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Abstract

Multi-label classification is the task in Machine Learning to assign more than one label to an instance.
Opposite to the single-label classification problem, where only a binary or a multi-class can be assigned to
an instance, dependencies may exist between different labels in a multi-label problem. These dependencies
can be used to improve the classification task and help to better understanding the multi-label dataset. A
Separate-and-Conquer Multi-Label Rule Learner was proposed 2016 by Eneldo Loza Mencía and Frederik
Janssen, that learn multi-label dependency and use them in the classification task. In this work we made
some extensions of the proposed algorithm and evaluate them.



Zusammenfassung

Die Multi-label Klassifikation ist eine Aufgabe im Kontext des maschinellen Lernens, die darin besteht,
einer Instanz mehr als ein Label zuzuordnen. Im Gegensatz zur Single-Label Klassifikation, in welcher
nur eine binäre oder eine Multi-Klasse einer Instanz zugeordnet werden können, können Abhängigkeiten
zwischen verschiedenen Labels vorhanden sein. Diese Abhängigkeiten können benutzt werden um die
Klassifikation zu verbessern und die Multi-label Datasets besser zu verstehen. Ein Separate-and-Conquer
Multi-Label-Regellerner wurde 2016 von Eneldo Loza Mencía und Frederik Janssen vorgeschlagen, der
die Multi-Label Abhängigkeit lernt und in der Klassifikation benutzt. In dieser Arbeit haben wir ein paar
Erweiterungen zur diesem Algorithmus hinzugefügt und getestet.
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1 Introduction

Multi-label Classification (MLC) is a classification problem in machine learning, where multiple label
can be assigned to an instance. This task is opposed to the single-label classification as binary or multi-
class problems, where only a single class can be assigned to an instance [1] Multi-label classification has
become the increasing interest of the data mining community and is usedin different domains such as
text classification [3] and scene and video classification [2] For single-label problem dependencies exist
only between the single class and the instances attribute’s values. In opposite to this dependency in
multi-label problem may exist between different labels. For examples in text classifications of papers,
this thesis has both labels “Machine Learning” and its subtopic “Multi-label Classification”. The presence
of the second label implies the presence of the first. Such a dependency can be used to perform the
classifications task. In this work we will use a multi-label separate-and-conquer rule Learner that are
able to learn these multi-label dependencies.
In the first section we introduce a formalization of the multi-label classification and the multi-label
dependency. We will present also the evaluation metrics used in this work and a toy example.
In the second section, we present the multi-label separate-and-conquer rule Learner proposed 2016 von
Eneldo LozaMencía LozaMencía und Frederik Janssen. We describe the different parameters of this
learner and then applied it on the toy example.
In the third section we propose some extensions of the presented multi-label separate-and-conquer rule
Learner. We add a stopping criteria for searching of Label Rules. We change the algorithms so that
fully covered training Examples will be used in the rule learning process. We add an option to combine
positive and negative head-rule in a one rule pair.
In the fourth section, these proposed extensions will be evaluated.
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2 Multi-label Classification

An instance xcan be anything and have different attributes. We can represent it as a vector of n elements
x i. The element x i corresponds to the value of the n attribute Ai that characterizes the instance.X is the
set of all possible instances.

x = (x1, . . . ., xn) ∈ X (1)

An instance x can be associated to a multiple label λi from a predefined set of Labels L.

L = λ1, . . . .,λm with m> 2 (2)

For each instance x we define a Label vector with m elements that indicate the presence of corresponding
label and its absence. is the set of all possible combinations of classes.

y = (y1, . . . ., ym) ∈ Y with yi =
§

0 if class λi is absent
1 if class λi is present

(3)

The value 1 indicates the presence of correspondent label and 0 its absence. Multi-label Classification
task is to learn a function that maps instances x to the corresponding label vector ŷ .

f : X → Y
x 7→ f (x) = ŷ = ( ŷ1, . . . ., ŷm)

(4)

Such a function is learned from the training data T that is consisting of a set of instances and its
correspondent labels vector

T = ((x1, y1), . . . ., (x t , yt)) (5)

Different decomposition approaches are used to solve the multi-label classification task. The problem will
be divided into single label sub-problems and solved independently of each other. This is main issues
these approaches. The dependencies between different classes can be used to perform the classification
and this separation can lead to loss of useful information. [2]

2.1 Toy Example

Table 2 presents a Multi-label dataset. This is an extended version of the weather dataset. In the all
following we will use this toy Example for explanations. The label c1describeswhether to play tennis
depending in the weather forecast.If it is overcast, sunny and normally humid or runny but not windy
we can play tennis.Label c2 indicate whether we should eat ice cream. We eat ice cream if it is sunny
and too humid. Label c3 and c4indicate whether we should drink tea or lemonade. We drink tea if it is
rainy and windy and lemonade if it is warm enough. The label c5 is the negation of the label c1. It is
used for illustrative purposes; this is to represent various dependency relations between the labels. [2]

2.2 Rule Learning

Rule learning algorithm try to find a set of simple If-Then rules that approximate in a discrete, piecewise
way the classification function h(x) (in Formal 2.4). The set of the learned rule R is called the Theory.
These rules are easy to be interpreted and comprehended by human than others complex models such
as support vector machines SVMs or neural networks.A propositional rule r is composed of a body and
a head.

r : head ←body (6)
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Tabelle 1: Extended multi-label weather dataset.
Instances A1 A2 A3 A4 Attributes C1 C2 C3 C4 C5

outlook temperature humidity windy play icecream tea lemonade dontplay
X1 rainy 65 70 yes Y1 0 0 1 0 1
X2 rainy 71 91 yes Y2 0 0 1 0 1
X3 sunny 85 85 no Y3 0 1 0 1 1
X4 sunny 80 90 yes Y4 0 1 0 1 1
X5 sunny 72 95 no Y5 0 1 0 1 1
X6 sunny 69 70 no Y6 1 0 0 1 0
X7 sunny 75 70 yes Y7 1 0 0 1 0
X8 overcast 83 86 no Y8 1 0 0 1 0
X9 overcast 64 65 yes Y9 1 0 0 1 0
X10 overcast 72 90 yes Y10 1 0 0 1 0
X11 overcast 81 75 no Y11 1 0 0 1 0
X12 rainy 70 96 no Y12 1 0 0 1 0
X13 rainy 68 80 no Y13 1 0 0 1 0
X14 rainy 75 80 no Y14 1 0 0 1 0

The body is formed of a number of conditions.These conditions are tested on attribute values. They
can be combined in a conjunctive or disjunctive way. The head is formed of one condition that set a
class value to a label. We can distinguish two types of rule according to the class value to be predicted.
Positive head rule with the condition c = 1 that indicate the presence of the class c and negative head (c
= 0) rule that indicate the absence of this class. If the body conjunctive condition is true,than the body
condition will be predicted. A rule r is said to cover an instance x if it satisfies the body condition of the
rule.[5]In this work we use only conjunctive rules with both positive and negative heads.We use instead
of c = 1 the expression c and instead of c=0 the expression ĉ. Following rules r1 and r2 are learned from
the label from the weather dataset in table 2.

r1 : icecream ← outlook = sunny , humidity >= 82.5
r2 : icecream← temperature <= 84.0

(7)

The rule r1 is a positive head rule, that cover all examples whose outlook is sunny and humidity greater
than 82.5 and classify the label icecream= 1. The rule r2 is a negative head rule, that cover all example
with less temperature less than 84.0 and classify the label icecream= 0. The most popular strategy to
learn a set of rules is the separate-and-conquer or covering approach. The term separate-and-conquer is
invented by Pagallo and Haussler (1990) due to the way of finding the theory.

