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1 Introduction

Many artificial intelligence application can be modeled as a sense, plan, act pipeline, where the agent perceives the
world, creates a representation on which it plans its action and finally applies it. In most real world scenarios, perception
and action in themselves are already very hard problems. The use of games allows ignoring them by functioning as a
planning simulation. Many games have the added advantage, that they were once created to simulate certain aspects of
real world problems resulting in models that can be generalized and applied to real world problems.
The successful application of many machine learning methods relies heavily on the representation of the input data[3].
For a long time, features had to be designed by human experts making the development of new applications lengthy
and expensive. This changed with the recent rise of deep neural networks that were able to learn their own representa-
tions given enough training data. They were able to learn very complex representation of the given data on their own,
enabling successful application in domains like speech recognition [12], computer vision [14] and game playing[17],
outperforming systems relying on hand engineering by experts.
Even when the learned representation performs well on the training and testing data it is often hard to judge how well
they will generalize. This is the case because even for relatively low dimensional input spaces, like positions on a chess
board, the number of possible positions is very high (chess: ∼ 1040[18]) which results in the practical impossibility of
adequate sampling. The assumption behind the use of many machine learning techniques is, that the effective dimension
of the problem is much lower, enabling more efficient modeling. In most cases this assumption only holds when discard-
ing uncommon samples, requiring risk assessment for the neglected cases. For more easily interpretable approaches like
rule learning, a human expert can evaluate the level of trust they place in the learned rules. Other approaches like neural
networks are not that easy to interpret, making them difficult to apply in safety sensitive areas.
Due to this problem neural networks require the development of different approaches that make them more interpretable.
While this is still a very hard task for most neural network architectures the structure of convolutional networks allow
for the application of many different visualization techniques that are able to improve interpretability. The gained under-
standing can be used for further improvement of the network.

1.1 Goal

The goal of this thesis is the exploration and visualization of the learning potential of convolutional autoencoders in the
chess domain. This is achieved by first training an autoencoder on well balanced chess positions and then visualizing,
what it has learned. Many of the developed visualization techniques are adaptations of similar methods developed in the
image processing domain.
The developed autoencoder can serve as an reference architecture for the development of convolution based chess appli-
cations.
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2 Foundations and Related Work

The following sections contain a dense introduction to the theoretical foundations of neural networks and its training.
The book ’Pattern Recognition and Machine Learning’[4] provides a more complete introduction to neural networks and
the backpropagation algorithm in its chapter 5. The book ’Deep Learning’[10] covers the whole topic more broadly and
can provide some guidance on many practical problems.

2.1 Neural Networks

For the last years, neural networks have been among the most popular and successful types of machine learning algo-
rithms, achieving remarkable results like superhuman performance playing go[17]. The success is often attributed to the
development of new training methods, the availability of greater computational resources and the availability of very
large training corpora.
A neural network, or multilayer perceptron, consists of stacked layers of perceptrons, with each layer output depending
on the output of the previous layer. Each perceptron is a single nonlinear function p(X , Ŵ ) = σ(W T ·X + b) = σ(Ŵ T · X̂ ),
where X is the input vector, W are the learned weights, b is a learned offset (bias) and σ is a chosen nonlinear function,
called activation function. For mathematical convenience, the bias is included in W resulting in Ŵ = (b, w1, w2, ..., wn)T

and X̂ = (1, x1, x2, ..., xn)T .

Activation
function

σ
∑

w2x2

...
...

wnxn

w1x1

b1

inputs weights

Figure 1: Perceptron

In the beginning of the learning phase, the weights of the perceptron are initialized randomly and updated using the
perceptron error (Bishop section 4.1.7)[4]. For each datum (X,y) the total error ε(Ŵ , X , y) = (Ŵ T · X̂ − y) has to be
distributed according to the weights contribution to the activation resulting in εWi

(Ŵ , X , y) = σ′(Ŵi · X̂ i) · ε(Ŵ , X , y).
The weights are then updated using the chosen gradient descent implementation. This formula is applied recursively
in neural networks. A single perceptron can only learn a simple nonlinear function, requiring the stacking of multiple
perceptrons for the application in more complex tasks.
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Figure 2: Fully connected two layer neural network
Each hidden unit hi, j and output unit yi, j is a different perceptron.
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Each output yn,i = σn(Ŵ T
n · ĥn−1) is computed only using the outputs of the previous layer. During training, the errors for

each weight are calculated using the backpropagation algorithm [Bishop section 5.3][4] and adjusted using a gradient
descent (section 2.1.4) implementation.
Even though every continuous function in RN can be learned by a neural network with just one hidden layer (Universal
Approximation Theorem)[5], increasing the number of layers (depth) of the network is often important for successful
training. This happens because deeper networks can reuse and combine lower level features for the efficient learning of
more abstract features and better generalization properties. Since fully connected neural networks of adequate size and
depth have a lot of weights that need to be trained, as can be seen in figure 2, it can be helpful to restrict them in some
way and therefore reducing the effective number of weights to be trained. Most restrictions are motivated by some prior
knowledge about the structure of the input data or requirements for the learned model.

2.1.1 Convolutional Neural Networks

One of the most popular restricted network types is the convolutional neural network (CNN). The motivation behind the
use of CNNs is the expectation of local and translation invariant features. This requires the input data to be organized
in some grid-like structure that the network can convolute over, which makes CNNs a natural choice for image based
learning and board games like chess and go.
Each convolution can be seen as a function that learns a specific filter that it applies to its whole input. While the convo-
lutions of the first layer operates directly on the input, the convolutions of later layers only operate on the outputs of the
previous layer, stacking them like the dense layers described in the previous section. Each of this filters can be thought of
as a kernel, that is sliding over the entire input, producing a representation of the input. Due to the size of the kernel the
layers shrink the input with the application of each filter. This effect can only be mitigated by the use of nonzero padding
or the use of size 1 convolutions.
Assuming a 16x16 input RGB image and a convolutional layer consisting of 10 filters of kernel size 3, the feature repre-
sentation would be of size 14x14x10, with each filter being a 14x14 layer. Each entry within each filter represents the
application of a perceptron with the same weights to a different part of the input. This results in the following formula
computing the outputs of feature f with kernels of size n:

yi, j, f = σ(b f +
n−1
∑

a=0

n−1
∑

b=0

W T
a,b, f · X i+a, j+b)

