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Abstract

Due to improvements in the training practices, the popularity of deep neural networks and their applicability to a wider
set of problems have increased considerably in the last few years. This has brought about a renewed interest in increasing
their interpretability, an aspect where they fall behind other prediction models.

It is unclear what provides a sufficiently expressive explanation of the inner workings of a deep model, but symbolic
representations in the form of rule sets have been proven capable of illustrating their behaviour as a whole, as well as
the hidden concepts they model in the intermediate layers.

Diverse methods have been developed for this purpose. However, most approaches are not scalable to deep architec-
tures with a high number of hidden units and which were trained with huge amounts of data. In order to enable rule
extraction in such situations, the search space of possible concepts has to be appropriately reduced.

Within this thesis, the possibility is explored of extending techniques which have been shown to facilitate the extraction
of rule representations from shallow neural networks to deep architectures. These methods, which go from altering
the internal structure of the network to choosing appropriate values to partition the activation ranges, are tested in
combination with an existing algorithm for extracting rules from deep models.

Instead of using datasets which combine the attributes in an unclear manner, the networks are trained to reproduce
predefined boolean concepts so it can later be assessed to what degree the patterns were captured in the rule sets.

The evaluation shows that reducing the connectivity of the neural networks significantly assists latter rule extraction,
as does encouraging minimal or maximal activation states. It is also demonstrated that these can be discretised without
causing a significant decrease in accuracy.

2



Zusammenfassung

Aufgrund von Verbesserungen in Trainingsverfahren ist die Bedeutung von Tiefen Neuronalen Netzen und die Anwend-
barkeit dieser auf eine breitere Menge von Problemen in den letzten Jahren gestiegen. Somit ist es vorteilhaft, ein tieferes
Verständnis der Vorgänge innerhalb der Modelle zu entwickeln.

Während bisher noch unklar ist, welche Form eine anschauliche Erklärung der inneren Abläufe besitzen kann, haben
sich symbolische Darstellungen in der Form von Regelmengen als geeignet erwiesen, das Verhalten solcher Modelle
sowohl als ganzes und als auch innerhalb der Zwischenschichten wieder zu geben.

Zwar wurden verschiedene Methoden zu diesem Zwecke konzipiert, jedoch sind die meisten Ansätze nicht mit sehr
tiefen Modellen und großen Mengen von Daten skalierbar. Um dennoch Regelmengen erkennen zu können, ist es
notwendig, den Suchraum der Möglichkeiten entsprechend zu reduzieren.

Im Rahmen dieser Arbeit wird die Möglichkeit einer Übertragung von Ansätzen, welche die Regelerkennung in flachen
neuronalen Netzen vereinfachen, auf tiefe Netze untersucht. Diese Methoden, welche von Änderungen der inneren
Struktur der Netze bis hin zu geeigneter Aufteilung der Aktivierungsreichweite reichen, werden in Kombination mit
einem bereits existierenden Algorithmus zur Regelerkennung in Tiefen Neuronalen Netzen getestet.

Die Netzwerke werden anstatt mit Datensätzen, welche Attribute in einer unbekannten Weise kombinieren, mit kün-
stlichen trainiert, um vordefinierte Boolesche Ausdrücke zu modellieren. Dies ermöglicht es bei späterer Betrachtung
festzustellen, inwiefern die logischen Ausdrücke auch noch in den Regelmengen zu finden sind.

Die Auswertung der Daten zeigt, dass eine Reduzierung der Verknüpfungen innerhalb eines Netzes zu einer besseren
Regelerkennung beiträgt, ebenso wie die Förderung von maximalen oder minimalen Erregungszuständen. Außerdem
wird gezeigt, dass eine Diskretisierung dieser durchgeführt werden kann, ohne die Genauigkeit der Ergebnisse bedeutend
zu verringern.
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1 Introduction

Deep neural networks achieve state of the art performance in an array of different fields, like computer vision, speech
recognition and machine translation. They can be leveraged both in supervised and unsupervised problem formulations,
as they automatically learn insightful features out of unprocessed data. In the last few years, they have considerably risen
in popularity as advancements in the training practices and availability of user friendly frameworks have made it much
simpler to train accurate models, as long as sufficient data is available.

However, the fact that the models are governed by a considerable number of parameters makes tracing the path that
led to a classification an arduous process, which is why they are ofter regarded as black box models. This is a significant
shortcoming, as it makes them unsuitable for safety critical applications and domains where there are juridical barriers
which either explicitly forbide their use or implicitly discourage it by making the user liable for the model’s decisions.
Therefore, in fields such as health care and criminal sentencing, comprehensible models like decision lists or trees are
favored because they provide understandable evidence to support their predictions (Liu and Li, 2005; Malioutov and
Varshney, 2013).

As more encouraging results are obtained from testing the technology within these fields, the lack of interpretability
is proving to be a significant obstacle in infiltrating them. Last year, convolutional neural networks were used in the
autonomous driving approach outlined in Bojarski et al. (2016) which, in contrast to other systems, relies solely on
image data processed by the networks and is not explicitly trained to recognize road features. Deep autoencoders have,
as well, been used to find feature representations of electronic health records, which later proved to be highly effective
in predicting an array of diseases (Miotto et al., 2016).

Another issue is that in domains where decisions have critical consequences, machine learning models are not relied
on by themselves but instead used to assist human actors in the form of decision support systems (DSS). Here, inter-
pretability is of particular advantage, as the reasons behind a decision can make the human support or disregard the
recommendation. This holds as well for anomaly detection systems, as for an alarm to result in an adequate response it
should provide clear information describing why it was issued. Apart from the benefits of having insight into the inner
working of the model, the extent to which the model is used in practice depends heavily on how easily interpretable it is,
as this is a relevant criteria for eliciting trust (Kayande et al., 2009).

Concerning the issue of liability, in Burri (2016) it is stated that human actors are only held accountable for behaviour
committed purposely, and in areas such as driving where people are also permitted some margin of error, this matter
could be addressed by altered insurance policies, as well as by regularizing the certification processes. However, although
a reallocation of responsibility could make the user less liable, he or she will likely be accountable for deciding to use the
technology in a specific setting.

It is suggested by Lipton (2016) that a reason an incomprehensible model may not be trusted despite having a very
low error rate is that the cost function may reflect partially, but not exactly, the goals of the user. For instance, a user
may penalise a certain bias when manually making decisions, but this may not be explicitly included in the objective the
model optimises. This is very common, as complex objectives are difficult to articulate in real-valued functions.

Ethical and juristic concerns are particularly warranted in recent times, given that the General Data Protection Regula-
tion (GDPR)1 is planned to take effect in 2018. The regulation outlines a set of practices for the handling of personal data
which demand a significant adaptation of the way machine learning models are used (Goodman and Flaxman, 2016).

Within these, it is stated that some data should be excluded from prediction models even if it was legally obtained,
such as that which shows the belonging of a subject to a group against which it is prohibited to discriminate. This also
targets variables that are correlated with that information, even if they do not express it directly.

Perhaps because of the significant challenge this presents, as most variables are correlated to some degree, it is also
stated that decisions which notably affect European citizens can only be made by automatic processing if it is under the
supervision of a human, and that subjects have the right to receive explanations as to why they were taken.

Apart from these juridical concerns, another argument in favor of increasing interpretability is that insight into the
feature combinations generated by deep models which achieve particularly low error rates could be leveraged to improve
other models, enabling a deliberate selection of meaningful features.

Compared to neural networks, if-then rule sets are regarded as being much easier to understand. This is partly because
they provide a symbolic representation which more closely resembles the way humans model logic. Also, each rule
can be observed individually, so only a limited amount of information must be considered at any time. This advantage
sometimes makes them preferable over decision trees, as well as the fact that they can be more flexibly pruned (Freitas,
2013).

The goal of this work is to obtain both an accurate model which explains the behaviour of the deep neural network as
a whole, as well as a compact and expressive description of the logic that takes place within the network.

1 (Regulation (EU) 2016/679, http://www.eugdpr.org/)
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Problem Statement

Within this work, deep neural networks are trained to model predefined logical patterns. The objective is to regain
these constructs in the form of rule representations. The disjunctive normal form of the functions is considered, as any
expression can be represented in this manner and this is the typical syntax for sets of decision rules which make up
symbolic machine learning models.

Besides reconstructing the boolean functions from the trained networks, this should be done in such a manner that the
internal behaviour is left exposed and is sufficiently expressive. The expectation is that by altering the neural networks
in certain ways and setting adequate constraints on the search space of possible rules, semantically rich intermediate
concepts can be retrieved.

Main Contibutions and Findings

Ample research has been devoted to extracting rule representations from neural networks. Some of this aims to illustrate
not only the predictive behaviour but also the function of the individual hidden units, which brings about an additional
set of advantages. Yet, most of the methods enforce considerable constraints on the topology of the networks and the form
of the attributes, which makes then unsuitable for the much larger architectures that have recently risen in popularity.

Alternatively, treating each two consequent layers as a separate classification problem and merging the partial models
has been shown to be a viable way to construct such representations while leaving a trace of the hidden logic. However,
the intermediate concepts can become highly complex, and the rule sets do not paint a clear picture of the function of
each neuron.

Intuitively, each neuron that makes up an artificial neural network reaches an excited state if the added contributions
of its incoming connections is sufficiently strong. However, in practice neurons can output any value within a continuous
range, which makes describing their effect on the subsequent layer in a compact manner substantially more difficult.

Within this work, two methodologies are presented for altering a trained neural network so its internal structure is
simpler to describe. The first consists on reducing the network connectivity so the state of each neuron only depends
on a reduced number of units from the previous layer, and the second looks to polarise the activations so the neurons
are either minimally of maximally active. Additionally, two different discretisation techniques are explored that select a
reduced number of thresholds to divide the range of each hidden unit. Finally, a post-pruning method is introduced.

The effect of these techniques on an existing algorithm for extracting rule representations from deep neural networks
is evaluated. The results show that reducing network connectivity is an effective way to simplify the inner working of
the network so they can be explained more easily, and that when this is combined with polarisation of the activations a
minimal number of thresholds per neuron is sufficient to explain its main function. Also, it is shown that very accurate
models can be extracted if only a small amount of predefined split values are selected for explaining each layer, which
makes extracting rule representation viable for very large architectures.

Thesis Structure

This work is structured as follows. Chapter 2 summarises the fundamentals of classification problems and neural networks
which are required to understand the subsequent chapters. Chapter 3 gives an overview on related work in the fields
of network pruning and discretisation approaches, as well as on existing techniques for extracting rule representations
from neural networks. In Chapter 4, the methodology is portrayed. In Chapter 5 the experimental setup is described,
and the selected boolean formulas that are to be reconstructed are presented. Chapter 6 illustrates the obtained results.
Chapter 7 outlines some areas of future and existing research that would complement the approach. Finally, Chapter 8
concludes the work with a synopsis of the relevant takeaways.
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Terminology

A literal or condition signifies whether an input or activation value of a hidden unit for an observation exceeds a threshold,
and takes the form hl,n > t or hl,n <= t for hidden units and xn > t or xn <= t for inputs. A boolean expression is a
set of literals joined by boolean operators, such as negation A, conjunction A∧ B, disjunction A∨ B, implication A→ B,
equivalence A↔ B, xor A⊕ B, etc.

An expression in disjunctive normal form (DNF) or sum-of-products form is one that is represented as a disjunction of
conjunctions of literals, such as (A∧ B∧C)∨ (A∧ B)∨ (A∧ D). In the context of machine learning, conjunctions are often
regarded as rules, and disjunctions of conjunctions, as rule sets.

An intermediate concept is an expression which models only certain aspects of the target concept. A hidden feature is
an intermediate concept modeled by a neural network in its hidden layers, which may reduce the dimensionality of the
inputs in a way that is significant for the prediction of the outputs.

A split value is determined by a neuron hl,n and a threshold value. That is to say that if the same threshold is considered
for two different neurons, these are two distinct split values.

The symbology which is used across this work is outlined in Table 1.1.

Symbol Meaning

(xi , y i) ∈ D Observation i of some dataset D, made out of feature vector xi and class value y i

ŷ i Class prediction for the feature vector xi

C j Class j for a finite set of classes in the context of a classification problem.

hl Hidden layer l if l >= 1, input layer if l = 0

hl,n The nth neuron of layer l

W l Weight matrix between layers l − 1 and l

w l
j,k Connection between neurons hl−1,k and hl, j

bl,n Bias for the neuron hl,n

z i
l,n Weighted sum of the activations of layer hl−1

ai
l,n Activation value of neuron hl,n for observation (xi , y i)

ai
l Activation values of observation x i for all neurons of layer hl

aD Activation values for neurons of all layers, for all observations in the dataset D

t i
l,n A threshold to divide the range of neuron hl,n

tl,n Set of thresholds to divide the range of neuron hl,n

Tl Set of thresholds to divide each neuron of layer l

H j
l,n Mean of the values that make up cluster j for neuron hl,n

DN Fhl→c Expression that describes a c with conditions on the activation values of layer hl

DN Fh0→tar get Expression that describes the target condition with regards to the inputs

Table 1.1.: Table of symbols.
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2 Fundamentals

Classification is a branch of machine learning which poses the task of finding the right class for an observation out of a
predefined set of classes. An observation is represented by a vector of feature or attribute values xi =

�

x i
1, x i

2, ..., x i
n

�T
and

its corresponding class value y i . A model is built which maps feature vectors to class predictions f (x) = ŷ , and the goal
is that ŷ = y for a greater number of unseen feature vectors or so that a cost function is minimised.

A set of examples which have been labeled with the correct class form the training data which is used to build the
model. The model should be able to capture patterns in this data so as to predict the correct class for unseen feature
vectors, yet not learn idiosyncrasies from the training examples and thus have difficulty generalizing to new observations,
in which case it is said to overfit. As a general rule, the more features make up the observations and the more parameters
are used to define the model, the more data is needed to prevent such a shortcoming.

There is a wide array of methods that tackle the classification task. In this chapter, a brief overview is given of decision
trees and artificial neural networks, as these topics are relevant for the incoming chapters.

2.1 Decision Trees

Decision trees are made out of test nodes which iteratively partition the feature space and leafs which are annotated with
class values. A classification is made by starting at the root of the tree and transversing it according to whether the
characteristic defined in each test is present in the feature vector. The process is deterministic in that there is only one
path each feature vector can take.

A popular algorithm used to build decision trees is C4.5 (Quinlan, 1993), which works in the following manner.
Starting from the root, a test is selected to divide the training data into disjoint subsets such that more examples in each
subset belong to the majority class. Tests usually have the form x i ≤ threshold for continuous attributes and x i = v alue
for discrete ones. The test t is selected which maximises the normalised information gain (2.2) by dividing the current
set into one subset for each outcome of the test. The information gain is the difference in entropy (2.1) between the
original and the partitioned sets, which measures the class unevenness within a set. Thus, maximizing the information
gain purifies the sets by encouraging all members to be of the same class.

H = −
∑

C j

P(C j) log2 P(C j) (2.1)

IG(D, t) = H(D)−H(D|t) = H(D)−
∑

v∈outcomes(t)

|Dv |
|D|

.H (Dv ) (2.2)

Dv = {(x, y) ∈ D|v } (2.3)

Different variants of the algorithm use different criteria to define when to stop branching, but this often occurs when
some majority of the examples in the node belong to the same class or no test leads to a positive information gain.

A major advantage of decision trees is that they provide a clear visualisation of the way they work and the path which
led to a decision can be easily traced. However, they also have some drawbacks, such as that the amount of data per node
decreases as the tree grows, and that they cannot easily model relationships between features. In general, they are highly
dependent on the way the attributes are defined, so when the data is highly dimensional some feature preprocessing is
usually performed prior to building them.

Decision trees can easily be represented as sets of decision rules, which are also highly interpretable. In contrast with
other rule models, the deterministic nature of the tree is maintained and it is not need of additional criteria to clarify
ambiguities.

Rules are extracted from the tree by joining with conjunctions all conditions that delimit a path from the root condition
to a leaf, which is labeled with a class. This generates rules of the form:

X1 ∧ X2 ∧ ... ∧ Xn→ class

with X1, X2, . . . , Xn as the conditions in the inner nodes from the root to one of the leafs of the tree.
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Figure 2.1.: A perceptron neuron.
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2.2 Artificial Neural Networks

A theory within neuroscience is that one way in which humans learn and store knowledge is through changes in the
dentrite connectivety of the brain. A neuron fires if the added excitement level of its incoming connections exceeds a
threshold. As a certain neuronal path is activated with more frequency, the strenght of the connections increases so that
if neurons at the start achieve an active state, this is likelier to cause those further along the path to be excited (Jesan
and Lauro, 2003).

Artificial neural networks emulate this behaviour to some degree, although feedforward structures only make up
certain areas of the human brain. They take many forms, but are generally made out of layers of individual units
which perform linear transformations of their incoming connections and apply a nonlinearity on top. The backpropa-
gation algorithm presents an effective way to train these models such that nonlinear patterns can be learned within the
structures.

2.2.1 The Perceptron

A perceptron neuron is a linear classifier which converts an array of binary input values into a binary output. The output is
one if the sum of the weighted inputs exceed some threshold, and zero otherwise. Instead of considering the threshold as
a separate term, its negated form referred to as bias can be regarded as an additional weight which is always multiplied
by one, in which case the output is determined by the sign of the sum (2.4). A perceptron neuron is shown in Figure 2.1.

ŷ = sgn

�

b+
∑

i

x iwi

�

(2.4)

Perceptrons can be stacked by using the outputs of some neurons as inputs of others, thus building relationships
between features and modeling more complex functions which are not only linear transformations of the inputs. This
forms the base for feedforward neural networks, which is why they are often called multi-layer perceptrons.

