relevant label. This is typical for the relaxed pruning approach
in combination with the lower boundary for the quality of the rule. We learn more precise rules but
do not learn many of the rare occurrences of relevant labels. Hence, recall decreases while precision
improves. For the relaxed approach, the KLN relaxation function with a lift of 1.09 at label three is the
best performing lift setting in the evaluation. Despite, only four multilabel heads are learned. All have
no more than two labels in the head. Hence, although the lift increases for even longer heads, they have
too big of a decline in the heuristic value in order to be learned by the algorithm. In such cases, setting
the relaxation lift a bit too high does no harm. Note that the rule sets of the relaxed pruning approach
do only focus on a few labels. Labels such as Class6 are not considered in the rule set, because the lower
boundary for the quality of the rule is not met. Furthermore, the difference to the earlier shown rule
set for the data set YEAST should be regarded (cf. Table 25). While the relaxed approach was a bad
choice for the data set in combination with hamming accuracy as a base learner and positive as well
as negative heads, for the current setting, the relaxed pruning approach yielded far better results and a
more compact model.
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orange = 0 (109, 20) black = 0, orange = 0← colours ≤ 3.0 (151, 11.0)
red = 1 (104, 25) red = 1, white = 1← colours ≥ 2.5. (166, 38)
black = 0 (98, 31) green = 1, yellow = 1← colours ≥ 3.5 (72, 24)
white = 1 (95, 34) green = 0, yellow = 0← animate = 0 (104, 46)
yellow = 0 (68, 61) blue = 1, orange = 0← colours ≥ 2.5 (90, 60)
blue = 1 (66, 63) black = 0, blue = 0← stripes ≤ 1.0 (34, 8)
green = 0 (65, 64) black = 1, white = 1← population ≤ 252.5 (34, 15)

blue = 1, red = 1← colours ≥ 1.5 (21, 13)
green = 1, yellow = 1←sunstars ≤ 7.0 (7, 3)
white = 0, red = 0 (3, 0)
black = 0, yellow = 0 (2, 0)

Table 27: Learned models for the data set FLAGS, macro-averaged f-measure as a base learner and learn-
ing positive as well as negative heads using the normal (left) and the relaxed (right) pruning
approach (peak relaxation lift function with peak label two and a lift of 1.19). Each rule is
annotated with its number of true and false positives (TP, FP).

Class12 = 1 (1129, 371) Class12 = 1, Class13 = 1 (2250, 750)
Class13 = 1 (1121, 379) Class4 = 1, Class5 = 1← Att61 (230, 94)
Class5 = 1← Att61 (112, 50) Class1 = 1← Att88 (104, 45)
Class4 = 1← Att61 (118, 44) Class3 = 1← Att35 (104, 49)
Class2 = 1 (656, 844) Class2 = 1, Class3 = 1← Att501 (174, 111)
Class1 = 1← Att88 (104, 45) Class4 = 1← Att34 (76, 56)
Class3 = 1 (624, 876) Class5 = 1← Att45 (77, 77)
Class4 = 1← Att341 (76, 56) Class1 = 1← Att94 (69, 61)
Class5 = 1← Att45 (77, 77) Class3 = 1← Att64 (78, 61)
Class1 = 1← Att94 (69, 61) Class2 = 1← Att52 (83, 68)
Class4 = 1 (338, 868) Class2 = 1, Class3 = 1← Att502, Class12 = 1 (163, 135)
Class6 = 1← Att56 (58, 74) Class2 = 1← Att66 (61, 57)
Class7 = 1← Att96, Att84 (28, 21) Class2 = 1← Att9 (50, 36)
Class8 = 1← Att103 (52, 99) Class3 = 1← Att1 (43, 42)
Class6 = 1← Att96 (53, 87) Class2 = 1← Att59 (44, 42)
Class1 = 1 (296, 925) Class4 = 1← Att23 (25, 20)
Class7 = 1← Att85, Att891 (28, 20) Class3 = 1← Att33 (35, 35)
Class8 = 1← Class7 = 1 (35, 44)
Class11 = 1← Att60, Att98 (17, 11)
Class5 = 1 (269, 915)
Class6 = 1← Att25 (40, 71)
Class8 = 1← Att892 (42, 102)
Class7 = 1← Class8 = 1 (70, 207)
Class10 = 1← Att35, Att38 (14, 15)
Class6 = 1← Class7 = 1 (61, 191)
Class11 = 1← Att35, Att342 (23, 60)
Class6 = 1 (148, 717)
. . .

Table 28: Learned models for the data set YEAST, micro-averaged f-measure as a base learner and learn-
ing only positive heads using the normal (left) and the relaxed (right) pruning approach (KLN
relaxation lift function with a lift of 1.09 at label three). For the normal approach, only a part
of the rule set is depicted. Each rule is annotated with its number of true and false positives
(TP, FP). The exact attribute values are abstracted.
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Sunset = 1← Att112, Att106 (70, 12) FallFoliage = 0, Sunset = 1← Att1121 (172, 64)
Field = 1← Att237 (90, 28) Field = 1, Sunset = 0← Att237 (200, 36)
Sunset = 1← Att1161, Att1111 (1, 0) FallFoliage = 0, Field = 1← Sunset = 0 (180, 40)
Sunset = 0← Att1161 (144, 1.0) Field = 0, Sunset = 1← Att1121 (189, 31)
Sunset = 0← Att1162 (134, 0.0) FallFoliage = 1, Sunset = 0← Att197 (96, 28)
Sunset = 0← Att1163 (131, 0.0) Sunset = 0← Att2181 (108, 10)
Sunset = 1← Att1164, Att119 (1, 0) Urban = 0, Sunset = 1← Att1121 (201, 35)
Sunset = 0← Att1164 (123, 0) Sunset = 0← Att2182, Att212 (42, 1)
Sunset = 1← Att1165, Att132 (1, 0) Sunset = 0← Att2183, Att224 (51, 1)
Sunset = 0← Att1165 (121, 0) FallFoliage = 1, Sunset = 0← Att117 (77, 51)
Sunset = 1← Att1166, Att17, Att109 (2, 0) Beach = 0, Sunset = 1← Att1121 (203, 33)
Sunset = 0← Att1166 (100, 3) Sunset = 0← Att48, Att10 (13, 1)
Sunset = 1← Att1167, Att44 (8, 2) Sunset = 0← Att2184, Att183 (23, 0)
Sunset = 1← Att1168, Att18 (6, 1) Sunset = 0← Att2185, Att1122 (21, 1)
Sunset = 1← Att1168, Att691, Att214 (4, 0) Sunset = 0← Att2186, Att261 (20, 1)
Sunset = 1← Att1168, Att48, Att193 (2, 0) FallFoliage = 1, Field = 0← FallFoliage = 1 (203, 49)
Sunset = 1← Att1168, Att1151, Att185 (1, 0) Sunset = 0← Att219, Att223 (17, 2)
Sunset = 0← Att1168, Att1151 (34, 0) Sunset = 0← Att49, Att192 (8, 0)
Sunset = 1← Att1167, Att1112, Att692 (3, 0) FallFoliage = 1, Sunset = 0← Att125 (35, 21)
Sunset = 1← Att1167, Att117 (1, 0) FallFoliage = 1, Sunset = 0← Att201 (22, 2)
Sunset = 1← Att1167, Att130 (1, 0) Sunset = 0← Att45, Att194 (6, 0)
Sunset = 1← Att1167, Att1152, Att1112 (1, 0) Field = 1, Sunset = 0← Att236 (110, 28)
Sunset = 0← Att1167, Att1152 (42, 0) Field = 1, Urban = 0← Field = 1 (312, 46)
Sunset = 1← Att1169, Att30 (14, 1) Field = 1, Beach = 0← Field = 1 (310, 48)
Sunset = 1← Att1169, Att260 (7, 0) FallFoliage = 0, Sunset = 1← Att109 (15, 5)
Sunset = 1← Att1169, Att47 (8, 3) Sunset = 0← Att41, Att277 (6, 0)
FallFoliage = 1← Att148, Att155 (52, 19) Sunset = 0← Att99, Att1021 (3, 0)
Sunset = 1← Att1169, Att175 (2, 0) Beach = 1, Sunset = 0← Att38 (176, 32)
Sunset = 1← Att1169, Att221 (1, 0) Field = 0← Att214, Att215 (56, 4)
Sunset = 0← Att1169, Att107 (31, 0) Sunset = 0← Att45, Att184 (4, 2)
. . . . . .