It has to be noted, that the product inside the double sum is still a vector product, because the input value at each position
is a vector (in this case 3D because of the RGB input). The formula also visualizes, why the feature image is smaller than
the original.
As discussed in the section on neural networks, weight restriction can dramatically decrease the number of learnable
weights and thus make the training of deeper and more complex models possible. In the case of convolutions, the
restriction is the result of weight sharing within each filter in each layer as shown in the equation above. While the
convolutional layer with kernel size 3 connecting the 16x16x3 image to the 14x14x10 representation only requires 280
weights. A fully connected layer would require 1,507,240 weights to be trained, requiring a lot of training data for only
the first layer.
Two important modifications to the standard convolutional algorithm are padding (standard is 0 ) and strides (standard
is 1). Padding is the addition of a boarder to the input. In most cases, padding is used to prevent the convolution from
shrinking the convolutable area and thus enabling deeper architectures. The added area is normally filled with zero vec-
tors. Padding the 16x16 image from the example above by one would result in a 18x18x3 image, resulting in a 16x16x10
feature representation when using 10 kernels of size 3. The use of strides can be seen as the opposite of padding since it
shrinks the convolutable feature area. A stride of 2 results in the computation of only every second feature. It is important
to note, that there are requirements for the size of the input and kernel size for the use of well defined strides. While the
use of stride 2 on our example input of an 16x16x3 image would result in a 7x7x10 representation, it is not well defined
because starting at another corner would result in a different output. An 17x17x3 image would result in a well defined
output of size 8x8x10. The size of the convolution area in each direction can be computed, using the following formula:
(W F + 2P)/S + 1, with W as the width of the area, F the size of the kernel, P the size of the padding and S the size of
the strides. A not well defined configuration is present, if the formula does not return a whole number in every direction.
The convolutional layers used in this thesis all use stride 1 and 0 padding.
Another important type of convolution is the deconvolutional layer (transposed convolutional layer). As the term trans-
posed convolution suggests this method reverses the typical convolutional output shrinking. It does so by padding the
input with a kernel-size -1 thick boarder of zeros. By doing so the size of the convolutable area of the output rises by
kernel-size -1. This means that a 3x3 convolution followed by a 3x3 deconvolution results in an output of the same
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convolutional area. The convolutional autoencoders used in this thesis and explained in the next section make use of this
property.

2.1.2 Autoencoder

An autoencoder takes an input datum, transforms it into an encoded representation and then decodes it back to some-
thing close to the original. The encoding part of the network is referred to as the encoder, while the decoding part is
called a decoder. All autoencoders constructed in this thesis are symmetric, resulting in encoder decoder pairs, with the
same hidden dimension in each layers. Because the decoder needs the reverse the encoding process its layers oder is
reversed. Assuming an input of size 100 and encoding layers of the resulting sizes 80, 60 and 20 the resulting decoder
would use input of size 20 and produce layer outputs of size 60, 80 and 100.
Since most tasks require labeled data, that is often very limited and expensive to acquire, unsupervised pre-training is
often successfully used for network initialization. Pre-training initializations are expected to be closer to solutions with
better generalization properties [7]. Since the finding of representations that aid future learning is one of the major goals
of representation learning, autoencoders are a prominent tool in this domain.
Because the objective function of an autoencoder only aims to reduce reconstruction errors the identity function would
be an optimal solution. In practice this does not happen if nonlinear layers are used in combination with early stopping
and stochastic gradient descent[2] and the use of convolutional layers without padding makes learning of the identity
function even more infeasible.
One very prominent way of forcing the network to generalize, is the training of a denoising autoencoder. In this archi-
tecture, the input is changed by adding some random noise to it while the output remains unchanged. This leads to a
reward for generalization and in many cases to better overall performance, even though the noise level and distribution
are new hyperparameters that need to be tuned. There is also the possibility of punishing encodings that are too complex
through the introduction of regularization terms in the loss function. The most prominent regularizer is the L2 regularizer
L(X ) = ||X ||2 which can be applied to the weights, or the activations of a layer, penalizing large weights or activations.
This results in sparse neural activations which can improve performance.
The usefulness of an autoencoder that is not used for pre-training can often only be evaluated through the application of
its encoding as preprocessing for a variety of tasks, making the evaluation a challenging task. The causes and possible
solutions to this problem are further discussed in the evaluation section 3.2. It has to be noted that the application of an
autoencoder relies on the assumption, that the training loss can guide to a useful representation of the data. In most use
cases like pre-training this is not a real issue, because the same loss function is used in pre- and final-training, making
its usefulness apparent in the result in application task. This thesis tries to use the inherent board structure in a game of
chess as the basis of its feature extraction, which differs from previous chess based learning methods and is described in
section 2.3.

2.1.3 Hyperparameter

Even though neural networks can learn their own representations of the given data they are not a black box solution and
require a lot of parameters to be tuned. The choice of these parameters can themselves be interpreted as an learning
problem over all hyperparameters minimizing the loss of the network. Work on this front has been done by Andrychowicz
et al.[1]. For large search-spaces and larger problems this method is very computationally demanding, because every
evaluation of the loss functions requires the complete training and evaluation of a network architecture, making it infea-
sible in most situations.
One of the most important and most complex hyperparameter types in a neural network is the layout of the architecture.
Here the number of hidden layers, the number of neurons in each of these layer and connection restrictions between
layers have to be decided on. Many of these design decisions can be motivated by prior knowledge about the problem
and the structure of the data. These parameters are often very hard to choose and are either engineered by trial and
error, heuristics or derived from previous architectures that address similar problems.
The choice of the nonlinearities used for each layer is another important hyperparameter. Usually all neurons in one
hidden layer use the same nonlinear function. In most modern architectures rectified linear units (ReLU) are used in all
hidden layers. The output of a ReLU is 0 if the input is negative and its input if it is positive. This makes the computation
of the function and its derivative very easy enabling the efficient training of deep networks. Another main advantage
it that ReLUs seem to solve the vanishing gradient problem[9], which can occur during backpropagation in very deep
networks when many small numbers need to be multiplied, because the ReLU output can be greater than 1. A different
important nonlinearity is the logistic function f (x) = 1

1+e−x , often referred to as sigmoid function, which forces the output
in [0, 1]. Its main use is in the output-layer of the network, where it can model degrees of confidence. This can be useful
for tasks like multi-label classification. If all outputs should sum up to one, which would be a reasonable expectation in
tasks like multi-class classification, it is better to use the softmax function f (x)i =

exi
∑K

j=1 ex j instead.
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2.1.4 Gradient-Descent