As the sgn function is not differentiable, the parameters cannot be optimised using iterative approaximation techniques.
Therefore, instead of applying this function over the weighted sum, other functions are used which create a similar
transformation but that are smooth and differentiable. Common choices are the sigmoid, which outputs values in the
[0,1] range and hyperbolic tangent, which extends this range to [−1,1]. These functions are illustrated in Figure 2.2.
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Figure 2.3.: A fully-connected, feedforward, deep neural network with four hidden layers.

2.2.2 Feedforward Artificial Neural Networks

As previously mentioned, artificial neural networks are made out of several layers of stacked neurons. They have an input
and an output layer, as well as at least one hidden layer in between. If there is more than one hidden layer, the network
is defined as deep. Layers closer to the inputs are said to be shallower, and those closer to the outputs are deeper.

The activations ai
l,n of the neurons are calculated starting from the first hidden layer. These are computed by applying

the activation function over the weighted sum of the feature values (2.5).

ai
1,n = f

�

∑

k

w 1
nk xk + b1,n

�

(2.5)

The following activations are determined by calculating the weighted sum of the activations from the preceding layer
(2.6) and applying the activation function (2.7).

z i
l,n =

∑

k

w l
nkal−1,k + bl,n (2.6)

ai
l,n = f

�

z i
l,n

�

(2.7)

A network is said to be fully-connected if all neurons in layer hi are connected to all neurons of layer hi+1. The
feedforward characterisation refers to the fact that all connections go in the direction from the inputs to the outputs,
which differentiates them from recurrent neural networks that do not adhere to this constraint. Within this work, only
feedforward networks will be considered.

A fully-connected, feedforward, deep neural network is shown in Figure 2.3. Each arrow between two neurons rep-
resents the entry in the corresponding weight matrix that determines the value by which the activation of the shallower
neuron are multiplied in the weighted sum. The bias weight is depicted inside the neuron.

2.2.3 Hidden Features

Linear models are effective when applied to linearly separable data, and they have the advantage that finding the best pa-
rameter setting is a convex optimisation problem. However, they cannot model data which follows nonlinear relationships
unless the features themselves have been designed to capture these patterns.

In contrast, neural networks do not require such preparation, as they can find adequate nonlinear transformations
during the training process. In fact, automatically finding relevant hidden features in the intermediate layers is one of
the main advantages of deep neural networks, and what makes them so well suited to deal with highly dimensional,
unprocessed data.

Neural networks can also be leveraged for feature discovery beyond specific classification problems, for instance
through the use of auto-encoders. These are networks that approximate the identity function between an input layer
and an equivalent (or slightly distorted) output, but which have narrower hidden layers, therefore forcing the network
to perform some dimensionality reduction.

Finding such patters is particularly interesting in cases where the input features by themselves do not provide much
information. This is for instance the case for image data, where visualisations of the features learned in hidden layers
give clear insight into the aspects which are considered when making predictions.
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2.2.4 Neural Networks for Classification

For classification problems, there is usually one output neuron per class of interest, and a softmax or normalised exponen-
tial function (2.8) is applied to the last layer in order to convert the output values into probabilities. Each value of an
output neuron j thus lies between zero and one and the sum of all output values is always one.

P(y i = Cn|xi) =
exp(z i

Cn
)

∑

C j
exp(z i

C j
)

(2.8)

A common loss function for classification problems, considering the real class y i is in one-hot encoding and ŷ i are the
probabilities for each class, is the cross-entropy (2.9), which penalises the divergence of the probability estimates from
the real class.

J(D) =
∑

i

∑

C j

−y i
C j

log( ŷ i
C j
) (2.9)

2.2.5 The Backpropagation Algorithm

Introducing nonlinearity into the model makes the problem of optimizing the parameters non-convex, so the optimal
parameter values cannot be found analytically and, instead, iterative approaches must be used to find an adequate
setting.

Probabilistic machine learning models are often trained with variants of gradient descent. The basic process consists
of calculating the loss J(θ n, D) when using the current parameter setting on the training set, or a part thereof, and
updating the parameters with the negative gradient of the loss function multiplied by a learning rate η (2.10). Naturally,
calculating the gradient requires the loss function to be differentiable.

θ n+1 = θ n −ηÏJ(θ n, D) (2.10)

The backpropagation algorithm, popularised in 1986 by the publication Rumelhart et al. (1988), first makes a forward
propagation of some train data through the network in order to calculate the overall loss J(θ n, D). The error for the
output neurons (2.11) is calculated as the Hadamard (element-wise) product � between the gradient of the loss function
at the output activations and the derivative of the activation function over the linear transformation on each output
neuron.

δl = Ïal
J(θ n, D)� f ′(zl) (2.11)

For shallower layers, the error δl (2.12) is calculated by considering the contribution of each neuron to the error in the
next deeper layer δl , where the magnitude of the contribution is determined by the weight connections outgoing that
neuron.

δl =W l+1T
δl+1 � f ′(zl) (2.12)

It is according to this error that the correction for each paramater is calculated. This process is associated with several
challenges, such as keeping the gradient from vanishing when training deeper networks, as the distance increases between
shallower parameters and the cost. However, these issues are not further discussed in this work.
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3 Related Work

Altough in recent years deep neural networks have considerably grown in popularity and there is increased interest
in them infiltrating certain domains, artificial neural models have been relevant for several decades, and their lack of
interpretability has always been recognised as one of their weaknesses. Therefore, an array of different methods to make
them more comprehensible have been developed, some of which are outlined in Section 3.3.

Additionally, this chapter provides an overview of the research in the areas of network pruning (Section 3.1) and dis-
cretisation of continuous attributes (Section 3.2), as existing approaches inspire some methods presented in the incoming
chapter.

3.1 Training Simpler Models

Training deep neural networks requires a lot of data to prevent overfitting the parameters. This is partly due to the fact
that finding the right topology for a network is not a trivial task and iteratively increasing the number of layers and nodes
is a time-costly process, so often too-large topologies are chosen.

To avoid this, many techniques have been developed to act as regularizers. A common practice is to include a weighted
L1 or L2 norm of the weights as a penalty term in the cost function to keep these from having big magnitudes. Also,
dropout (Srivastava et al., 2014) is often used, which introduces noise by temporarily removing connections for an epoch
with some probability. There are also many approaches which encourage sparse hidden activations (Ng, 2011) or weights.

In this section, techniques for pruning network connections are reviewed, as this has shown encouraging results in
assisting the extraction of rule representations.

3.1.1 Pruning Connections of Neural Networks

Pruning connections or whole neurons of trained neural networks is a common way to adapt the topology of the network
to the effective sise of the problem after training, thus discouraging overfitting and increasing the generalisation capabil-
ities. It can also be leveraged to require less time and resources when making classifications (Hassibi et al., 1993; LeCun
et al., 1989; Thodberg, 1991).

A connection w l
j,k between two neurons hl−1,k and hl, j can be pruned by equaling the weight entry to zero. This

differs from applying dropout in that connections are removed permanently, and which connections to prune is decided
according to some criterion, whereas dropout temporarily removes randomly chosen connections for one epoch at a
time. Pruning connections also results in pruning whole inputs or hidden units, as a neuron without output connections
is disconnected from the network. An illustration of the effect of pruning connections is shown in Figure 3.1.

Connection pruning is usually carried out in the following manner:

1. Networks are trained using back-propagation until a satisfactory loss is reached. The cost function may or may not
include a regularisation term in order to minimise the magnitude of the irrelevant weights.

2. One or more weights are pruned, chosen by some heuristic as being the least significant.
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Figure 3.1.: A deep neural network with 61% less connections than the fully-connected equivalent in Figure 2.3.

15



3. The network is retrained until an acceptable accuracy has been reached or a certain number of epochs have been
performed. If the accuracy is acceptable, pruning is resumed; otherwise the last acceptable solution is chosen.

In Thimm and Fiesler (1997), five different heuristics to select the next weight to be pruned are compared. Weight
decay is not used for concerns that it may draw the training to a local minimum. The results show that pruned networks
often, though not always, achieve a better generalisation. There is, however, no clear negative correlation between the
number of maintained connections and the generalisation capabilities. It is also shown that all five pruning heuristics
perform similarly well, and the simplest one, which consists of selecting the weights with lowest magnitude, often
performs within the best.

In Han et al. (2015), connection pruning is applied to networks with fully connected and convolutional layers trained
from image datasets. Weight decay is performed during backpropagation before pruning weights with magnitude below
a threshold. After each pruning step, the network is retrained. The results show that pruning iteratively, which is to say
performing a retraining phase after each pruning step, allows to discard a considerable higher number of connections.
The number of connections could consistently be reduced between nine and thirteen times without loss in accuracy.

3.2 Discretisation Techniques

Many machine learning algorithms which construct symbolic models, including tree and rule set building procedures,
train the model by partitioning the data according to adherence of the feature vector to tests. Some approaches are
only designed to work on discrete attributes. For those able to handle continuous ranges, usually, online discretisation is
performed in which a heuristic determines from all possible split values of a continuous attribute x i the best threshold to
partition the data.

The split values considered are often all middle points between any two subsequent values the attribute takes in the
train set. When selected in such a manner, the number of times the heuristic is calculated in order to find the best
separation grows linearly with the amount of training data, which significantly increases the running time of building the
model. Therefore, the effect of instead performing an offline discretisation before applying the algorithm, which places
an upper bound on the number of split values that are considered, has been extensively studied.

Discretisation methods are usually categorised according to three dimensions (Dougherty et al., 1995). The first
distinguishes between global approaches which partition all continuous attributes from local ones which affect only one.
The second differentiates supervised methods, which consider class labels for classification problems, from unsipervised
ones. Lastly, static methods divide the range into a set number of intervals whereas dynamic ones determine for each
attribute the number of intervals it should be divided into.

3.2.1 Unsupervised Methods

The simplest unsupervised discretisation approaches include equal width binning, which divides each range into k equally
wide intervals; and equal frequency binning, where each bin covers the same number of train instances (Catlett, 1991).
There are also approaches that use clustering to more closely replicate the distribution of the data (Chmielewski and
Grzymala-Busse, 1996).

3.2.2 Supervised Methods

In Berka and Bruha (1998), a supervised offline method for individually partitioning numerical attributes is presented.
First, the value each attribute takes in the train set is paired with the classes of the observations which take that value.
If the value only occurs for examples of the same class or the frequency of some class is significantly greater, that class is
assigned. Otherwise, the value is labeled as unknown. Then, the values are ordered and intervals are created that cover
the same class. If unknown intervals are surrounded by exponents of the same class, then all three are joined. Otherwise,
they are grouped with one of the surrounding intervals according to some criterion. The midpoints between interval
bounds make up the split values.

When used as a preprocessing step for C4.5 such that unknown intervals were always joined with the neighbor with
the class for which there was a majority, the procedure caused an accuracy decrease of about two points in most cases.
Only for one dataset did the accuracy decrease from 90% to 75%. Note that if mixed-class intervals are not joined, the
intervals point to the boundary midpoints. In Fayyad (1992), a proof is presented that the split values selected by C4.5
are always in the class boundaries. An example of a situation where mixed intervals are not joined is illustrated in Table
3.1. For this example, the boundary midpoints for the attribute are 1.6, 0.95 and 0.85.

Another supervised method which has shown good results is RMEP (Recursive Minimal Entropy Partitioning), presented
in Fayyad and Irani (1993). This approach first restricts the initial set of split values to the boundary midpoints so as
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to assure that the algorithm does not select an unfavorable split value in the first steps. Then, the value that minimises
entropy on the current train set is selected, and the search is recursively continued over the partitioned subsets. The
procedure stops partitioning when a criterion related to the information entropy of the subsets is reached. The evaluation
shows encouraging results, and in Dougherty et al. (1995), this method is found to be the most effective to use as a
preprocessing step for C4.5.

x j y [a, b] C[a,b]

2 C0 [2,2] unknown

2 C1 [2,2] unknown

1.2 C0 [1,1.2] C0

1 C0 [1,1.2] C0

0.9 C1 [0.9, 0.9] C1

0.8 C0 [0.6, 0.8] C0

0.6 C0 [0.6, 0.8] C0

Table 3.1.: Example of how the values taken by an attribute can be grouped into intervals in a way that minimises class
mixture.

3.3 Extraction of Rule Representations from Neural Networks

Many different approaches have been developed – particularly in the nineties – to extract symbolic representations of
neural networks. These techniques greatly differ from each other in several aspects and prioritise different properties of
the final representation.

It should be noted that there are also approaches which represent the network using fuzzy rules (Benítez et al.,
1997; Huang and Xing, 2002; Kasabov, 1996), although these representations are not considered to be as interpretable
as boolean ones (Andrews et al., 1995). Additionally, methods have been developed to detect which attributes and
connections are relevant (Olden and Jackson, 2002), as well as to form expressive visualisations, especially for image
data, which provide meaningful insight into the way the network operates (Das et al., 2016; Erhan et al., 2009; Zeiler
and Fergus, 2014).

3.3.1 Taxonomy of Rule Extraction Approaches

Different categorisations are used to distinguish between methods that extract rule representations from neural networks.
One of these refers to the expressive power of the extracted rules, distinguishing between boolean logic and other types
of representations, like fuzzy rules. Others regard the computational complexity of the approach, which is particularly
relevant for models with more inputs and hidden units, and whether a particular training regime or retraining step is
required (Andrews et al., 1995).

Another distinguishing aspect is the transparency with which the network is regarded (Craven and Shavlik, 1994).
Pedagogical methods treat the network as a black box and map relationships directly between the outputs and the inputs,
thus only explaining the predictive behaviour of the model as a whole. In contrast, decompositional ones observe the
network as a sum of its parts, looking for the contribution of individual parameters or neurons and uncovering hidden
features. Approaches which use knowledge of certain elements of the network’s architecture but do not explain the parts
individually are called eclectic.

The methods can also be characterised by the data used to build the model. This is a relevant aspect, as the way the
network reacts to implausible feature combinations may not necessarily give insight into how it would classify unseen
but naturally occurring observations. Some approaches only use examples the network was trained with. Others use all
possible feature vectors, thus building a model which would react similarly to the original network for any hypothetical
instance, which is, of cause, only viable when the feature space is small. Lastly, some methods make use of the training
set but augment it with generated instances.

Finally, a distinction can be made as to whether the approach works in a monothetic or polythetic fashion (Fisher and
McKusick, 1989). The first group considers each input (be it input feature or incoming connection) separately, while the
second regards all attributes simultaneously.
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3.3.2 Subset Methods

These methods typically assume a polarisation of the activations and the use of exclusively binary inputs. They search
the entire feature space and construct one expression per neuron of interest which describes that neuron as being active.
Basically, rules are built for a neuron hl,n being in an active state by finding combinations of the incoming weights that
cause the bias of the hidden unit to be exceeded. As neurons of layer hl−1 are also assumed to be minimally or maximally
activate, it suffices to consider the weights instead of the product of the weights with the corresponding activations al−1.

A shortcoming of such approaches is that observing all subset combinations grows at an exponential rate with the
number of incoming connections, which limits their applicability to larger networks because of computational constraints
and results in a great number of final rules. To subdue these issues, usually upper bounds are set for the maximal number
of literals in each subset.

Another problem is that although the activations of neural networks using most activation functions can be polarised
to some degree, it is a hard assumption to consider that any network can be converted to one with only maximally or
minimally active neurons while maintaining the initial accuracy. A much more difficult requirement to fulfill is that inputs
should be binary, as for continuous attributes to be binarised they first need to be discretised, which usually causes some
information loss.

KT

The KT algorithm (Fu, 1991) extracts rules from neural networks in a decompositional manner. A neuron is found to be
active if its value is greater than some β and inactive if it is smaller than an α. A version of the approach is presented
where the slope of the sigmoid is significantly increased during training, which results in an increase in accuracy for one
of the two experiments performed.

For each neuron, inputs are divided according to the sign of the connecting weight. As the sigmoid is monotonously
increasing and its values lie in [0,1] it suffices to observe the sign of the weights and the previous activations can be
disregarded. The approach then builds the conjunctive rules by finding combinations of the input literals that guarantee
a unit being active.

The space of input value combinations is transvered in a breadth-first manner. From the more general rule, which
includes the least literals, it is observed whether it accurately classifies all examples it covers. Only if it does not, the
rules at the next specificity level are considered. The computational complexity grows exponentially with the number of
input features and is controlled by setting an upper layer on the number of literals for each rule.

Polynomial Subset Method

In Tsukimoto (2000) a similar decompositional method is presented, but which keeps the computational complexity of
exploring the search space polynomial. Observations with feature vectors of length n are expressed as a multilinear
function of n variables (3.1).

2n
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e(x j)

!

, e(x j) ∈
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x j , x j

	

(3.1)

For each hidden unit, conjunctions of literals are found such that the activation exceeds 0.5. The search starts by
regarding only one variable, and allows defining more until the rule is consistent with the neuron being active. The
conjunctions are then joined into a DNF, which is later pruned with the train data.

There is no mention of requiring the activations to be polarised, but here as well the rules refer to neurons being active,
a state that is defined as exceeding the 0.5 mark (for a sigmoid activation function). The method is said to be applicable
to continuous attributes in the [0, 1] interval, but the final rules only present conditions that can be read as a value being
small or large, so an implied discretisation takes place. It is also explicitly stated that a more detailed description of the
network’s behaviour would require different thresholds to be considered for each unit.