Table 29: Learned models for the data set SCENE, example-based subset accuracy as a base learner and
learning positive as well as negative heads using the normal (left) and the relaxed (right) prun-
ing approach (peak relaxation lift function with peak label two and a lift of 1.19). For both
approaches, only a part of the rule set is depicted. Each rule is annotated with its number of
true and false positives (TP, FP). The exact attribute values are abstracted.

The third and last rule set is learned by example-based subset accuracy as a base learner and positive
as well as negative heads on the data set SCENE. The rule sets for the normal and relaxed pruning
approach are given in Table 29. For the relaxed pruning, the best settings from the evaluation are used.
The relaxed approach performs considerably better in terms of subset accuracy and slightly better for the
remaining evaluation metrics. As the normal approach learns 982 rules and the relaxed approach learns
551 rules, only the first parts of the rule sets are depicted. Something that catches the eye immediately
is the early focus on the Sunset label by the normal approach. In contrast to that, the relaxed approach
seems to learn a more diverse rule set initially. We do also observe that for the depicted part, the normal
approach does not learn any label conditions. In this category, the relaxed approach does far better.
Additionally, we learn a good amount of multilabel rules, even for some global label dependencies. For
this data set, we can observe that just regarding the percentage of label conditions does not tell the
whole story. For the complete rule set, the normal approach learns 3.18% label conditions, while the
relaxed approach learns only 2.40% label conditions. Albeit the decrease in the percentage of label
conditions, the relaxed approach seems to learn more effective label conditions. Implying, the label-
dependent rules are learned earlier in the decision list and thus have more of an impact. Already the
third rule is a global label dependency in combination with a multilabel head. This is enabled by the
increased coverage of previous rules. For the normal approach, fewer labels are set that can be used for
the induction of label-dependent rules. Due to the label dependencies and the multilabel head rules, we
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can gather more information about the data set using the relaxed pruning approach. Let us just consider
the label-dependent rules, which are

FallFoliage = 0, Field = 1← Sunset = 0
FallFoliage = 1, Field = 0← FallFoliage = 1

Field = 1, Urban = 0← Field = 1
Field = 1, Beach = 0← Field = 1

Just by regarding these rules, we can conclude that if a scene does not contain as sunset, it does not
contain fall foliage, but it likely depicts a field. Furthermore, the second label-dependent rule states
that if a scene contains fall foliage, it is unlikely to be a field. Hence, both labels seem to exclude each
other. Furthermore, if a scene contains a field, it is unlikely to contain an urban area or a beach. These
statements all make sense if thinking about such pictures. Typically, beach pictures are not adjacent to
fields and urban areas are not typically contained in pictures of fields. Furthermore, field pictures do
typically not contain fall foliage and are often taken in the summer. Additionally, fall foliage pictures are
often taken in the afternoon or evening, when the sun is setting. Thus, we can conclude that if no sunset
is present, the picture is unlikely to contain fall foliage. We can see that despite only four regarded rules,
we can gain a lot of information about the data set SCENE and can use it in the prediction of the labels.
Note that we must consider that most previous covered examples are removed from the training set,
i.e. that the learned label dependencies are not applicable globally but only after the application of all
previous rules. Although we do not regard the remaining rules that are not depicted Table 29, we can
expect similar expressiveness for the respective data set.

9.5 Discussion

In the previous sections we have evaluated the relaxed approach and compared it to the original algo-
rithm. We have further regarded exemplary rule sets for cases in which the relaxed pruning lead to a
worse and a better rule set. Thus, we have covered the advantages and disadvantages of the approach.
In most cases, using the relaxed approach seems to be an improvement. Additionally, relaxed pruning
seems to especially benefit from the application on data sets for which the label cardinality is not too
low. Furthermore, the relaxed pruning approach seems to handle data sets, for which the normal prun-
ing predicts the majority classes, better. The results obtained in the evaluation are typically in line with
what we have observed in the sensitivity analysis.

9.6 Determining Good Lift Values

In this section, we take a look at what good lift settings and values are. Recall that we restricted ourselves
to only evaluating the peak and the KLN relaxation lift function. We further had to restrict the possible
relaxation lift values and omitted a peak label of four in the evaluation. The relaxation lift settings
that reach the best performance for each approach and data sets are listed in Table 30. Note that, as
previously described, we choose the lower lift in case of a tie performance-wise, which occurred rather
often.

Base Learner CAL500 EMOTIONS MEDICAL FLAGS SCENE BIRDS YEAST

Mic F + (PK, 5.0, 1.01) (PK, 3.0, 1.13) (PK, 5.0, 1.01) (LN, 3.0, 1.13) (PK, 3.0, 1.01) (PK, 3.0, 1.07) (LN, 3.0, 1.09)
Mac F + (PK, 3.0, 1.13) (PK, 3.0, 1.01) (LN, 3.0, 1.07) (LN, 3.0, 1.15) (PK, 5.0, 1.01) (PK, 5.0, 1.19) (LN, 3.0, 1.19)

HA + (PK, 2.0, 1.17) (PK, 2.0, 1.03) (PK, 5.0, 1.01) (PK, 3.0, 1.03) (LN, 3.0, 1.03) (LN, 3.0, 1.05) (PK, 5.0, 1.01)
SA + - (PK, 2.0, 1.19) - (PK, 2.0, 1.11) (PK, 5.0, 1.01) - (LN, 3.0, 1.03)

Mic F +- (PK, 5.0, 1.01) (PK, 2.0, 1.13) (PK, 2.0, 1.03) (PK, 3.0, 1.19) (PK, 2.0, 1.01) (PK, 2.0, 1.17) (PK, 3.0, 1.01)
Mac F +- (PK, 5.0, 1.01) (PK, 3.0, 1.15) (PK, 2.0, 1.03) (PK, 2.0, 1.19) (PK, 2.0, 1.01) (PK, 3.0, 1.03) (PK, 5.0, 1.01)

HA +- (LN, 3.0, 1.01) (PK, 3.0, 1.09) (LN, 3.0, 1.19) (PK, 2.0, 1.19) (LN, 3.0, 1.19) (LN, 3.0, 1.07) (PK, 5.0, 1.13)
SA +- - (PK, 2.0, 1.19) - (PK, 2.0, 1.03) (PK, 2.0, 1.19) - (PK, 3.0, 1.01)

Table 30: The best lift values for each relaxed pruning approach, attained in the evaluation. Each lift
settings is denoted by the relaxation lift function (PK for peak and LN for KLN), a label (in the
case of the peak lift function the peak label) and the relaxation lift at said (head length).
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Something that leaps to the eye immediately is the frequency of the peak relaxation lift function. In
most cases, the peak relaxation lift functions seems to result in the best performance. In contrast, the
KLN relaxation function is the best performing function in far fewer cases. For the data set SCENE we
can observe that the lift is almost zero, except with hamming and subset accuracy as a base learner and
learning negative heads. This is most likely a result of the low label cardinality 1.074 of the data set.
Contrary to that, for the data set BIRDS this is not the case, although the label cardinality is with 1.014
even lower. Moreover, peak label five does only occur once with a relaxation lift of greater than one
percent (for the YEAST data set). In the other cases, peak label five in combination with a lift of one
percent is the minimum possible relaxation lift. The lift is lower than peak label three and a lift of one
percent for instance, because the same lift is normalized over a wider span. However, the difference
in the lift is so little in such cases that it does not matter. Surprisingly, similar lift values are rather
frequent, even for data sets with a higher label cardinality. In cases such as this it is likely that a higher
lift value achieved identical results. The exception is CAL500, which does not need much lifting as
the label cardinality is very high and thus enough multilabel rules are already predicted. In this case
it is more important to not predict too many labels with a single rule. A relaxation lift of 19 percent
also occurs frequently, which is the maximum possible lift value. In these cases, it might be interesting
whether or not a higher lift would have been chosen. However, a higher lift for subsequent head lengths
is possible with the KLN relaxation lift function, which was not chosen in such cases. Often, the best lift
value seems to be between 10 and 20 percent. We can also conclude that data sets with a very high label
cardinality do not need to be lifted as much as others. Furthermore, it seems likely that data sets with
a very low cardinality also require less of a lift than others. For the remaining data sets, we can advise
using the peak relaxation lift function and a lift between 10 and 20 percent. Although, for the data set
MEDICAL, which has a low label cardinality of 1.245, the lift values are also decreased in comparison to
the others. However, the lift is still considerable. For such data sets, a lift of between three and seven
percent appears to be working well. Whether or not to use peak label two or three remains unclear. For
the data sets EMOTIONS and FLAGS for instance, both peak labels appear in 50% of the cases. Nevertheless,
both seem to be working well and which to choose can also be dependent upon the preferences of the
user.