Algorithm 1 SEPARATEANDCONQUER(Examples)[2]

1: Theor y ← ;
2: while POSI T IV E(Examples) 6= ; do
3: Rule = F IN DBESTRU LE(Examples) . the conquer step: find a “good” rule
4: Cov ered = COV ER(Examples)
5: Examples = Examples \ Cov ered . the separate step: remove the covered examples
6: Theor y = Theor y ∪ Rule
7: end while

First a single rule is learned that covers a part of the given training instances. This rule is added to
the theory and the covered examples are deleted. This is the separate part. The conquer part is the
recursively learning of another rule on the remaining training instances until no examples are left. [2]
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2.3 Label Dependency

From a probabilistic point of view. There are two types of dependencies, unconditional and conditional.
The unconditional dependency does not depend on the given input instances. Conditional dependency
depends on attributes of input instances [2] The exclusion dependency the label and from the weather
dataset doesn’t depend on particular instances.The presence of label play implies the absence of do not
play and vice versa. The probability that the label do not play is absent have to be higher if the label
play is present. This probability is unconditional. Such dependencies may also refer to a global and
local dependency. The unconditional dependency describes a relation between labels globally and the
unconditional one describes locally relations that exist only in a subset of the input instances. [2]
To use thesedependencies to improve the classification task for multi-label datasets, we have to change
the rule structure. We have to extend the rule structure so that we are able to have multi-label heads and
test on labels in the body of the rule.A rule can have different assignment in the head. We can distinguish
two types of rule according to the label assignment. The dense one which must have an assignment of
all labels on the head of the rule and the sparse which have only assignment of some of the labels. We
extend the rule so that we are able to have a test on labels in the body of the rule and not only tests
on attributes. Those changes in the rule structure can model all dependencies between different labels
that may be existing. In this work we are interested only in single-label head rules. The following Table
3 presents the different type of multi-label rules.

Tabelle 2: Different forms of single-head multi-label rules.
Multi-label rule type example rule on the weather Dataset
label-independent icecream←− outlook = sunny, humidi t y >= 82.5

icecream←−
partially label-dependent tea←− outlook = rainy, lemonade = 0

pla y ←− icecream= 1, outlook = sunny
fully label-dependent pla y ←− icecream= 0, lemonade = 1

dontpla y ←− pla y = 1

A rule that contains tests on labels is called label-dependent opposite to the label-independent rules that
contain only test on attributes. The unconditional dependency will be modeled by a fully label-dependent
rule. Such rules have only tested on labels and represent a global dependency that doesn’t depend on
the given input instances. The conditional dependency is modeled by partition label-dependent rules.
This rule type contains test on both labels and attributes and represent a locally dependency between
different labels. Label-dependent rules are suitable to represent different dependencies (implications,
subsumptions, or exclusion) in multi-label problems. This can help us to better understand multi-label
datasets and improve the classification task using those dependencies. [2]

2.4 Evaluation Metrics

There are many evaluation metrics for multi-label classification. Depending on the type of prediction
there are two types of metrics: bipartition and ranking evaluation metrics. In this work we introduce
only the bipartition metrics because we do not use any ranking approaches. A bipartition metrics are an
error function δ that evaluate the difference between the predicted label vector ŷ and the correct label
vector y .

δ : Y ∗ Y → [0,∞)
(y, ŷ) 7→ δ((y, ŷ)) (8)
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To evaluate this difference a 2x2 dimensional matrix is used to call confusion matrix C j
i . The variable j

is used as an iterator over test examples set (X1, . . . , xn) and the variable i is used as an iterator over
the set of labels L. The elements of this matrix are the true tp and false positives fp, and the true tn
and false negatives fn.

C i
j =

�

tp fn
fp tn

�

(9)

For a test instance x j and a label yi the elements of the atomic confusion matrix C j
i are computed as

follows

tp =
§

1 yi = 1∧ ŷi = 1
0 otherwise fn =

§

1 yi = 1∧ ŷi = 0
0 otherwise

fp =
§

1 yi = 0∧ ŷi = 1
0 otherwise tn =

§

1 yi = 0∧ ŷi = 0
0 otherwise

(10)

We need to define two aggregations operators:

n
∑

i=1

Ci = C1 ⊕ ...⊕ Cn (11)

With ⊕ is the cell-wise addition of matrix.

av gn
i=1Ci =

1
n

n
∑

i=1

Ci (12)

For t test instances and m labels there are t.m atomic confusion matrix Ci j. These matrices are not
suitable to become a single comparative value of a test set andevaluate the quality of a multi-label
classifier. For these two averaging strategies are used: micro- and macro-averaging: Micro-averaging
aggregates first all atomics matrix and then calculate the value of the resulting confusion matrix with
the evaluation function.Macro-averaged aggregates the results of the evaluation function applied to all
atomic matrix. For Multi-label task, there are two possibilities to iterate in order to aggregate to a
single value: the labels and the examples. This result on four mathematically distinct combinations of
the aggregations:

(Label and Example-based)Micro-Averaging δ : δ ◦
∑

i ◦
∑

j = δ ◦
∑

j ◦
∑

i

(example-based (macro-)averaged,label-based micro-averaged δ : av g j ◦δ ◦
∑

i

(label-based (macro-)averaged,example-based micro-averaged δ : av gi ◦δ ◦
∑

j

((label and example-based)macro-averaged δ : av gi ◦ av g j ◦δ = av g j ◦ av gi ◦δ

As evaluation function we will use in the remain of this work the following measures: Precision, Recall
and F-measure. The precision is the percentage of true positives from all the classified as positive.

Prec(C) =
tp

tp + fp
(13)
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The recall is the percentage of examples classified aspositive fromall the positives.

Rec(C) =
tp

tp + fn
(14)

The F1-measure is the harmonic mean between of both Precision and Recall.

F1(C) =
2

1
Prec(C) +

1
Rec(C)

=
2Prec(C)Rec(C)
Prec(C) + Rec(C)

(15)

We will also use the metrics Hamming and Subset Accuracy. The Hamming Accuracy is the percentage
of correctly classified labels.