MofN

M-of-N rules are representations where the left side has the form I F(M o f N). If M = 1, the rule can be regarded as a
disjunction of the literals in N , whereas for M = N , the expression is a conjunction. Using this syntax can result in more
compact representations. In Towell and Shavlik (1993) the algorithm MofN is presented for constructing networks out of
previously defined logical constructs, and then extracting M-of-N representations with a subset algorithm.
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First, the topology and initial parameters of the networks are determined using KBANN, which expresses domain
knowledge in symbolic rules, more specifically Horn clauses. A hierarchical structure is constructed to represent the
predetermined dependencies, which makes up the base topology of the network by considering each literal as a network
node. The connections between nodes which are highly dependent are assigned high initial weights.

Representations for each output and hidden neuron being active are build by finding combinations of weights that
exceed the bias. The rule extraction process assumes a polarisation of the activations, as well as that the logic defined
in the previous step has not been significantly altered during training. The sigmoid activation function is used and the
polarisation is implemented by increasing the slope.

The method starts by clustering the weights of the hidden units and replacing each activation by its closest cluster
mean to form equivalence classes. Then, groups that are considered irrelevant by having low weight magnitudes and not
many members are pruned. Clusters are pruned if they either cannot have any effect on the unit exceeding the bias even
when all members are active or heuristically by regarding the relevance of the cluster when classifying train instances.
Afterwards, the bias parameters are retrained while keeping the weights constant.

Lastly, rules are formed which determine, for each cluster, the fractional number of integrands which should be active
for the bias to be exceeded. A simplification procedure then transforms each rule into a set of rules where the amounts
of members are integers.

The method was able to extract comprehensible and accurate representations when both assumptions were met. How-
ever, it showed difficulties when the logic modeled by the hidden units diverged too strongly from the original knowledge.
This presents an obvious shortcoming, which is the necessity of sufficiently simple and clearly formulated domain knowl-
edge. Is also illustrates a more general problem of M-of-N representations, namely that while often neural networks
naturally repeat similar logic in different neurons, regarding these as equivalent requires some degree of approximation
which may cause the accuracy to fall.

3.3.3 Polythetic Methods that Sample Limited Amounts of Generated Data

Under this ample categorisation fall an array of algorithms that attempt to explain all sections of the network in a
more flexible manner that subset methods, by sampling the network with a subset of all possible input vectors, chosen
according to some criteria.

STARE

STARE (Statistics based Rule Extraction), outlined in Zhou et al. (2000), presents a way to extend subset methods to
dataset that contain continuous attributes by creating a new set of observations from the combinations between all
possible values of discrete attributes and values of continuous attributes determined by partitioning the original range
into a large number of intervals.

The new examples are sampled in the network to obtain the corresponding predictions. Then, attributes are sequen-
tially discretised into as many clusters as necessary for no two examples classified as belonging to different classes to be
assigned the same clustered values.

For extracting rules, a subset approach is used which sequentially increments the number of literals, with a maximum
of three. For selecting which attributes fall into these three permitted literals, STARE prioritises discrete attributes first
and then continuous attributes which are clustered into the least number of clusters.

The extracted rules, which are assigned a priority related to the order in which they were created, were often more
accurate than those extracted using C4.5. The authors argument that this is due to the rule sets having captivated more
general features from the neural networks.

Augmenting the Training Set

The approach presented in Craven and Shavlik (1994) produces a DNF representation for each class by employing two
oracles. One provides examples and the other answers whether a conjunctive rule predicts the correct class for all the
examples it covers. The first oracle first selects instances from the train set, but then augments this set with an approach
similar to that taken in STARE (Section 3.3.3).

The rules take the form of a DNF for each class. The DNFs at any state always correctly classify all current examples,
and they are grown successively by creating a new rule each time a new example is added which is not covered by the
present rules. The new rule initially replicates the example’s feature values, and is generalised by dropping conditions
for as long as the second oracle does not mark a decrease in accuracy.

The main difference between this approach and other methods is that instead of describing the behaviour of the
network for miscellaneous input combinations, it first considers the examples used to train it and only includes others for
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as long as the accuracy of the rules increases. It thus avoids an exponential computational complexity while leveraging
the possibility to sample the network with unseen instances.

Validity Interval Analysis

The Validity interval Analysis technique (Thrun, 1995) finds consistent intervals between any two layers of the network.
In the forward phase, ranges are defined for the shallow units, and the corresponding range for the deeper units is
determined from the shallow constraints. In the backward phase, intervals are specified for the deeper units and the
shallow intervals are refined. An inconsistency is found if an interval is refined to some [a, b] where a > b. If no
inconsistency is found, the process converges.

The left side of the rules is defined by whether the feature vector falls in an hypercube. The right side specifies that the
feature vector x either belongs or does not belong to a class C j .

I f x ∈ [ai , bi]
m→ C j

I f x ∈ [ai , bi]
m→ C j

Rules which fall in the first case are verified by finding a contradiction to the constraint that the output value for the
j th class is smaller than that of each other class when the inputs are within the bounds of the defined hypercube. For the
second type or rules, it is only necessary to reach a contradiction for the specified class.

The process of generating rule sets consists on systematically creating and verifying rules. If all attributes are discrete,
the rule search space can be regarded as a tree from the most general to the most specific, and the tree can be transversed
from the root until a rule is validated. For continuous input ranges, rules can be found by starting with the rule describing
one example and growing the interval of each of the example’s attributes for as long as the rule remains consistent.

3.3.4 Monothetic Methods

These approaches regard attributes independently, and only consider those which appear relevant for the performance of
the network with respect to some objective. All the methods described in this section aim to explain the behaviour of the
neural network using a different machine learning methodology, namely building decision trees.

TREPAN

The pedagogical TREPAN algorithm presented in Craven and Shavlik (1995) explains the outputs of the network with
respect to the inputs by building decision trees directly between these layers. The tree building process makes use of
queried instances, generated from the marginal distribution of each attribute, to keep the amount of data from decreasing
as the tree branches. Instead of selecting one feature to perform each partition, an M-of-N concept is chosen for each
split.

In Milaré et al. (2001), different variants of TREPAN are compared with each other and two other symbolic algorithms,
CN2 and C4.5. The last two approaches achieve the best accuracy in the test set when the real class labels are provided,
but a TREPAN variant performs better, although the difference is not statistically significant, when the task is to mimic
the network and its predictions are treated as class data.

Surprisingly, the implementation of TREPAN which performs best is that which does not make use of additional queries,
whereas that which does performs worse that CN2 and C4.5. The authors thus warn against the use of generated instances
which may not naturally occur, although this contradicts the results obtained by Zhou et al. (2000).

CRED

CRED (Sato and Tsukimoto, 2001) also builds rules out of decision trees, but only uses the examples in the training data,
employ the C4.5 algorithm to build the rules and works in a decompositional manner.

First, a target condition is set which determines the concept for which rules are extracted. This may be related to an
output neuron laying in some interval or to it having the highest value. That pattern is used to discretise the class values
for all examples.

Then, decision trees are build to explain the discretised output pattern with the hidden units as attributes, using the
activation values of the train instances. The activation range of each hidden unit is not divided into being maximally or
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minimally active. Rather, the online discretisation of the C4.5 algorithm determines where to partition each range. This
may result in several thresholds being considered per hidden unit, and on some unit not being regarded at all.

The decision trees are converted into sets of decision rules. Redundant and unsatisfiable rules and terms are deleted,
and a post-pruning approach is applied (further described in Section 4.1.3). Afterwards, analogous rule sets are built
which explain the split values considered for the hidden units with respect to the inputs. Finally, the total rules are
formed by substituting the hidden split values with rules which explain the target pattern with respect of the inputs.

By regarding only the relevant shallow neuron states, less rules are created than by other approaches, and a much
more fine-grained partition of each neuron’s activation range can be performed, as it is not necessary to extract rules for
each considered split value. Basically, the approach does not describe the general behaviour of the network but rather
gives one explanation for it, namely that which is relevant for the data used to train it.

DeepRED

The DeepRED algorithm (Zilke et al., 2016) extends CRED to deep neural networks. The process extracts rules between
any two layers by building decision trees with C4.5 for layer hl using the activations from layer hl−1 as attributes.

The trees are then converted to DNF representations, and a merging step converts the intermediate representations
into one of the outputs using the inputs. Redundant and unsatisfiable rules and conditions are deleted, but unlike in
CRED no further pruning takes place.

The algorithm was proven capable of extracting rule representations for deep neural networks, although a high per-
centage of experiments done on larger datasets aborted due to time and memory constraints, usually during the merging
process.

The approach outperformed a pedagogical baseline which neglected the hidden logic and applied C4.5 from the net-
work outputs to the inputs in cases where the data modelled patterns that are difficult to represent in a tree-like fashion.
Particularly interesting are the results obtained when DeepRED is applied to a network manually constructed to emulate
the parity function with eight inputs. The network has a recursive structure which uses several binary parity structures
and is minimally connected (each neuron has a maximum of two incoming and two outgoing connections). The method
is not only able to extract the modeled DNF representation using a significantly lower number of instances than the
pedagogical approach, but its intermediate rules also exactly replicate the recursive features.

There is, additionally, a version of the algorithm that performs a feature selection prior to rule extraction by considering
the contribution of each input for correctly classifying the training data and removing inputs that do have a great impact.
This proves to be very advantageous when the network is used for high dimensional data.

3.3.5 Connection Pruning as a Preprocessing Step

In Setiono (1997b) a method is introduced to prune connections from neural networks with one hidden layer, thus having
two weight matrices W 1 and W 2. First, the networks are trained with a weight-decay penalty.

Connections w2
p, j between the hidden and output layers are then pruned if their weight magnitude is less than a

threshold η (3.2), and connections w1
j,k are pruned between the input and hidden layer if their product with any of the

deeper connections is low in magnitude (3.3).
If no connection fulfills one of those conditions, then the entry w1

j,k for which the minimum of the maximum products
is lowest (3.4) is pruned. Afterwards, the network is retrained. If the final error falls below an acceptable level, the
pruning step is repeated; otherwise the last acceptable parameters are restored and the process is stopped.
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This approach is used extensively – particularly by the author – as a preprocessing step before applying rule extraction
algorithms.

The pruning phase is usually followed by a discretisation of the hidden unit activations using clustering. The strength
of the clustering is first chosen at random and then iteratively improved so that the strongest discretisation is applied that
does not lead to a decrease in accuracy. The method consists of selecting some within-cluster distance ε and building an
initial cluster with the first activation value a0

l,n. The remaining observations either join that cluster or start a new one
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in the event that no cluster mean is sufficiently close (3.5). If the accuracy of the network does not drop, ε is increased,
otherwise ε is reduced, with the goal of finding the greatest ε for each hidden unit that does not cause a drop in accuracy.

�

�

�H j
l,n − ai

l,n

�

�

�> ε ∀ j (3.5)

In Setiono and Liu (1996) and Setiono (1996), after these steps have been performed, rule sets between layers are built
greedily using the discretised activations, and an expression of the outputs to the inputs is found by applying substitution
and resolving conflicts. Rules created this way had on average more conditions but less rules than rule sets found using
a tree building approach, and the predictive accuracy of the network was at large maintained.

In Setiono (2000), a similar approach to the MofN algorithm (Section 3.3.2) is used after applying connection pruning.
However, instead of polarizing the activations and only considering the weights, the weights are replaced by either 1 or
-1 and it is the activations of the hidden units which are clustered. The inputs are also assumed to be binary. M-of-N
representations are only extracted if by replacing the weights in such a manner the accuracy of the network remains
acceptable.

Topology Adaptation

The same rule-extraction process is applied in Setiono (1997a) except that following the discretisation step it is observed
how many inputs a hidden unit has. If this number exceeds some threshold, the hidden unit is ’split’ into as many new
units as clusters of activation for the original neuron. Each new unit is treated as an output and a hidden layer is inserted
in the middle between the inputs and the new output layer. The network is then retrained and the new subnetwork
pruned, and the process is repeated until each neuron only has a small number of inputs. The rule sets extracted in this
manner proved to have higher accuracy than those extracted using C4.5, and had less rules.

This method is used in Santos et al. (2000) as part of an approach that genetically searches for the network topology
best suited for latter rule extraction. Each individual of the population is determined by the number of nodes in the
hidden layer. The initial networks are trained and rules are extracted from them. The fitness score of each individual,
which defines the probability according to which the individual will be used for reproduction, is determined by the
accuracy and comprehensibility of the extracted rule set. The crossover mechanisms include merging weights, as well as
including units present only on the largest participant.

In Fujimoto and Nakabayashi (2003), also, subnetworks are created to replace units with more than six inputs to assist
latter rule extraction, although this is not followed by pruning of connections.

In Kamruzzaman and Hasan (2010), the algorithm REANN is presented to extract rules, also from networks with one
hidden layer. If required by the dataset, the inputs are first discretised. Then, the number of hidden units is determined
incrementally, starting with one unit and adding more until an acceptable accuracy is reached. Irrelevant connections
are then pruned, and hidden activations are discretised. Finally, rules are constructed from the pruned networks and
post-pruning is applied for as long as the accuracy is acceptable.
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4 Methodology

The task of extracting representations from deep neural networks which not only explain the network’s predictive be-
haviour but also uncover hidden features poses an array of additional challenges.

The goal of unearthing the relations between hidden layers means the approach should work in a decompositional
manner. However, subset decompositional approaches pose too strict requirements on the input features and activation
values. Deep neural networks are often trained with very high dimensional data, and the attributes used tend to be
continuous. Representing these features in a binary manner would result in information loss and increase the amount
of features even further, which makes such approaches only viable if the maximal number of literals per conjunction is
kept very low. Also, there is no guarantee that the activations of a network can be polarised to such an extent that only
considering one state per neuron would not affect the accuracy.

Therefore, a method similar to the DeepRED algorithm (Section 3.3.4) is employed, as this approach has been proven
capable of extracting rule representations from deep neural networks. By only using the train instances, the number of
observations to regard does not grow exponentially with the amount of inputs, and there is no fear of extracting logic
which may never be evoked for naturally occurring feature vectors.

However, the DeepRED method is mainly focused in finding an accurate and comprehensible expression which explains
the outputs in terms of the inputs. Although the intermediate expressions can be analyzed, often too many of these are
created, as no limit is placed on the number of thresholds which partition each neuron. Therefore, these intermediate
rule sets often do not give an easily interpretable picture of the function of the hidden units.

To affront these issues, the approach is extended with a post-pruning approach (Section 4.1.3) which is applied each
time an intermediate expression is extracted, so as to find more accurate and compact intermediate expressions than
those extracted directly from the decision trees, as well as between substitution steps to avoid the partial errors from
propagating to the final expression DN Fh0→tar get .

Also, it is explored to what degree applying two different offline discretisation techniques affect the intermediate and
final representations. Both methods allow the definition of an upper bound on the number of thresholds per hidden unit.
The first, Activation Clustering (Section 4.2.1) builds the minimal number of clusters so that the accuracy of the network
does not decrease when the activation value of each hidden unit is replaced by the closest cluster mean, and the medium
points between cluster boundaries are taken as thresholds. The second, Layerwise Threshold Preselection (Section 4.2.2),
chooses the thresholds to split all neurons of layer hl jointly by considering the problem of classifying the train instances
as being above or below each relevant threshold for layer hl+1.

The effect is also observed of preceding the rule extraction with two types of network alterations which have been
shown to assist the latter extraction of comprehensible representations, namely encouraging sparse connectivity and
minimally or maximally active hidden units. These are implemented by the procedures Weight Sparseness Pruning (Sec-
tion 4.3.1) and Activation Polarisation (Section 4.3.2), respectively.

The general workflow of reconstructing a boolean expression from a neural network is illustrated in Figure 4.1. First, a
dataset is created from all interpretations of the literals, and a network is trained with the data to emulate the predefined
concept. The network is then modified so the activations are polarised and irrelevant connections are pruned. Afterwords,
the model is sampled to obtain activation values for each training instance. The target concept is defined by class C1
having a higher probability than C0. A first tree is built to predict under what activation settings of layer h1 the target
concept is fulfilled. The tree is converted into a DNF representation which is simplified. Then, a tree is built for each
literal which appears in the simplified expression, using the input values as attribute data. Each of these expressions
is extracted and simplified, and a last step substitutes the literals with regards to layer h1 from DN Fh1→a2,1>a1,1

to form
DN Fh0→a2,1>a1,1

. Depending on the discretisation procedure used, the threshold values the neurons can be partitioned
into are defined before starting the entire rule extraction process (activation clustering) or before building trees for one
layer (layerwise threshold preselection).

4.1 Extracting Intermediate and Final DNF Representations

The extraction of the intermediate expressions is illustrated in Algorithm 4.1. It starts by building a model for the target
elected to define the binary class value of the examples. This could be done in different ways, such as one or several
outputs exceeding or not determined thresholds. A more adequate problem formulation for classification problems
is whether the specified output has the highest activation value amongst all in the output layers, which is the target
employed in this work. The isGreatest function in line 12 determines a binary classification for each observation with
respect to this target. Afterwards, in the iterations which build expressions for shallower layers, the class values are
determined by whether or not the relevant deeper neuron surpass the corresponding thresholds.
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Figure 4.1.: General workflow for reconstructing a boolean formula.
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The general process for each layer hl consists on first determining the split values of the shallower layer hl−1 and
consecutively extracting expressions DN Fhl−1→hl>t or DN Fhl−1→hl<=t for the relevant conditions of layer hl . Then, the
same is repeated for layer hl−1 by considering as relevant conditions all those used in deeper expressions.

The main difference between the implementation and how DeepRED proceeds is that the split values for a layer are
chosen jointly before the trees are constructed so upper limits can be set on the amount of thresholds per neuron. These
are determined either by the Activation Clustering (line 8) or the Layerwise Threshold Preselection (line 9) procedures. The
approaches could, of course, be combined, which is the situation illustrated in the pseudo code.