9.7 Prepending

The evaluation of the prepending approach presented in Section 8 is done on a smaller scale and is
only supposed to show the functionality of the approach. Hence, we only execute the experiments for a
single base learner and a single relaxation lift setting. Nevertheless, models for all seven data sets are
learned. For the relaxation lift we utilize the peak relaxation lift function with a peak label of four and a
relaxation lift of 1.10 at the peak label. This setting was chosen as it only lifts the label search space a bit
and can be used for all data sets. Setting the peak label to four was done in order to not prevent heads
of longer length from being learned. Still, if they result in too big of a decline in the heuristic value, such
rules are not learned. Furthermore, the peak label was chosen higher than usual as we aim at learning
positive and negative heads. While prepending is also capable of utilizing only positive heads, it makes
more sense to allow negative heads so that we can correct labels that were mistakenly believed to be
relevant. For the remaining parameters, we use the same settings as in the evaluation of the relaxed
pruning approach in Section 9.1. Moreover, we restrict the evaluation to only using the micro-averaged
f-measure as a base learner in order to show the functionality of prepending.

9.7.1 Performance and Model Characteristics

Table 31 lists the performance of the prepending approach on the training set for all seven data sets
and the described setup. We can observe that the approach overfits the training set in most cases. Due
to prepending neither having a stopping criterion, nor being capable of inducing stopping rules, the
algorithm only terminates if no more rules can be learned. This is the case if there are no more rules
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that satisfy the lower boundary on the quality of the rule, as described in Section 8.4. Recall that for
prepending, the condition requires a strictly greater number of true positives in order to prevent loops.
Thus, the approach typically induces far too many rules (cf. Table 33) and corrects the values too often.

Data Set HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
CAL500 85.89 0.00 52.44 65.97 58.43 70.09 79.24 71.04

EMOTIONS 86.49 46.80 75.52 81.81 78.54 88.45 81.70 80.43
MEDICAL 99.86 93.99 100 94.98 97.42 95.56 91.03 92.53

FLAGS 89.04 58.91 88.34 89.34 88.84 88.52 84.16 85.00
SCENE 87.90 34.35 89.06 36.08 51.36 73.56 39.06 49.33
BIRDS 99.53 92.55 100 91.50 95.56 100 88.60 93.38
YEAST 79.29 11.73 70.90 53.61 61.05 41.79 29.17 30.32

Table 31: Evaluation results on the training set for each data set while using Prepending.

Despite the overfitting, the performance on the test data is relatively good for most data sets. Table
32 shows the performance of the learned models on the test sets. In order to better compare the values,
hamming and subset accuracy as well as the f-measure values are annotated with the rank they would
achieve in the evaluation of the relaxed approach in Section 9.3. We can see that prepending yields rather
good results, except for the data set EMOTIONS. Especially considering the parameters were not optimized
(including the relaxation lift). Thus, we can conclude that despite still requiring a stopping criterion,
prepending seems to be a promising approach in terms of predictive performance in comparison to the
other approaches.

Data Set HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
CAL500 75.18 11 0.00 8 25.91 36.11 30.17 12 14.73 20.88 15.52 4

EMOTIONS 69.31 14 13.86 12 53.27 55.14 54.19 12 54.16 54.36 52.12 11

MEDICAL 98.52 7 52.25 8 74.18 70.75 72.42 6 40.74 41.05 40.59 7

FLAGS 73.41 5 23.08 1 72.22 71.89 72.07 7 64.62 63.99 61.79 9

SCENE 84.95 1 23.91 4 72.30 27.33 39.66 7 57.99 27.39 36.14 7

BIRDS 94.12 7 41.80 7 41.55 37.70 39.53 4 34.63 30.84 30.92 2

YEAST 77.52 5 7.20 7 66.86 50.88 57.78 6 32.40 27.22 27.47 10

Table 32: Evaluation results on the test set for each data set while using Prepending.

Data Set Normal Relaxed Prepending
CAL500 0.00 100 51.66

EMOTIONS 3.08 0.00 0.52
MEDICAL 9.04 10.84 0.00

FLAGS 3.41 0.00 4.08
SCENE 0.00 0.00 18.18
BIRDS 0.50 1.52 1.23
YEAST 0.00 0.00 16.67

Data Set #Rules %MHR
CAL500 2486 10.50%

EMOTIONS 73 12.33%
MEDICAL 116 71.55%

FLAGS 41 9.76%
SCENE 41 18.15%
BIRDS 137 44.53%
YEAST 27 25.93%

Table 33: The percentage of label conditions for the learned models and approaches (left) as well as the
number of learned rules and percentage of multilabel (head) rules (right).

Table 33 depicts the percentage of label conditions for each data set and approach as well as the
number of rules and percentage of multilabel rules. In most cases, prepending seems to improve the
percentage of label conditions learned in comparison to the relaxed approach. Note that the 100% for
CAL500 and the relaxed pruning approach comes from only a single condition being a label condition
and must therefore be treated carefully. For the data set MEDICAL no label conditions are learned with
prepending, contrary to the relaxed pruning approach. Similarly, for the data set EMOTIONS the percent-
age of label conditions could only be improved minimally. All models contain a considerable number of
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multilabel rules, despite setting the relaxation lift not too high. Again, we can observe the overfitting
and the need for a stopping criterion by regarding the number of rules learned for the data set CAL500.

Summing up, prepending seems to have a positive effect on the percentage of label conditions learned.
Furthermore, the predictive quality is already acceptable, but might improve further by implementing a
stopping criterion and the induction of stopping rules. Additionally, a good number of multilabel rules
seem to be learned by the approach.

9.7.2 Rule Set Characteristics

Although the predictive quality is acceptable, regarding the learned rule sets is crucial in understanding
the proposed approach. Only then can we see how well prepending learns rules and exploits label de-
pendencies. Hence, we look at two different rule sets that were learned in the evaluation.

The first rule set was learned on the data set FLAGS and is depicted in Table 34. Not too many mul-
tilabel rules are learned, which is a cause of the rather low relaxation lift applied. The first few rules
set the labels to be relevant. This happens as we set all labels to be irrelevant initially. After some
time, the prediction of negative heads begins. The prediction of negative heads becomes possible as
we always make some mistakes when predicting labels to be relevant. The false positives indicate the
number of predictions made that distorted correct values. At some point, the algorithm starts to correct
those values. The further down in the decision list, the less values get corrected. Sometimes, a label
condition is learned. However, only one global dependency yellow = 1← white = 0 is learned. At first,
the fact that such label dependencies only correct very few examples seems problematic. Despite, the
label dependency is useful. The important point is that while it may correct only a few values, it does
not distort many values either. If the rule or label dependency would not be valid, it would distort many
values and hence not get learned. Thus, as we will see in the other rule set as well, label dependencies
tend to get learned in the later stages of the decision list. This is something that must also be considered
in the implementation of a stopping criterion and applies to other rules without labels in the body as
well. The learned rules depicted in Table 34 might also be easier to understand as they directly depend
on the prediction of all previous rules and mostly model exceptions to previous rules.

The second rule set was learned on the data set SCENE. For this rule set we can observe the same
characteristic in regard to the label conditions as previously mentioned. The last twelve rules all model
label dependencies. This stands in contrast to the rule set for SCENE that we regarded earlier (cf. Table
29). Using prepending, the rules become more influential the later in the decision list they are learned
as they may overwrite predictions of previous rules. They have the last word so to speak. Furthermore,
exceptions to label dependencies can be learned far better. For instance, a rule Sunset = 0← FallFoliage
= 1 is learned. The next rule is a rule that models the exceptions to this label dependency – Sunset =
1 ← FallFoliage = 1, Att50. Implying that if FallFoliage is predicted and Att50 has a certain value, the
previous prediction is overwritten and the scene actually contains a sunset. Interestingly, the former rule
does not distort any values. Hence, the latter rule corrects a value that was set by another rule. Note that
such label-dependent rules are only learned if they still correct a value. In the case that a label depen-
dency exists, but cannot be used anymore to correct some of the earlier predictions, the corresponding
rules are not learned. By applying prepending, a lot of such dependencies between labels are learned
and may be used to improve the understanding of the data set at hand.

