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Abstract

Besides the classical machine learning challenges classification and regression, also multilabel-problems,
where each instance can belong to several classes, continue to have a gain in importance. Most of
these problems are solved by applying problem-transformation methods which split up the problem
into several smaller tasks where each one can be individually solved by using one of the classic single-
label approaches. However, a drawback of these approaches is that possible dependencies between
labels are completely ignored or only respected partially. In this thesis, a novel approach is introduced
that is based on a chain of classifiers which is capable of predicting labels dynamically by detecting and
exploiting these potential dependencies. Therefore, each classifier in the chain maximizes the probability
of a single label for a test-instance and propagates this label to the following classifier. The distinctive
feature thereby is that each classifier is not forced to predict the same label for each label, but can assign
a different label to different instances. By propagating these predictions gradually along the chain this
additional knowledge can be used by later classifiers to exploit label dependencies and predict further
labels based on this information. The foundation therefore is a modified version of a XGBoost classifier
(short for Extreme Gradient Tree Boosting) which was extended to be capable of predicting a probability
for each target label. This classifier is already used for classic regression and classification tasks where
it provides state-of-the art results. This introduced dynamic chain provides especially for Hamming Loss
good results which are in some cases even better than the compared problem transformation methods.

Zusammenfassung

Neben den klassischen Machine Learning Aufgaben Klassifizierung und Regression, haben mittlerweile
auch Multilabel-Probleme, wo jede Instanz verschiedenen Klassen zugeordnet werden kann, stark an
Bedeutung gewonnen. Zumeist werden diese durch Anwendung von Transformations-Methoden gelöst,
die das Problem in individuelle und kleinere Aufgaben zerteilen, welche dann jeweils mit klassischen
single-label Ansätzen gelöst werden können. Ein Nachteil dieser Ansätze ist allerdings, dass mögliche
Abhängigkeiten zwischen den Labels ignoriert oder nur zum Teil beachtet werden. In dieser Arbeit wird
ein neuer Ansatz vorgestellt, der auf einer Kette von Klassifizierern basiert, die die Fähigkeit besitzt
verschiedene Labels dynamisch und unter Beachtung möglicher Abhängigkeiten vorherzusagen. Dafür
versucht jeder Klassifizierer der Kette die Wahrscheinlichkeit für ein Label einer Test-Instanz zu maxi-
mieren und gibt dieses Label anschließend an die nachfolgenden Klassifizierer weiter. Die Besonderheit
dabei ist, dass die einzelnen Klassifizierer nicht gezwungen werden ein bestimmtes Label vorherzusa-
gen, sondern für verschiedene Instanzen auch verschiedene Labels vorhersagen können. Indem diese
Vorhersagen dann schrittweise durch die Kette weitergereicht werden, können dieses zusätzlichen Infor-
mationen von späteren Klassfizieren genutzt werden, um mögliche Label Abhängigkeiten zu entdecken
und um weitere Labels basierend auf diesem Wissen vorherzusagen. Die Grundlage dafür stellt ein mo-
difizierter XGBoost-Klassifizierer (kurz für: Extreme Gradient Tree Boosting) dar. Dieser findet bereits
Anwendung in klassischen Klassifizierungs und Regressionsproblemen und liefert dort sehr gute state-
of-the-art Ergebnisse. Die hier eingeführte dynamische Kette liefert besonders für Hamming Loss gute
Ergebnisse, die in einigen Fällen auch die verglichenen Problem-Transformations-Ansätze schlagen.
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1 Introduction

1.1 Motivation

Most machine learning algorithms deal with regression or classification tasks where the goal is to pre-
dict a unique class from a set of disjoint class labels or to predict a continuous variable. Multilabel
classification is an extension to this problem where each instance can be associated with more than
one class (Tsoumakas and Katakis, 2006). A well known example for such a problem is automatic text-
categorization. If we want to tag books from a library, we have a large set of distinct categories that can
be assigned. Thus, a single book can belong to different categories at the same time like, for example,
Adult and Sci-Fi. Another area of application is image classification where an image matches to more
than one class, such as Beach, Sunset and Island.
Most of the current approaches address these problems with label-transformation-methods that split up
this multilabel-task into smaller subtasks where each one of these is solved individually with an indepen-
dent model. Often these attempts provide good results, but there is one problem all these approaches
share: By solving individual tasks, global dependencies between labels are completely ignored or disre-
garded. But especially these dependencies can be used to further improve the results. As an example: If
we want to tag books, we know that if we categorize it as scientific work, it cannot be assigned to comedy
or fantasy at the same time. So a classifier should be able to detect such a connection and should predict
other documents in accordance with this.
A popular approach to address this problem is called Classifier Chains where the labels are predicted by
linked classifiers. Each classifier of the chain receives all predictions of previous ones and can then use
this information to exploit label dependencies. However, a problem of this approach is that all labels are
predicted in a static order, this means that for example the first classifier always attempts to predict the
first label even if another label is obviously more likely. Another problem of this static chain is that we
have to evaluate different orders for predicting labels in order to find the best structure. This motivated
us to extend this approach and remove these static factors ad build a dynamic chain. This dynamic chain
can predict different labels at each stage and is not forced to predict always the same. Therewith we
get rid of the problem of finding an optimal chain order and get the ability to always predict the most
probable label for an instance. It also supports the detection of label dependencies because after the first
round we will most likely get predictions for different labels on which dependencies can be detected.

1.2 Goal

The goal of this thesis is to develop a dynamic chain where each node contains a classifier that can
dynamically predict labels for each instance. To use XGBoost for the base classifiers we have to modify
the current algorithm and make it capable of solving multilabel classification problems. Therefore, a
new tree representation is elaborated, which returns a prediction score for each possible label. The
novel approach should also be able to detect dependencies between multiple labels and exploit them to
build a robust model. Afterwards this extended algorithm is compared to current state-of-the-art problem
transformation methods.

1.3 Structure

Section 2 starts with some basic definitions to provide the basic knowledge about classification and
multi-label problems which is required to understand the following approaches. Also some current
problem-transformation methods used for solving multilabel classification tasks are being discussed.
In section 3 a detailed overview of extreme gradient tree boosting and especially the XGBoost algorithm
is given. It also explains how the individual trees are constructed and how the prediction values are
represented.
Section 4 introduces to the new chaining approach for dynamic multilabel classification with the capa-
bility of detecting and exploiting label dependencies. Furthermore the extension of the current XGBoost
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algorithm is discussed, as well as the structure of the dynamic chain. Afterwards some refinement steps
are shown to address some basic problems of this new concept.
Section 5 introduces to the evaluation datasets and shows the setups for the experiments with the dy-
namic and the baseline approaches.
In section 6 the results of these experiments are analyzed and compared.
Section 7 then shows some related work with approaches that also try to exploit label dependencies.
Section 8 gives some prospects for future work to further improve dynamic-multilabel classification and
section 9 will draw some final conclusions and summarizes results.
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2 Multilabel Classification

In this first chapter we give a short introduction to supervised classification tasks and especially multil-
abel classification. Afterwards an overview over different approaches, to deal with suchlike problems, is
given.