HamLoss(C) =
tp + tn

tp + fp + tn + fn
(16)

The subset Accuracy is the percentage of perfectly predicted labelsets on the test set

Acc(Y, Ŷ ) =
1
m

m
∑

j=1

[yi = ŷ] with [x] =
§

1 if x is true
0 otherwise (17)

3 Separate-and-Conquer Multi-Label Rule Learner

In this section we will present an iterative separate-and-conquer multi-label rule learner proposed by
LozaMencía and Janssen[2] Opposite to the Problem Transformation Methods(e.g. Binary Relevance,
Pairwise Decomposition or Label Powerset) that divide the multi-label classification tasks into servals
sub problems and obtainisolated theories offeach other, treats this algorithm the classification task as
one problem and returns onereturns one Global theory explaining the multi-label dataset.

3.1 Training

The proposed rule learner differs to the separate-and-conquer algorithm in the concept of covering status
and the removal of the instances from the training set. The following figure represents the training
algorithm
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Algorithm 2 Training algorithm for the multi-label iterative separate-and-conquer algorithm [2]

Require: New training example pairs T = (x1; y1); . . . ; (xm; ym), parameters θ ,τ, heuristic h, targets
B(either B = {1} or B = {0,1}) whether using stopping rules, whether re-inserting fully covered
examples

1: T = (x1; ŷ1), ..., (xm; ŷm) with ŷi = (?, ?, ..., ?), i = 1. . . m
2: while |T |m > θ do . until, e.g., 95% of examples covered
3: r ← findBestGlobalRule(B, T ) . get best possible rule regardless the head
4: add r to decision list R
5: (T, Tpar t , T f ul l) =getCoveredSets(r, T ) . separate T according covering by r
6: Tadd ←getReAddSet(Tpar t , T f ul l ,τ) . depending on user parameters
7: if Tadd = ; then
8: mark r as stopping rule . only uncovered examples in T of next round
9: else

10: T ← T ∪ Tadd . add also some covered examples, do not remove them
11: end if
12: end while
13: return decision list R

The algorithm work with two representations of the label vector: Y = (y1, . . . , yn) is the original labels
and Ŷ = ( ŷ1, . . . , ŷn) the labels accessible by the learner. We initialize the label vector with unknown label
information (?, ?, . . . , ?) (Algorithm 2, line 1). The parameter is the percentage of remaining uncovered
instances needed to leave the while loop. The outer loop (Algorithm 2, line 2- 12) runs intel only trainings
examples are still uncovered (Algorithm 2, line2).First the Best global rule for the current Training set
T and the Target B will be searched. Algorithm 2 represents the search algorithm used to find the best
current rule.

Algorithm 3 Algorithm findBestGlobalRule for finding the best current rule on the training set for any
possible label in the head [2]
Require: example pairs T and targets B
1: r ← ;, r.h←∞ . init best rule and its heuristic value
2: for each label yi and target t ∈ B do
3: T i ← T
4: remove all x where ∪y 6=? from Ti . do not consider x if label already set
5: r

′
← findBestRule(yi, t, T i) . find best body for target yi = t

6: r
′
.h= h(r

′
, yi, T i) . heuristic value depends on target label and T i

7: if r
′
.h> r.h then

8: r ← r
′

. replace by better rule
9: end if

10: end for
11: return best rule r

The best rule for each label and any possible label head will be searched and the best of them. There
are two types of rules the positive and negative head rules. If the Targets B = 1 only positive head rules
will be learned and if B = 1,0 the Negative head rules will also be learned. A good rule for each label
yiand any possible label head will be searched on a Training set T i (Algorithm 3, line 5). The examples
x where the label yi is already set will be removed from the examples set T i (Algorithm 3, line 3-4). The
value of this label is already set and doesn’t need to be learned again.For a given label, the other label
values will be considered as an attribute and used on the learning of the best rule. Form all founded
rules The best one according to the heuristic function h will be searched (Algorithm 3, line 7,8) and
then returned (Algorithm 3, line 11). The best Global rule learned will be the added to the decision list
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R (Algorithm 2, line 4) and then the training examples will be separated from this rule according to
the covering status(Algorithm 2, line 5). The following figure presents the algorithm for computing the
different sets.

Algorithm 4 getCoveredSets for computing the covering status of examples for a given rule. [2]
Require: Rule r,example pairs T
1: Tpar t ← ;, T f ul l ← ;
2: for each example (x;∪y) ∈ T do . compute covering status for each example
3: T i ← T
4: if thenr covers x
5: T ← T \ x . remove since it may not be re-added
6: apply head of r on ŷ . replace corresponding value in ŷ if it was unset
7: if ŷ is fully set then . depending on B, consider also unset zeros
8: T f ul l ← T f ul l ∪ x
9: else

10: Tpar t ← Tpar t ∪ x
11: end if
12: end if
13: end for
14: return uncovered (T ),partially (Tpar t) and fully covered (T f ul l) training examples

The uncovered, partially covered and fully covered examples have to be stored respectively in the sets T ,
Tpar t and T f ul l . All covered examples of the current rule will be removed from T (Algorithm 3, line 4). If
the label to predicate by the given rule for a covered example isn’t already set and still have an unknown
value, the head of the rule will be then applied to the label (Algorithm 4, line 5). The fully covered
examples, where all labels are already set, will be stored in and the partially covered in (Algorithm3, line
6-10). From these different sets and depending on the used parameter a set of examples will be computed
to be re-included in the training set T (Algorithm 2, line 6). There are three different ways to re-add the
covered examples. The following algorithm describes these proposed ways.

The uncovered, partially covered and fully covered examples have to be stored respectively in the sets T,
and . All covered examples by the current rule will be removed from T (Algorithm 4, line 4). If the label
to predicate by the given rule for a covered example isn’t already set and still have an unknown value,
the head of the rule will be then applied to the label (Algorithm 4, line 5). The fully covered examples,
where all labels are already set, will be stored in T f ul l and the partially Tpar tcovered in (Figure 4, line
6-10). From these different sets and depending on the used parameter a set of examples will be computed
to be re-included in the training set T (figure 2, line 6). There are three different ways to re-add the
covered examples. The following algorithm describes these proposed ways.
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Algorithm 5 getCoveredSets for computing the covering status of examples for a given rule. [2]
Require: Partially and fully covered examples Tpar t , T f ul l , parameter τ, whether using stopping rules,

whether re-inserting fully covered examples
1: if use stopping rules then
2: if full coverage rate

|T f ul l |
|Tpar t |+|T f ul l |

≥ τ then . e.g.90%
3: Tadd ← ; . do not re-add any example although Tpar t , T f ul l non empty
4: if too many partially covered examples then
5: else . too many partially covered examples
6: Tadd ← Tpar t . re-add partially covered examples
7: Tadd ← Tadd ∪ T f ul l . re-add also fully covered examples
8: end if
9: end if

10: else
11: Tadd ← Tpar t . no stopping rules: re-add partially covered examples
12: end if
13: return partially or fully covered examples Tadd to be added again to training set

In the case that stopping rules are not used or the re-inserting of fully covered examples is not allowed, we
have to add only partially covered examples (Algorithm 5, line 10 and 12). In this case all fully covered
examples have to be removed from the training data. This is not desired and may lead to inconstancies.
In the second Case we re-add both partially and fully covered examples. In the last case no covered
examples have to be re-added (Algorithm 5, line 7). This occurs when the percentage of the fully covered
examples is greater than the skip threshold (Algorithm 5, line 2). If the set of covered examples to be
re-added is empty, the current rule has to be marked as a stopping rule. Otherwise the example will be
added in the training data again (Algorithm 2, line 10) and a new rule will be searched recursively.