Using the backpropagation algorithm on the loss produced by one training examples results in one error per weight. The
choice of how this error should effect the weight update is taken by the gradient-descent implementation that is used for
network optimization.
Given an error E(wi(tn)) the most crude implementation of a gradient-descent update would just perform the following
update: wi(tn+1) = wi(tn) − E(wi(tn)). Since the optimization problem of a multilayer perceptron is not convex, this
update is not guaranteed to reach the global optimum or even the best local optimum.
There are three common additions to the normal gradient-descent algorithm that are often used to guide to better
solutions. The introduction of a learning rate γ is the most common resulting in the following update function wi(tn+1) =
wi(tn)−γE(wi(tn)). This can increase or decrease the size of the gradient steps and can improve convergence dramatically
if chosen correctly. Fixed learning rates have the problem of being problem dependent, requiring fine-tuning and slow
convergence if the learning rate is chosen small enough for good convergence properties in later training stages. This
problem leads to a popular adaptation, a learning rate that is reduced over time. Most of the time this is achieved by
using a fixed decay resulting in the following learning rate update γ(tn+1) = c · γ(tn).
Another popular modification is the introduction of momentum. Its main purpose is the avoidance of shallow local
minima and the stabilization of the descent. This effect is achieved by adding an additional term resulting in the following
update wi(tn+1) = wi(tn)+Vi(tn+1)with Vi(tn+1) = µVi(tn)−γE(wi(tn)). Vi(tn+1) can be visualized as the current speed of
the descent which depends on linear approximated friction µ, the previous speed Vi(tn) and the current slope γE(wi(tn)).
Sufficient speed can enable the descent to get out of shallow local minima but - depending on the friction convergence
- can be slower. Another advantage of momentum is its stabilizing property, preventing the descent form dramatically
changing its direction in every step.
When dealing with large amounts of data, which is the case in most deep learning applications, calculating the error
based on the whole training set for a single gradient step becomes infeasible. A natural response to this problem is
stochastic sampling. Here the used subset of the training data is sampled using a uniform distribution over the whole
data. Since this can not guarantee that every datum has the same impact on the weight it is advanced to its more popular
successors. In mini-batch gradient descent the data is randomly shuffled at the beginning of each epoch. The shuffled
data is then split in a fixed number of mini-batches on which the cumulative error is computed and backpropagated,
resulting in multiple weight updated per epoch. This results in the positive properties of stochastic gradient descent
combined with more equal influence of the whole data. It is important to note that this does not ensure a high quality
gradient in every update or even the reaching of the same optimum when running multiple descents from the same
starting point, because unlucky sampling can still produce unrepresentative samples that guide the descent in the wrong
way.
The components discussed above are the main building blocks of most commonly used neural network optimizers. They
often use well tunes starting values and heuristics to ensure very good general convergence properties on real world
optimization problems. In this thesis, the standard Keras implementation of Nadam, the addition of Nesterov Momentum
into Adam[13], is used together with mini-batch sampling to perform all the weight updated.

2.2 Representation Learning

The goal of representation learning is the discovery of features for a given data set that make a machine learning task
easier. In the ideal case representation learning makes manual feature engineering obsolete. Traditional feature engi-
neering required a lot of time and energy by experts. With the rise of deep learning and its inherent capability to learn
and optimize its own features, machine learning areas like computer vision and natural language processing started to
advance much more rapidly, which enabled big performance boosts in tasks like speech recognition and autonomous
driving. While the advances in these areas are enormous, the requirement in computational power and training data for
very powerful models is too. This is one of the problems representation learning aims to solve.
One prominent and very actively researched example is the finding of certain objects and their relative positions in an
image, called object detection. While it is theoretically possible to train an end-to-end model receiving a video stream
and converting it to actions steering a car, it is much more efficient to do this on the basis of the previous representation.
In learning - as in many other domains - this modular approach has the added advantage of making testing feasible
by allowing the separate testing of every sub-model and thus ensuring that the right thing is learned. It also allows
for reusability which can dramatically reduce training time and data requirements, making previously infeasible tasks
possible.
The creation of good general purpose representations is challenging if not impossible. Since every problem focuses on
different aspects of the data the learned representation is either to broad, requiring additional filtering, or not broad
enough, omitting aspects relevant to some applications. In many cases is also not clear what features a good representa-
tion should satisfy making the creation of a metric for learning challenging.
Since the representation learned in this thesis has no specific application in mind, the main metric for training and eval-
uation will be the reconstruction error. A low reconstruction error ensures, that most information present in the input is
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still present in the output, which is one of the important properties of a general purpose representation discussed above.
Therefore models building on the generated representation will likely have to learn which parts of the representation are
important for them. The metrics used will be described at the end of the following section.

2.2.1 Unsupervised Representation Learning

Some representation learning tasks - such as labeling subsections of an image - require training data that has been la-
beled by humans. This data is hard and expensive to come by or in domains like medical diagnostics sometimes not
even attainable. Unsupervised representation learning aims to get rid of this problem by not relying on any labeled data,
which restricts the form of the resulting representation. This can be achieved by making the input equal the output (e.g.
autoencoder) or by making input or output generatable (e.g. Jigsaw puzzles from images). Other unsupervised learning
approaches like clustering have no need for the generation of artificial input or output data.
Since there is no target data that can guide the learning process, unsupervised learning is even more depending on hyper-
parameter tuning than normal machine learning. In general these parameters are chosen according to the performance
on some tasks that are expected to represent its use cases.
In this thesis an autoencoder is used as unsupervised representation learner. As described in section 2.1.2 it tries to
find a representation, that allows for a reconstruction with minimal errors. Further criteria by which the performance is
evaluated are presented in section 3.2.2.

2.3 Related Work

2.3.1 CNN Visualization

The visualization of convolutional networks in the domain of image processing is a well researched area. Many of the
approaches presented in section 3.2.2 are adaptations of these methods. A good summarization of them was produced
by Zeiler et al.[21]. Most of these techniques cannot be applied directly in the chess domain because of key differences
in the input. These differences and their consequences for visualization purposes are described in section 3.2.2.

2.3.2 Chess

Chess, and game playing in general, has always been a popular research topic in machine learning. While the best
chess programs can beat every human player, most rely on handcrafted and then optimized heuristics for final board
evaluation. This makes it an interesting research domain for the development of different strategies. In 2015 a program
called Giraffe[15] was able to reach FIDE-IM level playing strength ( 2,400 elo) using reinforcement learning. DeepChess
[6] was also developed in 2015 and was able to play at FIDE-GM level ( 2,500 elo) using several million expert games
for training. Both approaches relied on dense neural network architectures.
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3 Methodology

3.1 Training

The autoencoder was trained as a symmetric convolutional model, resulting in a decoder that produces intermediate out-
puts of the same dimension as the encoder. This can be achieved using the transpose convolution operation. The models
success was evaluated using MSE on unseen validation examples and was optimize using the following parameters:

1. number and shape of the convolutional layers

2. activation functions

3. dropout rate

4. input noise

This resulted in an autoencoder that was able to reconstruct 99% of the validation examples flawlessly after discretization.
The exact results are presented in section 4.2.

3.1.1 Autoencoder Layout and Nomenclature

This section describes the general layout of all used autoencoders and the nomenclature by which they will be referred
to in this thesis.
All autoencoders use convolutions in most of their layers with 0 padding and strides 1, which ensures, that the input is
getting compressed. The remaining differences between the layers are kernel size, layer depth, and nonlinearity, which
will be specified in the following way:

3x3-60|2x2-90|2x2-120|2x2-225|250|relu_sigmoid

Figure 3: Example autoencoder nomenclature

The first part describes the layout of the layers, seperating each one by ’|’. The example encoder consists of four con-
volutional layers and one dense layer. The first encoding layer uses a 3x3x60 kernel transforming the 8x8x12 shaped
input into a 6x6x60 encoding, on which the second layer operates. The last layer is a dense layer, which is shown by the
missing kernel size. It uses the 3x3x225 encoding resulting from the 2x2x225 kernel and transforms it in 250 output bits.
The decoder does the same operations in reverse, transforming its 250 bit input into a 2025 bit output, getting reshaped
into 3x3x225 bit and reversing the encoding process using a 2x2x120 deconvolutional layer.
The next two parameters specify the used nonlinear functions, where the first specifies the type of activation in all but
the final encoder and decoder layers and the second the type of activation in final encoder layer. In this example ReLUs
are used for all layers beside the final encoding and decoding layer. The last decoding layer always uses a sigmoid non-
linearity, because it tries to predict binary values. In the example above a sigmoid function is used as nonlinearity used
for the last encoding layer.
If dropout is used it is used in front of every layer while training and the dropout rate is specified separately. Input noise
and its noise rate are specified separately if used.