Furthermore, applying too high of a lift to the label search space is not as problematic as for the
original relaxed pruning approach as values can be corrected later on. Thus, the chances of choosing a
bad relaxation lift setting that results in a bad model reduces.
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red = 1← colours ≥ 2.5, area ≤ 2641.5, bars ≤ 3.0, crescent = 0 (85, 9)
white = 1← area ≤ 245.5, population ≤ 56.0, sunstars ≤ 5.0, bars ≤ 0.0 (58, 7)
green = 1, yellow = 1← colours ≥ 3.5, population ≤ 38.5, area ≤ 1607.0 (66, 18)
green = 1← landmass = 4, stripes ≤ 3.0, circles ≤ 0.0 (17, 2)
orange = 1← colours ≥ 6.5 (6, 0)
blue = 1, white = 1← colours ≥ 2.5, bars ≤ 0.0 (72, 40)
red = 1← stripes ≤ 2.0, colours ≤ 3.0, crescent = 0, bars ≤ 2.0, colours ≥ 2.0 (14, 2)
orange = 1← sunstars ≤ 0.0, colours ≥ 2.0, circles ≤ 0.0, animate = 1, text = 0, colours ≥ 4.0 (5, 0)
white = 1← sunstars ≤ 0.0, colours ≥ 2.0, circles ≤ 0.0. (15, 5)
orange = 1← religion = 4. (2, 0)
black = 1← religion = 2, stripes ≥ 3.0, colours ≥ 4.0 (8, 0)
blue = 0, yellow = 0← religion = 2 (16, 2)
white = 0← landmass = 4, area ≥ 245.5, stripes ≤ 3.0, colours ≥ 3.0, area ≤ 1938.5 (9, 2)
yellow = 1← white = 0 (7, 2)
blue = 0← landmass = 4, population ≥ 2.0 (8, 2)
yellow = 1← religion = 6, sunstars ≥ 1.0, stripes ≤ 0.0 (5, 0)
green = 1← language = 6, population ≥ 28.0 (5, 0)
green = 0← landmass = 6, colours ≤ 5.0 (3, 0)
yellow = 1← landmass = 2, blue = 1, quarters ≤ 0.0 (4, 0)
blue = 1← language = 2, population ≤ 36.5 (4, 1)
yellow = 1, white = 0← language = 4, population ≥ 8.0 (4, 0)
black = 1← colours ≥ 6.5, stripes ≥ 2.0 (3, 0)
black = 1← language = 4, population ≥ 8.5 (2, 0)
orange = 1← circles ≥ 0.5, white = 0 (1, 0)
orange = 1← circles ≥ 0.5, population ≤ 8.5, language = 7 (1, 0)
red = 1← circles ≥ 0.5, population ≤ 28.0 (2, 0)
red = 1← area ≥ 8937.5 (1, 0)
blue = 0← language = 4, population ≥ 5.0 (2, 0)
green = 0← landmass = 3, colours ≤ 4.0 (2, 0)
green = 1← language = 9, circles ≤ 0.0 (1, 0)
white = 1← language = 9 (1, 0)
blue = 0← language = 9 (1, 0)
blue = 1← bars ≥ 4.0 (1, 0)
blue = 1← stripes ≥ 8.0 (1, 0)
orange = 1← landmass = 3, bars ≥ 3.0, area ≤ 268.0 (1, 0)
green = 1← orange = 1, bars ≥ 3.0. (2, 0)
blue = 0← landmass = 3, area ≤ 32.5, crosses ≤ 0.0, stripes ≤ 2.0 (3, 0)
yellow = 1← landmass = 3, icon = 1, bars ≤ 0.0 (2, 0)
black = 1← landmass = 3, area ≤ 0.0, stripes ≤ 0.0 (2, 0)
red = 1← landmass = 3, population ≥ 18.0 (1, 0)
blue = 1← circles ≥ 1.5 (1, 0)

Table 34: Learned model for the data set FLAGS while using prepending. Each rule is annotated with its
number of true positives and false positives (TP, FP), which have a different semantics in the
case of prepending (cf. Section 8.2).
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Field = 1← Att237, Att238, Att2361’ (73, 10) Field = 1← Att118, Att244 (9, 3)
Sunset = 1← Att112, Att106 (70, 12) Sunset = 0← Att118 (3, 0)
FallFoliage = 1← Att148, Att155 (52, 19) Field = 1← Att125, Att229, Att2 (6, 1)
Beach = 1← Att38 (78, 47) Sunset = 0← Att125 (3, 0)
Field = 1← Att2362, Att235 (41, 25) FallFoliage = 1← Att2332, Att167 (12, 9)
Field = 0← Att200 (16, 2) Field = 0← Att2332, Att124 (4, 0)
Mountain = 1← Att221 (66, 61) FallFoliage = 0← Sunset = 1, Att136 (7, 0)
Mountain = 0← Att207 (35, 12) Beach = 1← Att8, Att482 (10, 2)
Field = 1← Att2331, Att241, Att240 (13, 4) FallFoliage = 0← FallFoliage = 1, Att110 (5, 1)
Field = 0← Att147 (11, 3) Sunset = 0← FallFoliage = 1 (1, 0)
Beach = 0← Att2331 (18, 0) Sunset = 1← FallFoliage = 1, Att50 (1, 0)
Sunset = 0← FallFoliage = 1, Att154 (9, 4) FallFoliage = 0← FallFoliage = 1, Att250 (3, 0)
Sunset = 1← Att481, Att43, Att49, Att47 (37, 10) Field = 0← FallFoliage = 1, Att68 (1, 0)
Sunset = 1← Att12, Att111 (6, 1) Sunset = 0← Sunset = 1, Att56, Att210 (2, 0)
Sunset = 1← Att31, Att107, Att4 (6, 1) Sunset = 0← Sunset = 1, Att44, Att90 (1, 0)
Sunset = 0← Att201, Att6 (5, 0) Beach = 0← Sunset = 1 (2, 0)
Sunset = 1← Att1, Att136 (6, 1) FallFoliage = 0← FallFoliage = 1, Att212 (2, 0)
Sunset = 0← Att64 (4, 1) Beach = 0← FallFoliage = 1 (2, 0)
FallFoliage = 0← Att1, Att149 (10, 2) FallFoliage = 0← FallFoliage = 1, Att60 (1, 0)
Field = 0← Att83, Att234 (6, 1) Mountain = 0← FallFoliage = 1 (1, 0)
Sunset = 1← Att8, Att219 (4, 3)

Table 35: Learned model for the data set SCENE while using prepending (first part left, second part on
the right). Each rule is annotated with its number of true positives and false positives (TP, FP),
which have a different semantics in the case of prepending (cf. Section 8.2).

The learned rules for the data set CAL500 seem to especially exploit hierarchical dependencies in the
labels, such as

Genre-Rock = 1← Genre-Best-Rock = 1
Genre-Folk = 1← Genre-Best-Folk = 1

Interestingly, such rules are not only learned once, but the same rule is also learned several times. Due to
some other rules being applied after the initial learning of such a rule, some values get distorted. Hence,
as the label dependency is globally applicable, the algorithm learns the same rule again to correct the
distorted values again. Furthermore, several labels are found that exclude each other, such as

NOT-Song-Very-Danceable = 0← Song-Very-Danceable = 1
NOT-Emotion-Sad = 0← Emotion-Sad = 1

While this relationship is obvious due to the name, the algorithm cannot make the same connection.
Additionally, if the labels were named differently, the algorithm would still reveal the relationship and
thus exploit it. Other selected global label dependencies include

Genre-RandB = 1, Genre-Hip-Hop-Rap = 0← Genre-Best-RandB = 1
Genre-Folk = 1, Genre-Singer-Songwriter = 1← Genre-Alternative-Folk = 1

Genre-Contemporary-RandB = 1← Genre-Best-RandB = 1
Angry-Agressive = 1← Vocals-Aggressive = 1

Local dependencies are omitted on purpose because they are not easily interpretable. Nevertheless, we
can conclude that a lot of effective label dependencies are learned for the shown data sets. For the data
set EMOTIONS for instance, no label dependencies are learned. The reason seems to be that the learned
rules that set the labels to be relevant are already good enough and rarely make mistakes. Hence, the
values do not need much correcting and label dependencies are not required.
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10 Conclusion

In this final chapter, a conclusion in the form a summary of the previous chapters and possible future
improvements of the presented algorithms is given.