2.1 Definitions and Notations

The basic goal of supervised classification tasks is to learn an association of objects to classes. For the
notations we follow (Loza Mencía, 2013). We want to find an output vector y given an input vector x .
In order to learn this mapping, we have to train a classifier h on a given dataset S. A dataset contains
n data instances where each instance I is a tuple of a feature vector x , in the feature space X with m
elements, and a corresponding label vector y , in the label space Y with size k.

x = (x0, x1, ..., xm) ∈ X

y = (y0, y1, ..., yk) ∈ Y
I = (x , y) ∈ S

Individual features x i can be represented as continuous, categorical or binary value. The output vector
y consists of binary values that denote the relevant classes of an instance. So we can define the feature
space X and the label space Y as follows.

X ⊆ Rm

Y := {0, 1}k
yi =

¨

1 if λi is a relevant class label

0 otherwise

where λi denotes a single unique class.
A classifier h is then trained on a training-dataset St rain in order to learn the mapping between input
features and output label vector. Afterward it is used to predict the label vector ŷ of an unknown
instance x test where we do not know the true target labels y .

h : X→ Y ŷ = h(x)

Additionally we also we define L as the finite set of k unique classes, which can be assigned to an
instance.

L= (λ0,λ1, ...,λk) k = |L|

If the label space L only consists of one class (|L| = 1) the problem is called binary classification. In
this case the output vector y consists of only one value that is 1 if an instance belongs to this class and 0
otherwise.
If L consists of more than one class (|L| > 1) the problem is called multiclass classification with k
unique classes {λ1, ...,λk}. The goal is now to predict a single relevant class label for each instance. So
we have to add the restriction |y|= 1.

For multilabel classification we also have more than one possible class label that can be assigned to
an instance. But instead of being restricted to assign only one label, it allows to assign multiple labels to
the same instance.

|L|= k 0≤ |y| ≤ k

We also introduce some additional definitions: Relevant class labels that are assigned to an instance
(yi = 1) are called positive labels and class labels that are not assigned as relevant labels (yi = 0) are
called negative labels. Table 1 shows an example for how labels are represented. Therefore, we assume
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that we have four books, numbered in the first column from one to four. These books can belong to up to
four categories Adult, Youth, Fantasy and Thriller. If a category is assigned to an instance and therefore
a positive label, it is represented by a tick (Ø). If a category is not assigned and a negative label, the
corresponding cell is empty. The last column then shows how the labels for an instance are represented
by the previous introduced vector y (i), where y (i) = {yAdul t , yYouth, yFantas y , yThril ler}. So if we take for
example the second instance, we can see that it has the first label Adult and last label Thriller marked as
positive. Therefore the output vector y (2) contains 1 for the values yAdul t and yThril ler .

λAdul t λYouth λFantas y λThril ler Representation
1 Ø Ø Ø y (1) = (1, 0,1, 1)
2 Ø Ø y (2) = (1, 0,0, 1)
3 Ø Ø y (3) = (0, 1,1, 0)
4 y (4) = (0, 0,0, 0)

Table 1: Example: multilabel dataset for book tagging

2.2 Baseline Approaches

Most of the existing methods for multilabel classification belong to one of these two categories: problem
transformation and algorithm adaption.(Tsoumakas and Katakis, 2006)
Problem transformation divides the problem into one or more single label, multiclass-classification or
regression tasks. The advantage of such a transformation is that single-label-classifiers, which provide
good and robust results in their domain, can be applied to solve these smaller subtasks. The idea is
basically that a combination of some state-of-the-art single-label classifiers should also lead to some
good results for multilabel problems.
The second approach attempts to address the problem in its original form without any transformations or
preprocessing steps. This is achieved by modifying existing algorithms to make them capable of handling
multilabel problems. This chapter will give a small overview over existing multilabel algorithms from
both categories. They will later be taken as baseline approaches to compare current state-of-the-art
approaches to the dynamic-chain algorithm, presented in this thesis.

2.2.1 Label Powerset

The first baseline approach is the label powerset method (Tsoumakas and Katakis, 2006). This algorithm
belongs to the category of problem transformation methods. The original multi-label problem is trans-
formed into a single-label multi-class classification problem. The idea ist to replace every possible and
unique subset of labels, that occurs in the given dataset, with a single class label. For a new instance the
label powerset algorithm gives the most probable class as an output, which can then be mapped back to
a subset of labels. Table 2 illustrates this idea.

Y YLP

x (1) y (1) = (1,0, 1,1) y1,3,4

x (2) y (2) = (1,0, 0,1) y1,4

x (3) y (3) = (0,1, 1,0) y2,3

x (4) y (4) = (1,0, 1,1) y1,3,4

x (5) y (5) = (0,1, 0,0) y2

Table 2: Example: Label Powerset Transformation

Column Y shows the relevant label set for an instance from the dataset, while column YLP shows the
same instances but with their label-set transformed into a label power set. The class yi, j,...,k means that
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the instance belongs to the respective label subset with labels {yi, y j, ..., yk}. The table also shows that
instances with the same label subset are mapped to the same class-label (in this example instances 1 and
4).
Although every multiclass-algorithm can be applied to this transformation, the task can easily become
rather challenging if there is a tremendous number of unique label sets and therefore possible Label
Powerset classes. The computational complexity is upper bounded by min(n, 2k) with n is the number of
data instances and k the number of possible labels of the multilabel dataset.
Another important drawback of Label Powerset methods is called the class imbalance problem (Guo et al.,
2008). This means that we have many instance assigned to one class-label, but only a few number of
instances assigned to another class-label. With such an imbalance it is very hard to train a model that
produces good results, because most of the classifiers tend to predict mostly the major occurring class-
label and ignore the minor one.

2.2.2 Binary Relevance

Another approach, which is also one of the most popular ones, for problem-transformation methods is
Binary Relevance (Cherman et al., 2011). This method decomposes the multilabel problem into a set of
k binary classification problems where k is the number of class-labels (k = |L|). Each of these problems
takes the same datasets for training but adds a different single class-label as the target value, which is
positive if the instance belongs to class λ j (with l ¶ j ¶ k) and negative otherwise. After the dataset is
transformed, a binary classifier for each set is constructed and trained. Table 3 illustrates this basic idea
of transforming the dataset.

Y
x (1) y (1) = (1, 0,1, 1)
x (2) y (2) = (1, 0,0, 1)
x (3) y (3) = (0, 1,1, 0)
x (4) y (4) = (1, 0,1, 1)
x (5) y (5) = (0, 1,0, 0)

=⇒

Y1

x (1) 1
x (2) 1
x (3) 0
x (4) 1
x (5) 0

Y2

x (1) 0
x (2) 0
x (3) 1
x (4) 0
x (5) 1

Y3

x (1) 1
x (2) 0
x (3) 1
x (4) 1
x (5) 0

Y4

x (1) 1
x (2) 1
x (3) 0
x (4) 1
x (5) 0

Table 3: Example for Binary Relevance Transformation

A big drawback of Binary Relevance is that it does not take label dependencies into account (Luaces
et al., 2012). If there are obvious dependencies the prediction of specific or obvious combinations may
fail because each label is independently predicted by a classifier which has zero knowledge about other
labels.
Besides this problem there are also some advantages of this method. The first one is that any binary clas-
sifier can be taken as a base classifier. So a specific classifier which is known to perform well on a special
structured dataset can be taken and even different classifiers can be easily swapped for comparisons.
Another advantage is that the computational complexity is linear with respect to the number of labels.
But even on datasets with a large number of labels it can perform fast because, due to the fact that the
classifiers are independent of one another, the training-process can be easily parallelized.