3.2 Classifications

The training algorithm work in am iterative way and return one single model R inthe form of an ordered
decision list

R= 〈r1, r2, ...〉 (18)

This list will be used to classify test examples. The following algorithm describes the classification process

Algorithm 6 Application of a multi-label decision list to a test example. [2]
Require: Test example x ,multi-label decision list R
1: ŷ = (?, ?, ..., ?)
2: for each rule r in rule list R do . compute covering status for each example
3: if thenr covers x
4: apply head of r on ŷ if corresponding value in ŷ is unset
5: if r marked as stopping rule or ŷ is complete then
6: assume all remaining labels in ŷ are negative
7: return ŷ
8: end if
9: end if

10: end for
11: assume all remaining labels in ŷ are negative
12: return ŷ
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Tabelle 3: Parameters whether re-inserting fully covered examples and the targets of rule-head to be
learnedpossible combinations

Case Predict negative head rule Re-inserting fully covered
Case 1 False False
Case 2 False True
Case 2 True False
Case 4 True True

We iterate over all rules in the decision in the order of insertion during the training process and check
if it covers the test instance. In contrast to the single-label classification the classification process for
multi-label problem doesn’t stop if a rule covers the test example. The head of this rule will be applied
on the correspondinglabelvalue if it is unset. And then the next rule will be tested, if it fires, until no
rule left. There are two stopping condition. The classification has to be stopped if the current rule is
marked as stopping rule or if all labels values are set. When the classification process is ended, the value
of all remaining labels will be set as negative.

3.3 Used Parameter

The proposed Separate-and-Conquer Multi-Label Rule Learner in the previous section have different
parameter. In this work we will use the following parameter. The stopping thresholds θ and τ will have
the value 0.01% and 0.1%. To find the best rule for a given label (Algorithm 3, line 5) we use the Ripper
implementation of WekaJRip [2] To select the best global rule, we use the F1 measure as a heuristic
function h.The use ofstopping rule will be enabled. A stopping rule will be marked with a star* at the
head of it. For the parameters whether re-inserting fully covered examples and the targets of rule-head
to be learned, we have four possiblecombinations to run this algorithm. The following table presents all
these cases.

We have executed the training algorithm with the parameters mentioned below and have become the
following models:

3.4 Application of the basic algorithm on the toy example

In this section we will present the Application of the training and a classification algorithm on the dataset
weather with parameter of case 4 mentioned below.

3.4.1 Training

First the label vector ŷ will be initialized with unknown values. The following table presents the training
examples at the first iteration. For each label the original labels yi and the label value accessed by the
learner ŷi notes in its column in the form ŷi|yi.
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Tabelle 4: Learned rules on case 1
tea←− outlook = rainy, wind y = TRU E
icecream ←− humidi t y >= 85.0, outlook =
sunny
lemonade←− ;
pla y ←− ;
dontpl y ←− ;

Tabelle 5: Learned rules on case 2
tea←− outlook = rainy, wind y = TRU E
icecream ←− humidi t y >= 85.0, outlook =
sunny
lemonade←− ;
pla y ←− ;
dontpl y∗ ←− humidi t y >= 90.0, outlook =
sunny
dontpl y∗←− tea
dontpl y∗←− ;

Tabelle 6: Learned rules on case 3
tea←− outlook = rainy, wind y = TRU E
tea←− ;
lemonade←− tea
lemonade←− ;
icecream←− ;
pla y ←− tea = 0
pla y ←− ;
dontpl y ←− pla y
dontpl y ←− ;

Tabelle 7: Learned rules on case 4
tea←− outlook = rainy, wind y = TRU E
tea←− ;
lemonade←− tea = 0
lemonade←− ;
icecream←− ;
pla y ←− tea = 0
pla y ←− ;
dontpl y

∗
←− pla y = 1

dontpl y∗←− ;

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — ?|0 — ?|1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — ?|0 — ?|1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —

For each label and possible rule-head a rule will be searched. The candidate rules are:
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Rule confusion matrix F1 measure

pla y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
icecream←− temperature <= 84.0. [[11.0 2.0][0.0 1.0]] Value: 0.917
icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
dontpl y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
dontpl y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75

For each rule a confusion matrix will be computed and thereby the heuristic value will be calculated.
The rule with the best F1 measure will be then chosen. In this iteration the best global rule is:

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0

In the case that more the one rule has the same highest heuristic value (there are two other rules that the
chosen one with the heuristic value 1), the rule with that cover more positive examples will be selected.
This rule will be then added to the decision list. The rule set was at the begin empty and will contains
after the first iteration only this rule. The head of the best global rule will be applied to the training
examples. Only three examples are covered by this rule. The new values for each label present in the
column next to it in the table below. According to the modified label values the training example will
be separated into three sets according to the covering status. The fully covered set is empty and only
the three covered instances are stored in the partially covered set. All other example stays in the set of
uncovered examples T . Using those set the set of examples to be re-inserted will be then computed. It will
be containing the three covered examples. Since Tadd is not empty the rule will not be marked a stopping
rule and the instances stored on it have to be added to the trainings set T . In the next iteration all
training examples will be used for leaning of rules. The next iterations of the algorithm will be presented
in the Appendix. As a result of the classification algorithm we become the following decision list R.

icecream←− outlook = sunny, humidi t y >= 82.5.
icecream←− ;
tea←− outlook = rainy, wind y = TRU E.
tea←− ;
lemonade←− tea = 0.
pla y ←− icecream= 0, lemonade = 1.
dontpl y

∗
←− pla y = 1.

pla y ←− ;
dontpl y∗←− ;

3.4.2 Classifications

We apply the classification algorithm with the test instance x = x = (rainy, 65, 70, yes, ?, ?, ?, ?, ?). The
first rule r1 doesn’t cover the test example and will be skipped. The head of the second rule will be
applied, since the test examples are covered: the icecream label has to set to zero. Then the next rule
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will be tested. The rule r3 fires and the tea label have to set to one. The four next rules do not cover
the test instance and will be skipped. The three last rule covers the example x and the head of it will
be applied. After application of the last rule, the classification algorithm has to be finished because the
classification of thetest example is complete and the last rule is marked as a stopping rule. The remaining
labels have to be assumed as negative. Since all labels are set, the instance x will be returned without
any modification. The classified test instance x is (rainy, 65,70, yes, 0, 0, 1, 0, 1).