3.2 Autoencoder Evaluation

The performance assessment of an autoencoder is different from most machine learning tasks. This is due to the fact,
that meaningful performance measures are much harder to find, because the quality of the produced encoding is hard
to measure. Useful training and evaluation become much more difficult, because the successful reconstruction is only a
byproduct is not the goal of autoencoders, even though it is the metric used by their optimization process. As discussed
in section 2.2 the goal of an autoencoder is the finding of an useful representation of the given data. Because the general
usefulness of a representation cannot be be measured it is tried to be approximated using three types of evaluation. For
this reason the generated models were compared in their reconstruction error, visualization and application.
The quality of the reconstruction is the one of the central metrics when evaluating. If the central assumption behind the
use of autoencoders, that a useful representation can be found through encoding and decoding, is correct the reconstruc-
tion error is a good measure for the evaluation of the architecture. This assumption does not have to be correct, because
while it is true, that the autoencoder needs to exploit some structures of the training data to learn a good encoding and
decoding procedure the found encodings do not have to be useful for any other applications.
One of the many appeals of CNN’s, especially the ones using 2 dimensional convolutions, is the ability to visualize its
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activations as a 2D image, wich is one of the key ingredients of the visualizations presented in section 3.2.2. This can be
a very helpful tool during development and is popular in image processing tasks.
Since the goal of the encoding is the learning of structures, which are present in high quality chess positions, there are
some natural application on which the quality can be assessed. These applications are the last part of the following
subsections.

3.2.1 Reconstruction

The most straight forward and the only metric on which the autoencoder can actually be trained is the quality of the
reconstruction. If the data is represented in a way, that allows a very accurate reconstruction of the original data it is
ensured, that only few information is lost through the encoding process. Depending on the application using the encoded
data this can be more or less desirable, because may tasks require only a portion of the provided information. Since
the desirable information depends on the task it is reasonable to assume, that this is a necessary, but not sufficient,
property of a general purpose representation. This property will be measured using the mean squared error (MSE) of the
reconstructed boards. During training the continuous outputs of the final layers are used to provide better gradients. For
evaluation the output is discretized allowing for a better quality assessment.
During training The quality of the output was evaluated using the following criteria:

• error rates per board (discrete)

• MSE (discrete)/board

• MSE /board

• MSE /bit (loss)

For the discrete evaluation methods the error was computed using the rounded predicted output (rounding 0.5 to 0),
resulting in the following sample prediction.

number of errors MSE(dis) MSE loss
0 1 2 3 4 5 6 7 8 9 >=10

0.63 0.26 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.54 0.0007

Figure 4: Evaluation example
Evaluation of an autoencoder which recreated 63% of the unseen positions correctly.

This evaluation gives a much better sense of the actual performance of the generated model. All errors are computed
using the bitwise difference between the prediction and the actual output, resulting in an error of two when a piece
should be moved to another empty position.

3.2.2 Visualization

While the performance on a specific task is an important part of the evaluation process an understanding of what has
been learned is helpful for ensuring good generalization properties. This is important, because nearly all datasets are
subject to some inherent sampling biases. A famous example for the problems that can arise when training a neural
network without visualization can be found in a story, in which a network was supposedly able to perfectly separate
pictures of enemy tanks from pictures without them, while in reality it was only able to separate cloudy from sunny
pictures[20]. While these errors are easy to recognize after the fact it is very difficult to create training examples that
cannot be reward-hacked (the substitution of the original task by an unintended, simpler to achieve task that does not
solve the intended problem, but satisfies its reward function) by the network. This has always been an advantage of
easier to interpret methods like rule learning over methods like neural networks.
Convolutional networks have, thanks to their inherent structure, an advantage over the other network architectures. This
is the case because they convolute over time (1-D) or space (2-D) which results in network layers that preserve this shape
and thus are easier to visualize. Many visualization techniques rely on the inherent properties of images, making their use
for higher dimensional and discrete domains like chess boards challenging. Another problem is the information density
of a chess position. When looking at natural images the color values of a given pixel often correlate with the values of
adjacent pixels, while the state of one chess tile does often not contain a lot of information about the state of adjacent
tiles. These problems together with the small overall size of the original input (8x8) over which is being convoluted,
make the visualization and learning of meaningful features very challenging.
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Since chess positions differ from pictures in many ways, the methods developed in computer vision are not easily trans-
ferable. Even though each position can be efficiently represented using an 2-D array, because each field can only contain
one piece at each time, some visualization techniques rely on continuous values for each piece-type. This requirement is
difficult, because a tile with half a pawn on it cannot be easily visualized. While colored images have three dimensions
per pixel which can be shown simultaneously, chess positions have 12 (every color, chess-piece pair) , or at least 7 (color
as seventh dimension) dimensions per chess-tile which restricts visualization possibilities dramatically. The following
sections contain information to the visualization techniques that have been applied.

Weight Visualization
The visualization of the weights of the first layer is one of the most common techniques for many convolutional networks.
The weights of deeper layers can not be easily interpreted using this technique, because their weights only combine the
nonlinear output of the previous layers and not the input layer. This technique has been used to visualize the first layer
of AlexNet[14] the winner of the 2012 ImageNet Large Scale Visual Recognition Challenge[16]. Its visualization shows
a variety of edges, patterns and color transitions. These kinds of transitions can also be observed in many other convo-
lutional image based networks with sufficiently large first layer kernels. While earlier networks like AlexNet can allow
for larger convolutional kernels in their first layers, 11x11 in the case of AlexNet, more recent networks like Inception-
ResNet[19] are much deeper and thus can’t afford the use of large input kernels (3x3 in its first layers). This results in
the loss of interpretability, because edges are often larger than the first kernels.
Since the primitives found in the first image layers are also the most fundamental features previously designed by experts
it is interesting to find out, whether the patterns chosen by this autoencoder have similarly recognizable forms.

Figure 5: Weight visualization example
Example weight visualization with synthetic generated weight. The Weights are initialized randomly and a diagonal

weight of 1 is added for white and black pawns. Pieces types are from left to right Pawn, Knight, Bishop, Rook, Queen,
King with alternating colors, starting with white.