2.2.3 Classifier Chains

The last example for label-transformation-methods are classifier chains (Read et al., 2011). In contrast
to binary relevance this approach attempts to model and exploit statistical dependencies between labels.
Similar to binary relevance, |L| binary classifiers are involved. These classifiers are linked along a chain
where each classifier deals with a binary problem which is associated to a single label. In order to learn
dependencies between labels, the feature space of each classifier is extended with the 0/1 label predic-
tions of all previous classifiers of the chain. Hence a chain C1, ..., Ck of binary classifiers is formed where
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each classifier C j, with 1¶ j ¶ k, is learning and predicting a binary label λ j.
For predicting the labels of a new instance, the chain begins with classifier C1, that predicts the first label
λ1 where l1 denotes the prediction for the given instance: l1 = hl1(x). This result is then propagated
along the chain and the second classifier predicts the second label λ2, given the predictions of the first
classifier: l2 = hl2(x , l1). This step is repeated for each link and at the end the last classifier will predict
the last label λk with lk = hlk(x , l1, l2, ..., lk−1). Table 4 depicts this propagation process for predicting
new instances.

X Y
x hl1(x)

x (1) 1
x (2) 1
x (3) 0
x (4) 1
x (5) 0

⇒

X Y
x l1 hl2(x, l1)

x (1) 1 0
x (2) 1 0
x (3) 0 1
x (4) 1 0
x (5) 0 1

⇒

X Y
x l1 l2 hl3(x, l1, l2)

x (1) 1 0 1
x (2) 1 0 0
x (3) 0 1 1
x (4) 1 0 1
x (5) 0 1 0

Table 4: Propagating label information along the classifier chain

By passing the label information through the chain, possible label dependencies can be taken into
account, which helps to overcome the problem of the label-independent binary relevance model. Besides
this improvement classifier chains also retain most of the advantages from binary relevance models (Read
et al., 2011): The number of binary classifiers stays the same so the computational complexity is similar
and the base-learner can easily be changed to adapt best to the problem. Although classifier chains can
not be parallelized, because each classifier depends on the one further ahead in the chain, the problem
is serializable so that only one binary classifier has to be kept in memory at a time, which is beneficial
compared to some other approaches.
Nevertheless, one problem remains: The order of the chain decides the order of label dependencies. If
the chain predicts the labels in the sequence λ1 → λ2 → λ3 the assumptions, that label 2 depends on
label 1 and label 3 depends on label 1 and 2, are made. This order may be wrong on a specific dataset.
So the need arises to fit the order of label classifiers to the real label-dependencies of the dataset, which
are not known in advance. Therefore, often some heuristics can be applied for selecting the chain order.
Another approach to address this problem is the application of ensemble models. Therefore multiple
classifier chains with random chain orders are trained and the predictions are determined by voting the
predictions from all chains.

2.2.4 Multi-Target Regression Tree

The last baseline method belongs to the category of algorithm adaption methods and is based on re-
gression trees (Kocev et al., 2009). These trees consist of inner nodes, branches and leaves. The inner
nodes always contain tests on the input features and the branches correspond to the outcome of a test
and connect the nodes with child nodes. Each leaf of a regression tree contains a numeric value as a
prediction for the target label. In order to obtain the predictions for a test-instance we pass it, starting at
the root-node, along the tree. This is done by applying the test of a tree-node and propagate the instance,
depending on the outcome of the test, to the corresponding child node or leaf. The only difference of
multi-target trees is that their leaves do not just contain a single value, but a vector with a prediction
for each target label. Figure 6 shows a example for a multi-target tree and section 4.1 gives a further
introduction to the structure and construction of these trees.
The main advantages of multi-target trees over multiple single-target trees (Struyf and Džeroski, 2005)
is that the final model is much smaller than the size of an ensemble that contains a single tree for each
label. The second and more important advantage is that a multi-target tree can explicitly represent
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dependencies between the target labels which is a great benefit compared to the label-transformation
approaches.
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3 Extreme Gradient Tree Boosting

This chapter gives an introduction to extreme gradient tree boosting algorithms and especially XGBoost1.
Thereby we follow (Chen and Guestrin, 2016) for the description of this algorithm. XGBoost is a current
state-of-the-art end-to-end tree boosting system which is mostly used to solve machine learning tasks for
regression, multiclass and ranking problems. It is widespread and especially used in machine-learning
and data-mining challenges on websites like Kaggle2, where it can often be found applicated in top so-
lutions.
This is mainly due to the fact that XGBoost is highly scalable in different scenarios. Because of its
efficient and optimized implementation it can deal with up to billions of examples on a single ma-
chine and is also applicable on distributed systems. In addition to that interfaces for most of the major
programming-languages are supplied, which make it fast and easy to setup and work with the algorithm.

3.1 Model and Learning Objective

Basics of Supervised Learning
We start with the basic idea of supervised learning and follow. (Chen, 2014)

The basic goal is to find a model that generates a prediction ŷi given a feature vector x i.
The simplest case to do this is a linear model, where the prediction is a linear combination of weighted
input features:

ŷi =
∑

j

θ j x i j (1)

θ denotes the parameters which need to be learned from the data. θ = {w j| j = 1, ..., d}
In order to find the best parameters, we have to evaluate a model and measure its performance for a
given set of parameters. Therefore, a so-called objective-function has to be defined.

Ob j(θ ) = L(θ ) +Ω(θ ) (2)

This objective-function consists of two parts:

• Training Loss L measures how well a model fits on data

• Regularization Term Ω measures the complexity of a model

Tree Ensemble Model
These basics of supervised learning can now be applied to XGBoost. The internal model of XGBoost is

a tree ensemble model, or more specific a set of classification and regression trees (short: CART). Each
tree consists of nodes, leaves and branches which connect these elements. Figure 1 shows two examples
for CART decision trees. A node is always connected with two child nodes (or leaves) and contains a
decision test to decide to which child a specific instance will be forwarded. The leaves of a tree always
contain a score that represents the prediction of the tree, if an instance ends up in this leaf. In order to
predict the final output value the scores of all trees are summed up, this means the model uses C additive
functions:

ŷi = φ(x i) =
C
∑

c=1

fc(x i), fc ∈ F (3)

where F = { f (x) = wq(x)}(q : Rm→ T, w ∈ RT ) (4)

1 https://github.com/dmlc/xgboost
2 https://www.kaggle.com/
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Each fc is an individual tree structure. F is the space of all possible regression trees and q represents
the structure of a tree, that maps an example to the corresponding leaf index, where T is the number of
leaves in the tree. Each tree contains a continuous score in its leaves (wi is the score for the i-th leaf). In
order to calculate a new prediction for an instance, the decision rules q, inside the inner nodes of each
tree, are used and the scores of corresponding leaves are summed up (shown in Figure 1).