Once C4.5 has built a tree for each relevant condition using the predefined split values, the tree is represented as a
DNF (line 15) which is simplified and pruned (line 16). In the event that the complementary condition has also been
used in a deeper expression, the process is repeated (line 20). Note that it is only for the conditions which remain after
these changes that rules will be extracted in the following iteration.

The expression DN Fh0→tar get of the target condition with respect to the input values is constructed from the interme-
diate expression associated with the target condition DN Fhl→tar get by consequently substituting the conditions of each
conjunction with the corresponding expressions from the intermediate expressions set, and repeating this process until
the literals are conditions of the inputs. After each replacement step, the expression is simplified and pruned to minimise
the length and reduce error propagation. This process is shown in pseudo code in Algorithm 4.2.

Algorithm 4.1: Build Intermediate Expressions

Inputs : aD , target
clusterMeans // If Activation Clustering is performed

Outputs: intermediateExpressions // Map linking conditions at all network depths to DNFs

1 T ← activationClustering(D,aD ∪ T0)

2 intermediateExpressions← {}
3 deepConditions← {tar get}
4 L← layer(target)
5 while L > 0 do
6 shallowActivations← aD

L−1
7 shallowConditions← {}
8 TL−1 ← clusterMeansL−1
9 TL−1 ← layerThresholdPreSelection(shallowActivations, TL−1, deepConditions, aD

L )

10 foreach (L, n, t, s) ∈ deepConditions do
11 if L = layer(targetCondition) then
12 deepClasses← isGreatest(aD

L ,n)
13 else
14 deepClasses← classValues(aD

L,n,t)
15 DN Fs,DN Fs̄ ← extractRuleSets(C4.5(deepClassifications, shallowActivations, TL−1))

16 DN Fs ← postPrune(simplify(DN Fs),(shallowActivations, deepClasses))
17 intermediateExpressions← intermediateExpressions ∪ {((L, n, t, s), DN Fs)}
18 shallowConditions← shallowConditions ∪ {c ∀c ∈ con junct ion∀con junct ion ∈ DN Fs}
19 if (L, n, t, s̄) ∈ deepConditions then

// If the opposite condition is also used in a deeper expression

20 repeat steps 16 to 18
21 deepConditions← deepConditions \ {(L, n, t, s)}
22

23 L← L-1
24 deepConditions← shallowConditions
25 return intermediateExpressions

4.1.1 Extraction of DNF Formulas from Trees

Each tree determines whether the value of an example for a certain input or hidden unit exceeds a threshold. For instance,
a tree could be built to determine if the value 0.5 is exceeded by the second neuron in the first hidden layer. Such a tree
would have two possible classes, h1,2 > 0.5 and h1,2 ≤ 0.5. The tests within the tree are conditions of the same type, but
with respect to neurons from the next shallower layer. Each leaf that predicts a class determines a rule for that class.

In another context, these could be regarded as if-then rules which would fire if all conditions at the right side were
satisfied, in which case the class at the left side would be predicted.
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Algorithm 4.2: Get Expression with Input Conditions

Inputs : intermediateExpressions, aD
l ∀l ∈ la yers , target

Outputs: DN Fh0→tar get

1 DN FhL→tar get ← getValue(intermediateExpressions, target)
2 deepClasses← isGreatest(aD

L ,neuron(target))
3 while L>0 do
4 shallowActivations← aD

L−1
5 DN FhL−1→tar get ← {}
6 foreach conjunction ∈ DN FhL→tar get do
7 foreach literal ∈ conjunction do
8 conjunction← substitute(literal, getValue(intermediateExpressions, literal))
9 DN FhL−1→tar get ← DN FhL−1→tar get ∪ distribute(conjunction)

10 DN FhL→tar get ← postPrune(simplify(DN FhL−1→tar get),(shallowActivations, deepClasses))
11 return DN FhL→tar get

Within this work, a separate DNF formula is maintained for each literal, so there are two separate DNFs per split value,
each of which fires as soon as one of its rules fires. A DNF formula for the event of neuron h1,2 exceeding the threshold
0.5 may look like:

DN Fh0→h1,2>0.5 : (h0,1 > 0.5∧ h0,2 ≤ 0.3)∨ (h0,2 > 0.3∧ h0,3 > 0.7) → h1,2 > 0.5

If both opposite class conditions are used in rules of the next deeper layer, only one tree is built and both DNF
representations are extracted and stored. For instance, if both h1,2 > 0.5 and h1,2 ≤ 0.5 acted as terms within rules
describing the second hidden layer, then one tree would be built and two different expressions DN Fh0→h1,2>0.5 and
DN Fh0→h1,2<=0.5 would be extracted.

These expressions are complementary after being extracted for the tree, but this may no longer hold once simplification
and pruning is applied, which may result in both DNFs firing for one example, or none doing so. Usually, additional
criteria are needed to determine which class an example would belong to in the events that several rules for different
classes were to fire – such as a priority list – or that no rule would fire – such as a default rule.

However, rules are only extracted for one output target class at a time, which is to say that only one expression is
maintained for the selected class, predicting the belonging to that class against the belonging to any of the other classes.
Therefore, the inconsistencies within intermediate expressions do not translate to ambiguities in the final class prediction.

Preliminary experiments were performed where only one expression per split value was maintained, and that for the
complementary literal was considered as its negation. However, this often caused a slight decrease in accuracy and
required the negation to be calculated.

4.1.2 Logical Simplification

The process of building the expressions DN Fh0→tar get by sequentially forming each DN Fhl−1→tar get from DN Fhl→tar get
through substitution can be very time and memory demanding, and it is possible that rules are created which are logically
inconsistent or strictly weaker to other rules in the set. To keep the number of terms at a reasonable number, redundant
and inconsistent rules and terms are deleted each time a replacement step is carried out. Both CRED and DeepRED
(Section 3.3.4) remove rules that are unsatisfiable, rules that are redundant within the DNF and conditions which are
more general than others in the same rule.

A rule is unsatisfiable if it includes two conditions that are mutually exclusive, such as the following:

h0,2 > 0.3∧ h0,2 ≤ 0.2 → h1,2 > 0.5

A rule is redundant if it is strictly weaker than another rule in the same rule set. Rule r1 is strictly weaker than rule r2
if it includes terms for all dimensions delimited by r2, and either restricts on further dimensions or the restrictions are at
least as specific than those of r2. In the following example expression, the second and third rules are redundant:

h0,2 > 0.3∨ (h0,2 > 0.3∧ h0,4 ≤ 0.2)∨ h0,2 > 0.4 → h1,2 > 0.5

A term is also redundant if the rule includes a more specific term. That is the case for the third term in the following
example rule:
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Figure 4.2.: A decision tree for which the DNF representation extracted by joining the paths from the root to the leafs has
redundant terms.

h0,2 > 0.3∧ h0,4 ≤ 0.2∧ h0,2 > 0.2 → h1,2 > 0.5

In addition to the described redundancies, a common pitfall affects DNF representations extracted from decision trees
related to the sequential manner in which the tree is evaluated. An example is illustrated in the decision tree in Figure 4.2.
The expression extracted from this tree to classify C1 would be a ≤ 2 ∨ (a > 2 ∧ b > 3)→ C1, although it is clear that
the first condition on the second conjunction is irrelevant, as if the test a > 2 was to fail, the instance would also belong
to class C1.

This addition of unnecessary conditions is outlined by Quinlan (1987a) and Quinlan (1987b), where an algorithm is
presented for converting decision trees into small sets of production rules of the form IF <conditions> THEN <class>
(<certainty factor>). The method consists on every condition that does not pass a probabilistic significance test being
removed. The resulting rule sets are not equivalent to the original trees but a generalisation of the model. In the
experiments performed these rules achieve better accuracy than the trees.

Preliminary experiments were performed that used this type of pruning within the context of extracting rule represen-
tations from deep neural networks. However, although the complexity was strongly reduced, the pruning proved to be
too aggressive and considerably affected the accuracy of the final and intermediate expressions.

Still, this pitfall can be addressed in a lossless manner without having to consider the training data by expanding the
syntactic deletion of redundant terms. The following two cases are considered:

• Two rules that classify for the same class are identical except that the second has a condition such that, if not
fulfilled, the first rule would fire (plus perhaps additional conditions). In this case, the irrelevant condition is
deleted from the second rule. For example, the expression

(a > 2∧ b ≤ 3∧ c > 2)∨ (a > 2∧ b ≤ 3∧ c ≤ 6∧ d > 5)→ C1

would be transformed to

(a > 2∧ b ≤ 3∧ c > 2)∨ (a > 2∧ b ≤ 3∧ d > 5)→ C1

• Two rules that classify for the same class are identical except for one condition in each conjunction such that if one
was not fulfilled, the other would be. For instance

(a > 2∧ b ≤ 3∧ c > 3)∨ (a > 2∧ b ≤ 3∧ c ≤ 5)→ C1

In this case, the complemented condition is deleted and the two rules are merged into one, as

a > 2∧ b ≤ 3→ C1

The second case is not likely to be generated from a decision tree, but often occurs during substitution when conditions
are replaced by expressions of a shallower layer.

4.1.3 Rules Post-pruning

After transforming the decision trees into DNF representations, it is possible that very similar rules remain which come
from different tree branches. This occurs often when some attributes are dependent on each other, as decision trees
cannot capture such patterns in a single test. These rules may not have a redundancy relation but still not provide more
information than a simpler rule would.

The danger of ending up with an overly complicated rule set is much greater after performing each replacing step
within Algorithm 4.2 while building the final expression. In that context, besides affecting the comprehensibility, this can
lead to propagating the error of the intermediate expressions into that of the target condition with respect to the inputs.

However, a too strong simplification should also be avoided, as the repercussions of simplifying intermediate concepts
on the final expression cannot be observed until the end.
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Merge Between two Rules

The CRED algorithm (Section 3.3.4) includes a step which simplifies intermediate rule sets by merging rules into fewer
more general ones that are each more interesting. Merging two rules means selecting the most general condition of the
dimensions they share, and dropping all conditions of dimensions they do not share, as exemplified below:

Rule 1: a ≤ 0.3∧ b > 4∧ c > 2→ C1

Rule 2: a ≤ 0.2∧ b > 3∧ d > 2→ C1

Merge of rules 1 and 2: a ≤ 0.3∧ b > 3→ C1

A rule r for class C j is found to be more interesting than its predecessors if it fires more often than the original rules
while maintaining a high correlation between firing and the class condition being fulfilled (4.1).

J(r, C j) = p(r)p(C j |r)log2

p(C j |r)
p(C j)

(4.1)

Applying this approach was tested in preliminary experiments and it was found that, although it is successful in reduc-
ing the complexity, when used to extract rules from deep neural networks it has a strong negative effect on the accuracy
of the final expression. This is so because a rule that is much more likely to occur leads to a gain in interestingness even if
it is less accurate. It also very often occurs that rules are merged that only share a small subset of the original dimensions,
having a too strong generalising effect.

However, if only merges are performed which increase the accuracy, the benefits of reducing the number of rules and
terms can be leveraged without considerably affecting the accuracy. Merging two rules is thus one of the alternative
transformations which can be carried out.

Overview of the Post-pruning Approach

A method for reduced error pruning was implemented that only makes a change on the rule set if this positively affects
the accuracy towards the specified condition. That is to say, if the expression

DN Fh1→h2,2>0.5 : h1,1 > 0∨ (h1,2 ≤ 0.3∧ h1,3 > 0.7) → h2,2 > 0.5

were to be pruned, the activation values of the training instances for h1,1, h1,2, h1,3 and h2,2 would be observed to calculate
the consistency between the expression in the left side and the condition in the right one.

Briefly, the proposed approach works as follows. A more detailed representation is provided by the pseudo code in
Algorithm 4.3.

For each rule, the change in accuracy is calculated for each of the following cases:

• The rule is deleted

• A condition is removed from the rule (calculated for all conditions of the rule)

• The rule is merged with another rule from the set (calculated for all remaining rules in the set)

Ideally, the repercussions of carrying out all possible modifications for every rule in the rule set would be calculated on
each step, and the best would be carried out. However, this was found to require too long in cases where the number of
rules created after a replacement step was very high. Therefore, it was decided that the rules would be handled one after
the other, choosing the best modification for a rule before considering the next one.

Rules are ordered in terms of their increasing precision (4.2) (line 3) so that unprecise rules are handled first. A heap
structure stores each yet unseen rule, so that new rules can be efficiently introduced. Each time a rule is observed, all
modifications that can be made from it, as well as their accuracy, are calculated. Calculating the varying accuracy scores
is sped up by putting apart all examples that fire by any other of the unseen rules. A list is also maintained for each
remaining rule of the example indices it covered.

P(r) =
t rue posi t iv es

t rue posi t iv es+ f alse posi t iv es
(4.2)

For each rule, the modification which leads to the highest accuracy is chosen, and if it is higher than when leaving the
rule unchanged, the change is performed. Unless the modification consists on removing the rule completely, the precision

28



Algorithm 4.3: Rule Set Post-pruning
Input : DNF, pruning set X
Output: pruned DNF

1 remainingRules← DNF
2 lastAccuracy← accuracy(X , DNF)
3 unseenRules← heap({(precision(r), r) | r ∈ DN F })
4 while unseenRules 6= {} do
5 rule← pop (unseenRules)
6 ruleVariants← { emptyRule }
7 ruleVariants← ruleVariants ∪ { merge (rule, other) | other ∈ remainingRules \ {rule} }
8 ruleVariants← ruleVariants ∪ { rule \ {condition} | condition ∈ rule }

/* The order in which ruleVariants is incremented causes that in the event of a tie

in the certainty factor, deleting the rule is chosen first, merging second and

removing a condition last. */

9 foreach r ∈ ruleVariants do
10 accuracyr ←accuracy(X , remainingRules \ {rule} ∪ {r}))
11 newRule← ar gmax r∈ruleVariants accuracyr
12 maxAccuracy← max r∈ruleVariants accuracyr
13 if maxAccuracy> lastAccuracy then
14 lastAccuracy← maxAccuracy
15 remainingRules← remainingRules \ {rule}
16 if newRule 6= emptyRule then
17 unseenRules← unseenRules ∪ {(precision(newRule), newRule)}
18 remainingRules← remainingRules ∪ { newRule}

is calculated for the new rule and it is inserted into the heap of unseen rules. This goes on until there are no unseen
rules.

It was explored in preliminary experiments whether it would be advantageous to exclude a subset of the available
training data from building the trees and instead reserving it to perform a less biased post-pruning. However, it was
consistently found that the resemblance to the network was higher when all the available data was used to build the
decision trees, and the same data was used for post-pruning.

4.2 Discretisation

A central aspect when contemplating properties that make rule representations for the intermediate layers of deep neural
networks comprehensible is the number of thresholds considered per unit. The behaviour of a neuron which can be
described in terms of being below or above one dividing value is naturally much easier to comprehend than if a different
logic is described for an array of activation ranges.

If only the online discretisation done by C4.5 is performed, which chooses the thresholds that best split the train data
for each decision tree separately, it is not possible to put an upper bound on the number of thresholds per neuron and
select the split values which adhere to that constraint and best partition the neurons of a layer. Also, online discretisation
requires all possible split values to be considered for each recursion step during tree building.

As several algorithms for extracting rule representations from neural networks employ some form of discretisation
(Section 3.3), and this appears to greatly help the extraction task, in the context of this work two different discretisation
techniques are explored. The first consists of clustering the activation ranges as long as the accuracy of the network is not
affected. The second attempts to find the thresholds for neurons of layer hl that best separate the data as being below or
above each split value selected for layer hl+1 before building the decision trees between layers hl+1 and hl .

4.2.1 Activation Clustering

In the approaches outlined in Section 3.3.5 that leverage connection pruning for rule extraction, the pruning phase is
followed by discretisation of the activation values. In Setiono (1996), a proof is presented that as long as the within-
cluster distance is sufficiently small, the activation values of each unit can be discretised without loss in accuracy. Also, it
is stated that the complexity of the final rules is proportional to the number of activation clusters.

The effect of such a transformation is evaluated as part of the rule extraction process. However, as the original method
is only applicable to neural networks with one hidden layer, it is altered to work on deeper networks. Also, Lloyd’s
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iterative k-means algorithm (Lloyd, 1982) is applied for the clustering, and instead of increasing within-cluster distance,
the number of clusters k is decreased.

The method starts by selecting an initial number of clusters k and clustering the activations of each neuron of the
network into k groups. Then, starting from the last hidden layer and considering all units of that layer separately, the
number of cluster means is reduced by one unit and the means are recalculated. Note that this number may be lower
than k if there are less distinct activation values that neuron takes.

If this causes a drop in accuracy, the previous cluster means are restored, otherwise k is reduced again. Once a
satisfactory discretisation is found for all neurons of that layer, the process is repeated with the adjacent shallower
hidden layer, and so on until the first hidden layer has been discretised. When a forward pass is made, each activation is
replaced with the cluster mean that is closest in terms of euclidean distance (4.3).

âi
l,n = ar gmin

H j
l,n

�

�

�H j
l,n − ai

l,n

�

�

� (4.3)

In Sato and Tsukimoto (2001), it is argued that this discretisation approach is not used within the CRED algorithm
because the method does not extract rules for conditions that are not of interest for rules of a deeper layer, and some
cluster means may not be relevant. Instead, the pruning method outlined in Section 4.1.3 is preferred to indirectly reduce
the number of split points by removing conditions from the rules.

However, as CRED is applied on networks with only one hidden layer, there is no danger that selecting too many split
values will have an exploding effect on the number of intermediate expressions that must be extracted from the shallower
layer.