Excerpts that Maximize Feature Output
The extraction of image excerpts that maximize the feature output is a visualization technique that is often use in image
classification tasks. It is an easy way of showing what the inputs that generate maximal output for certain feature have
in common and was previously used in papers like[8]. This way of visualization allows the observer to find common pat-
terns between the best inputs by comparing them within each group or by extracting similarities by applying additional
machine learning techniques. One of the disadvantages of this technique is that it is not generative, which means that
all the examples have to get sampled from the training data. More general patterns would have to get generated from
the most popular ones. In the image domain it is also often not obvious, what the excerpts have in common, when they
share multiple similarities. The relevant subset of similarities can then be deduced using different machine learning ap-
proaches. Another disadvantage is, that if the learned features are not meaningful in themselves but only in combination
with others, no interpretable information can be gathered, since it is infeasible to test the possible feature combinations.

Figure 6: Maximize feature output visualization example
Example visualization of synthetic feature from figure 5 using its five sub-boards with largest activation in descending

order.
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Activation Mapping
The visualization with the help of activation maps for a certain input is a prominent technique. While images thanks to
their input size, feature size and feature spread allow for interpretable visualizations in the reduced size of the features,
this is not the case for chess positions. This helpful property in images is due to the fact, that humans are able to identify
the content of a low resolution image quite well, while it is not even clear, what a low resolution chess position would
look like, since the information about multiple chess squares would need to combine to one. This means, that a method
that is able to map activations onto the input is required. The method performing this mapping is described in section
4.3.2.

Figure 7: Activation mapping visualization example
Example visualization of synthetic feature from figure 5. The same activation is visualizes using different normalization
factors as described in section 4.3.2. The first board in each row is unchanged as reference. The normalization terms are

from left to right and top to bottom 1, n0.2, n0.4, n0.6; n0.8, n, n1.2, n1.4.

Deconvolution
In this approach a different decoder is trained for every encoding layer trying to reconstruct the encoded position as
good as possible. Each feature in this layer is then visualized by the position resulting in the a high activation in this
feature and no activation in the other features. Because the decoder tries to reverse the encoder the decoding of a single
feature activation can be used to represent that feature. This technique has the advantage of being generative. The only
sampling required is for the activation used, when the nonlinearity leading in the intermediate layer has no maximal
value, this can be omitted when using a fixed value for all features. The visualization of the final encoding layer can be
directly generated using the deconvolution of the autoencoder. Because of the different sizes of each layers perceptive
field the size of the deconvolution of each layer is different.

Figure 8: Deconvolution visualization example
Deconvolution of the first feature of each layer of the 3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture.
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Chess Position Completion
In this method the autoencoder is used for the completion of an incomplete board position. While the image pendant
of this task lacks areas of the input, this work focuses on the completion of pawn structures. This method tries to vi-
sualize where the autoencoder most suspects the position of missing pieces. Position completion can be interpreted as
a denoising task. Because the autoencoder is trained to reproduce the input it does not fill in the missing pieces by it-
self. This is circumvented by iteratively encoding the board and adding the piece with the highest activation to the board.

Figure 9: Chess position completion example
Example position completion steps of the 3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture. Each board is the

result of one iteration step (left to right, top to bottom).

3.2.3 Application

The application of the autoencoder to real problems is an important part of the feature evaluation process. In this section
we look at a possible application, the prediction of the next board position based on the current board position. This
problem is very hard, especially, because the autoencoder does not have any information on important information like
castling rights and whose turn it is.

Predict next Board
For the prediction of the next board the network is trained using data consisting of boards, where the score before
and after the move was not significantly reduced (from the view point of the moving player). This selection process
ensures, that the move (encoded in the next board position) is good for the moving player. The moves were encoded in
board pairs, with the original position as input and the position after the move as desired output. This process resulted
in 2,000,000 different board pairs. Depending on the type of move the bitwise difference between the two boards is
different. If the piece is moved on an empty tile the difference is two, if it takes an enemy piece the difference is three
and castling results in a difference of four. Different convolutional architectures were trained and compared.
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4 Experiments and Evaluation

4.1 Data

The used data was generated using approximately 700,000 chess-games in PGN notation (see figure 10) from chess-
db.com. All games with at least one player below 2,500 elo (the most common chess player skill ranking scheme) or
blitz-games (games with reduced game duration) were removed. The resulting games were then converted into a set of
positions and then filtered using the following criteria:

1. The evaluation of the position is between -100 and 100 centi-pawns (using Stockfish 7).

2. Both players have the same number of pieces of the same value.

One centi-pawn is defined as 1
100 the value of a pawn. The sigh of the evaluation is negative if black has an advantage

and positive otherwise. Since chess is a zero-sum game the balance of a given position can be represented using only one
number, because an advantage for white is always a disadvantage for black. Because Chess programs like Stockfish use
a tree search algorithm they require a good metric for the evaluation of positions to decide which outcome is the most
favorable. These metrics are very fine tuned heuristics including features like material, pawn structure and king safety.
The balance of the used positions is important because the autoencoder is expected to only learn structures, that are
present in well balanced chess positions. To prevent positions that are in the middle of an exchange the second filtering
criterion was used. It ensures an equal number of pieces with equal value (queen; rook; bishop, knight; pawn).
This resulted in 3 million unique positions, of which 500 000 were hold back for the final evaluation and the remaining
were split into 90% training and 10% validation data. Due to the space requirements of the expanded bitmaps the posi-
tions are saved using standard FEN notation and 8x8x12 bitmaps were created during training.
In each bitmap the first 12 dimensions encode the presence (1) or absence (0) of one of the 12 chess piece, player color
combinations, while the last 8x8 represent the positions on the chess board. This representation discards some informa-
tions like castling rights and which players turn it is, which are vital for the prediction of the outcome of a chess game,
for the sake of allowing the use of pure convolutional layers.

1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 Nc6 6. Be2 g6 7. Nb3 Bg7 8. O-O O-O 9. Re1 a6 10. Bf1 b5 ...

Figure 10: PGN excerpt
The first 10 moves of a game in PGN notation (omitting meta information like name and rating of the players). Each

entry represents the movement of one piece, allowing for a dense encoding of chess games as sequence of moves from
both players.

Figure 11: Chess position
Position of the chess board after whites move (Be2) from the game described in figure 10.
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Internally the extracted positions are stored using their FEN representation (one of the most common ways of encoding
a chess position).

r1bqkb1r/pp2pppp/2np1n2/8/3NP3/2N5/PPP1BPPP/R1BQK2R b KQkq - 4 6

Figure 12: FEN
FEN encoding of the position in figure 11.

Here every substring separated by ’/’ represents one row of the chess board while the remaining substrings separated by
’ ’ encode (from left to right) the active color, castling rights, en passant tagets, the number of half-moves since the last
capture and the total number of moves. In the last step this representation is transformed into a bitmap.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13: Bitmap
Visualization of the bitmap (8x8x12) resulting from the chess position depicted in figure 11. Each board slice encodes

one type of piece Pawn, Knight, Bishop, Rook, Queen, King (left to rights) and color (white top and black bottom).