Figure 1: Tree Ensemble Model

To learn this additive model, we get this regularized objective function to optimize:

L(φ) =
∑

i

l( ŷi, yi) +
∑

k

Ω( fc) (5)

where Ω( f ) = γT +
1
2
λ||w||2 (6)

l is a convex differentiable loss function that measures difference between prediction ŷi and target yi
value. Ω penalizes the complexity of the model in order to avoid overfitting.

3.2 Additive Training and Tree Boosting

Due to the fact that the objective function contains functions as parameters, it cannot be optimized
with traditional methods. So the model is trained in an additive manner. The prediction value at each
iteration t is then calculated based on the prediction value from the previous iteration:

ŷ (0)i = 0

ŷ (1)i = f1(x i) = ŷ (0)i + f1(x i)

ŷ (2)i = f1(x i) + f2(x i) = ŷ (1)i + f2(x i)
...

ŷ (t)i =
t
∑

c=1

fk(x i) = ŷ (t−i)
i + ft(x i)

(7)

ŷ t
i denotes the prediction of the i-th instance at the t-th iteration. This additive calculation can then be

inserted into the objective function:

L(t) =
n
∑

i=1

l(yi, ŷ (t−1)
i + ft(x i)) +Ω( ft) (8)
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In order to minimize this objective, we add an additional tree structure ft that improves the model most.
For optimizing this additive objective, we take the second-order approximation of it:

L(t) '
n
∑

i=1

[l(yi, ŷ (t−1)
i ) + gi ft(x i) +

1
2

hi f 2
t (x i)] +Ω( ft)

where gi = ∂ ŷ(t−1) l(yi, ŷ (t−1)
i )

and hi = ∂
2
ŷ(t−1) l(yi, ŷ (t−1)

i )

(9)

This can again be simplified by removing all constant terms, so we get the objective at iteration t

L̃(t) =
n
∑

i=1

[gi ft(x i) +
1
2

hi f 2
t (x i)] +Ω( ft) (10)

This is now the goal for optimizing a new tree. The big advantage is that we got rid of the explicit
loss function inside the objective. It now depends only on the values of gi and hi that are derived from
the loss function. This reveals another big advantage of XGBoost: Every loss function can be used as
a training goal and can easily be optimized. The only requirement is the need to calculate its first and
second order derivatives.

3.3 Tree Construction and Leaf Weights

Now there is a simpler objective to optimize, but the questions, how to construct a new tree and how
to determine the leaf weights, still remain. Therefore, two points have to be considered: On the one
hand side a new tree has to optimize the training loss, and on the other hand it has to maintain a
low complexity to get no large penalties. So we take again the objective function, but with inserted
regularization term:

L̃(t) =
n
∑

i=1

[gi ft(x i) +
1
2

hi f 2
t (x i)] + γT +

1
2
λ

T
∑

j=1

w2
j (11)

After constructing a new tree, the most important parts are the leaves, because they determine the final
predictions. So we define I j = {i|q(x i) = j} as the instance set of leaf j. With this definition we can again
rewrite the objective function

L̃(t) =
T
∑

j=1

[(
∑

i∈I j

gi)w j +
1
2
(
∑

i∈I j

hi +λ)w
2
j ] + γT (12)

The summation also changed because all datapoints in the same leaf also get the same scores. This
expression can be even further compressed by defining G j =

∑

i∈I j
g j and H j =

∑

i∈I j
h j

ob j(t) =
T
∑

j=1

[G jw j +
1
2
(H j +λ)w

2
j ] + γT (13)

Now we are given a quadratic term, which allows us to compute the optimal weights ?w j of leaf j of a
given tree structure q(x):

w∗j = −

∑

i∈I j
gi

∑

i∈I j
hi +λ

= −
G j

H j +λ

(14)

14



It also allows to measure the quality of the complete tree structure q

L̃(t)(q) = −
1
2

T
∑

j=1

(
∑

i∈I j
gi)2

∑

i∈I j
hi +λ

+ γT

ob j∗ = −
1
2

T
∑

j=1

G2
j

H j +λ
+ γT

(15)

Figure 2 shows an example for calculating the leaf-scores. Basically, all instances of the dataset are
assigned to their corresponding leaves, together with their statistics g j and h j. These statistics are then
summed up to calculate the overall score. At the same time this score also takes the complexity of the
tree into account by adding γT .

Figure 2: Example for leaf weight and tree quality score calculation

3.3.1 Split Finding

Now we can measure the quality of trees. The ideal idea would be to enumerate all possible tree struc-
tures, evaluate them and choose the best one. In practice this approach is not possible and highly
inefficient. Instead a greedy algorithm is used that starts with a single leaf and tries iteratively to split it
up and add branches. So a possible split candidate consists of four parts:

• IL: Instance set of left leaf after splitting

• IR: Instance set of right leaf after splitting

• I : Instance set of the original leaf before splitting with I = IL ∪ IR

• γ: Regularization for adding a new leaf

Lspl i t =
1
2
[IL + IR − I]− γ

Lspl i t =
1
2

�

(
∑

i∈IL
gi)2

∑

i∈IL
hi +λ

+
(
∑

i∈IR
gi)2

∑

i∈IR
hi +λ

−
(
∑

i∈I gi)2
∑

i∈I hi +λ

�

− γ
(16)
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For choosing the best splits an exact greedy algorithm is used. The algorithm is shown in Alg. 1 and
taken from (Chen, 2014). It enumerates over all possible splits on all features. In order to reduce the
computational complexity the data is sorted according to the evaluated feature. Thereby the algorithm
starts with the original leaf and a new empty leaf. All possible splits are evaluated by removing instances
from the original leaf and adding them in their ordered sequence to the new leaf. At the end the split
with the best gain-score is chosen and the decision test can be easily be set by choosing the first element
of the new leaf. Figure 3 also shows an example for selecting this decision test.

Figure 3: Linear scan over presorted columns to find best split

In this example we have proposed two different splits. Since the candidates are chosen by ordering the
instance by a certain attribute, we have also sorted the instances by an attribute. The first attribute that
is used for sorting is xsize which represents the total size of an animal. So the bird is the smallest one
with a size of 5 and the dragon is the biggest animal and has a size of 50. For the second candidate we
used xcolor f ulness for sorting. This example attribute is meant to describe how colorful an animal is. So
the bird with a feathering that can have any color, gets the highest score. If we now assume that for both
examples the score for the displayed split is the highest, we can easily determine the decision test. For
xsize the first element in the right child is the unicorn with a size of 20. So the corresponding decision
test is: xsize < 20 which means: Is the size of an animal smaller than 20 ? If yes, go to the left leaf, and if
no, go to the right leaf.
One problem of this approach occurs when the data does not fit into memory and an efficient exact
greedy split finding becomes impossible. In this case an approximation algorithm is used. In a first step
split candidates, according to percentiles of the feature distribution, are proposed. Afterwards all contin-
uous features are mapped to one split candidate, determined by the proposed split-point, and the scores
are calculated in order to find the best split. This proposal can be global, where it is only performed once
for all splits in the tree, or it can be local, where new candidates are proposed for each split individually.