In the context of this work, rule representations are not extracted for each cluster mean. Instead, this it performed as a
preprocessing step to select the split values that will be provided to the C4.5 approach, which are the midpoints between
subsequent cluster boundaries. This method thus provides a way to restrict the number of thresholds considered per
neuron which acts globally for all trees built between two layers.

4.2.2 Layerwise Threshold Preselection

The second approach is inspired by the RMEP algorithm (Section 3.2.2).
First, a dataset is created where the attributes are the activation values of layer hi , and the classes are a concatenation

of boolean values, with one character assigned for each split value that has been deemed relevant for layer hi+1. An
example is illustrated in Table 4.1 of how the entry for an the observation x o for the preselection of split values of layer
3 could look like, made out of the shallow activations and the placing of the deep activations with respect to the split
values previously determined for the deep layer.

After defining the dataset in this manner, a simulated tree building procedure is applied which separates the data,
described in pseudo code in Algorithm 4.4. The starting split values that can be selected are the class boundary midpoints,
which is to say the midpoint between two consecutive attribute values of different classes.

This is similar to the regular C4.5 in that the split value that leads to the greatest normalised information gain is
selected (line 8), and in that the tree grows recursively (line 18).

However, the thresholds are stored instead of a tree structure, and they are accessed globally so that, if two split values
lead to the same gain, that one is chosen which has already been selected in another branch (line 10) or that belongs to
a neuron (line 11). Also, the growth of the tree is not restricted by any parameter other than no gain being found.

a0
3,0 a0

3,1 a0
3,2 a0

3,3 a0
4,0 a0

4,1 a0
4,2

0.465 0.876 0.134 0.271 0.826 0.152 0.443
t4,0 t4,1 t4,2

{0.511} {} {0.312,0.687, 0.575}
a0

0 a0
1 a0

2 a0
3 class

0.465 0.876 0.134 0.271 1011

Table 4.1.: Example of a dataset for performing layerwise threshold preselection

4.3 Retraining of Deep Neural Networks

In the following section, the approaches are presented which are used to retrain a deep neural network in order to
encourage sparseness in the weight matrices or make the hidden units be either maximally or minimally active.
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Algorithm 4.4: Simulated Tree Builder

Global : T // Thresholds for a layer, where Tn are those for neuron n
Inputs : classCutPoints // Middle of consecutive values of different classes for each

neuron

max // Maximum thresholds per neuron

data // Dataset as exemplified in Table 4.1

1 if |data|= 1 then
2 return
3 bestGain, bestAttribute, bestThreshold← 0, 0, 0
4 bestTrue, bestFalse← {}, {}
5 foreach attribute ∈ |classCutPoints| : |Tat t ribute|< max do
6 foreach threshold ∈ classCutPointsat t ribute do
7 trueSet, falseSet← splitOn(data, attribute, threshold)
8 gain← normalizedInfoGain(trueSet, falseSet)
9 if gain > bestGain |

10 (gain = bestGain & threshold ∈ Tat t ribute & bestThreshold /∈ TbestAt t r ibute) |
11 (gain = bestGain & |Tat t ribute| < |TbestAt t r ibute|) then
12 bestAttribute← attribute
13 bestThreshold← threshold
14 bestTrue, bestFalse← trueSet, falseSet
15 if bestGain = 0 then
16 return
17 TbestAt t r ibute ← TbestAt t r ibute ∪ {bestThreshold}
18 simulatedTreeBuilder(classCutPoints, trueSet) // Grow simulated tree

19 simulatedTreeBuilder(classCutPoints, falseSet)

Within this work, the accuracy on the entire dataset is considered to guide the retraining, as the goal is to train the
networks to exactly emulate predefined concepts. However, in another setting it would be advisable to not regard the
accuracy on the data for which the loss is calculated but on a separate validation set which is not used to optimise the
parameters. Although both modifications are likelier to prevent overfitting than to promote it, using a validation set gives
a truer assessment of the performance of the network.

4.3.1 Weight Sparseness Pruning

The network pruning technique is similar to the connection pruning approaches described in Section 3.1. In contrast to
those methods, it does not aim to reduce the total number of connections but to sparsify the weight matrices so that the
total number of connections between any two layers is reduced. Pruning is thus not concentrated on weight matrices of
high dimensions or matrices where the magnitude of the weights is generally lower, but spread among all weight matrices
in the same manner.

This has the effect that single neurons are neither connected to a majority of the neurons of the following layer nor to
a majority of those from the previous layer. The expectation is that, as observed by Setiono (1997a), rules extracted from
minimally connected neurons will be simpler and more accurate.

The motivation for targeting such connections also comes from the performance of DeepRED when applied to a network
manually constructed to emulate the parity function with eight inputs in Zilke et al. (2016). The network constructed
for this experiment has a recursive structure from the eight inputs to the output layer and is minimally connected (each
neuron has a maximum of two incoming and two outgoing connections). DeepRED is not only able to extract the modeled
DNF representation using a significantly lower number of instances than the pedagogical approach, but its intermediate
rules also exactly replicate the recursive features.

Preliminary experiments show that this effect is not repeated on fully-connected networks of the same topology trained
with back-propagation, even if all combinations are used for training the network. When rules are extracted from such
networks using a reduced subset of combinations, intermediate rules are extracted that overfit to the currently available
examples, and concentrate the majority of the logic on rules between the inputs and the first hidden layer. These rules
vary greatly depending on the train instances used, and each DNF extracted for layer h1 depends on the majority of
the inputs. Therefore, the accuracy on the unseen instances never exceeds fifty percent and actually decreases as more
training data is presented (a phenomenon that also affects C4.5).
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If, on the other hand, the number of connections was reduced, the network may be encouraged to learn a reduced
amount of hidden features that are more abstract and apply to a greater percentage of examples. By forcing each neuron
to only use a subset of the neurons of the previous layer, the logic should be more distributed.

General Methodology

The pseudo code for the proposed method is depicted in Algorithm 4.5.
A connection wl

j,k is represented by the index of the weight matrix l and the row and column indexes j and k. The
number of entries that have already been pruned in each row or column of each weight matrix is maintained in order to
calculate the neighborhood sparseness of the remaining entries. This value is determined by, for an entry wl

j,k, the sum of

entries that have been pruned in row j of matrix W l plus those that have been pruned in column k of the same matrix.
At the start, a list of all existing connections is constructed (line 3). On each step, the list is sorted in terms of decreasing

neighborhood sparseness (line 6) and it is attempted to prune the next head element (the least sparse, which is likely
surrounded by unpruned entries).

The target train accuracy that must be reached after retraining for the eliminated connection to remain pruned is
equal to the original train accuracy minus an allowed accuracy decrease. If the accuracy is satisfactory, the connection is
pruned, the counts for column and row pruned entries are updated and the list is resorted. Otherwise the last accepted
parameters are restored and the next least sparse connection is removed from the list.

Iterations Used for Retraining

Preliminary experiments show that it becomes clear during a small number of iterations if a connection will not be able
to be pruned, as there is no change in the accuracy and the network gets stuck in a local minimum. However, some
connections cause a steep decrease in accuracy when they are first removed, but the network is able to adapt after a
considerable number of epochs.

To allow the latter connections to be eliminated while not considerable increasing the retraining time, it was decided to
take a different approach, which is to subdivide the total iterations for retraining into smaller sets. The procedure keeps
track of two different parameters: no improvements and steps, which are initialised to zero each time a new connection is
chosen.

Instead of performing all retraining steps at once, a low number of training steps (around 1% of those needed to train
the network) are performed, after which the accuracy is calculated. If it is equal or greater than the target accuracy,
the connection is pruned; otherwise that value is stored as the last accuracy achieved and another set of iterations is
carried out. Afterwards, the accuracy is recalculated. If it is smaller or equal than the last accuracy, the count for non-
improvements is increased by one, otherwise it is reset to zero and the new accuracy is adopted. The number of retraining
steps is increased regardless of the value of the accuracy. The retraining phase is stopped when either parameter reaches
its predefined maximum.

To make sure the process is not stretched out because of the accuracy cycling between a small set of values, the last
accuracy is always updated to the maximum of the new accuracy and the initial accuracy after eliminating the connection
(line 23).

Re-exploration of a Connection

It was also observed that if a connection had not been able to be pruned once, it was extremely unlikely that it would
be able to be pruned later on, even if other connections affecting the neurons it joined had been pruned. Also, if these
connections were to remain as yet to explore, the sorting function would make the process choose them each time a
connection had been pruned before still unseen connections, considerably slowing down the training. Therefore, it was
decided that it would only be attempted to delete each connection once. If the target accuracy was not reached, the
connection would no longer be considered.

4.3.2 Activation Polarisation

The fact that the activation range of the hidden units is continuous has several negative repercussions, such as making
it more costly to classify new instances. Techniques have been developed for binarizing the parameters and activation
values (Aizenberg et al., 2013; Courbariaux et al., 2015). However, most networks are trained in such a way that the
hidden units can take any value within the range.
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Algorithm 4.5: Weight Sparseness Pruning
Input : network, trainData, maxNonImprovements, maxSteps, iterations, accuracyDecrease
Output: pruned network

1 targetAccuracy← network.getAccuracy (trainData)*(1-accuracyDecrease) /* use separate

validation set if enough data available */

2 parameters← network.getBiasWeights
3 connections, prunedInRow, prunedInColumn← initConnections (network.arch ())
4 while connections 6= {} do
5 nonFound← True
6 connections← sparsitySort (connections, prunedInRow, prunedInColumn)
7 forall wl

j,k ∈ connections do
8 connections← connections \ {wl

j,k}

9 network.pruneConnection (wl
j,k)

10 lastAccuracy← network.getAccuracy (trainData)
11 nonImprovements← 0
12 runs← 0
13 while nonImprovements < maxNonImprovements & steps < maxSteps & nonFound do
14 for k ∈ [0, iterations) do
15 network.train (trainData)
16 steps← steps + 1
17 accuracy← network.getAccuracy (trainData)
18 if accuracy>=targetAccuracy then

/* the decrease in accuracy is acceptable, hence prune */

19 prunedInRowl, j ← prunedInRowl, j + 1
20 prunedInColumnl,k ← prunedInColumnl,k + 1
21 parameters← network.getBiasWeights
22 nonFound← False
23 else if accuracy > lastAccuracy then
24 lastAccuracy← max (accuracy, lastAccuracy)
25 nonImprovements← 0
26 else
27 nonImprovements← nonImprovements + 1
28 if nonFound then
29 network.setBiasWeights (parameters)
30 network.restoreConnection (wl

j,k)

31 else
32 break // break from forall so connections are reordered

33 return network

As representing each neuron with only one expression is a more comprehensible way to illustrate that neuron’s purpose
in the network that if different expressions have to be regarded for an array of activation intervals, many decompositional
rule extraction approaches reduce the possible states each neuron takes to being either at the bottom or the top of the
activation range (Section 3.3). In order to extract rules which are true to the network while making this assumption, the
networks are trained in a way that the activations are polarised.

There are several ways to achieve this. In the context of this work, a simple retraining step is proposed. Within these
retraining epochs, an additional term is added to the loss function in the form of the KL divergence. This term is similar
to that used in Ng (2011) to encourage sparse activations, but it penalises the divergence of the mean absolute value of
each activation (4.4) from a ρ close to one (as the hyperbolic tangent function is used) over all hidden units (4.5).

ρ̂l,n =
1
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This term introduces the additional parameters ρ for the optimal activation average and β for the weighting of the
penalty term. Instead of having to define β , the retraining method as implemented for this work starts by setting β = 0.
This value is iteratevely increased, performing some number of epochs between each increment, for as long as there is
no decrease in accuracy and the divergence stays above some threshold. The last weight and bias parameters are stored
before each increase of β , and if the process stops because the accuracy falls, the parameters which were saved last are
restored.

34



5 Experimental Setup

In the following sections, the process which was used to generate the boolean functions that were later reconstructed
is described, and these functions are presented. Also, some characteristics are specified of the methodology for train-
ing the networks, as well as of the models themselves. An overview is also given of what properties of the extracted
representations are to be assessed during the evaluation.

5.1 Topology and Initial Training of the Deep Neural Networks

The topology of the deep neural networks consists of three hidden layers. The first layer has twice as many neurons as
there are inputs. The second one has the average of that number and the output width. Lastly, the third hidden layer has
the same width as the output. The number of hidden nodes per layer for each dataset can be found in Table 5.3.

The networks use the hyperbolic tangent activation function and a softmax function in the final layer. They are trained
– and later altered to promote activation polarisation and sparse connectivity – using the TensorFlow framework, with an
optimiser that implements the ADAM algorithm (Kingma and Ba, 2014) 1 for ten thousend epochs using cross-entropy as
the loss function.

The training is done with the entire dataset until a perfect accuracy is achieved. Thus, it is assumed that the network
models the original formula, although no further statement can be made regarding in what way the logic is spread out
within it.

5.2 Data Base

The boolean functions used to train the networks and which are later reconstructed are generated as follows. The number
of maximum literals the expression may have, as well as a grouping parameter and the starting operator – either AND or
OR – are determined. The defined number of groups is formed, with each randomly selecting a subset of the available
literals.

When selecting the first group, each literal has the same probability of being selected, but before those that make
up the next group are chosen, the probability of the used literals is reduced 50%, and that of the remaining literals is
appropiately increased. The literals can thus be shared between groups, but this is discouraged during the generation
process so the final expression is not simplified to a much smaller one.

It is then randomly decided whether each aggregation will be negated, with a probability of negation of 0.2. The
possibly negated groups are joined with the elected starting operator, and the procedure is repeated recursively within
each group, until no more subdivisions can be performed. The AND and OR operators are alternated over group levels.

Figure 5.1 exemplifies how such a function may be chosen with five initial literals, a grouping parameter of two, and
AND as a starting operator. From the initial set of literals, two subsets are built by randomly choosing between one and
all available literals. This is repeated recursively until only one literal remains in each group. Then, the literals are joined

by the respective operators. The resulting expression would be ((E ∨ D ∧ (E ∨ E))∨ A)∧ (C ∨ (A∧ A)).
The expression is then reduced to its minimal DNF form using an implementation of the EXPRESSO algorithm (Brayton

et al., 1984).2 The dataset corresponding to the expression is made out of all combinations of literals which appear in
the simplified version. This step is crucial so as not to give the approaches which perform weight sparseness pruning an
unfair advantage, as otherwise the connections outgoing irrelevant literals would be identified as such and non of these
inputs would be errouniously included in the final expression.

The expression from the example in Figure 5.1 would be reduced to (D ∧ E)∨ A, and a dataset of eight total examples
consisting of all interpretations for three literals would be constructed.

In the context of this work, expressions are chosen with a maximum of twenty literals and a grouping of three. Formulas
are discarded which are made out of less than five literals or where less than ten examples belong to each class in the
dataset, so that each fold has at least one representative of each class.

The dataset base is made out of 19 expressions chosen thusly, plus the parity function with eight inputs. These are
shown is Table 5.1. The expressions are represented with the disjunction (A ∨ B), conjunction (A∧B), exclusive or (A⊕B)
and negation (Ā) operators. Additional information can be found in Table 5.2, such as the number of observations and
attributes (determined by the number of literals) and the class distribution.

1 This approach does not require to specify the learning rate.
2 The result is not guaranteed to be a global minimum, but is very close in practice and its runtime does not grow exponentially with the

number of literals, which affects other simplifications methods like Karnaugh maps and Quine-McCluskey.
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Figure 5.1.: Example of how a boolean function may be generated. The rounding of the corners shows whether the
joining operator is OR or AND, and the shattering marks that the group was negated. The representation
in the left illustrates how the literals which form each group are chosen, and that in the right shows the
operators which recursively join the subgroups.