4 Extensions of the base algorithm.

In this section we present the extensions that we made to improve the Separate-and-Conquer Multi-Label
Rule Learner mentioned in the previous section. We add new stopping criteria in the learning of rule for
multi-labels. We try to use the covered training examples during the search of the best rule for a given
label. In the case that negative head rules are allowed to be predicted, we add an option to predict a
pair of negative and positive head rule instead of only one rule during a training iteration.

4.1 Searching of Label Rule Stopping Criteria

During the search of the best global rule, for every label yi a rule has to learn and then the best of them
will be chosen. If a given label yi is covered by the previews learned rules for all the training examples,
we don’t need to learn a rule anymore to cover it. For this we add a stopping threshold Υ to prevent
the searching of a rule for a given label if the percentage of example, which has an unknown value for
this label value is less thanthe value of it. Using this parameter, the number of rule searching operation
will fall. Thereby the training algorithm becomes more efficient and the built time of the model will be
reduced.
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Abbildung 1: Covering status of the different label and if a rule will be searched for it during the training
of the weather dataset using parameter of case 4 and Υ = 0.05

The training algorithm starts with unknown label values; no label is covered. In every iteration a new
rule is learned that covers some of the labels. In the second iteration the label icecream is fully covered
and in the next iteration no rule will be searched for it. In the 8. Iteration 9 fully covered examples are
removed from the training examples that’s why only 5 examples are used in the 9. Iteration.

4.2 Use of Fully covered training Examples

During the search of the Global best rule (Algorithm 3), for every label ŷi a good rule is learned on
a subset of the current training examples T i (Algorithm 3, line 5). All examples which the label ŷi is
already set by the previous rules will be removed from the training set. The reason for this is that the
label ŷi is already covered and doesn’t need to be leaned again. If we do not remove those examples,the
global best rule founded by the learner in the first iteration will be the same in the next iterations.No
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matter if the fully covered examples will be re-added to the training instances or not, they will not be
used in the search of a good rule.In effect, the fully covered example will be removed from the training
set Ti during the learning process of a rule forall labels.
The remove of training instances during the learning of rulesis not desired and may lead to inconsistencies.
Some rules will be learned only on a subset of the training data. These rules may be inconsistent with the
removed examples. These deleted examples may help in learning other rules and facilitate the learning
process. The use of all training examples on the rule learning process may also help to find more label-
dependent rules, since the label are initialized with an unknown value in the begin and dependency can
be learned only later when enough labels values are set.
We change the findBestGlobalRule algorithm, so that we use the all the current Training examplesin the
learning process. The following figure presents the modified version of it

Algorithm 7 Algorithm findBestGlobalRule for finding the best current rule on the training set for any
possible label in the head [2]
Require: example pairs T and targets B
1: r ← ;, r.h←∞ . init best rule and its heuristic value
2: for each label yi and target t ∈ B do
3: r

′
← findBestRule(yi, t, T ) . find best rule for target yi = t using all training examples

4: r
′
.h= h(r

′
, yi, T i) . heuristic value depends on target label and T i

5: if r
′
.h> r.h then

6: r ← r
′

. replace by better rule
7: end if
8: end for
9: return best rule r

In this version no training examples will be removed on the learning of a rule for a given label, even if
the corresponding label is already set. To avoid the same rule in the next iteration will be found, we use
another way to count the true tp and false positives fp, and the true tn and false negatives fn, if the
label value is already set. The following table presents how these metrics will be computed.

Tabelle 8: Different method how to compute heuristic for fully covered examples
Original value Predicted value Set value v1 v2

1 1 1 - tp

1 1 0 tp tp

1 0 1 - fn

1 0 0 fn fn

0 1 1 fp fp

0 1 0 - fp

0 0 1 tn tn

0 0 0 - tn

In the first case v1 we use the covered example, in the computing of the heuristic values only if the new
predicted value is a correction of a false set label value. In the second case v2 we use all examples of
calculating the heuristic value.
While Using the covered examplein the training process, the founded rule has to be controlled if it exists
already on the current decision list or not. In the casethat a rule already exists, it will be ignored in the
choice of the new best global rule.
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4.3 Positive and negative head-rule combination

Often for labels that are absent (or present) on the most of the training examples, only one rule will be
learned that set this label as negative or only rules will be learned to cover the absence (or the presence)
of it.To solve this problem, we have tried to learn the opposite head rule in the next iteration, once a
positive or a negative rule is learned the first time for a given label. The following rule set is learned
with this strategy

icecream←− outlook = sunny, humidi t y >= 82.5.
icecream←− ;
tea←− outlook = rainy, wind y = TRU E.
tea←− ;
lemonade←− tea = 0.
lemonade←− ;
pla y ←− icecream= 0, lemonade = 1.
pla y ←− ;
dontpl y ←− pla y = 1.
dontpl y ←− ;

After learning a positive rule for the label ice cream in the first iteration. In the second iteration only
one rule will be searched that learn a negative head rule for this label. The problem with this method is
that the opposite head rule learned in next iteration may have a bad heuristic value that result in a bad
model. We have used another strategy. Instead of learning a single rule in each training iterations a pair
of rule will be learned. To find the best global rule, for every label yi two rule with positive and negative
head have to be leaned. A heuristic value will be calculated for the two combination of rules r1 the r2

′

or r2 then r1
′
. The combination of rule with the highest heuristic value will be then chosen as the best

global rule. .

4.3.1 Confusion matrix of a pair of rule

To compute the heuristic of a couple of rule. The first rule head has to be applied to the training examples
and then the heuristic of the second rule computing on it.
for given label yi the rule r1 with a positive head (or negative) was learned. Let C1 be the confusion
matrix of r1.

C1 =

�

t1
p f 1

n
f 1
p t1

n

�

(19)

the head of the rule will be applied to the tp1+ fp1 covered example by the rule r1. Then a negative (or
positive) head rule r2 will be learned on the remain f : n1+ tn1 uncovered training examples. Let C1 be
the confusion matrix of r1.