Missing Values
In many real world datasets we have the case that not all instances contain values for each attribute.

These values are called missing values and create the problem that we cannot sort them to find the best
split and that the decision tests of the nodes cannot be performed. Therefore the basic split-finding
algorithm can be further extended to give it the ability to deal with these missing feature values. This
can be achieved by adding a small extension to the split finding: Besides the two links to the left and right

16



Algorithm 1: Exact Greedy Algorithm for Split Finding
Input : I , instance set of current node
Input : d, feature dimension
gain← 0
G←

∑

i∈I gi, H ←
∑

i∈I hi;
for k = 1 to m do

GL ← 0, HL ← 0
for j in sorted(I, by x jk) do

GL ← GL + g j, HL ← HL + h j
GR← G − GL, HL ← H −HL

score← max(score,
G2

L
HL+λ

+
G2

R
HR+λ

− G2

H+λ)
end

end
Output: Split with max score

child node, a third connection is learned which represents the default direction that points to one of the
nodes. Whenever a decision test cannot be applied because the value is missing, this default direction is
taken. Therefore each split-candidate evaluation is divided into two cases. The first one assumes that all
instances with missing labels are added to the left child, and the second one assumes all these instances
to be added to the right node. Before ordering the instances by their feature value, the missing labels
are sorted out and added to the corresponding candidate. The gain-score calculation then continues as
before.
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4 Learning a Dynamic Chain of Boosted Tree Classifiers

The basic idea of this thesis is to overcome the problems of current baseline approaches and to develop
a model that produces more accurate label predictions. The most important point is the ability to detect
and exploit label dependencies. Instead of using a static chain which predicts labels in a rigid order,
a new chain approach is developed that predicts labels in an individual order for each data-instance.
Therewith each instance is only assigned to the labels which are most probable to be a solution in this
case.
More specific this means that each classifier inside the chain is allowed to assign one label to an instance.
Classifiers further along the chain can then use this additional information of previous set labels to learn
possible label-dependencies. Therefore each base classifier has to maximize the probability of a single
label in order to make sure that later classifiers base their result only on labels with high probabilities of
being correct.
Because of the really good performance of XGBoost classifiers, this algorithm has been chosen to be used
for the base classifiers inside each chain-node. In order to deal with multiple labels the original XGBoost
implementation has to be modified. These new XGBoost models differ from the original algorithm by
using an adapted tree structure that is able to predict an arbitrary number of labels at once.

4.1 Multi-Target Trees

The first step is to adapt XGBoost to make it capable of solving multilabel tasks. So far we have to
fall back on label-transformation strategies where each label is learned by an individual tree structure.
Afterward the predictions are combined into a vector where each label is assigned to a score. Therefore
we introduce, in the following sections, an adaption of the current XGBoost tree structure that allows us
to predict multiple labels simultaneously.

4.1.1 Tree Model

Up until now XGBoost is especially used for solving regression problems. If we take a look at this
approach, we can see that a single tree is learned for each boosting round. Inside of inner tree-nodes
there is always a decision test that determines which path to take next and inside the leaf-nodes there
is always a score which represents the prediction. Figure 4 shows an example for a XGBoost regression
tree that was visualized using Graphviz (Ellson et al., 2001). The caption for each node thereby shows
the decision test that is performed to determine where to proceed. The second line of a node always
shows the gain score that represents the quality of the given node which we want to maximize in the
split evaluations. The last line corresponds to the number covered instances and is calculated as the
sum of the hessian values for all instances covered by the node. The connections between the nodes
are the branches and show where to pass an instance after the decision test has been applied. If the
test instance contains a missing value for the tested attribute, the missing path is taken. The leaves
finally contain the scores which represent the predictions for this particular tree and a cover value that
is calculated as before in the inner nodes. Besides regression, XGBoost is also capable of dealing with
multiclass problems. This approach is also called one-against-all (Fürnkranz, 2001) and basically the
same as binary relevance, where a single classifier is learned per class and not per label. So in this case
an individual tree is learned for each possible class. If we then want to get the prediction for a new
instance, we propagate this instance through every one of these trees. At the end each tree returns a
score for assigning its class to the given instance. These classes are then mapped into a vector, where we
get a probability for each class, which sum up to one. Figure 5 depicts this process for three classes 01,
02 and 03. Each of these trees is trained for a single label. If we now pass the given test instance through
each tree, we get a prediction for each class. The path that the test instance takes and the corresponding
predictions are thereby highlighted green. At the end these predictions are then scaled to sum up to one.

With this approach a basic idea could be to represent each label as an individual class and then use
XGBoost multiclass-learning to solve the task. But this method again shows some problems that we
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Figure 4: Example for a XGBoost Regression Tree

Figure 5: XGBoost multiclass prediction process

have to address. The first one is that this method generates predictions that sum up to one, but for
multilabel classification we need absolute probabilities, which are not scaled, for each label. This is
mainly a technical problem of the current XGBoost implementation which we could solve with some
modifications. But the second problem is the reason why we cannot use this approach. Since the trees
are independently learned for each label, we again do not respect dependencies between label. As
mentioned before the way this multiclass problem is addressed is the same as binary relevance which is
also not able to detect label dependencies.
What we now want to achieve is a single tree that can predict a probability for each label. We do not
enforce these probabilities to sum up to one, so the tree can predict high probabilities for multiple labels.
Additionally each tree should try to maximize the probability of a particular relevant label. The basic
idea is to evaluate split candidates among all labels and take the one that increases the probability of a
single label most. Figure 6 shows a tree that fulfills these requirements. The basic structure is same as
before and the only differences are the leaves where each now contains a vector of probabilities. The
probabilities thereby are the probabilities that a label is a positive one. So a high probability for λ1
means that this label is very likely a positive one, whereas a low probability is an indicator for a negative
label.
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Figure 6: Multilabel Tree Structure

4.1.2 Tree Construction

specified the tree structure, we have to determine how the tree is constructed. The goal is, to split up
each tree node to maximize at least one of the label probabilities. As we have seen before (in Section
3.3), the gain of a leaf is calculated by

G2

H +λ
(17)

So G and H are the sums of gradient and hessian values of the instances contained in the leaf. To
calculate them we need to know the objective function. We decided to use cross-entropy for our loss
function

l(y, ŷ) = −y log( ŷ) + (1− y) log(1− ŷ) (18)

where y denotes the real target label and ŷ is the prediction for the label. This loss function is commonly
used for logistic regression and even the standard loss for XGBoost regression tasks. The raw-predictions
p for an instance are calculated by summing up the cross entropy results of all boosting trees for each
label. But since we need to get a prediction between 0 and 1 for each label, we apply a sigmoid trans-
formation on p to get the final predictions ŷ .