Name Boolean Formula

F1 F ∨ G ∨
�

Ē ∧ R̄
�

∨
�

A∧ H̄ ∧ J̄ ∧ P̄ ∧ S̄
�

F2 Ē ∨ F̄ ∨ Q̄ ∨
�

G ∧ M̄ ∧ R̄
�

∨
�

C ∧ D ∧ J̄ ∧ S̄
�

F3 (K ∧Q ∧ T )∨
�

K̄ ∧ M̄ ∧ P̄ ∧ R∧ T̄
�

F4 (C ∧Q)∨
�

B ∧ G ∧ N ∧ R̄∧ T̄
�

∨ (J ∧ L)∨
�

B ∧ N ∧ P̄ ∧ T̄
�

F5 G ∨ T ∨
�

D̄ ∧Q ∧ S
�

∨
�

P ∧ S̄
�

∨ (N ∧Q)

F6 D ∨
�

Ē ∧ L̄ ∧ N ∧ T
�

∨
�

Ē ∧ G ∧ L̄ ∧ T
�

F7
�

Ā∧ Ī ∧ J̄ ∧Q
�

∨
�

Ā∧ Ī ∧ J̄ ∧ L ∧ R̄∧ T
�

∨
�

Ā∧ Ī ∧ J̄ ∧ P
�

∨
�

Ā∧ E ∧ Ī ∧ J̄
�

∨
�

Ā∧ Ī ∧ J̄ ∧ L ∧ S
�

∨
�

Ā∧ B ∧ Ī ∧ J̄ ∧ L
�

F8
�

B ∧ F̄ ∧ J ∧ L̄ ∧ M̄
�

∨
�

N̄ ∧ P̄
�

∨
�

B ∧ F̄ ∧ J ∧ M̄ ∧ R̄
�

F9 B̄ ∨ P ∨
�

C̄ ∧ Ē ∧ J ∧ K̄
�

∨
�

Ā∧ N ∧ R̄
�

∨
�

H̄ ∧O ∧Q ∧ T
�

∨
�

H̄ ∧O ∧Q ∧ S
�

F10 Ḡ ∨H ∨ (J ∧ L)∨ (L ∧ N)∨
�

B̄ ∧ F̄
�

F11
�

N̄ ∧ P̄
�

∨
�

J̄ ∧ Q̄
� �

A∧ D̄
�

∨
�

D̄ ∧ P̄
�

∨
�

A∧ N̄
�

∨
�

D̄ ∧O
�

∨
�

N̄ ∧O
�

∨
�

N̄ ∧ Q̄
�

∨
�

A∧ J̄
�

∨
�

J̄ ∧ P̄
�

∨
�

J̄ ∧O
�

∨
�

D̄ ∧ Ī
�

∨
�

Ī ∧ J̄
�

∨
�

Ī ∧ N̄
�

∨
�

D̄ ∧ Q̄
�

F12 K̄ ∨
�

B ∧ J ∧ Ō
�

∨
�

Ī ∧ Ō ∧ T̄
�

∨
�

I ∧ N ∧ Ō ∧ T
�

∨
�

I ∧ Ō ∧ R̄
�

F13
�

Ā∧ B̄ ∧ S̄ ∧ T̄
�

∨
�

B̄ ∧ D ∧ T̄
�

∨
�

B̄ ∧ C ∧ F ∧ T̄
�

F14
�

G ∧ J ∧ K ∧ N̄
�

∨ (A∧ G ∧ J ∧ K)∨ (F ∧ G ∧ J ∧ K ∧ S)

F15 D ∨ F̄ ∨
�

H ∧ P ∧ R̄
�

∨
�

H ∧ L̄ ∧ P
�

F16
�

D ∧ J ∧ K ∧ L̄
�

∨
�

C ∧ F̄ ∧ J ∧ L̄
�

∨
�

C ∧ J ∧ L̄ ∧O
�

∨
�

B ∧ C ∧ J ∧ L̄
�

∨
�

B ∧ Ī ∧ J ∧ L̄
�

F17 J ∨
�

H̄ ∧ L̄
�

∨ (N ∧O ∧ P)∨ (K ∧ N ∧O)∨ (D ∧ N ∧O)∨ (E ∧H)

F18
�

C ∧H ∧ J̄ ∧ S
�

∨
�

D ∧ F ∧ J̄ ∧ S
�

∨
�

C ∧ F ∧ J̄ ∧ S
�

∨
�

C ∧ D ∧ J̄ ∧ S
�

∨
�

F ∧H ∧ J̄ ∧ S
�

∨
�

D ∧H ∧ J̄ ∧ S ∧ T
�

F19
�

B ∧ C ∧ D̄ ∧ H̄ ∧ I ∧ J̄ ∧ L ∧ M̄
�

∨
�

B ∧ C ∧ D̄ ∧ H̄ ∧ I ∧ J̄ ∧ M̄ ∧ P
�

∨
�

Ā∧ R̄∧ T̄
�

F20 A⊕ B ⊕ C ⊕ D⊕ E ⊕ F ⊕ G ⊕H

Table 5.1.: Functions which compose the data base.

5.3 Split of the Datasets

Two different aspects are explored in the experiments. The first considers the situation where the train data directly
models the patterns which are to be extracted. That is to say that the entire dataset is used for rule extraction. Here, the
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Formula # attributes # observations # obs. C0 # obs. C1

F1 9 512 419 93
F2 10 1024 919 105
F3 6 64 10 54
F4 10 1024 493 531
F5 7 128 112 16
F6 6 64 35 29
F7 11 2048 237 1811
F8 8 256 73 183
F9 14 16384 13339 3045
F10 7 128 113 15
F11 8 256 217 39
F12 8 256 171 85
F13 7 128 23 195
F14 7 128 13 115
F15 6 64 51 13
F16 9 512 86 426
F17 9 512 412 100
F18 7 128 21 107
F19 12 4096 533 3563
F20 8 256 128 128

Table 5.2.: Number of observations and attributes and class distribution for the datasets built from the generated boolean
functions

goal is to observe the quality of the intermediate expressions with regards to the interpretability, as well as the maximum
accuracy that is achieved if certain constraints are enforced.

The second comparison observes to what extent the approaches are able to extract logical patterns in the hidden layers
which are not directly observable in the train data. Here, the accuracy is regarded in a test set made out of the instances
not included in the train data.

For this, the data is split into ten, four or two stratified folds and a cross-validation is performed. Also, the situation
is considered when there are higher percentages of train data by inverting the respective folds. This results in ten
experiments where 10% and 90% of the data is used, four with 25% and 75% being available, and two for the 50% case.
For each percentage, the evaluation measure is averaged over all experiments.

5.4 Evaluation Measures

As previously stated, a part of the evaluation is concerned with the discovery of interpretable intermediate concepts that
give insight into the inner workings of the network, whereas another is considered for the expressions extracted using a
subset of the data.

For the comparison of the quality of the intermediate concepts, the following measures are used:

• The intermediate number of conditions. That is to say, the total number of conditions among all extracted expres-
sions, including those referring to the inputs, regardless to whether the conditions are repeated.

• Number of expressions extracted from the last until the first hidden layer, excluding the expression built to describe
the output (as this number is one for all cases). This measure illustrates how many different expressions overall
would have to be observed if one wanted to analyse the intermediate concepts.

Also the accuracy (5.1) in the train data is regarded.
Concerning the second part of the evaluation, the accuracy (5.1) in the unseen instances is considered, which compares

the classifications of the extracted formula with that of the original one on the test data.

accurac y(DN F, D) = 1−
1
|D|

∑

i

�

�y i − ŷ i
�

� (5.1)

A common measure to evaluate the performance of approaches that find alternative representations for neural networks
is the fidelity (Towell and Shavlik, 1993; Zhou et al., 2000; Zilke et al., 2016), which compares the predictions of the
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extracted models with those of the network. The reason this measure is not considered in this work is that the initial
networks used here model the target concepts with perfect accuracy, so the degree of similarity to the original network is
the same as that to the class values in the dataset.

This, of course, does not hold for the networks after going through connection pruning, which are up to one percent
less accurate. However, considering the similarity to the modifined networks would give the approaches that employ this
technique an unfair advantage. Although pruning connections has been shown to improve the predictive accuracy of the
networks, this evidence is not enough to assume that it would always be more advantageous to emulate the behaviour of
the alterned network.

5.4.1 Determining a Significant Difference

For determining when a difference in performance between two classifiers is statistically significant, the Sign and Wilcoxon
Signed-Ranks tests are used, as they are non-parametric and make no assumptions on the distribution of the data, so they
are often used to compare models built by two different classifiers on an array of miscellaneous datasets. Both tests are
considered for a p = 0.05 significance level, and in the event of an uneven amount of ties, the number N of datasets is
reduced by one. Also subtracted from this number are comparisons which cannot be performed because of uncompleted
experiments.

The first test counts the number of times an approach wins or loses against the other. It disregards the magnitude of
the wins or losses and attempts to disprove the hypothesis that a win or loss is equally likely for each approach. Ties
are divided equally between both cases. The critical values considered are those outlined by Demšar and Schuurmans
(2006).

The second test does observe the extent to which the performance of an approach differs from the other on each
dataset. The differences in the measure of interest are ordered with increasing magnitude, and each dataset is paired
with a rank value corresponding to that ordering. For each approach, the ranks of the datasets for which it won are
summed up and the sums are compared. If several differences are equivalent in magnitude, the rank is averaged (for
instance, if those which would fall in places 2 and 3 are the same, 2.5 would be counted for each) and if there are ties,
these are distributed equally between the approaches. For performing this test, the implementation in the Coin library
for the R framework is used (Hothorn et al., 2016).

5.5 Approach Variants

For the first part of the evaluation, a total of 30 configurations are compared to assess which modifications help extract
the most comprehensible intermediate concepts while not affecting the accuracy of the final expression in the train set.

The first dimension depends on the retraining of the DNN, for which the following options are explored:

• No retraining takes place

• Weight sparseness pruning is performed (Section 4.3.1)

• The activations are first polarised (Section 4.3.2), and then weight sparseness pruning is performed

The second distinction refers to the discretisation, for which there are the following five variants, the last three of
which only find one threshold per hidden unit:

• No discretisation besides the online selection performed by C4.5

• Activation clustering with a maximum of 10 clusters per neuron (and therefore 9 threshold)

• Simulated tree builder with a maximum of 1 threshold per neuron

• Activation clustering with a maximum of 2 clusters per neuron (and therefore 1 threshold)

• The medium of the activation range, which is zero as the hyperbolic tangent function is used

Finally, variants are considered for which the post-pruning approach (Section 4.1.3) is applied to the intermediate and
final rules, as well as those where no such pruning takes place.

For the second part of the evaluation, only the discretisation variants which perform best according to the first compar-
ison for the cases of selecting multiple and one thresholds per neuron are considered for each retraining and post-pruning
variation. As outlined in Section 5.3, experiments are performed using different percentages of the data to inspect to
what extent the expression can be reconstructed when less data is available. This results in performing 30 experiments
per dataset per selected configuration. The performace of these models is compared with that built by the C4.5 approach,
with and without appling the same post-pruning procedure.
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Figure 5.2.: Trade-off between the percentage of weight connections that can be equated to zero and the deviation from
the activation centre.

5.6 Setting of the Hyperparameters

As considering different settings of the hyperparameters would have greatly increased the already elevated number of
experiments per dataset, it was decided to select for each one only one setting which seemed appropriate; except for the
upper bound on clusters when performing activation clustering, for which two settings are considered.

The implementation of C4.5 stops growing the tree when the percentage of instances which belong to the majority
class exceeds a threshold or there are less instances that some percentage of the initial dataset size. In Zilke et al. (2016),
a more thorough comparison of the effect of these parameters in the context of rule extraction from deep neural networks
is performed, and it is shown that a higher class dominance threshold and a lower minimum dataset sise requirement
correlate with the final expressions more strongly mimicking the network. Also, as the post-pruning approach is applied
over the expressions extracted from the tree, it was decided to set these parameters at 99% class dominance and 1%
minimum dataset size. Additionally, only binary splits are allowed and the trees have a maximum depth of twenty nodes.

For performing activation polarisation, ρ is set at 0.99, β is increased by 0.1 at a time and 1000 epochs are performed
after each increase. The retraining is stopped when either a decrease in accuracy occurs or the divergance error (not
multiplied by the weighting factor) falls below 0.01.

For weight sparseness pruning, a 1% decrease in accuracy is chosen, as this results in pruning a much greater percent-
age of connections than if no decrease is allowed, but not considerably less than when allowing a 2% decrease. Each
time a connection is pruned, 1000 epochs are performed before considering the accuracy. For the networks which are
retrained in both manners, the penalty term from the activation polarisation is added to the loss function used during
connection pruning, multiplied by the last accepted value of β .

5.7 Characteristics of the Trained Networks

The possibility was recognised that pruning connections may concentrate more logic in the remaining neurons, thus
having to observe a greater number of thresholds per neuron to make sense of the hidden unit’s function.

After training all networks and performing the retraining steps, it was observed how many weight connections had
been pruned, and how well the neurons could be polarised by calculating the average deviation of the hidden units
from zero (the centre of the range for the hyperbolic tangent function) in the train data (5.2). These characteristics are
depicted in Table 5.3.

∑

i∈D

∑

hl,n∈N

�

�

�ai
l,n

�

�

�

|D| . |N |
, N :=

�

hl,n | l ∈ [1, output layer)
	

(5.2)

The results of this analysis corroborate the hypothesis, and show that the effect is much more pronounced than was
expected. A clear trade-off seems to take place between the divercence from the range centre and the number of con-
nections that can be disregarded. This is illustrated in Figure 5.2, where the values are shown for the original networks,
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Formula Hidden
nodes

Avg. activation deviation from centre Percentage zero weights

original pruned polarised, original pruned polarised,
pruned pruned

F1 18-10-2 0.69 0.46 0.83 0 97 65
F2 20-11-2 0.72 0.53 0.98 0 94 35
F3 12-7-2 0.70 0.48 0.93 0 88 52
F4 20-11-2 0.71 0.49 0.89 0 94 71
F5 14-8-2 0.73 0.39 0.93 0 92 69
F6 12-7-2 0.73 0.41 0.89 0 91 57
F7 22-12-2 0.74 0.45 0.78 0 98 65
F8 16-9-2 0.67 0.50 0.84 0 93 69
F9 28-15-2 0.78 0.46 0.93 0 96 71
F10 14-8-2 0.69 0.45 0.97 0 92 45
F11 16-9-2 0.75 0.53 0.86 0 89 58
F12 16-9-2 0.68 0.51 0.98 0 92 26
F13 14-8-2 0.69 0.53 0.94 0 93 44
F14 14-8-2 0.71 0.47 0.83 0 94 58
F15 12-7-2 0.68 0.42 0.74 0 91 47
F16 18-10-2 0.68 0.46 0.79 0 94 72
F17 18-10-2 0.70 0.39 0.88 0 86 60
F18 14-8-2 0.72 0.41 0.89 0 93 54
F19 24-13-2 0.73 0.38 0.77 0 98 83
F20 16-9-2 0.78 0.69 0.98 0 63 34

Table 5.3.: Characteristics of the trained neural networks.

those retrained with weight sparseness pruning and those where activation polarisation was applied, followed by weight
sparseness pruning.

The pruning approach was able to eliminate a great percentage of the connections, but at the cost of distributing
the activation values more evenly across the range. When the networks were first polarised, and the penalty term was
maintained in the cost function during the latter connection pruning, the activation values remained close to the range
boundaries, but much less connections were eliminated.
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6 Evaluation

In Chapter 4, several techniques were presented for altering the internal behaviour of trained neural networks and for
performing offline discretisation on the activation ranges of the hidden units, as well as an approach for pruning rule
sets. In the following sections it is explored how these modifications fare in terms of the complexity of the intermediate
models and the semantic similarity of the extracted expressions to the original boolean formulas.

6.1 Reconstruction Using the Entire Dataset

Before regarding the generalization habilities of each variant, a quality assessment of the concepts reconstructed when the
entire dataset is available is considered. A comparison is performed of the interpretability of the intermediate concepts,
as well as of the accuracy on the data used to train the models.

Achieving a high accuracy on the train data is not usually considered as a primary goal, so the motivation for observing
this may be unclear. However, in this context correctly predicting the class values for the train instances is not trivial. In
fact, there are several reasons why a concept may not be correctly reconstructed even when all input combinations are
available. For starters, each individual decision tree is likely to include some error. Trees are built in a greedy manner by
sequentially selecting the split value that appears likelier to lead to the best solution, but it is possible that only a local
minimum is found.

The process of growing a tree ends when one of the stopping criteria is reached. In the best case scenario this would
occur when a high percentage of the instances in each node belong to the node’s majority class, but there is also a chance
that there is not enough data to continue branching, that the maximum defined depth is reached or that no remaining
split value causes a positive information gain.

The last scenario is particularly likely when an offline discretisation has taken place, as the selected split values may not
be sufficient to separate the data appropiately. However, letting the tree building process select any midpoint between two
subsequent values may also lead to significant errors, as the tree could overfit the data. This may not seem problematic
when the goal is to achieve a high training accuracy, but it is if overfitting occurs in a deep layer. For instance, consider
the situation that the condition h3,2 > 0.98 is selected when building a tree between the third and fourth hidden layers,
and that this condition is maintained after pruning because it improves the accuracy between the two specified layers. In
the event that only a small percentage of the instances fall to one side of the condition, there may not be enough data
to build the expression DN Fh2→h3,2>0.98, and so by looking to maintain a high accuracy for the intermediate expressions,
the accuracy of the final expression DN Fh0→tar get is damaged.

Considering this situation, the goals of achieving a high accuracy and building simple intermediate concepts may not
be conflicting. If less and simpler intermediate expressions are constructed, it is likelier that these hold for a greater
percentage of the data, and the chance for any one instance to fall within the error range of one of the intermediate
concepts is lower. Therefore, in this section both these properties are analysed.

6.1.1 Effect of Applying Post-pruning

First, the effect of applying the post-pruning method on each intermediate expression and between substitution steps
was observed. This was overwhelmingly positive, substantially reducing the complexity of the intermediate concepts and
either having no effect or a positive one in the accuracy. More specifically, from the 293 configurations for which an
expression was extracted with and without applying post-pruning, this step increased the accuracy in 123 cases and only
decreased it in 7. The effect is illustrated in Figure 6.1. 1

The positive effect in the accuracy would be a trivial finding if the post-pruning had been applied at the end in the
final expression, as it is the accuracy on the train data which is being regarded. However, it should be kept in mind that
by reducing the complexity of the intermediate concepts within some layer hi these could be simplified too strongly, for
instance disregarding certain neuron thresholds from neurons in layer hi−1 which are necessary to regain the pattern
modeled by the input vectors.

Because of the consistency in the results, only those configurations are further compared which include the post-
pruning.

1 An overview of the experiments which were not completed is given in Section 6.3.
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Figure 6.1.: Effect of applying the post-pruning approach and different retraining methods on the complexity of the
intermediate concepts and the train accuracy of the final expressions.
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Figure 6.2.: Complexity of the intermediate concepts.

6.1.2 Complexity of the Intermediate Concepts

Applying the different retraining methods on the networks did not cause a significant change in accuracy when no
discretisation was performed as almost all expressions could be reconstructed to at least 95%.

There was, however, a noticeable change in the number of intermediate expressions which were extracted – as well
as in their complexity measured with the number of total conditions – when the networks were retrained under weight
sparseness pruning. The models which resulted from less connected networks were much more compact.