10.1 Summary

The algorithms in this work are based on the algorithm proposed by Rapp [2016], which is capable of
learning multilabel rules by searching for the best performing label combination for the head of a given
body. Hence, most parts regarding the general learning process, such as the multilabel decision list and
re-inclusion of covered examples, stay the same. What changes is the refinement of rules and the search
for the best performing head. For those, we opt for fixing the head during the rule refinement process
and searching for the head with the highest lifted heuristic value. Furthermore, we limit the quality of
a rule by requiring at least as many true positives as false positives. In order to enable the relaxation
of pruning, we introduce three different relaxation lift functions – the peak relaxation lift function, the
KLN relaxation lift function and the root relaxation lift function. All three enable an easier handling of
the definition of the lift of the label search space. As a result of introducing this bias towards longer
heads, the original algorithms for exploiting anti-monotonicity and decomposability of multilabel eval-
uation metrics, proposed by Rapp et al. [2018], cannot be used to guarantee the finding of the best
performing lifted head, which was illustrated by giving counter-examples. Therefore, both algorithms
needed to be adapted. In the sensitivity analysis, we studied the effects of the made changes. Thus,
we executed the algorithm for different relaxation lift settings and compared the results for the KLN
and peak relaxation lift function. We further took a look at the fit on the training set of the relaxed
pruning algorithm and observed that a higher lift results in a more general model. This seems to be the
result of fixing the head in combination with longer heads. In addition to the relaxed pruning, we also
suggest an alternative algorithm that uses the relaxed pruning approach – prepending. For prepending,
several impactful changes to the previously shown algorithm had to be made. Most notably, we changed
the semantics of true positives, false positives, false negatives and true negatives so that we can correct
previous predictions. Furthermore, we allow the overwriting of values and initially treat missing values
as zeroes. Additionally, due to the fact that fully covered examples may still be corrected, we cannot rely
on coverage as a stopping criterion.

We evaluated the relaxed pruning approach by comparing it to the original algorithm by Rapp [2016].
We observe that the relaxed pruning approach seems to be an improvement when using the micro- or
macro-averaged f-measure or subset accuracy as a base learner. For hamming accuracy as a base learner,
the algorithm does not seem to work well. In general, we can say that (micro-averaged) precision mostly
increases and recall decreases in most cases. The reason most likely being the imposed limit on the qual-
ity of a rule. Moreover, run time seems to increase in most cases as the rule learning process does not
have to be executed as often. Often, relaxed pruning seems to induce a more expressive model. We
furthermore identify the peak relaxation lift function as the most promising relaxation lift function. De-
pending on the label cardinality of the data set and whether or not learning only positive or positive and
negative head rules, the suggestion for the best lift setting differs. In most cases, the peak relaxation lift
function with peak label two or three with a lift between 1.10 and 1.20 seems to work well. For data
sets with a low label cardinality, a lift between 1.03 and 1.07 is more promising. Nevertheless, in some
cases the percentage of label conditions increases but often it does not. Moreover, we have presented
positive and negative examples for the made changes, i.e. the fixing of the head and the limit on the
quality of the rule. Finally, we briefly evaluate prepending by executing it on the seven tested data sets.
We mostly observe an overfit on the training set. Despite the overfit, the predictive performance seems
promising. Especially when considering that parameters were not optimized and the algorithm does not
have a stopping criterion, nor stopping rules. Additionally, more label dependencies seem to get learned.
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10.2 Future Work

Despite the studied effects and the, in most cases, improved performance of the relaxed pruning ap-
proach and the other changes to the algorithm, in some cases it remains unclear as to what changes
specifically imply which effects. Therefore, it might be beneficial to evaluate the relaxed pruning ap-
proach individually without the made changes. Similarly, a more extensive evaluation might yield more
precise results. Due to restrictions in run time and resources, only a few settings could be evaluated.
For that, it might also make sense to improve the general efficiency of the algorithm. Furthermore, a
different strategy for fixing the head could be employed. As a result of the fixing, rules are difficult to
refine. Therefore, changes to the refinement process might be beneficial. For instance, we could only
allow the number of labels in the head to increase. Another approach could be to only allow fewer
labels in the head if the performance significantly increases. These adjustments could solve the problems
that occurred by fixing the head. Similarly, the way in which conditions are learned sometimes seems
problematic. For instance, exceptions or generally good refinements might not be found because we only
try bodies of length one initially. Additionally, as already stated by Rapp [2016], the usage of a beam
search should be investigated in that regard. When performing a beam search, we keep track of the best
β rules instead of only the best. Note that in general, this has a negative impact on the computational
complexity. However, if fixing the head during the refinement, the negative impact is not as significant.

Another aspect for future work is the pruning. While we have given counter-examples for pruning
the lifted heuristic value with anti-monotonicity and decomposability and stated that this suboptimal
pruning can also occur for longer depths, i.e. the lifted heuristic value decreases for a certain number
of times before reaching its peak, we have not formally proven this. Therefore, more investigation in
this regard might allow slightly heavier pruning, especially for anti-monotonicity. For this, it might also
make sense to exploit certain constraints or characteristics of the relaxation lift functions. For instance,
that the additional lift decreases with more labels, i.e. the function flattens.

While some of these changes also apply to prepending, prepending still requires more work. Most
notably, the approach is in need of a stopping criterion. Otherwise, the algorithm corrects values too
often. However, the fact that label dependencies seem to be learned towards the end of the decision
list needs to be considered. Additionally, prepending is currently not capable of inducing stopping rules,
which might also prove useful. For the stopping criterion, different approaches should be considered.
An example for a criterion could be to only allow each value to be correct a certain number of times
or that rules must cover enough examples. Note that this does not refer to the true positives, which
denote the number of corrections a rule performs. We have also observed that prepending only learns
label dependencies if they can be used to correct some of the values. If that is not the case, no such
dependencies are learned. Therefore, it might be possible to systematically or purposefully make same
mistakes during the learning process. However, it is likely that the value is simply corrected by a rule with
a normal condition. While not specifically tested for prepending, a lifting of rules with label conditions
could be performed. For the relaxed pruning algorithm, this did not seem to be beneficial, however,
as only such rules were learned. Last but not least, a more thorough evaluation of the prepending
approach is required. In this regard, other averaging strategies may also be explored as in this work we
only use micro-averaging. Additionally, prepending was only used in combination with a decomposable
evaluation metric. Therefore, employing the algorithm with anti-monotonous evaluation metrics should
be studied.
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A Characteristics of Evaluation Models

Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 1342 0.89% 2.00 2.06 38.57%
Mic F R+ 110 4.55% 2.00 0.98 25.00%
Mic F N+− 86 48.83% 3.10 0.00 0.00%
Mic F R+− 48 89.58% 4.02 0.02 100%
Mac F N+ 87 45.98% 3.15 0.00 0.00%
Mac F R+ 46 100% 2.39 0.93 6.98%
Mac F N+− 86 48.84% 3.10 0.00 0.00%
Mac F R+− 46 100% 3.85 0.00 0.00%

HA N+ 3234 0.87% 2.00 1.80 57.20%
HA R+ 2 100% 4.00 0.00 0.00%
HA N+− 149 22.15% 3.36 0.85 62.70%
HA R+− 334 97.60% 161.70 1.41 0.00%
SA N+ - - - - -
SA R+ - - - - -
SA N+− - - - - -
SA R+− - - - - -

Table 36: Model characteristics of the normal and the relaxed pruning approach on the data set CAL500.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.

Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 44 0.00% 0.00 6.32 0.36%
Mic F R+ 93 2.15% 2.00 2.37 0.45%
Mic F N+− 46 0.00% 0.00 5.65 3.08%
Mic F R+− 16 81.25% 2.00 1.31 0.00%
Mac F N+ 6 0.00% 0.00 0.00 0.00%
Mac F R+ 83 100% 2.01 1.00 0.00%
Mac F N+− 6 0.00% 0.00 0.00 0.00%
Mac F R+− 7 100% 2.57 1.00 14.29%

HA N+ 185 0.00% 0.00 4.46 0.85%
HA R+ 11 36.36% 2.00 5.81 0.00%
HA N+− 21 0.00% 0.00 3.14 1.52%
HA R+− 115 99.13% 2.96 1.98 0.44%
SA N+ 197 0.00% 0.00 2.16 0.23%
SA R+ 195 19.49% 2.00 1.93 0.27%
SA N+− 108 0.00% 0.00 2.02 0.46%
SA R+− 418 43.78% 2.00 1.50 1.28%

Table 37: Model characteristics of the normal and the relaxed pruning approach on the data set EMO-
TIONS. From left to right the number of learned rules (#Rules), the percentage of multilabel head
rules (%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR),
the average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 101 0.00% 0.00 1.62 1.22%
Mic F R+ 94 0.00% 0.00 1.67 1.27%
Mic F N+− 149 2.01% 3.67 1.19 9.04%
Mic F R+− 102 56.86% 2.00 1.35 10.87%
Mac F N+ 18 33.33% 4.33 0.00 0.00%
Mac F R+ 90 98.89% 2.01 1.00 0.00%
Mac F N+− 19 36.84% 4.71 0.00 0.00%
Mac F R+− 47 100% 2.13 0.94 4.55%

HA N+ 82 0.00% 0.00 1.93 0.63%
HA R+ 12 0.00% 0.00 4.83 0.00%
HA N+− 83 2.41% 6.00 1.10 3.30%
HA R+− 5 100% 43.80 0.80 0.00%
SA N+ 82 3.66% 2.00 1.84 1.97%
SA R+ - - - - -
SA N+− 131 30.53% 2.13 1.36 25.28
SA R+− - - - - -

Table 38: Model characteristics of the normal and the relaxed pruning approach on the data set MEDICAL.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.

Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 36 0.00% 0.00 3.42 1.63%
Mic F R+ 14 42.86% 2.00 2.00 3.57%
Mic F N+− 40 0.00% 0.00 2.20 3.41%
Mic F R+− 4 100% 3.50 3.00 0.00%
Mac F N+ 7 0.00% 0.00 0.00 0.00%
Mac F R+ 13 100% 2.08 1.00 0.00%
Mac F N+− 7 0.00% 0.00 0.00 0.00%
Mac F R+− 11 100% 2.00 0.82 0.00%

HA N+ 57 0.00% 0.00 2.51 6.99%
HA R+ 6 100% 2.33 1.33 0.00%
HA N+− 22 0.00% 0.00 1.23 0.00%
HA R+− 28 85.71% 2.92 1.36 2.63%
SA N+ 71 0.00% 0.00 2.14 1.32%
SA R+ 61 8.20% 2.00 1.92 1.71%
SA N+− 105 4.76% 2.00 2.00 4.29%
SA R+− 95 6.32% 2.00 1.85 3.41%

Table 39: Model characteristics of the normal and the relaxed pruning approach on the data set FLAGS.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 71 0.00% 0.00 1.69 2.50%
Mic F R+ 6 0.00% 0.00 1.67 0.00%
Mic F N+− 6 0.00% 0.00 0.00 0.00%
Mic F R+− 4 75.00% 2.00 0.00 0.00%
Mac F N+ 6 0.00% 0.00 0.00 0.00%
Mac F R+ 4 100% 2.00 1.00 0.00%
Mac F N+− 6 0.00% 0.00 0.00 0.00%
Mac F R+− 3 100% 2.00 0.00 0.00%

HA N+ 328 0.00% 0.00 1.73 3.34%
HA R+ 6 0.00% 0.00 1.67 0.00%
HA N+− 11 0.00% 0.00 1.18 38.46%
HA R+− 7 100% 5.43 0.71 0.00%
SA N+ 239 0.00% 0.00 2.11 0.00%
SA R+ 233 0.00% 0.00 2.12 0.00%
SA N+− 982 0.00% 0.00 2.43 3.18%
SA R+− 551 94.56% 2.00 1.06 2.40%

Table 40: Model characteristics of the normal and the relaxed pruning approach on the data set SCENE.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.

Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 134 0.00% 0.00 1.71 1.75%
Mic F R+ 138 2.90% 2.00 1.53 2.37%
Mic F N+− 135 0.00% 0.00 1.48 0.50%
Mic F R+− 66 89.39% 2.00 1.00 1.52%
Mac F N+ 14 35.71% 2.00 0.00 0.00%
Mac F R+ 87 100% 2.07 1.00 0.00%
Mac F N+− 14 35.71% 2.00 0.00 0.00%
Mac F R+− 38 100% 2.47 1.00 5.26%

HA N+ 161 0.00% 0.00 1.66 1.12%
HA R+ 1 0.00% 0.00 9.00 0.00%
HA N+− 58 0.00% 0.00 1.00 0.00%
HA R+− 3 100% 17.67 0.33 0.00%
SA N+ 158 0.00 0.00 1.66 1.53%
SA R+ - - - - -
SA N+− 130 0.00% 0.00 1.16 0.66%
SA R+− - - - - -

Table 41: Model characteristics of the normal and the relaxed pruning approach on the data set BIRDS.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner #Rules %MHR #Labels/MHR #Conditions %LabelConditions
Mic F N+ 148 0.00% 0.00 1.99 14.97%
Mic F R+ 17 23.53% 2.00 1.00 5.88%
Mic F N+− 14 0.0% 0.00 0.00 0.00%
Mic F R+− 11 36.36% 2.25 0.00 0.00%
Mac F N+ 14 0.00% 0.00 0.00 0.00%
Mac F R+ 1 100% 2.00 0.00 0.00%
Mac F N+− 14 0.00% 0.00 0.00 0.00%
Mac F R+− 8 87.5% 2.43 0.00 0.00%

HA N+ 1202 0.00% 0.00 2.06 16.60%
HA R+ 1 100% 2.00 0.00 0.00%
HA N+− 26 0.00% 0.00 0.77 20.00%
HA R+− 354 100% 4.99 1.97 0.00%
SA N+ 1188 0.25% 2.00 2.63 10.04%
SA R+ 1075 1.12% 2.00 2.59 6.01%
SA N+− 1654 40.87% 2.00 3.04 15.97%
SA R+− 845 59.53% 2.00 2.32 1.83%

Table 42: Model characteristics of the normal and the relaxed pruning approach on the data set YEAST.
From left to right the number of learned rules (#Rules), the percentage of multilabel head rules
(%MHR), the average number of labels per learned multilabel head rule (#Labels/MHR), the
average number of conditions per rule (#Conditions) and the percentage of label conditions
among all conditions (%LabelConditions). When using subset accuracy, some experiments did
not finish. Missing values are indicated by "-" in the respective entry.
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B Results of Performance Evaluations

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 85.15 - 0.0 - 0.0 - 0.0 - 0.0 - 1.15 - 1.15 - 1.15 -