C1 =

�

t2
p f 2

n
f 2
p t2

n

�

(20)

We define the confusion matrix of the pair of rule (r1, r2)C12 with:

C12 =

�

t2
p + t1

p f 2
n + f 1

p
f 2
p t2

n

�

(21)
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4.3.2 Application on the weather Dataset

All labels are initialized with unknown value. During the search of the best global rule, each label yi
a positive and negative head rule have to be learned. For the two learned rules an opposite head rule
is learned after applying the head of it. A confusion matrix of the pairs of rules will be then computed
and applied to the heuristic function h. The couple of rules that have the highest heuristic value will be
chosen as the best Global rule. In the first iteration on the weather dataset the following rules pairs are
learned:

Rule confusion matrix F1 measure

pla y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
pla y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
pla y ←− ; [[11.0 1.0][2.0 0.0]] Value: 0.88
icecream←− temperature <= 84.0. [[11.0 2.0][0.0 1.0]] Value: 0.917
icecream←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
lemonade←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
dontpl y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
dontpl y ←− ; [[11.0 1.0][2.0 0.0]] Value: 0.88
dontpl y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
dontpl y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923

the best pair of rule is:

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

This couple of rule is added to the Rule decision list and the both positive head and negative will be
applied to the covered training
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outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —

In the next iterations other pairs of rules will be searched until no examples left uncovered. In the
following is the found rules set.

5 Evaluation

In this section we will evaluate the proposed extensions in the previous section. We will compare the
learned models and the predictive performances using these different extensions to the models learned
by the base algorithm.

For the evaluation we use the following multi-label data sets from the Java Library for Multi-Label
Learning Mulan [9]

Tabelle 9: Multi-label data sets for the evaluations [9]
name domain instances nominal numeric labels cardinality density distinct
emotions music 593 0 72 6 1.869 0.311 27
genbase biology 662 1186 0 27 1.252 0.046 32
yeast biology 2417 0 103 14 4.237 0.303 198

In this section we will use the following abbreviation:

SeCo for the original separate-and-conquer multi-label rule learner.

Secov 1, Secov 2 for the using of the fully covered examples in learning new rule and computing the
heuristic value using the two methods v1 and v2.

SeCo1−0 for the learning of the opposite head rule when the other head rule was found for the first time.

SeCocom for learning a pair of negative and positive rules during one iteration.
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Tabelle 10: Statistic of the separate-and-conquer multi-label rule learner with the different proposed
options

dataset/
approach number of rule rule Length part. Label rule fully Label rule non Label rule label Conditions

Emotions
Seco 19,9 1,0124 0,0185 0,0458 0,935 0,067
SeCo_v1 19,8 1,412 0,0178 0,0037 0,978 0,0158
SeCo v2 21,2 1,3123 0.0 0,0995 0,8993 0,0032
SeCo_1->0 22,9 1,25 0,021 0,12 0,77 0,124
Seco_com 45 1,512 0,0175 0,0087 0,97 0,0185
Genbase
Seco 52,9 0,569 0.0 0,0 1.0 0.0
SeCo_v1 39 1,917 0,0 0,0 1,0 0,0
SeCo v2 38,5 1,0386 0.0 0,0 1.0 0,0
SeCo_1->0 53,4 0,559 0,0 0,0 1,0 0,0
Seco_com 53,4 0,559 0,0 0,0 1.0 0.0
Yeast
Seco 42,9 2,149 0,015 0,1118 0,87 0,0278
SeCo_v1 39 1,917 0,0 0,0 1,0 0,0
SeCo v2 34,4 1,465 0,0 0,0 1.0 0,0
SeCo_1->0 48,9 1,727 0,025 0,0058 0,96 0,018
Seco_com 53,4 0,559 0,0 0,0 1.0 0.0

Using the fully covered examples in the predication of new rule using both of method v1 and v2 lead to
the learning of smaller models. But only using the method v2 more label-dependency rules are learned.
The model found when we use the combinations of the head rules are bigger (heights number of rules
and rule length) and learn more label-dependent rule that the other approaches.

Tabelle 11: The Predictive performances of the separate-and-conquer multi-label rule learner with the
different proposed options

dataset/
approach Hamming Acc. subset Acc. Mi. Prec Mi. Recall Mi. F1 Ma. Prec Ma. Recall Ma. F1

Emotions
Seco 0,77 0.195 0.71 0.478 0.559 0.537 0.45 0.473
SeCo_v1 0,76 0.18 0.68 0.426 0.52 0.56 0.39 0.44
SeCo v2 0,76 0.17 0.685 0.44 0.53 0.56 0.40 0.45
SeCo_1->0 0,76 0.23 0.67 0.49 0.57 0.59 0.469 0.5
Seco_com 0,76 0.20 0.64 0.57 0.60 0.65 0.5 0.5
Genbase
Seco 0,99 0.93 0.99 0.95 0.97 0.93 0.93 0.93
SeCo_v1 0,98 0.59 0.99 0.60 0.74 0.67 0.67 0.67
SeCo v2 0,99 0.82 0.99 0.78 0.87 0.69 0.69 0.69
SeCo_1->0 0,99 0.97 0.99 0.98 0.98 0.95 0.95 0.95
Seco_com 0,99 0.97 0.99 0.98 0.98 0.95 0.96 0,95
Yeast
Seco 0,785 0.075 0.695 0.516 0.59 0.33 0.27 0.28
SeCo_v2 0,78 0.067 0.71 0.48 0.572 0.358 0.25 0.26
SeCo v2 0,78 0.067 0.71 0.48 0.572 0.358 0.25 0.26
SeCo_1->0 0,78 0.072 0.698 0.49 0.575 0.37 0.268 0.0.28
Seco_com 0,78 0.072 0.70 0.49 0.57 0.37 0.26 0,28
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The predicted performance of the rule learner using the combinations of head rules is the best one. Also
using the fully covered examples in the predication of new rule using improved the performance of the
classification algorithm.

6 Conclusion

In this work we have present a formalization of the multi-label classification and the different type of
multi-label dependency. Conditional and unconditional dependencies may exist between different labels
and can be used to improve the classification task. We have present a multi-label separate-and-conquer
rule Learner that can learn such dependency. We have extended this learner with some option and
then test them. Using these extensions, the predicted performance can be improved and we learn more
label-dependent rules.
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Appendix

Application of the basic algorithm on the toy example

1. The used dataset for test :

outlook temperature humidity windy play icecream tea lemonade dontplay
rainy 65 70 TRUE 0 0 1 0 1
rainy 71 91 TRUE 0 0 1 0 1
sunny 85 85 FALSE 0 1 0 1 1
sunny 80 90 TRUE 0 1 0 1 1
sunny 72 95 FALSE 0 1 0 1 1
sunny 69 70 FALSE 1 0 0 1 0
sunny 75 70 TRUE 1 0 0 1 0
overcast 83 86 FALSE 1 0 0 1 0
overcast 64 65 TRUE 1 0 0 1 0
overcast 72 90 TRUE 1 0 0 1 0
overcast 81 75 FALSE 1 0 0 1 0
rainy 70 96 FALSE 1 0 0 1 0
rainy 68 80 FALSE 1 0 0 1 0
rainy 75 80 FALSE 1 0 0 1 0