ŷ =
1

1+ e−p
(19)

l(y, ŷ) = −y log(
1

1+ e−p
) + (1− y) log(1−

1
1+ e−p

) (20)
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If we now take into account that the final prediction ŷ is the sigmoid transformation of the raw leaf
weights p we can easily calculate the first order derivative of the cross-entropy to get G:

g =
∂ L
∂ p
= −

ep(y − 1) + y
ep + 1

= −
ep ye−p − epe−p + ye−p

epe−p + e−p

= −
y − 1+ ye−p

1+ e−p

=
1

1+ e−p
−

y · (1+ e−p)
1+ e−p

= p− y

(21)

We also need the sum of the second derivatives H which is calculated equally to the first derivative:

h=
∂ 2 L
∂ p
=

ep

(1+ ep)2

=
e−p

(1+ e−p)2

=
1

1+ e−p
·

e−p

1+ e−p

=
1

1+ e−p
·
�

1+ e−p

1+ e−p
−

1
1+ e−p

�

= p · (1− p)

(22)

In order to deal with multiple labels, we have to extend the basic gain function (18). Therefore we
introduce the notations Gl which denotes the sum of all gradient values of instances in a leaf for label
λl and Hl for the sum of the hessian values. The new gain function now has to take all Gl and Hl (for
1¶ l ¶ k) into account. So we have evaluated different methods to find the best split candidate:

1) Maximum default gain over all labels: The first and simplest idea is to calculate the gain in the
same way as default XGBoost did before, but take the maximum over all labels. So we can make
sure to take the split candidate that maximizes one label-score, and therefore also the correspond-
ing probability, most:

gain1 =max1¶l¶k

�

G2
l

Hl +λ

�

The condition 1¶ l ¶ k thereby means that we perform the calculation for each label to select the
one with the highest score. This approach causes also a problem. The final weights inside the leaf
are calculated with − G

H+λ where H will be always ≥ 0. So if G is negative, we will get a prediction
near 1 after applying the sigmoid, and for positive G a prediction near 0. So if we now calculate the
gain by taking the squared G value, we do not only favor probabilities near 1, but also probabilities
near 0. So this approach also encourages to predict labels with low probabilities which is the same
as not assigning a label to an instance or predicting a negative label.

2) Maximum leaf score over all labels: In order to prevent the minimization of probabilities to
predict negative labels, we can modify the gain calculation by not squaring G and instead directly
try to maximize the leaf weights, which represent the final predictions of a tree.

gain2 =max1¶l¶k

� −Gl

Hl +λ

�
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Now we only optimize positive labels and do no longer also take negative labels into account.
But both of the presented gain-calculations share a property that may be a drawback: Their final
decision, which split to take, is only based on one single label, which is actually the label with the
highest probability among all labels. In this case we ignore all remaining labels. So a situation may
occur where we take a split that indeed maximizes one label, but at the same time the remaining
labels probabilities become worse. At this point taking a split where a single label may be increased
by a lower amount, but at the same time the remaining labels also get higher probabilities, can be
a better decision.

3) Sum of default gains over all labels: To consider all labels for evaluating a new split candidate,
this approach takes the sum of all gain-scores over all labels.

gain3 =
k
∑

l=1

�

G2
l

Hl +λ

�

This method is just an extension of the first approach for split-finding. Again, maximizing the score
can result in either a label with a high probability which can then be seen as a positive label, or in
a label with a low probability which then represents a negative label. The basic idea is that if all
labels have high scores for being positive (or in this case negative) labels, the sum of these scores
is also a higher value than for labels with non-optimized probabilities. So now we can take a split
where we favor all labels to have high probabilities, instead of the one where only one label has a
very high probability.

4) Sum of leaf scores over all labels: The next step is to apply this approach to the the second
method. We can now again take the sum over all labels, but this time negative labels will reduce
the score, which will lead to a split that maximizes only scores for positive labels.

gain4 =
k
∑

l=1

� −Gl

Hl +λ

�

5) Maximum absolute leaf score over all labels: The last idea is to allow score-maximizing for
negative labels on purpose and find a split which is a good compromise of positive labels with high
probabilities and negative labels with low probabilities. Therefore we take the absolute value of
the default calculated weight and maximize it again over all labels.

gain5 =max1¶l¶k

�

�

�

�

�

−Gl

Hl +λ

�

�

�

�

�

Now the highest score can be assigned to a label with a low probability, which then can be set as a
negative label.

6) Sum of absolute leaf scores from all labels: The last method now is based on the same idea and
uses the absolute value of the calculated leaf-weights. This is then combined with the approach of
summing up the scores of all possible labels to get a high score over all labels.

gain6 =
k
∑

l=1

�

�

�

�

�

−Gl

Hl +λ

�

�

�

�

�

After the whole tree has been constructed, the last task is to assign the weights for each label inside
the leaves. This is done the same way as before. Since we know all the instances inside a leaf and
their corresponding gradient and hessian values per label, we can calculate the weight for label l, just as
before:

weightl =
−Gl

Hl
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4.1.3 Example for Split Finding

To give a better understanding of how an actual tree is constructed we give an example. Therefore we
will use the Extended Weather dataset (Loza Mencía and Janssen, 2016) shown in table 5. We propose
two possible splits and evaluate both to determine which one to choose for getting the best prediction
results.

index outlook temperature humidity windy play icecream tea lemonade dontplay

1 rainy 65 70 yes 0 0 1 0 1
2 rainy 71 90 yes 0 0 1 0 1
3 sunny 85 85 no 0 1 0 1 1
4 sunny 80 90 yes 0 1 0 1 1
5 sunny 72 95 no 0 1 0 1 1
6 sunny 69 70 no 1 0 0 1 0
7 sunny 75 70 yes 1 0 0 1 0
8 overcast 83 86 no 1 0 0 1 0
9 overcast 64 65 yes 1 0 0 1 0
10 overcast 72 90 yes 1 0 0 1 0
11 overcast 81 75 no 1 0 0 1 0
12 rainy 70 96 no 1 0 0 1 0
13 rainy 68 80 no 1 0 0 1 0
14 rainy 75 80 no 1 0 0 1 0

Table 5: Extended Weather Dataset

The first step is to calculate the gradient and hessian of the cross-entropy loss function for each instance
and label. We also assume that this is the first round and no previous trees exist and therefore state that
every initial prediction for an instance-label-combination is 0.5. This assumption makes it easy to calcu-
late the corresponding derivative values. The hessian only depends on the prediction and is therewith
the same for each instance: h = 0.5 · (1− 0.5) = 0.25. The gradient is also easy to calculate and is −0.5
if the true label is 1 and 0.5 otherwise. Table 6 shows the results of this first calculation step.

Now that we have a dataset and the gradient / hessian values for each instance and label combina-
tion, we need to define two splits to evaluate. So for the first split we simply take all instances for the
negative label play into the right leaf-candidate and all instances for the positive label into the left leaf-
candidate. For the second split we take a distribution that has no obvious structure and take all instances
with an odd index into the left leaf and the remaining instances with an even index into the right one.
Figure 07 illustrates both split candidates.