These encodings represent the positions that are later fed to the convolutional network. Because they don’t contain
information about castling rights and player turns they cannot be used to recreate their full FEN representation.
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4.2 Autoencoder Training

Each autoencoder was trained on the same data generated as described in section 4.1. During training mean squared er-
ror (per bit) was used to compute the loss. The performance was monitored every 10 epochs using the metrics described
in section 4.3.1.
In the first phase the layout of the network was being optimized, varying network depth, layer depth, layer shape and
the introduction of dense layers after all convolutions. The best network layout was than optimized by varying its choice
of activation function, dropout-rate and input noise.
Each network was trained for 100 epochs. The best architectures were then trained until the performance on the valida-
tion data started to decrease or stagnates for long enough. Their best performances can be seen in table 2 at the end of
this section. The overall bad performance of architectures containing dense layers is probably due to their high number
of weights and the resulting requirements for the amount of training data. The performance of these architectures did
not increase significantly even with much longer training time.
The best autoencoders with and without decreasing encoding length were used in the future experiments. The network
3x3-60|3x3-140|2x2-225 produced the best overall result, while the network 3x3-21|3x3-46 performed best while hav-
ing decreasing encoding size.
For the determination of the optimal dropout rate the network 3x3-60|3x3-140|2x2-225|_relu_sigmoid was trained
using multiple different dropout rates and the best discrete MSE after 100 epochs were compared in the following two
experiments. At first the dropout rate in all layers was varied, resulting in an optimal rate of 0.025. To ensure that the
dropout rate was not limited by the information density of the first layer the dropout rate on all but the input layer were
varied. The results depicted in figure 14 indicate, that a dropout rate of 0.025 on all layers performs the best on the vali-
dation data. It is interesting to observe that the empirically best dropout rate of 0.025 for this problem is much smaller
than the common choices of more than 0.2 in the image domain[11]. This is might be due to the greater information
density of chess positions. Because the relative performance of the smaller 3x3-21|3x3-46|_relu_sigmoid architecture
improved after decreasing the dropout rate to 0.025 it would be expected, that the relative performance of the other
small architectures depicted in table 2 would improve as well.

Varying dropout rate on all layers:

First layer Dropout rate fixed at 0.025:

Figure 14: Dropout rate comparison
3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture with varying dropout rates.
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In the next experiment the 3x3-60|3x3-140|2x2-225 network was optimized in its choice of activation functions. While
the output activation function was fixed due to the constrains by the bitmap output, the different activations in the re-
maining layers were not. The activations considered were Sigmoid and ReLU. They were varied in the final encoding
layer and in all remaining layers.

Table 1: Activation comparison
number of errors MSE(dis) architecture

0 1 2 3 ≥ 4
0.986 0.013 0.0 0.0 0.0 0.015 relu_sigmoid

0.985 0.015 0.001 0.0 0.0 0.018 sigmoid_sigmoid

0.982 0.017 0.001 0.0 0.0 0.023 sigmoid_relu

0.095 0.174 0.243 0.205 0.283 7.678 relu_relu

validation performance of different activation combinations with a dropout rate of 0.025 using the
3x3-60|3x3-140|2x2-225 architecture.

The best performing nonlinearity combination was sigmoid_relu. Even though the performance difference to the pure
sigmoid setup was small the introduction of ReLUs has the added advantage of increasing training time, especially for
deeper models, because they makes prediction and backpropagation faster to compute.
Denoising is a popular method to improve network generalization. In this section the 3x3-60|3x3-140|2x2-225| ar-
chitecture using the relu_sigmoid linearity was trained with different input noise levels and then evaluated. At the
beginning of training 105 noise patterns were randomly generated. During data generation each training datum was
combined with a random noise map using the bitwise logic ’and’ operation. Each noise pattern is a 8x8x12 matrix of
ones, of which each board position on these patterns, encoded by a 12 bit column, has the noise probability of turning
into a vector with only one bit activated. This method of noising has the advantage of only producing positions with
at most one piece at each tile, because the patterns are combined using bitwise ’and’ it can only remove bits from the
original.
As depicted in figure ?? the introduction of input noise has an negative effect on the reconstruction error. Due to this
result no additional input noise is used in any other autoencoders. This result was expected because the network was
already optimized in regards to its input layer dropout rate which does something similar. The difference between both
approaches is, that while the network applies different dropout to the same input every time it is trained, the input
noising changes the input for all epochs it is trained on.

Figure 15: Noise comparison
3x3-60|3x3-140|2x2-225|_sigmoid_relu architecture with a dropout rate of 0.025.
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Table 2: evaluation of different layouts
number of errors MSE(dis) architecture

0 1 2 3 >=4
0.981 0.018 0.001 0.0 0.0 0.023 3x3-60|3x3-140|2x2-225|_relu_sigmoid

0.974 0.024 0.002 0.0 0.0 0.032 3x3-60|3x3-100|2x2-180|_relu_sigmoid

0.972 0.026 0.002 0.0 0.0 0.035 3x3-60|3x3-140|1x1-140|2x2-225|_relu_sigmoid

0.972 0.026 0.002 0.0 0.0 0.036 3x3-70|3x3-100|2x2-180|_relu_sigmoid

0.97 0.027 0.003 0.0 0.0 0.039 3x3-70|3x3-140|2x2-225|_relu_sigmoid

0.968 0.029 0.002 0.0 0.0 0.039 3x3-60|3x3-120|2x2-180|_relu_sigmoid

0.968 0.03 0.002 0.0 0.0 0.042 3x3-60|3x3-100|2x2-180|_relu_sigmoid

0.963 0.034 0.002 0.0 0.0 0.045 3x3-60|3x3-100|_relu_sigmoid

0.964 0.032 0.003 0.0 0.0 0.046 3x3-60|2x2-100|2x2-150|2x2-200|_relu_sigmoid

0.964 0.033 0.003 0.0 0.0 0.046 3x3-60|3x3-80|_relu_sigmoid

0.962 0.035 0.003 0.0 0.0 0.047 3x3-60|2x2-140|2x2-140|2x2-225|_relu_sigmoid

0.963 0.034 0.003 0.0 0.0 0.048 3x3-60|3x3-140|2x2-225|_relu_sigmoid

0.961 0.036 0.003 0.0 0.0 0.049 3x3-70|3x3-100|2x2-180|_relu_sigmoid

0.956 0.041 0.003 0.0 0.0 0.054 3x3-21|3x3-46|_relu_sigmoid

0.955 0.042 0.003 0.0 0.0 0.058 3x3-21|3x3-46|_relu_sigmoid

0.954 0.042 0.004 0.0 0.0 0.058 3x3-60|2x2-100|_relu_sigmoid

0.955 0.04 0.004 0.0 0.0 0.059 3x3-60|2x2-100|2x2-150|_relu_sigmoid

0.949 0.047 0.004 0.0 0.0 0.065 3x3-60|2x2-120|2x2-180|2x2-240|_relu_sigmoid

0.921 0.075 0.004 0.0 0.0 0.095 3x3-21|3x3-46|_relu_sigmoid

0.823 0.147 0.025 0.004 0.001 0.299 3x3-60|3x3-120|2x2-180|2x2-240|_relu_sigmoid

0.234 0.402 0.351 0.011 0.001 1.928 3x3-60|3x3-100|2x2-140|_relu_sigmoid

0.15 0.368 0.459 0.02 0.003 2.439 3x3-60|3x3-140|2x2-225|_relu_sigmoid

0.262 0.282 0.228 0.139 0.089 4.16 3x3-21|3x3-46|500|_relu_sigmoid

0.176 0.275 0.254 0.171 0.124 5.287 3x3-21|3x3-46|250|_relu_sigmoid

Overview of the best performance of some of the trained architectures with a dropout rate of 0.05 (not the optimal
0.025).
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4.3 Autoencoder Evaluation