2. The used parameters for test :

2.1 the remaining instances percentage θ : 0.01

2.2 the skip threshold percentage τ : 0.1

2.3 heuristic h : FMeasure with beta=1.0

2.4 learn negativ head rules : true

2.5 use stoping rule : true

2.6 re-inserting fully covered examples : true

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — ?|0 — ?|1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — ?|0 — ?|1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — ?|1 1 ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — ?|0 — ?|0 — ?|1 — ?|0 —
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2. The candidate rules are :

Rule confusion matrix F1 measure

pla y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
icecream←− temperature <= 84.0. [[11.0 2.0][0.0 1.0]] Value: 0.917
icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
dontpl y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
dontpl y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
icecream←− ; [[0.0 11.0][0.0 0.0]] Value: 0.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
dontpl y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — ?|1 1 ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — ?|1 1 ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — 0 — ?|0 — ?|1 — ?|0 —

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
dontpl y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
tea←− ; [[0.0 12.0][0.0 0.0]] Value: 0.0
lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
dontpl y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — 0 — ?|1 1 ?|1 —
sunny 80 90 TRUE ?|0 — 1 — 0 — ?|1 1 ?|1 —
sunny 72 95 FALSE ?|0 — 1 — 0 — ?|1 1 ?|1 —
sunny 69 70 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
sunny 75 70 TRUE ?|1 — 0 — 0 — ?|1 1 ?|0 —
overcast 83 86 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
overcast 64 65 TRUE ?|1 — 0 — 0 — ?|1 1 ?|0 —
overcast 72 90 TRUE ?|1 — 0 — 0 — ?|1 1 ?|0 —
overcast 81 75 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
rainy 70 96 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
rainy 68 80 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
rainy 75 80 FALSE ?|1 — 0 — 0 — ?|1 1 ?|0 —
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Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
dontpl y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 69 70 FALSE ?|1 1 0 — 0 — 1 — ?|0 —
sunny 75 70 TRUE ?|1 1 0 — 0 — 1 — ?|0 —
overcast 83 86 FALSE ?|1 1 0 — 0 — 1 — ?|0 —
overcast 64 65 TRUE ?|1 1 0 — 0 — 1 — ?|0 —
overcast 72 90 TRUE ?|1 1 0 — 0 — 1 — ?|0 —
overcast 81 75 FALSE ?|1 1 0 — 0 — 1 — ?|0 —
rainy 70 96 FALSE ?|1 1 0 — 0 — 1 — ?|0 —
rainy 68 80 FALSE ?|1 1 0 — 0 — 1 — ?|0 —
rainy 75 80 FALSE ?|1 1 0 — 0 — 1 — ?|0 —

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
lemonade←− ; [[2.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[0.0 2.0][0.0 0.0]] Value: 0.0
dontpl y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — 0 — 1 — ?|1 —
sunny 69 70 FALSE 1 — 0 — 0 — 1 — ?|0 0
sunny 75 70 TRUE 1 — 0 — 0 — 1 — ?|0 0
overcast 83 86 FALSE 1 — 0 — 0 — 1 — ?|0 0
overcast 64 65 TRUE 1 — 0 — 0 — 1 — ?|0 0
overcast 72 90 TRUE 1 — 0 — 0 — 1 — ?|0 0
overcast 81 75 FALSE 1 — 0 — 0 — 1 — ?|0 0
rainy 70 96 FALSE 1 — 0 — 0 — 1 — ?|0 0
rainy 68 80 FALSE 1 — 0 — 0 — 1 — ?|0 0
rainy 75 80 FALSE 1 — 0 — 0 — 1 — ?|0 0

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0
pla y ←− ; [[0.0 5.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
lemonade←− ; [[2.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[0.0 2.0][0.0 0.0]] Value: 0.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75

3. The best rule is :

Rule confusion matrix F1 measure

dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0

1. the remaining training set (5 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 0 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 0 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 0 1 — 0 — 1 — ?|1 —
sunny 80 90 TRUE ?|0 0 1 — 0 — 1 — ?|1 —
sunny 72 95 FALSE ?|0 0 1 — 0 — 1 — ?|1 —
sunny 69 70 FALSE 1 — 0 — 0 — 1 — 0 —
sunny 75 70 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 83 86 FALSE 1 — 0 — 0 — 1 — 0 —
overcast 64 65 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 72 90 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 81 75 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 70 96 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 68 80 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 75 80 FALSE 1 — 0 — 0 — 1 — 0 —

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0
pla y ←− ; [[0.0 5.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
lemonade←− ; [[2.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[0.0 2.0][0.0 0.0]] Value: 0.0
dontpl y ←− ; [[0.0 5.0][0.0 0.0]] Value: 0.0
dontpl y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0

3. The best rule is :

Rule confusion matrix F1 measure

pla y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (5 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE 0 — 0 — 1 — ?|0 — ?|1 1
rainy 71 91 TRUE 0 — 0 — 1 — ?|0 — ?|1 1
sunny 85 85 FALSE 0 — 1 — 0 — 1 — ?|1 1
sunny 80 90 TRUE 0 — 1 — 0 — 1 — ?|1 1
sunny 72 95 FALSE 0 — 1 — 0 — 1 — ?|1 1

2. The candidate rules are :
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Rule confusion matrix F1 measure

pla y ←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
pla y ←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
icecream←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
tea←− ; [[0.0 0.0][0.0 0.0]] Value: 0.0
lemonade←− ; [[2.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[0.0 2.0][0.0 0.0]] Value: 0.0
dontpl y ←− ; [[0.0 5.0][0.0 0.0]] Value: 0.0
dontpl y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0

3. The best rule is :

Rule confusion matrix F1 measure

dontpl y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[11.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[12.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
pla y ←− icecream= 0, lemonade = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− ; [[5.0 0.0][0.0 0.0]] Value: 1.0
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Application of Separate-and-Conquer Multi-Label Rule Learner on the weather dataset using positive
and negative head-rule combination

1. The used dataset for test :

outlook temperature humidity windy play icecream tea lemonade dontplay
rainy 65 70 TRUE 0 0 1 0 1
rainy 71 91 TRUE 0 0 1 0 1
sunny 85 85 FALSE 0 1 0 1 1
sunny 80 90 TRUE 0 1 0 1 1
sunny 72 95 FALSE 0 1 0 1 1
sunny 69 70 FALSE 1 0 0 1 0
sunny 75 70 TRUE 1 0 0 1 0
overcast 83 86 FALSE 1 0 0 1 0
overcast 64 65 TRUE 1 0 0 1 0
overcast 72 90 TRUE 1 0 0 1 0
overcast 81 75 FALSE 1 0 0 1 0
rainy 70 96 FALSE 1 0 0 1 0
rainy 68 80 FALSE 1 0 0 1 0
rainy 75 80 FALSE 1 0 0 1 0