All 1s 14.85 - 0.0 - 14.85 - 100 - 25.86 - 14.85 - 98.85 - 22.83 -

Mic F N+ 77.35 10 0.0 8 34.77 10 59.93 3 44.01 1 15.52 1 26.08 3 18.69 3

Mic F R+ 85.02 9 0.0 8 49.39 9 34.48 4 40.61 3 11.58 6 11.98 4 11.31 5

Mic F N+− 86.55 3 0.0 8 65.19 3 20.19 10 30.83 9 4.15 10 5.74 11 4.75 10

Mic F R+− 86.55 3 0.0 8 65.19 3 20.19 10 30.83 9 4.15 10 5.74 11 4.75 10

Mac F N+ 15.40 12 0.0 8 14.93 12 99.93 1 25.97 12 14.84 2 98.28 1 22.81 1

Mac F R+ 85.28 8 0.0 8 50.68 8 33.90 5 40.63 2 12.87 4 11.87 5 11.70 4

Mac F N+− 86.55 3 0.0 8 65.19 3 20.19 10 30.83 9 4.15 10 5.75 8.5 4.75 10

Mac F R+− 86.55 3 0.0 8 65.19 3 20.19 10 30.83 9 4.15 10 5.75 8.5 4.75 10

HA N+ 71.08 11 0.0 8 29.01 11 65.52 2 40.22 4 14.43 3 32.49 2 19.49 2

HA R+ 86.55 3 0.0 8 65.19 3 20.19 10 30.83 9 4.15 10 5.74 11 4.75 10

HA N+− 86.25 7 0.0 8 60.26 7 21.78 6 32.00 5 12.61 5 6.79 6 7.12 6

HA R+− 86.54 6 0.0 8 65.12 6 20.21 7 30.85 6 4.46 7 5.77 7 4.94 7

SA N+ - - - - - - - - - - - - - - - -

SA R+ - - - - - - - - - - - - - - - -

SA N+− - - - - - - - - - - - - - - - -

SA R+− - - - - - - - - - - - - - - - -

Table 43: Predictive performance of the normal and the relaxed pruning approach on the data set
CAL500. Both approaches were tested with different settings, mainly different base learners
and whether or not to also learn negative heads. When using subset accuracy, some experi-
ments did not finish. Missing values are indicated by "-" in the respective entry.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 67.08 - 0.0 - 0.0 - 0.0 - 0.0 - 0 - 0 - 0 -

All 1s 32.92 - 0.0 - 32.92 - 100 - 49.53 - 32.92 - 100 - 49.12 -

Mic F N+ 73.60 7 12.38 12 59.08 9 64.41 5 61.63 3 58.17 6 64.22 5 60.75 2

Mic F R+ 72.11 12 15.35 9 57.14 11 61.15 6.5 59.08 6 55.39 9 62.03 6 57.18 6

Mic F N+− 73.27 8 19.31 3 60.62 8 53.63 9 56.91 10 60.33 4 53.61 9 56.56 8

Mic F R+− 75.00 3 16.83 5.5 64.55 6 53.38 10 58.44 8 62.45 3 50.46 11 53.61 10

Mac F N+ 32.92 16 0.0 15.5 32.92 15 100 1 49.53 14 32.92 15 100 1 49.12 13

Mac F R+ 64.11 15 6.93 14 47.35 14 80.45 2 59.61 4 47.83 13 80.10 2 59.42 3

Mac F N+− 67.08 14 0.0 15.5 0.0 16 0.0 16 0.0 16 0.0 16 0.0 16 0.0 16

Mac F R+− 74.84 5 20.30 2 65.77 5 49.12 12 56.24 11 53.47 11 47.38 12 49.43 12

HA N+ 72.19 11 15.84 7.5 55.87 12 73.93 3 63.65 1 54.99 10 73.96 3 62.86 1

HA R+ 74.34 6 16.83 5.5 67.46 3 42.61 13 52.23 12 56.28 8 42.37 13 47.46 14

HA N+− 74.92 4 14.85 10.5 70.56 2 40.85 14 51.75 13 69.20 1 40.86 14 50.48 11

HA R+− 72.44 9 7.92 13 74.44 1 24.81 15 37.22 15 35.78 14 25.79 15 28.68 15

SA N+ 72.28 10 14.85 10.5 57.63 10 59.65 8 58.62 7 56.71 7 59.79 7 58.03 5

SA R+ 69.55 13 15.84 7.5 52.94 13 67.67 4 59.41 5 51.84 12 68.51 4 58.40 4

SA N+− 75.66 1.5 18.81 4 67.33 4 50.63 11 57.80 9 65.23 2 50.71 10 55.91 9

SA R+− 75.66 1.5 22.77 1 63.54 7 61.15 6.5 62.32 2 60.18 5 59.08 8 57.12 7

Table 44: Predictive performance of the normal and the relaxed pruning approach on the data set EMO-
TIONS. Both approaches were tested with different settings, mainly different base learners and
whether or not to also learn negative heads. When using subset accuracy, some experiments
did not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 97.24 - 0.0 - 0.0 - 0.0 - 0.0 - 13.33 - 13.33 - 13.33 -

All 1s 2.76 - 0.0 - 2.76 - 100 - 5.36 - 2.76 - 86.67 - 4.99 -

Mic F N+ 98.45 7 53.80 7 71.15 9 73.38 6 72.25 6 41.63 6 43.76 4 41.39 5

Mic F R+ 98.74 1.5 60.93 2 76.59 5 78.13 2 77.35 1 44.68 3 45.13 3 44.73 2

Mic F N+− 98.58 6 57.21 4 73.87 7 75.25 4 74.55 4 41.99 5 41.68 6 41.13 6

Mic F R+− 98.74 1.5 63.10 1 79.12 3 73.88 5 76.41 2 48.24 1 45.22 2 45.97 1

Mac F N+ 18.24 12 0.0 11.5 3.22 11 98.63 1 6.23 11 2.72 12 71.11 1 4.92 12

Mac F R+ 96.14 11 17.21 10 37.85 10 62.50 9 47.15 9 33.85 8 41.65 7 36.27 7

Mac F N+− 97.24 10 0.0 11.5 0.0 12 0.0 12 0.0 12 13.33 11 13.33 12 13.33 11

Mac F R+− 98.42 8 43.88 8 81.84 2 54.63 10 65.52 8 31.88 9 32.78 10 32.20 9

HA N+ 98.59 5 58.75 3 73.93 6 75.50 3 74.71 3 42.20 4 41.94 5 41.78 4

HA R+ 98.63 3 54.73 6 81.98 1 64.25 8 72.04 7 36.77 7 35.32 9 35.75 8

HA N+− 98.60 4 55.81 5 78.42 4 68.12 7 72.91 5 47.47 2 40.99 8 42.67 3

HA R+− 97.68 9 19.38 9 73.16 8 24.88 11 37.13 10 18.27 10 18.97 11 18.56 10

SA N+ 98.57 - 58.91 - 73.88 - 74.25 - 74.06 - 42.21 - 41.81 - 41.72 -

SA R+ - - - - - - - - - - - - - - - -

SA N+− 98.65 - 57.83 - 76.95 - 72.63 - 74.73 - 44.58 - 43.26 - 43.28 -

SA R+− - - - - - - - - - - - - - - - -

Table 45: Predictive performance of the normal and the relaxed pruning approach on the data set MED-
ICAL. Both approaches were tested with different settings, mainly different base learners and
whether or not to also learn negative heads. When using subset accuracy, some experiments
did not finish. Missing values are indicated by "-" in the respective entry.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 52.31 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

All 1s 47.69 - 0.0 - 47.69 - 100 - 64.58 - 47.69 - 100 - 61.26 -

Mic F N+ 69.01 11 0.0 15.5 61.66 13 92.63 2 74.03 4 57.06 9 85.88 2 67.89 1

Mic F R+ 72.97 3 6.15 12 67.80 9 82.49 6 74.43 2 60.52 6 70.09 8 63.59 6

Mic F N+− 71.43 6 10.77 4 68.35 7 74.65 10 71.37 10 62.98 3 68.24 9 63.85 4

Mic F R+− 73.85 2 9.23 7.5 72.90 2 71.89 13 72.39 6 59.85 7 57.43 13 56.73 14

Mac F N+ 47.69 16 0.0 15.5 47.69 16 100 1 64.58 15 47.69 15 100 1 61.26 9

Mac F R+ 70.99 8 7.69 10.5 64.21 11 88.48 4 74.42 3 56.44 10 76.40 4 64.08 3

Mac F N+− 67.91 14 9.23 7.5 68.21 8 61.29 15 64.56 16 29.23 16 42.86 16 34.46 16

Mac F R+− 74.07 1 15.38 2 69.72 5 80.65 8 74.79 1 58.65 8 65.16 10 59.76 12

HA N+ 68.35 13 4.62 13 61.51 14 89.86 3 73.03 5 55.91 12 83.56 3 66.49 2

HA R+ 69.45 10 10.77 4 64.44 10 80.18 9 71.46 9 62.61 4 74.52 6 63.38 7

HA N+− 72.31 5 10.77 4 73.10 1 66.36 14 69.57 13 66.83 1 54.72 14 57.78 13

HA R+− 69.89 9 16.92 1 71.98 3 60.37 16 65.66 14 53.12 14 45.27 15 45.33 15

SA N+ 68.79 12 3.08 14 63.35 12 82.03 7 71.49 8 55.53 13 72.16 7 62.56 8

SA R+ 65.93 15 9.23 7.5 60.13 15 84.79 5 70.36 12 55.97 11 75.51 5 63.75 5

SA N+− 71.21 7 9.23 7.5 68.38 6 73.73 11 70.95 11 60.98 5 62.57 11 60.29 11

SA R+− 72.53 4 7.69 10.5 70.54 4 72.81 12 71.66 7 63.12 2 61.61 12 60.75 10

Table 46: Predictive performance of the normal and the relaxed pruning approach on the data set
FLAGS. Both approaches were tested with different settings, mainly different base learners
and whether or not to also learn negative heads. When using subset accuracy, some experi-
ments did not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 81.90 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