4.3.1 Reconstruction

Figure 16 shows, that both networks are able to reconstruct unseen position very well. The performance of the
smaller network is very good, especially given their difference in learning power, which can be seen using their
amount of trainable weights. While the 3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture has 416,797 weights,
3x3-21|3x3-46|_relu_sigmoid only has 22,024 weights.
The difference in representation power can also be seen in the number of bits encoding each layer. The input layer
(8x8x12) is represented using 768 bits. The 3x3-60|3x3-140|2x2-225|_relu_sigmoid network encodes using 2160,
2240, 2025 bits while 3x3-21|3x3-46|_relu_sigmoid only requires 756 and 736 bits in its layers. The resulting differ-
ences in their visualization will be described in the following sections.
As shown in figure 17 both models perform best on the training data, but also generalize well on validation and test
data. The smaller networks performance decreases with discretization suggesting that its outputs are less extreme than
the ones produced by the larger network.

Figure 16: Training error of the two best architectures
Discrete MSE on 4000 validation positions using the 3x3-60|3x3-140|2x2-225|_relu_sigmoid (orange) and
3x3-21|3x3-46|_relu_sigmoid architecture (blue) with a dropout rate of 0.025.

Figure 17: Performance comparison training-, validation-, test-data
3x3-60|3x3-140|2x2-225|_relu_sigmoid (blue) and 3x3-21|3x3-46|_relu_sigmoid architecture (orange) wit a

dropout rate of 0.025. The results were achieved using 500,000 training examples, 100,000 validation examples and
500,000 test examples. The discretized MSE is visualized using hatched bars and the not discretized MSE using plain

bars.
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4.3.2 Visualization

Weight Visualization
Because the input is 12-dimensional, the weights of every dimension have to be visualized separately. In the images
shown below a feature consisting of 12 3x3 matrices is shown in each row. Each column represents one colored chess-
piece type. To allow better comparisons within and between features two different kinds of weight visualizations are
required. In the first type the weights are not normalized allowing for the visualization of the relative importance of
certain piece types between different features. In the second type the weights are normalized within each feature row,
giving better contrast within each feature. The visualization shows positivity of each weight in the amount of redness
and negativity in the amount of blueness of the pixels.

3x3-21|3x3-46|_relu_sigmoid

featurewise normalized:

3x3-60|3x3-140|2x2-225|_relu_sigmoid

featurewise normalized:

Figure 18: Weight visualization excerpt
All models use a dropout rate of 0.025. Each feature is visualized using one row, with one column per piece type. Pieces

types are from left to right Pawn, Knight, Bishop, Rook, Queen, King with alternating colors, starting with white.
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Excerpts that Maximize Feature Output
For this technique a total of 500,000 boards consisting of 50% training and 50% validation examples are randomly
chosen. From this corpus excerpts are randomly sampled, by first sampling a board and then sampling a sub-board of
adequate size. In this way 1,000,000 different sub-boards in the size of the layers perceptive field are being generated.
They are then encoded, resulting in one bit per feature. Each feature is represented using the sub-boards with the highest
activation.

first layer:

second layer:

Figure 19: Max activation excerpt visualization
3x3-21|3x3-46|_relu_sigmoid architecture with a dropout rate of 0.025. Each feature (row) is visualized using its five

sub-boards with largest activation in descending order.
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first layer:

second layer:

third layer:

Figure 20: Max activation excerpt visualization
3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture with a dropout rate of 0.025. Each feature (row) is visualized

using its five sub-boards with largest activation in descending order.
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Activation Mapping
The mapping of layer activations on their original input is an adaptation of the normal activation map that is often used in
computer vision. As discussed in its methodology this is required, because the activation map of a chess position cannot
be interpreted on its own.
Each activation is getting distributed uniformly onto its perceptive field. If these activations just get summed up, the
border gets very little relative activation, because the number of activations on which it has any influence (n) is rela-
tively small, that is why normalization is required. The most naive normalization, using the mean activation punishes
the middle squares too much, because they are part of most perceptive fields, which leads to a overrepresentation of
corner pieces. Through experiments a weighting of the summed activation of each tile with n−2/3 results in an balanced
activation mapping. A comparison of different normalization factors can be seen in figure 7. It has to be noted, that this
normalization term is biased and expects the learned features to be distributed uniformly, which can lead to a misleading
visualization if this assumption is not correct.
The intensity of the mapped activation is visualized using the lightness of the square, with dark squares representing
low activation. This technique is able to visualize with just one color channel instead of the blue-red combination used
during weight visualization, because the activations are non-negative due to the used nonlinearities. As shown in figure
21 the visualization becomes more unfocused with larger perceptive fields. This makes it much easier to find lower level
patterns.

first layer:

second layer:

Figure 21: Activation visualization excerpt
3x3-21|3x3-46|_relu_sigmoid architecture with a dropout rate of 0.025. A activation map visualizing the first four
features (column) on two validation boards. The first board in each row shows the position without any activations.
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first layer:

second layer:

third layer:

Figure 22: Activation visualization excerpt
3x3-60|3x3-140|2x2-225|_relu_sigmoid architecture with a dropout rate of 0.025. A activation map visualizing the

first four features (column) on two validation boards. The first board in each row shows the position without any
activations.
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Deconvolution
In this approach a separate decoder is trained for each encoding layer of a network. This is required because all but
the final encoding layers are not connected to their decoding counterpart. These decoders are trained to reconstruct
the original position from the encoding produced in that layer. The combination of the encoder and the newly trained
decoder results in an autoencoder with smaller depth. The decoders that were trained as part of the original autoencoder
can only be reused for the final encoding layer, because they were trained without direct contact to the encoders of their
affiliated layer.
Each feature is visualized using the reconstruction of a one-hot encoding for that feature. Using the highest output
achieved during the ’Excerpts that Maximize Feature Output’ visualization as activations yields almost only empty out-
puts. A good heuristic uses the area of the layers perceptive field for ReLU layers and its side length for sigmoid layers
as activation, which has the added advantage of not relying on any input sampling. Figure 23 contains the resulting
positions using this activation heuristic on the first four features of each layer for moth architectures.