These two splits should now be evaluated according to the first proposed method of gain calcula-
tion. This process can be easily divided into six steps:

1. Calculate the sums G =
∑

k gl and H
∑

k hl of all hessian and gradient values for each label

2. Calculate the gain value for each label by applying gain= G2

H (The normalization term λ is ignored
in this example, due to simplification.)

3. Compare the gain values of the labels and take the one with the highest score and save it as the
gain-score for this particular leaf gainlea f = max(gainl)

4. Repeat steps 1-4 for the second leaf
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index play icecream tea lemonade dontplay
g h g h g h g h g h

1 0.5 0.25 -0.5 0.25 -0.5 0.25 0.5 0.25 -0.5 0.25
2 0.5 0.25 -0.5 0.25 -0.5 0.25 0.5 0.25 -0.5 0.25
3 0.5 0.25 -0.5 0.25 0.5 0.25 -0.5 0.25 -0.5 0.25
4 0.5 0.25 -0.5 0.25 0.5 0.25 -0.5 0.25 -0.5 0.25
5 0.5 0.25 -0.5 0.25 0.5 0.25 -0.5 0.25 -0.5 0.25
6 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
7 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
8 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
9 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25

10 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
11 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
12 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
13 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25
14 -0.5 0.25 0.5 0.25 0.5 0.25 -0.5 0.25 0.5 0.25

Table 6: Gradient and Hessian Values for Weather Dataset

Figure 7: Candidates for split evaluation
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5. Take the sum of the gain-scores from both leafs to get the final gain-score for this split candidate
gaintotal = gainle f t + gainri ght

6. Compare the scores of different candidates to find the best split

Candidate 1
lea f1,le f t lea f1,ri ght

Instances [1,2, 3,4, 5] [6,7, ..., 14]
Gl [2.5,−2.5,0.5,−0.5,−2.5] [−4.5,4.5, 4.5,−4.5, 4.5]
Hl [1.25,1.25, 1.25,1.25, 1.25] [2.25,2.25, 2.25,2.25, 2.25]

gainl [5,5, 0.2,0.2, 5] [9,9, 9,9, 9]
gainlea f 5 9
gaintotal 14

weight l = −Gl/Hl [−2,2,−0.4,0.4, 2] [2,−2,−2, 2,−2]

Candidate 2
lea f2,le f t lea f2,ri ght

Instances [1, 3,5,7, 9,11, 13] [2, 4,6, 8,10,12, 14]
Gl [−0.5, 0.5,2.5,−2.5, 0.5] [−1.5,1.5, 2.5,−2.5, 1.5]
Hl [1.75,1.75, 1.75,1.75, 1.75] [1.75,1.75, 1.75,1.75, 1.75]

gainl [0.14,0.14, 3.57,3.57, 0.14] [1.29,1.29, 3.57,3.57, 1.29]
gainlea f 3.57 x 3.57
gaintotal 7.14

weight l = −Gl/Hl [0.29,−0.29,−1.43,−0.29] [0.86,−0.86,−1.43,1.43,−0.86]

Table 7: Example for Gain Calculation of two Split Candidates

In table 7 we have performed these steps for both candidates. We also added an additional step at the
end of the table, where we calculate the leaf weights which represent the prediction values.

Now that we have determined the gain-scores for both labels, we can clearly see that the score for
candidate 1 is much higher than the score for candidate 2. So in this example we would decide to con-
tinue the tree construction by applying the first split candidate. For both new leafs this process can then
be repeated until the whole tree is constructed.
We can now recheck the selected split by taking an instance and compare the real labels with the pre-
dicted ones. So if we take instance 3, it will end up in the left leaf where the predicted weights are
[−2,2,−0.4, 0.4,2]. As mentioned before, we now have to apply the sigmoid function to these weights
in order to get the probabilities. This leads to the final predictions [0.12, 0.88,0.40, 0.60,0.88]. We
can take the default decision boundary at 0.5, that means if a probability is ≥ 0.5, the label is a posi-
tive label for this instance, and a negative label otherwise. So our predicted labels for this instance are
[0, 1,0, 1,1]. If we now compare these predictions with the real ones in Table 5, we can see that they
match exactly.
But let us repeat this check again with the first instance. As before we end up in the left leaf which leads
to the same predictions as before [0, 1,0, 1,1]. But this time we can see that these predictions differ from
the real labels. Only the first and the last label have been set correctly. This may mean that we have to
split up this leaf again. The table shows that the first two instances share the same label distribution and
the next three instances also have the same labels set. So a possible outcome for the next split may be a
leaf with instances [1,2] and another one with instances [3,4,5].
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4.2 Dynamic Classifier Chains

The main concept of Dynamic Chains is based on the same idea as classifier chains. The chain consists
of nodes and links. Each node contains a base classifier that learns a model on the given dataset. This
model is then used to generate label predictions for every instance in the given set. The links represent
the propagation of these predictions to the next classifier in the chain. Before training a new model,
the additional knowledge is added, as new features, to the train set. The next model can then take this
additional information into account, to learn dependencies between previous set labels and labels yet to
be set. So far this is a very static approach. The labels are predicted and propagated in an fixed order.
Thus bad predictions from early classifiers can so corrupt the chain and lead to worse results.
At this point the dynamic chain approach comes into place. Figure 8 depicts the base idea for a dynamic
chain. The main difference is that we do not force the models to predict the labels in a fixed order
anymore. Instead only safe labels with high probabilities are set and propagated to the next chain-node.
This is also the reason why we had to develop a new tree structure for XGBoost. With this new tree-
representation, each classifier returns its predictions as a vector of probabilities, so we can easily choose
the one with the highest value. Where classifier-chains have to predict a predetermined label as positive
or negative for each instance, a single base-classifier has now the ability to set every label individually
for an instance. So it is possible for a single classifier to assign label λ3 to the first instance, label λ5 to
the second instance. Another difference is that we now focus on positive labels. Instead of evaluating
the same label for each instance and decide whether it is a positive or a negative one, we try to assign
only positive labels with high probabilities.

Figure 8: Dynamic Chain - base concept

4.2.1 Training Process

Before training the first classifier, we have to make a change to the training dataset. For each label we
add a new placeholder feature which is initialized as nan. While proceeding inside the chain, these nan
values are then replaced with predicted label probabilities. Since the values are not set at the beginning,
the first classifiers will ignore them, because they do not contain any information about the dataset. But
if these feature columns begin to be filled with values, later classifiers can take them into account and
exploit the dependencies between them. Moreover the ability of XGBoost to deal with missing values
allows to use these features, even if they are only partially filled with values.
Now the first classifier can be trained. Therefore, we pass the extended training-dataset and the corre-
sponding real-label-vectors to a new XGBoost model. After the training is completed we start predicting
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on the same dataset where the training process took place. These predictions are then propagated to the
next classifier of the chain. For this step we have determined different approaches how to deal with the
predictions and how to process them:

1) Propagate only positive labels: The first method is to only propagate a positive label with the
highest probability. Since our base classifier already aims at maximizing a single label probability,
we only want this information to be passed to the next classifier. Therefore, we take a look at
the prediction-vector of each instance to find the maximum value. Now we can get two different
outcomes. The desired one is that the prediction vector contains one or more probabilities above
0.5. In this case we can take the highest one, add it to the placeholder features and propagate it to
the next classifier.
The second case is that all probabilities are below 0.5. Then we know that the classifier was not
able to optimize the trees to get a higher result and therefore assume that this particular instance
does not have another positive label assigned. So we do not modify the placeholder features for
this instance and just pass them to the next node, as they were before.

pi
l =

¨

ŷl if ŷl = max( ŷn|1≤ n≤ k)≥ 0.5 and pi
l = nan

pi
l otherwise

pi
l denotes the placeholder feature for label λl of an instance i, which is not changed unless the

predicted probability for feature l is the highest probability among all labels and greater than 0.5.