This ocurred with and without a previous polarisation of the activations, although the total number of conditions was
reduced to a greater degree when only the pruning was performed. Considering that a significantly lower number of
weight entries were nulled in the polarised and pruned networks (Section 5.7), the effect is surprisingly similar.

The different discretisation approaches did not change the complexity of the intermediate expressions in a significant
way for either of the complexity measures. However, applying activation clustering in some cases resulted in some models
having a greater number of intermediate expressions and conditions than when no offline discretisation was carried out.
The complexity of the models is illustrated in Figure 6.2.

6.1.3 Accuracy on the Train Data

Regarding the accuracy for the models extracted from unpruned networks, the results show only a significant difference,
found as such by both tests, between the configuration which did not include a discretisation step and that where two
clusters of activation values were formed on each neuron and the single midpoint of the boundaries was used to divide
that range, which performed worse according to both tests (13 losses for N=18 2, Z=2.09).

Interestingly, besides this particular case, there was no significant difference between any two discretisation approaches
neither for the models which did not include any network retraining nor between those for which the networks were
pruned and polarised; yet there was a change between any two discretisation methods when the network was pruned
but not polarised. For this case, restricting the number of split values in any manner significantly decreased the accuracy,

2 There was an aborted experiment for F9.
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Figure 6.3.: Extent to which the concepts modeled by the neural networks could be reconstructed when using all input
combinations. Post-pruning was applied when building all models.

as can be observed in Figure 6.3 by regarding the change in the green bars. The only exception where there was no
significant difference was between the activation clustering with nine midpoints and the layerwise preselection of one
split value per neuron.

These results reinforce the hypothesis that, when a high number of network connections are pruned and a retrain-
ing phase is performed between pruning steps, the logic modeled by the network is more heavily concentrated in the
remaining neurons, thus needing to subdivide the neuron range into more intervals so as to allow each neuron to be
described.

Figure 6.3 illustrates the extent to which the concepts modeled by the neural networks could be reconstructed when
using all input combinations for two different network retraining methodologies and five ways of selecting where to
partition the activation ranges, always applying post-pruning.

6.2 Reconstruction Using Part of the Dataset

After exploring the limits of each approach, the generalisation abilities of the different variants were compared by utilizing
a subset of the combinations as train data and analyzing the accuracy on the remaining instances. A reduced number of
discretisation variants was considered per configuration. As there was no significant difference neither in terms of the
accuracy nor with regards to the comprehensibility of the intermediate concepts between performing activation clustering
with nine thresholds per neuron and relying on the natural discretisation of C4.5, the second variant was considered.

For the case of using only one threshold per neuron, the layerwise threshold preselection approach was selected as it
was the best performing amongst those which adhered to this constraint, particularly in the case when weight sparseness
pruning was performed but no polarisation of the activations.
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Figure 6.4.: Effect of applying the post-pruning approach and different retraining methods on the accuracy and complex-
ity of the final expression.

Additionally, the configuration of considering zero as the only possible threshold was observed for the case where the
network has gone through both retraining steps, as it is the simplest method and obtaining good results in this manner
would considerably facilitate the rule extraction process.

6.2.1 Effect of Applying Post-pruning

The expectations for performing the post-pruning step were less certain in this context, as it may have contributed to
overfitting the training data. However, this did not come to pass. From the 691 configurations for which models with and
without applying post-pruning were present, the method increased the predictive accuracy 146 times and only caused a
decrease 52 times. The results can be observed in Figure 6.4.

Considering this, further comparisons are only made between models built applying the post-pruning. As the effect
was also highly positive for the C4.5 approach, increasing the accuracy 16 times and decreasing it only 6, it is this variant
which is further compared to the decompositional approaches.

6.2.2 Accuracy on Unseen Instances

Generally, the best performing approaches when less data was available were those for which weight sparseness pruning
as well as activation polarisation had been performed on the networks. Often, these methods were able to generalise
better than the C4.5 variant. However, significant differences were only found in some cases.

When considering only the models extracted from networks which had not gone through any retraining, none of
the tests found a significant difference between the different discretisation procedures. The same occurred for models
extracted from networks that had been polarised and later pruned, even when only zero was used as a neuron threshold.

These results are encouraging in the sense that only considering a small number of split values makes the rule extrac-
tion process more applicable to very large datasets, so the fact that the accuracy was not negatively affected suggests
rule representations could be extracted for models trained with big amounts of data without having to discard part
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of it. However, they speak against the expectation that restricting the number of thresholds would allow for a better
generalisation.

Only for the cases when network pruning was performed but no activation polarisation took place was there a notice-
able difference, as the models for which the activation ranges had only been discretised in an online manner by C4.5
outperformed the discretised variant according to the Wilcoxon test for the cases where 25% (Z=2.16) and 75% (Z=2.44)
of the data was used. This is consistent with the significant decrease in train accuracy reported earlier (Section 6.1.3).

When observing the difference between the models built without performing any offline discretisation, which is to say
when only regarding only the effect of the retraining practice, the variants which included weight sparseness pruning
generally performed better than those which did not, regardless of whether the activations had been polarised. The
pruned variant outperformed that where no retraining had taken place according to both tests when 25% of the data was
used (with 16 from N=19 wins, Z=3.11), and that for which both retraining methods had been applied was deemed
better by the Wilcoxon test when using 10% of the data (Z=2.07). Between both approaches that included pruning
connections of the network, there was no significant difference for any data percentage.

It is worth noting that the inconsistency in the performance, that is to say in the fact that sometimes the unpruned
approaches outperformed the pruned ones and other times the opposite occured, is partly due to the original decrease in
accuracy of up to 1% that occurred when retraining the networks.

Finally, compared to the C4.5 approach which included post-pruning, none of the variants which did not perform
network pruning showed a significant improvement. From those that did prune irrelevant connections and did not
polarize the activations, only that for which no additional discretisation took place significantly outperformed C4.5 when
50% and 10% of the data was present according to the Wilcoxon test (with Z=2.22 and Z=2.63, respectively) and for
both tests when 25% was used (16 wins out of N=20, Z=3.06).

The same situation held for the polarised and pruned variant (with, respectively, Z=2.31, Z=2.52, Z=2.75 and 14
wins out of N=19). However, this variant also outperformed C4.5 in several cases using only one threshold per neuron.
When only the centre of the range was taken, C4.5 was worse according to both tests when 25% of the data was used
(with 16 wins from N=19 and Z=3.40). The same held when using the layerwise preselection (with 16 wins from N=20
and Z=3.23), only here the Wilcoxon test also found a difference for the 10% split (with Z=2.17).

The general performance of the approaches for all datasets is illustrated in Figure 6.5. It is noticeable that when net-
works were retrained to reduce connectivity and encourage activation polarisation, the models almost always performed
within the best and the discretisation did not have a great effect, whereas when the networks had not gone through
any retraining the models performed similarly to those built by C4.5. This effect was inversely proportional to the data
availability. A comparison per dataset of the retraining methods without using additional discretisation can be seen in
Figure 6.6. The accuracy scores of the approaches when using 10%, 25% and 50% which were used for the comparison
are found in the annex in Table A.1, Table A.2 and Table A.3, respectively.

6.3 Failed Experiments

There were two circumstances under which experiments did not build an acceptable model. The first was that either the
memory or time constraints were surpassed, which were set at 24 hours and 5000 MegaBytes respectively.

The second situation occured when the first decision tree which would define a model for the target condition was
not able to find any split value which increased the gain, so a random default rule was chosen as the final model and
no intermediate concepts were extracted. Note that this could occur either in the last hidden layer or shallower ones if
deeper layers merely modelled the identity function.

Within the first comparison, a total of 600 experiments were performed, composed of 30 per dataset. For the second
comparison, where seven configurations were reviewed and models were built using different percentages of the data,
8400 experiments in total took place, reduced to 1400 events by averaging the scores of the corresponding folds. The
failures are summarised in Table 6.1.

Models could not be built for a total of three datasets. The first was F9, which was the largest dataset used with
16384 total instances. Here, a total of four experiments were not completed when using 100% of the data. Also, sixteen
experiments, resulting in four events, were not completed when using 90% of the data. The problematic configurations
were the same as when 100% was used. All these experiments aborted during the extraction of intermediate expressions
due to time constraints.

The second problematic dataset was F19, for which all experiments performed in networks that had gone though
polarisation and connection pruning could not be completed when zero was used as the only threshold as no acceptable
split value was found. This situation was somewhat unexpected as it was otherwise easier to extract representations
using this form of discretisation when the activations had been polarised. However, it is worth noting that the model
extracted from the network which had not been polarised but had had connections removed was also a default rule, and
the intermediate concepts extracted were merely the identity function.
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Figure 6.5.: Accuracy of the final expression for all datasets when using a subset of the data for building the model, on the
remaining instances. Several variants of the approach, using different retraining and discretisation methods,
are compared to the C4.5 algorithm. Post-pruning was applied when building all models.
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Figure 6.6.: Accuracy of the final expression per dataset when using a subset of the data for building the model, on
the remaining instances. Different forms of retraining were applied to the networks prior to rule extraction.
All models were built using the post-pruning approach and without applying any offline discretisation. A
horizontal jitter of 0.1 was added.
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Finally, the dataset F20, which models the parity function with eight inputs, caused experiments to abort due to
exceeding the time limit during the substitution phase. For the case where 100% of the data was considered, this occured
for a total of six configurations. Additionally, a total of four experiments aborted when a subset of the data was used,
resulting in three further events not being completed.

Dataset Reason for Failure Problematic Configurations

Data % Retraining discretisation Post-pruning

F9 Execution time 100, 90 none none, layerwise no, yes

exceeded limit preselection (1)

F19 No split value found
by the single deci-
sion tree in a layer

all both range centre no, yes

F20 Execution time 100 none activation clustering (9) no

exceeded limit 100 none activation clustering (1) no

100 both none no

100 none activation clustering (9) yes

100 none layerwise preselection (1) yes

100 both none yes

75 pruning none no

50 pruning none no

90 both none no

Table 6.1.: Summary of the configurations under which no model was constructed. Retraining the network in both man-
ners refers to polarizing the activations and then pruning connections.

6.4 The Case of Reconstructing the Parity Function

The parity function with eight inputs, referred to as expression F20, paints a rather different picture as the rest of the
expressions. When the entire dataset was used for rule extraction, several of the experiments aborted due to time
constraints during the substitution phase, as too large intermediate expressions were build. Those models which could
be constructed also built significantly more complex intermediate concepts than those extracted for the other functions,
as can be identified in Figure 6.1 at the bottom of the y axis and right side of the x axis.

Interestingly, the average accuracy of the intermediate expressions per layer for deeper layers was over 0.98 for all
hidden layers except the first. This number falls to 0.928 for the expressions extracted between the input and the first
hidden layer, where the majority of the logic is concentrated. As the mistakes were spread widely across the instance
space, when the final expression was merged they accumulated.

It is worth mentioning that when C4.5 is applied directly on the entire dataset which models the parity, the default
rule is returned, as no single test partitions the instance space into subsets where the classes are more evenly distributed.
A similar phenomenon occurs when building decision trees between the input and the first hidden layer.

This is best illustrated by the tree built for h1,1 ≤ 0 in the diagram of the general workflow in Figure 4.1, which would
actually not be able to be constructed, as C4.5 would need to perform both tests x0 ≤ 0.5 and x1 ≤ 0.5 in order to
obtain a positive information gain. Of course, it is highly unlikely that this would occur in a real setting, or even if more
attributes were present, as even if a similar pattern were to underline the data, at least one of the possible split values
that would be considered by C4.5 would likely result in a positive, albeit perhaps small, information gain.

For the experiments which successfully terminated, the expression could only be reconstructed to an acceptable degree
by two configurations which include weight sparseness pruning, namely those where no additional discretisation is
performed, which reached an accuracy of 0.902 when no post-pruning was applied, and that where activation clustering
was used, where the accuracy was at 0.801. In both these cases, the average accuracy of expressions extracted between
the first hidden layer and the inputs was equal to one, as any neuron of the first hidden layer was only connected to a
few of the inputs, and therefore the standstill characteristic of the parity function was never reached. It should also be
noted that the parity function was one of the only datasets where applying post-pruning on the intermediate expressions
and between substitution steps caused a fall in accuracy. The dataset is easy to recognise in Figure 6.1 and Figure 6.4
due to the considerably lower accuracy.
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Figure 6.7.: The two decision trees C4.5 may build from the information x0 = 0, x1 = 0 (C0), x0 = 0, x1 = 1 (C1) and
x0 = 1, x1 = 0 (C1). Both trees would classify x0 = 1, x1 = 1 as C1.

When looking to reconstruct the parity function with a subset of the data, another intriguing phenomenon occurred.
Whereas for the other datasets increasing the amount of training examples helped classify the unseen instances, the
opposite happened for the models built for the parity function, where the predictive accuracy decreased as more instances
were made available.

The same happens for C4.5. Whereas if all the data is available no split value leads to a positive gain and the process
terminates, when a reduced amount is present a model can be built, but it does not generalise to the rest of the data.

For instance, consider the situation of reconstructing the parity function with two inputs when the observations x0 =
0, x1 = 0 (C0), x0 = 0, x1 = 1 (C1) and x0 = 1, x1 = 0 (C1) are used. In that case one of the trees shown in Figure 6.7
would be built, both of which incorrectly classify the instance x0 = 1, x1 = 1 as C1.

To observe whether the same would hold for deep neural networks, which more easily model nonlinear relationships,
a different network was trained for each of the folds that was used for rule extraction. Table 6.2 shows the accuracy
of the models, averaged over all folds corresponding to the same data percentage. The results show that the networks
are naturally drawn to modelling the parity as the number of input combinations grows. This property was maintained
when the networks went through connection pruning, although in these cases the accuracy slightly decreased instead of
improving from simplifying the models.

10% 25% 50% 75% 90%

Original network 0.443 0.426 0.459 0.694 0.923

Network after polarisation and connection pruning 0.410 0.421 0.472 0.679 0.882

Network after connection pruning 0.425 0.438 0.433 0.652 0.901

Table 6.2.: Predictive accuracy of neural networks trained with different percentages of the dataset corresponding to the
parity function with eight inputs. The accuracy scores are averaged over all folds corresponding to the same
data percentage.

The difficulty in extracting hidden features that neural networks seem to construct naturally displays a considerable
weakness of the rule extraction approaches.

6.5 Interpreting Hidden Concepts

Although the number of intermediate expressions and the amount of conditions within these are useful measures to
assess the comprehensibility of models describing the internal structure of neural networks, they do not illustrate directly
how it would be to interpret such models.

In this section the case is considered of interpreting the intermediate expressions extracted from reconstructing a
concept which was regained correctly by several approaches, yet for which the extracted hidden concepts varied greatly,
namely the formula:

F3 : (K ∧Q ∧ T )∨
�

K̄ ∧ M̄ ∧ P̄ ∧ R∧ T̄
�

The mapping of the literals to the inputs of the networks is defined as:

M → x0 Q→ x1 R→ x2 K → x3 P → x4 T → x5

The final expression after reconstruction thus has the following form:
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DN Fh0→tar get : (x3 ∧ x1 ∧ x5)∨
�

x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5

�

The expression may be built from an unlimited number of intermediate concepts. Here, two sets of intermediate
expressions which allow the reconstruction of the specified expression are observed. They were both built by approaches
which did not perform offline discretisation, namely the variant which did not retrain the network and that which
polarised the activations and pruned the network and prunes irrelevant connections.3

When the network was not subjected to any retraining, the following intermediate expressions were extracted:

DN Fh3→tar get : h3,1 ≤ 0.15

DN Fh2→h3,1≤0.15 : h2,6 > 0.32∨ h2,4 > 0.56

DN Fh1→h2,4>0.56 :
�

h1,0 ≤ −0.26∧ h1,7 ≤ −0.65
�

∨
�

h1,0 ≤ −0.26∧ h1,8 > 0.12
�

DN Fh1→h2,6>0.32 : h1,6 > 0.32

DN Fh0→h1,8>0.12 :
�

x4 ∧ x5

�

∨ (x1 ∧ x̄2 ∧ x5)∨
�

x1 ∧ x̄2 ∧ x̄3 ∧ x4

�

∨ (x1 ∧ x̄3 ∧ x5)

DN Fh0→h1,7≤−0.65 : ( x̄0 ∧ x3 ∧ x5)∨ (x2 ∧ x3 ∧ x5)∨
�

x̄1 ∧ x2 ∧ x4 ∧ x5

�

∨ ( x̄0 ∧ x2 ∧ x̄3)∨
�

x3 ∧ x4 ∧ x5

�

DN Fh0→h1,0≤−0.26 : x1 ∧ x3

DN Fh0→h1,6>0.32 : x̄0 ∧ x2 ∧ x̄3 ∧ x̄4 ∧ x̄5

The model finds an adequate representation for the second conjunction
�

x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5

�

in h1,6 > 0.32, as well
as for the first part of the first conjunction (x1 ∧ x3) in h1,0 ≤ −0.26. But instead of finding a simple rule for x5 which
would finish the second conjunction, it relies in the two expressions extracted for h1,7 ≤ −0.65 and h1,8 > 0.12, which
include several conjunctions which cannot be joined with h1,0 ≤ −0.26 because they include the negation of x1 or x3.