All 1s 18.10 - 0.0 - 18.10 - 100 - 30.65 - 18.10 - 100 - 30.61 -

Mic F N+ 68.09 14 7.53 9 33.81 10 79.68 3 47.48 3 38.07 9 79.61 3 50.02 3

Mic F R+ 83.24 4 19.31 6 58.03 4 26.71 8 36.58 7 49.09 2 26.38 8 33.07 7

Mic F N+− 81.90 8.5 0.0 14 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5

Mic F R+− 81.90 8.5 0.0 14 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5

Mac F N+ 18.10 16 0.0 14 18.10 12 100 1 30.42 11 18.10 12 100 1 30.62 8

Mac F R+ 81.70 11 1.09 11 48.71 7 20.32 10 28.68 12 32.38 10 20.49 10 24.81 12

Mac F N+− 81.90 8.5 0.0 14 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5

Mac F R+− 81.90 8.5 0.0 14 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5 0.0 14.5

HA N+ 63.10 15 6.77 10 30.67 11 82.37 2 44.70 6 31.09 11 83.67 2 44.78 4

HA R+ 83.85 1 15.72 8 68.92 1 19.63 12 30.56 9 46.16 5 19.86 12 27.06 11

HA N+− 83.65 3 17.73 7 66.24 2 19.78 11 30.47 10 51.12 1 20.21 11 28.44 10

HA R+− 83.77 2 21.82 5 65.02 3 22.32 9 33.24 8 43.19 8 23.13 9 30.09 9

SA N+ 79.49 12 25.59 3 45.25 8 63.43 4 52.82 1 47.37 4 63.81 4 54.01 1

SA R+ 78.09 13 23.91 4 42.67 9 61.12 5 50.25 2 44.50 7 61.47 5 51.16 2

SA N+− 82.94 6 27.93 2 53.97 5 39.26 7 45.45 5 44.78 6 40.22 7 40.31 6

SA R+− 82.97 5 32.19 1 53.91 6 40.88 6 46.50 4 47.72 3 41.47 6 42.80 5

Table 47: Predictive performance of the normal and the relaxed pruning approach on the data set
SCENE. Both approaches were tested with different settings, mainly different base learners
and whether or not to also learn negative heads. When using subset accuracy, some experi-
ments did not finish. Missing values are indicated by "-" in the respective entry.

Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 94.90 - 46.75 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

All 1s 5.10 - 0.0 - 5.10 - 100 - 9.71 - 5.10 - 100 - 9.46 -

Mic F N+ 93.87 7 39.32 9 40.60 6 43.45 3 41.98 1 32.47 3 35.74 2 33.00 1

Mic F R+ 93.58 9 37.77 10 38.66 7 44.09 2 41.19 2 29.00 5 32.99 3 29.65 3

Mic F N+− 93.68 8 41.49 7 38.24 8 38.98 6 38.61 4 27.91 6 28.62 5 27.39 4

Mic F R+− 94.82 5.5 47.37 2.5 48.45 4 24.92 7 32.91 5 39.53 1 19.13 7 25.10 5

Mac F N+ 5.10 12 0.0 12 5.10 11 100 1 9.71 9 5.10 9 100 1 9.46 9

Mac F R+ 90.83 11 36.22 11 24.90 10 39.62 5 30.58 6 19.20 8 28.19 6 22.14 6

Mac F N+− 94.90 4 46.75 5 0.0 12 0.0 12 0.0 12 0.0 12 0.0 12 0.0 12

Mac F R+− 95.27 1 50.46 1 62.11 3 18.85 9 28.92 7 22.68 7 9.27 9 12.53 8

HA N+ 93.48 10 40.56 8 37.54 9 41.85 4 39.58 3 30.03 4 32.72 4 30.31 2

HA R+ 95.05 3 47.06 4 69.57 2 5.11 10 9.52 10 3.66 11 2.16 11 2.72 11

HA N+− 94.82 5.5 45.82 6 48.06 5 19.81 8 28.05 8 37.53 2 13.62 8 18.05 7

HA R+− 95.11 2 47.37 2.5 88.24 1 4.79 11 9.09 11 4.64 10 2.47 10 3.22 10

SA N+ 93.30 - 38.39 - 35.24 - 37.38 - 36.28 - 25.78 - 26.79 - 25.07 -

SA R+ - - - - - - - - - - - - - - - -

SA N+− 94.18 - 44.27 - 41.20 - 32.91 - 36.59 - 28.10 - 22.93 - 24.03 -

SA R+− - - - - - - - - - - - - - - - -

Table 48: Predictive performance of the normal and the relaxed pruning approach on the data set
BIRDS. Both approaches were tested with different settings, mainly different base learners and
whether or not to also learn negative heads. When using subset accuracy, some experiments
did not finish. Missing values are indicated by "-" in the respective entry.
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Base Learner HA SA Mic Prec Mic Rec Mic F Mac Prec Mac Rec Mac F
All 0s 69.76 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

All 1s 30.24 - 0.0 - 30.24 - 100 - 46.44 - 30.24 - 100 - 42.60 -

Mic F N+ 51.95 15 0.0 15 38.03 14 93.56 2 54.08 8 30.62 8 76.21 2 42.20 4

Mic F R+ 77.54 3.5 7.31 6 65.60 10 54.10 6 59.30 1 30.80 7 30.00 6 29.39 6

Mic F N+− 76.74 9 1.20 10 74.43 3.5 35.16 14 47.76 13 10.63 14 14.29 14 12.19 14

Mic F R+− 76.74 9 1.20 10 74.73 1 35.16 14 47.76 13 10.63 14 14.29 14 12.19 14

Mac F N+ 30.24 16 0.0 15 30.24 16 100 1 46.44 16 30.24 9 100 1 42.60 3

Mac F R+ 77.54 3.5 10.03 3 66.50 9 51.85 8 58.27 4 31.68 6 27.99 8 27.94 8

Mac F N+− 76.74 9 12.00 1.5 74.43 3.5 35.16 14 47.76 13 10.63 14 14.29 14 12.19 14

Mac F R+− 76.74 9 12.00 1.5 74.43 3.5 35.16 14 47.76 13 10.63 14 14.29 14 12.19 14

HA N+ 61.77 13 1.09 12 43.29 13 85.29 3 57.43 6 33.16 4 65.84 4 43.03 2

HA R+ 76.74 9 1.20 10 74.43 3.5 35.16 14 47.76 13 10.63 14 14.29 14 12.19 14

HA N+− 77.99 2 6.11 8 71.22 7 45.65 10 55.64 7 34.95 2 22.99 10 24.38 10

HA R+− 76.75 6 0.76 13 71.33 6 38.64 11 50.13 10 18.26 11 16.82 11 15.43 11

SA N+ 72.96 12 6.22 7 54.42 12 65.07 5 59.27 2 37.19 1 43.83 5 40.04 5

SA R+ 52.27 14 0.0 15 36.97 15 82.07 4 50.98 9 34.58 3 75.98 3 44.17 1

SA N+− 76.90 5 8.40 5 64.36 11 52.89 7 58.06 5 28.77 10 29.59 7 28.70 7

SA R+− 78.16 1 9.38 4 68.86 8 50.70 9 58.40 3 32.71 5 27.13 9 27.93 9

Table 49: Predictive performance of the normal and the relaxed pruning approach on the data set
YEAST. Both approaches were tested with different settings, mainly different base learners
and whether or not to also learn negative heads. When using subset accuracy, some experi-
ments did not finish. Missing values are indicated by "-" in the respective entry.
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