2. The used parameters for test :

2.1 the remaining instances percentage θ : 0.01

2.2 the skip threshold percentage τ : 0.1

2.3 heuristic h : FMeasure with beta=1.0

2.4 learn negativ head rules : true

2.5 use stoping rule : true

2.6 re-inserting fully covered examples : true
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1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — ?|0 0 ?|1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 — ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — ?|0 0 ?|0 — ?|1 — ?|0 —

2. The candidate rules are :

Rule confusion matrix F1 measure

pla y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
pla y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
pla y ←− ; [[11.0 1.0][2.0 0.0]] Value: 0.88
icecream←− temperature <= 84.0. [[11.0 2.0][0.0 1.0]] Value: 0.917
icecream←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
lemonade←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
dontpl y ←− temperature <= 84.0, humidi t y <= 90.0. [[8.0 2.0][1.0 3.0]] Value: 0.842
dontpl y ←− ; [[11.0 1.0][2.0 0.0]] Value: 0.88
dontpl y ←− humidi t y >= 82.5, outlook = sunny. [[3.0 0.0][2.0 9.0]] Value: 0.75
dontpl y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923

3. The best rule is :

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :
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Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 — 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 — 1 — ?|0 0 ?|1 — ?|1 —
sunny 69 70 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
sunny 75 70 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 83 86 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 64 65 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 72 90 TRUE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
overcast 81 75 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 70 96 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 68 80 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —
rainy 75 80 FALSE ?|1 — 0 — ?|0 0 ?|1 — ?|0 —

2. The candidate rules are :

Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
pla y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
pla y ←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
tea←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
tea←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
lemonade←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
dontpl y ←− icecream= 0. [[9.0 2.0][0.0 3.0]] Value: 0.9
dontpl y ←− ; [[12.0 0.0][2.0 0.0]] Value: 0.923
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
dontpl y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923

3. The best rule is :

tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
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4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

Application of the algorithm on the toy example

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE ?|0 0 0 — 1 — ?|0 — ?|1 —
rainy 71 91 TRUE ?|0 0 0 — 1 — ?|0 — ?|1 —
sunny 85 85 FALSE ?|0 0 1 — 0 — ?|1 — ?|1 —
sunny 80 90 TRUE ?|0 0 1 — 0 — ?|1 — ?|1 —
sunny 72 95 FALSE ?|0 0 1 — 0 — ?|1 — ?|1 —
sunny 69 70 FALSE 1 — 0 — 0 — ?|1 — ?|0 —
sunny 75 70 TRUE 1 — 0 — 0 — ?|1 — ?|0 —
overcast 83 86 FALSE 1 — 0 — 0 — ?|1 — ?|0 —
overcast 64 65 TRUE 1 — 0 — 0 — ?|1 — ?|0 —
overcast 72 90 TRUE 1 — 0 — 0 — ?|1 — ?|0 —
overcast 81 75 FALSE 1 — 0 — 0 — ?|1 — ?|0 —
rainy 70 96 FALSE 1 — 0 — 0 — ?|1 — ?|0 —
rainy 68 80 FALSE 1 — 0 — 0 — ?|1 — ?|0 —
rainy 75 80 FALSE 1 — 0 — 0 — ?|1 — ?|0 —

2. The candidate rules are :

Rule confusion matrix F1 measure

pla y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
pla y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923
pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− icecream= 1. [[3.0 0.0][2.0 9.0]] Value: 0.75
dontpl y ←− ; [[12.0 2.0][0.0 0.0]] Value: 0.923

3. The best rule is :

pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
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4. The rule set :

Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE 0 — 0 — 1 — 0 — ?|1 —
rainy 71 91 TRUE 0 — 0 — 1 — 0 — ?|1 —
sunny 85 85 FALSE 0 — 1 — 0 — ?|1 1 ?|1 —
sunny 80 90 TRUE 0 — 1 — 0 — ?|1 1 ?|1 —
sunny 72 95 FALSE 0 — 1 — 0 — ?|1 1 ?|1 —
sunny 69 70 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —
sunny 75 70 TRUE 1 — 0 — 0 — ?|1 1 ?|0 —
overcast 83 86 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —
overcast 64 65 TRUE 1 — 0 — 0 — ?|1 1 ?|0 —
overcast 72 90 TRUE 1 — 0 — 0 — ?|1 1 ?|0 —
overcast 81 75 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —
rainy 70 96 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —
rainy 68 80 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —
rainy 75 80 FALSE 1 — 0 — 0 — ?|1 1 ?|0 —

2. The candidate rules are :

Rule confusion matrix F1 measure

lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 0. [[12.0 0.0][0.0 2.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− pla y = 0. [[5.0 0.0][0.0 9.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

3. The best rule is :

lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :
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Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

1. the remaining training set (14 examples) :

outlook temperature humidity windy play * icecream * tea lemonade * dontplay *
rainy 65 70 TRUE 0 — 0 — 1 — 0 — ?|1 1
rainy 71 91 TRUE 0 — 0 — 1 — 0 — ?|1 1
sunny 85 85 FALSE 0 — 1 — 0 — 1 — ?|1 1
sunny 80 90 TRUE 0 — 1 — 0 — 1 — ?|1 1
sunny 72 95 FALSE 0 — 1 — 0 — 1 — ?|1 1
sunny 69 70 FALSE 1 — 0 — 0 — 1 — 0 —
sunny 75 70 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 83 86 FALSE 1 — 0 — 0 — 1 — 0 —
overcast 64 65 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 72 90 TRUE 1 — 0 — 0 — 1 — 0 —
overcast 81 75 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 70 96 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 68 80 FALSE 1 — 0 — 0 — 1 — 0 —
rainy 75 80 FALSE 1 — 0 — 0 — 1 — 0 —

2. The candidate rules are :

Rule confusion matrix F1 measure

dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− pla y = 0. [[5.0 0.0][0.0 9.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

3. The best rule is :

dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0

4. The rule set :
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Rule confusion matrix F1 measure

icecream←− outlook = sunny, humidi t y >= 82.5. [[3.0 0.0][0.0 11.0]] Value: 1.0
icecream←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
tea←− outlook = rainy, wind y = TRU E. [[2.0 0.0][0.0 12.0]] Value: 1.0
tea←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
pla y ←− icecream= 0, tea = 0. [[9.0 0.0][0.0 5.0]] Value: 1.0
pla y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
lemonade←− tea = 1. [[2.0 0.0][0.0 12.0]] Value: 1.0
lemonade←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
dontpl y ←− pla y = 1. [[9.0 0.0][0.0 5.0]] Value: 1.0
dontpl y ←− ; [[14.0 0.0][0.0 0.0]] Value: 1.0
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