Figure 23: Deconvolution visualization excerpt
3x3-21|3x3-46|_relu_sigmoid (first two columns)and 3x3-60|3x3-140|2x2-225|_relu_sigmoid (last three

columns) architectures with a dropout rate of 0.025. Visualizing the first four features (row) of each layer (column).
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Chess Position Completion
The completion of chess positions is a mixture of a visualization and an application. If the algorithm is able to find
desirable positions for missing pieces it could be used to find good moves and thus improve position evaluation. The
autoencoders were given a chess board only consisting of pawns that were encoded and decoded. The missing piece
with the highest activation in the reconstruction was then added to the board. This is repeated until all remaining pieces
(starting with two knits, bishops, rooks and one king and queen for each color) are on the board. The advantage of this
iterative approach is, that more probable pieces impact the placement of less probable pieces more directly. The resulting
boards are visualized in first part of figure 24.
Both encoders seem to favor the short castling position for white and black. The larger autoencoder seems to favor a
position closer to the the starting position than the middle one. Both do not produce positions that are part of chess theory
and predict different opening positions similar to their prediction of the starting position. To improve prediction quality
a stopping value of 0.0003 was experimentally determined, resulting in early stopping if a piece with lower activation
ought to be added. As can be seen in figure 24 this threshold is able to successfully remove the unusual position choices.

without early stopping:

with early stopping:

Figure 24: Board completion with early stopping
3x3-21|3x3-46|_relu_sigmoid (middle) and 3x3-60|3x3-140|2x2-225|_relu_sigmoid(right) architecture using a
dropout rate of 0.025. The example pawn structures are the starting position(top) and Caro-Kann(bottom). An early

stopping activation threshold of 0.0003 is used.
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4.3.3 Application

Predict next Board
For this tasks different architectures were trained based on the two most successful autoencoders and compared with a
reference predictor, that always predicts the unchanged input board.
The first architecture used is the normal autoencoder to see if the different architectures can improve from it. The sec-
ond architecture uses the autoencoder as pre-training and is fully trained on the board tuples. The third architecture
consists only of the decoder and is trained to produce the next board given the encoding of the starting position. The last
architecture is trained using two dense layers with 150 neurons that are trained to reproduce the encoding of the target
position given the encoding of the original position. All architectures are combined with the needed encoder or decoder
to produced a complete prediction pipeline and compared using the same 40,000 validation examples.

Figure 25: Move prediction evaluation
3x3-21|3x3-46|_relu_sigmoid (orange) and 3x3-60|3x3-140|2x2-225|_relu_sigmoid (blue) architectures with a

dropout rate of 0.025. The results are compared using discrete MSE.
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4.4 Evaluation

Both networks perform very well on their task of encoding and recreating chess positions and generalize well to unseen
chess positions. As figure 26 suggests the smaller network learn features that are able to represent well balanced positions
better than one-sided ones. this property can not be used to predict the score based on the boards reconstruction error,
because the variance in the reconstruction error is too high.

Figure 26: Reconstruction error rating
3x3-21|3x3-46|_relu_sigmoid (orange) and 3x3-60|3x3-140|2x2-225|_relu_sigmoid (blue)architecture with a

dropout rate of 0.025. comparison of discrete MSE an absolute cp score. The data was binned in 10 cp bins with 10,000
examples in each bin if possible (higher cp scores are not common enough to provide 10,000 examples).

While the weight visualization was not able to show that the first layer of either network did learn distinct position
primitives like small pawn structures it reveals a difference between both architectures, that was present throughout the
different visualization techniques. The smaller network needed to learn a much denser representation and thus combined
multiple features in one. This is shown by the fact, that the normal and the featurewise normalized visualizations look
much more similar then in the deeper architecture where only few weights are very high and thus more features are
required for stronger outputs. This is also suggested by the fact, that the smaller network has many extreme changes
between neighboring positions of the same piece type, while the lager network has mostly smooth transitions, creating
smoother activation patterns.
The visualization using sub-bards with large activations seemed to be the most insightful technique. Some features
produce multiple similar representatives allowing for some insight in positions that they might encode. Nonetheless
while some of these representatives seem to contain parts of good positions this might be due to data from which is being
sampled, because all positions present in training and validation data are already well balanced.
The activity map presents a similar picture to the weight visualization. The smaller network has much higher and less
smooth activations than the larger network. This makes interpretation on a sub-board basis much easier. For the first
layer of the smaller network the first feature seems to focus in part on white pawns next to each other, while the third
feature quite often focuses on the white king and its surrounding pawns and rooks. For the larger network interpretations
of this kind are much harder to make, but it looks like the first layers third feature focuses on black pawns (probability
in front of the black king due to its high weight for the king on the top row). The deeper layers have to large perceptive
fields to make any kind of predictions about their preferences.
The deconvolutional approach suffered from a common problem of generative techniques. Its extreme outputs often
don’t contain positions that are likely or even possible to happen in any chess game. When comparing its output with the
results of the different visualization techniques the outputs for the same features don’t seem to have much in common.
This might be due to the large activation needed for the generation of non empty outputs.
The completion of pawn structures was no successful visualization technique. The only two insights it was able to
generate was, that both network liked the small castling position for both players and that the amount of activation on
the output side can be interpreted as a ruff measure of how common the piece at that position is.
The prediction of the following board was expected to be a very challenging tasks and thus did not surprise with its results.
The pre-trained models were able to perform best, which was expected because it was the most flexible approach. The
use of the fixed encoder did not decrease performance a lot. The prediction using two dense layers on the encoding did
perform worse. Its big performance difference was probability due to a lack of training data. The main difficulties in this
task were probability the lack of context and a wide range of good, but not chosen, moves.
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5 Conclusion

As elaborated in the previous section, the features learned by the autoencoders don’t seem to consist of human inter-
pretable position primitives. This might be in part due to an undesirable property of bitmaps that was mentioned by Lai et
al. [15]. When using bitmaps as input representation the distance between two boards is measured in their total bitwise
difference, which does not provide the best information about how different both positions really are, because it rates
the shift of a piece by one tile worse than the disappearance of that piece. This is why giraffe[15] uses a list of piece co-
ordinates as its input representation and omits the grid structures required for convolutional approaches. DeepChess[6]
uses bitmaps as their input in combination with a purely dense architecture. This approach requires them to use much
more training data (2 · 1012 training pairs) than the 3 · 106 boards used in this thesis.
The feature visualization methods can give an idea about the lower layer features when used in combination with each
other. Features in higher layers are too spread out and complex to allow for any real insight. The small size and infor-
mation density of the input makes chess boards a difficult application for convolutional approaches due to their depth
limiting and information dense properties. The features learned by both architectures don’t seem to consist of any com-
monly known and recognizable structures.
The prediction of the next position seems to require a more tailored approach and likely more training data. The visu-
alization techniques could also be further developed by expanding the ’excerpts that maximize feature output’ method
with a board combination algorithm or adding an optimization based feature maximization approach.
Another approach could be the implementation of the DeepChess architecture using a convolutional network. This
method could be used to evaluate the viability of convolutions in the chess domain for a task with an existing reference
architecture. If the convolutional architecture is able to successfully play chess, the developed visualizations can be used
to investigate the learned features.
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