For the case where extraction was preceded by retraining the network, the following expressions were obtained:

DN Fh3→tar get : h3,1 ≤ −0.10

DN Fh2→h3,1≤−0.10 : h2,6 > 0.88∨ h2,6 ≤ −0.99

DN Fh1→h2,6≤−0.99 : h1,0 ≤ −0.01∧ h1,8 > −0.01

DN Fh1→h2,6>0.88 : h1,5 > −0.01∧ h1,8 ≤ −0.01∧ h1,9 > −0.93

DN Fh0→h1,9>−0.93 : x̄0 ∧ x̄4

DN Fh0→h1,0≤−0.01 : x1 ∧ x3

DN Fh0→h1,8≤−0.01 : x̄5

DN Fh0→h1,8>−0.01 : x5

DN Fh0→h1,5>−0.01 : x2 ∧ x̄3

This model builds the first conjunction out of two expressions from the first hidden layer, and the second conjunction
out of three expressions. A noticeable difference between the two representations is that here the expressions of the first
hidden layer with regards to the inputs only include a few literals each, which makes it overall much simpler to trace
the model. This characteristic is one of the reasons for which rule sets extracted from minimally connected networks
generalise better.

6.6 Final Remarks

On some aspects, the results were highly consistent and provided a clear picture of what methods assist rule extraction
from deep neural networks. However, other questions would require further information to be answered.

Reducing the connectivity of the network proved to be a robust way to extract simpler intermediate concepts which
were better at classifying unseen instances. Yet it seems that encouraging low connectivity not only identifies irrelevant

3 The original threshold values has eight decimal units. These were reduced to two to improve the visualisation.
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logic created from training too-large architectures, but also concentrates the hidden features which are relevant for
the classification into less neurons, thus requiring a more fine-grained partitioning of the activation ranges to regain
the hidden patterns. This was partly shown by the analysis of the characteristics of the network (Section 5.7), and
its negative consequences for rule extraction were confirmed by the dismal performance of models which combined
connection pruning with putting an upper bound on the number of thresholds per neuron.

However, when polarisation of the activations was done jointly with connection pruning, the benefits of the latter could
be leveraged while avoiding the undesired effect of concentrating more logic into less neurons. Although the number
of connections which could be pruned in these networks was substantially lower, the intermediate models were not
significantly more complex, and in terms of accuracy these approaches consistently performed within the highest.

Also, combining both methods for retraining was highly compatible with all offline discretisation techniques. In fact,
usually very accurate models could be extracted even when only the centre of the neurons’ range was considered, al-
though this did not hold for the F19 dataset.

Regarding the offline discretisation, the results were less consistent. One reason for exploring such methods was that
when expressive hidden features are to be extracted, considering a reduced number of states per neuron gives a clearer
picture of that neuron’s role in the network. In fact, most decompositional approaches for extracting rules from neural
networks only consider two states per hidden neuron, namely it being active or inactive (Section 3.3). The results show
that it is in fact possible to restrict the number of thresholds per neuron and still obtain accurate representations. In
particular the layerwise threshold preselection was proven capable of extracting accurate rule representations when only
selecting one threshold per neuron.

Another setting where performing an offline discretisation may be desirable is when dealing with very large datasets,
as the runtime of extracting the intermediate expressions increases considerably when the heuristic is calculated for a
high number of split values. In fact, the extraction of intermediate concepts from the F9 dataset was terminated for
exceeding the time limit although at 16384 instances it is considerably smaller than some datasets used to train deep
models. If the rule extraction process were to be applied to such models, then some form of offline discretisation would
greatly accelerate the process.

In such a context, the layerwise threshold preselection would not be well suited, as the thresholds are chosen by a
simulated tree building procedure which can require a similar amount of resources than building the separate trees.
Performing activation clustering would, however, be a good alternative. The accuracy when applying this method did
not significantly decrease and the rule extraction process was considerably faster. Also, within this work only the settings
with ten and two clusters were observed, and a sufficiently high initial number of clusters would prevent the decrease
in accuracy (Setiono, 1996). An additional advantage of this method is that it gives an assessment of the importance of
each neuron before rule extraction takes place.

Finally, two last expectations of performing offline discretisation were that this would improve the generalisation
capabilities of the approach and that the complexity of the intermediate concepts would decrease. However, none of
these came to pass. In terms of accuracy, even the best performing configurations which used some discretisation were
at best at the same level as their counterpart which partitioned ranges in an online manner, and there was no significant
change in the complexity of the intermediate concepts.

A last note on the topic of offline discretisation is that although within this work all input values were boolean, in real
life scenarios most types of data include continuous attributes, and activation clustering is an effective way of assessing
the effect of discretising them in the network’s accuracy.
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7 Future Work

In most cases, the concepts learned by the networks could be reconstructed to a great extent and the complexity of
the extracted hidden patterns was considerably reduced by reducing the connectivity of the networks. However, certain
aspects should be addressed before representations obtained in this manner justify using deep models within safety
critical applications.

One point is that by not explaining the network as a whole but only extracting the logic that seems the most relevant
for the classification, the possibility is not excluded that some features are learned somewhere in the network that do not
considerably affect the predictive accuracy but may cause the system to classify some instance in an undesirable manner.

Also, particularly the low performance when extracting the parity function shows that some improvements could be
made in the approach in order to extract more reliable rules.

7.1 Augmentation of the Training Set

One way to increase the assurance that the network will react to new observations according to the obtained explanation
is to include some degree of sampling within the extraction process.

This may of course result in much more complex models being extracted which include irrelevant characteristics. One
possibility to reduce this effect would be to only use the training data to determine what split values are relevant within
layer hl−1 for explaining conditions in layer hl , but then sample all combinations of the activation of neurons in hl−1
being below or above the selected thresholds.

Augmenting the training set can, however, be problematic, as found by Milaré et al. (2001), as the network may react
to implausible instances differently than to naturally occurring ones. Therefore, only activation combinations of layer
hl−1 should be considered which result from likely feature vectors. One way to assure this would be to determine the
range of each input feature and assess which feature combinations are unlikely to occur naturally. Then, the Validity
Interval Analysis technique (Section 3.3.3) could be used to corroborate that the constraints are met.

7.2 Extraction of M-of-N Concepts

If for the problem at hand it is crucial to extract representations which consider all areas of the network but are not overly
complex, M-of-N rules may be better suited than conjunctive ones. Such concepts could be extracted by using M-of-N
conditions in the tree nodes as done by the TREPAN algorithm (Section 3.3.4).

However, to what extent it may be possible to group hidden units into equivalence classes without jeopardizing the
accuracy would greatly depend on the network. It is possible that retraining the networks in some manner, as performed
within the MofN algorithm (Section 3.3.2), may encourage such a property, but what effect this may have on the final
models is yet to be explored.

7.3 Guiding Concept Learning

In the context of this work, networks were trained with randomly constructed boolean concepts and it was observed to
what extent these could be regained. However, the problem formulation of providing an explanation for the path a deep
neural network takes to make its classifications does not directly address the issue of increasing the applicability of the
models in critical domains, but rather only presents a form of validation that some unwanted patterns are not learned.

In the last few years, neural-symbolic approaches have been developed to include domain knowledge in the form of
first-order logical rules into the training of neural networks, thus providing a greater level of control over the learned
features (Bader and Hitzler, 2005; d’Avila Garcez et al., 2009).

For instance, in Hu et al. (2016), a teacher network is maintained which projects a student network with the current
parameters into a space which includes regularizing terms in the form or first-order rules. This networks aims to find
the output activations which more closely resemble those of the student in terms of KL-divergence while adhering to the
logic constraints. Both networks output probabilities for each class value, and the loss for an epoch which is used for
updating the parameters is calculated using the outputs from both networks.

Considering this research, it would be interesting to train networks modeling real dataset while including such con-
straints, and then comparing the extracted expressions with the original logic rules, similarly to the analysis done by
Towell and Shavlik (1993) but for larger architectures. Such a combined process would allow users to define which
characteristics should be learned by the network, and then confirm that the guidelines have been adhered to.
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8 Conclusion

In this work, deep neural networks were trained to emulate boolean formulas and the problem was explored of regaining
these patterns while providing expressive insight into how the concepts were modeled within the networks.

Chapter 2 described some fundamentals on classifications problems and how these are tacked by decision tree ap-
proaches, as well as by artificial neural networks. The basic way was outlined in which the models are trained, as well as
how they are later used for classifying new observations.

In Chapter 3, an overview was given of the research regarding the extraction of rule representations from neural
networks, as well as that related to reducing network connectivity and performing offline discretisation of attribute
ranges.

The methodology used to reconstruct the concepts from the neural networks was described in Chapter 4. Two different
ways to retrain a deep neural network in order to assist latter rule extraction were explored, which resemble approaches
that have been shown to help extract better rule representations from shallow networks. The first consists on pruning
connections between neurons which are irrelevant for the classification, thus considerably simplifying the relations be-
tween those that remain. The second method looks to polarise the activation ranges of the hidden units so their state can
be reduced to being active or inactive.

For extracting the intermediate and final rules, an existing decompositional approach was extended with a post-pruning
step meant to lessen error propagation between layers and reduce the complexity of the model.

Also, it was explored how several offline discretisation techniques could be leveraged to set an upper bound on the
number of activation thresholds that are considered per hidden unit. The first, which has been extensively used in the
context of extracting rules form neural networks, consists of clustering the activation values of each neuron so that the
accuracy of the network when the activations are replaced be their closest cluster mean remains acceptable. The second
technique is inspired by an offline discretisation approach and involves choosing the thresholds for neurons of some layer
which best partition the data according to all relevant thresholds of the adjacent deeper layer.

In Chapter 5, some information was provided regarding the selected boolean functions, as well as on the process
according to which they were generated. Also, the trained neural networks were examined and it was shown that there
is a trade-off between the extent to which connections can be pruned and the degree of polarisation the hidden units can
achieve.

The results of the evaluation were described in Chapter 6. There, the importance of applying some post-pruning in
the rule sets was clearly seen, as this proved to be an effective way of lowering the complexity of the concepts while
increasing the accuracy.

Also, it was shown that pruning network connections markedly reduced the complexity of the intermediate expressions,
allowing a much better analysis of the hidden features. This step also considerably improved the rate to which the patterns
could be reconstructed when less data was available.

Overall, the best results were obtained when the activations of the networks had been polarised and irrelevant con-
nections eliminated before extracting rules. In these cases, the discretisation of the activation ranges did not show a
significant decrease in accuracy, even when the simplest discretisation was performed, namely taking the midpoint of the
activation function’s range.

Finally, in Chapter 7 some possible areas of future research were mentioned. Some alternatives were presented for
addressing the weaknesses of the rule extraction process and it was described how rule extraction could work in junction
with methods that directly guide what features are learned.
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A Annex

A.1 Predictive Accuracy Results when Using a Subset of the Data

Dataset NR ND NR LTP WSP ND WSP LTP PP ND PP LTP PP MC C4.5

F1 0.89784 0.96522 0.99571 0.93483 0.99571 0.99571 0.99571 0.99571

F2 0.89475 0.89475 0.98052 0.98151 0.98151 0.98151 0.96853 0.96634

F3 0.56142 0.56142 0.56142 0.84211 0.56142 0.84211 0.84211 0.56142

F4 0.85786 0.91214 0.95222 0.88935 0.99351 0.99351 0.99351 0.93273

F5 0.79131 0.72172 0.79131 0.72172 0.79131 0.72172 0.79131 0.79131

F6 0.51723 0.79311 0.50004 0.79311 0.53452 0.53452 0.48285 0.48285

F7 0.98971 0.98971 0.98971 0.98971 0.98971 0.98971 0.98971 0.98971

F8 0.96521 0.96521 0.96521 0.96521 0.96521 0.96521 0.96521 0.96521

F9 0.98393 0.96445 0.99351 0.99351 0.98762 0.98762 0.98762 0.97104

F10 0.73042 0.85221 0.73042 0.73042 0.73042 0.85221 0.69573 0.73042

F11 0.96971 0.96971 0.83554 0.83554 0.96971 0.83983 0.96971 0.84422

F12 0.91301 0.91301 0.91301 0.91301 0.91301 0.91301 0.83483 0.85222

F13 0.76521 0.75652 0.75652 0.75652 0.73043 0.73043 0.75652 0.75652

F14 0.76523 0.76523 0.97391 0.97391 0.75654 0.75654 0.88702 0.75654

F15 0.49122 0.49122 0.70181 0.70181 0.70181 0.70181 0.49122 0.49122

F16 0.90874 0.90874 0.96301 0.96301 0.96301 0.96301 0.92173 0.94572

F17 0.88045 0.88045 0.94353 0.94353 0.99131 0.97392 0.94353 0.92834

F18 0.92171 0.70433 0.92171 0.92171 0.92171 0.92171 0.92171 0.79132

F19 0.99511 0.99511 0.99511 0.99511 0.99511 0.99511 N/A 0.99511

F20 0.46093 0.45654 0.45654 0.46093 0.46093 0.45654 0.47391 0.46702

Table A.1.: Predictive accuracy when using 10% of the data, per dataset. Post-pruning was applied when building all
models. The original scores were rounded to four decimal units. The subscript numbers order the approaches
in terms of decreasing performance. The abbreviations in the model names indicate the following: NR stands
for no retraining, WSP for weight sparseness pruning, PP for polarisation and weight sparseness pruning, ND
for no offline discretisation, LTP for layerwise threshold preselection and MC, for activation range centre.

59



Dataset NR ND NR LTP WSP ND WSP LTP PP ND PP LTP PP MC C4.5

F1 0.99221 0.99221 0.99221 0.92452 0.99221 0.99221 0.99221 0.99221

F2 0.96356 0.98181 0.98052 0.97923 0.97923 0.97923 0.96614 0.96485

F3 0.97921 0.97921 0.97921 0.97921 0.97921 0.85422 0.97921 0.66673

F4 0.92844 0.89325 0.99481 0.95313 0.99481 0.99481 0.99481 0.98982

F5 0.85423 0.90631 0.89582 0.75004 0.89582 0.89582 0.89582 0.85423

F6 0.77083 0.77083 0.89582 0.89582 0.97921 0.97921 0.97921 0.89582

F7 0.99152 0.99152 0.99152 0.99152 0.99152 0.99152 0.99152 0.99351

F8 0.96882 0.96882 0.98961 0.98961 0.98961 0.98961 0.96353 0.96353

F9 0.99273 0.99701 0.99402 0.99402 0.99402 0.98834 0.98834 0.98265

F10 0.92711 0.92711 0.85423 0.85423 0.91672 0.91672 0.91672 0.85423

F11 0.82816 0.94273 0.85425 0.85425 0.96882 0.96882 0.97921 0.89584

F12 0.91672 0.85424 0.91672 0.90633 0.91672 0.91672 0.92711 0.81775

F13 0.89584 0.92713 0.96881 0.86465 0.92713 0.92713 0.94792 0.89584

F14 0.86462 0.86462 0.94791 0.94791 0.86462 0.86462 0.94791 0.86462

F15 0.72922 0.72922 0.95831 0.95831 0.72922 0.72922 0.72922 0.72922

F16 0.95572 0.94014 0.95572 0.95572 0.93495 0.96611 0.94533 0.94014

F17 0.87766 0.91934 0.95572 0.90105 0.99221 0.99221 0.99221 0.93753

F18 0.91673 0.91673 0.94792 0.94792 0.90634 0.91673 0.96881 0.90634

F19 0.98542 0.98243 0.99481 0.99481 0.99481 0.99481 N/A 0.99481

F20 0.39584 0.40103 0.41672 0.43751 0.36987 0.38026 0.39065 0.39065

Table A.2.: Predictive accuracy when using 25% of the data. The same clarifications and abbreviations hold as in Table
A.1.
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Dataset NR ND NR LTP WSP ND WSP LTP PP ND PP LTP PP MC C4.5

F1 0.99612 1.00001 1.00001 0.94143 1.00001 1.00001 1.00001 1.00001

F2 0.97851 0.94534 0.97273 0.97273 0.97273 0.97273 0.97662 0.97273

F3 0.93751 0.87502 0.93751 0.93751 0.93751 0.93751 0.84383 0.93751

F4 0.96094 0.96293 0.99411 0.95315 0.99411 0.99411 0.99411 0.98632

F5 0.92195 0.92195 0.92195 0.95313 0.98441 0.93754 0.96882 0.95313

F6 0.93751 0.93751 0.93751 0.87502 0.93751 0.93751 0.93751 0.93751

F7 0.99023 0.99023 0.99122 0.99122 0.99122 0.99122 0.99122 0.99611

F8 0.98441 0.98441 0.97662 0.97662 0.97662 0.97662 0.96093 0.94534

F9 0.99243 0.99631 0.99332 0.99332 0.98794 0.96416 0.98794 0.98175

F10 0.95311 0.92192 0.95311 0.92192 0.90633 0.90633 0.92192 0.95311

F11 0.98441 0.98441 0.98441 0.9063 0.98441 0.98441 0.97662 0.94533

F12 0.91415 0.89846 0.96092 0.92973 0.98441 0.92194 0.89846 0.89846

F13 0.92193 0.92193 0.92193 0.92193 0.93752 0.96881 0.96881 0.93752

F14 0.98441 0.98441 0.96882 0.96882 0.98441 0.98441 0.98441 0.93753

F15 0.93751 0.93751 0.93751 0.93751 0.93751 0.93751 0.93751 0.93751

F16 0.97662 0.95314 0.99611 0.99611 0.99611 0.96483 0.95314 0.96483

F17 0.94923 0.94923 0.99611 0.92584 0.99611 0.99611 0.99611 0.95312

F18 0.90633 0.90633 0.92192 0.92192 0.89064 0.89064 0.96881 0.89064

F19 0.99461 0.99461 0.99461 0.99461 0.99461 0.99461 N/A 0.99461

F20 0.32813 0.32034 0.38282 0.39841 0.32034 0.30476 0.31255 0.28917

Table A.3.: Predictive accuracy when using 50% of the data. The same clarifications and abbreviations hold as in Table
A.1.
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