2) Propagate negative labels, if no positive ones are predicted: The next idea is similar to the first
one but has an important extension. Same as before we aim for propagating especially positive
labels, but this time we also allow to propagate a negative label, if there is no positive one predicted.
Therefore, we can also use another split-calculation for our tree (see section 4.1.2), where we favor
maximizing high probabilities, and minimizing low probabilities at the same time. Again, we have
two cases for an outcome prediction of an instance. The first one, if there is at least one probability
above 0.5 predicted, is treated as before and only the highest probability is propagated. The
second case where all probabilities are below 0.5 is now treated differently. Instead of propagating
no additional information, we take the probability with the lowest value, which represents the
most probable non-relevant or negative label, from the prediction-vector and pass it to the next
chain-node.
In both cases we do not allow later classifiers to change these predictions. So if a later classifier will
predict a high probability, above 0.5, for a label that has already replaced a placeholder features,
with a probability below 0.5, it cannot overwrite this information. This restriction is necessary
because later classifiers tend to have a higher error rate. This is due to the fact that each classifier
depends, at least partially, on the predictions of the previous one. If there is only one node in the
chain that produces bad results, the following classifiers are affected by this. So we assume that
the predictions of early classifiers are more robust than predictions of later ones and do therefore
not allow them to overwrite previous predictions. The calculation for the propagated label gets an
additional case:

pi
l =







ŷl if ŷl = max( ŷn|1≤ n≤ k)≥ 0.5 and pi
l = nan

ŷl if ŷl = min( ŷn|1≤ n≤ k) and max( ŷn|1≤ n≤ k)≤ 0.5 and pi
l = nan

pi
l otherwise

3) Propagate the positive or negative label with the highest absolute probability: The last method
is an approach where positive and negative labels are treated equally. Instead of only propagating
probabilities for negative labels if no positive labels are predicted, we now propagate the label with
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the overall highest probability. That means we take the absolute distance of the probability to the
decision boarder of 0.5 and pass the label where this value is maximized. For an example we have
a look at following probability vector: [0.1, 0.6,0.7]. If we now calculate the absolute distance
to 0.5 we get [0.4, 0.1,0.2]. So in this case we would propagate the probability 0.1 of the first
(negative) label, although there are two positive predicted label with probabilities above 0.5.

pi
l =

¨

ŷl where | ŷl − 0.5|= max(abs( ŷn − 0.5)|1≤ n≤ k) and pi
l = nan

pi
l otherwise

After all the predictions have been propagated, the whole process is repeated. Each repetition creates
one node of the chain. The number of chain-classifiers also defines the number of labels which can be
predicted, because each classifier only propagates one label-probability to the next one. So a chain with
ten classifiers is able to predict up to 10 labels per instance. For datasets with a large number of labels,
it may be appropriate to shorten the dynamic chain in order to obtain a low computational complexity.
If each instance of a dataset with 200 labels is only assigned to an average of 3 labels, we do not have to
build a chain with 200 classifiers.

Figure 9 shows a schematic view for training a chain with three classifier-nodes. The process is split
up into four basic parts. At first we start with the default train set where three placeholder columns for
the labels are added and initialized with nan. The second step is training the model. Therefore we pass
the train set together with the corresponding real labels y to the XGBoost algorithm that learns XGBoost
model 1. In the third step we again pass the train set to this new model in order to get predictions for
each train instances. In the predictions table we have now highlighted the best predictions above 0.5 in
green. For this example we use the propagation method where only positive labels are propagated and
therefore the next train set has replaced some nan values with the corresponding predictions. Only x4
does not get a propagated value since all probabilities are below 0.5. We then have an updated train-set
and repeat the whole process until the third model has been trained. In the second propagation step we
have the case that we want to propagate the prediction 0.52 for x2. Since this label has already been
predicted by the first classifier and has been added to the train set, this new prediction is ignored.

4.2.2 Prediction Process

The prediction process for getting predictions of unknown data-instances works similar to the training
process. We start by also adding placeholder features, that are initialized with nan values, for each
label to the test-data. These instances are then just passed through the chain. Each classifier generates
predictions for all labels and, same as before, only replaces the placeholder value for the label with the
highest probability. This is done according to the selected method used for training (only positive la-
bels, only negative labels if no positive one is predicted, positive or negative label with highest absolute
probability). After propagating an instance through all classifiers we get a prediction vector that can still
contain nan values. Due to our main focus on positive labels, we overwrite these remaining nan-values
with a probability of zero and assume that they are negative labels, because otherwise they would have
been predicted as a positive label. In the last step we compare all probabilities with our stated decision
boundary of 0.5 and assign all positive labels, which are the ones with probabilities above this boundary,
to an instance.

This process is depicted in figure 10 and we can again split up the pipeline into several parts for
predicting all labels of an instance. Similar to the training example we start with an empty dataset
with the added placeholder columns, but this time it is the test set. In the first step the previous trained
XGBoost Model 1 is used to generate predictions on this test set. Again we can see them in the connected
predictions table where the best predictions above 0.5 are green highlighted for each instance. These
predictions are then again propagated and replace some of the nan placeholders of the test-set. This
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process is then being repeated for the next XGBoost model. Same as before we do not allow to over-
write previews predictions which is the reason why the value 0.52 of the second prediction table is not
propagated. After all models have generated their predictions we split the placeholder columns off the
test set. These are then transformed to the final predictions by assigning a positive label to an instance
if the corresponding prediction is above 0.5 and assigning a negative label if the prediction is below 0.5
or equal to nan. We have marked positive labels green and negative labels red in the final predictions
table.
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4.3 Refinement Approaches

After the first application of the dynamic chain to several small datasets, some large drawbacks quickly
occurred. Therefore we had to develop some modification to the chain in order to address these prob-
lems.

4.3.1 Separate and Conquer

The first issue was that all classifiers of the chain learned a very similar model and hence predicted
also nearly the same labels. Some further investigation showed that this was owed to the new tree
construction. The goal is that the split calculation of classifiers, later in the chain, should be influenced
by the added features which contain the predictions of earlier models. So the first classifier learns a
model only based on the default training-dataset. All splits are calculated over these features to get
a maximum gain. Later classifiers can then take also previous predicted labels into account for their
split calculation. The problem now was that the score for taking the same split as the classifier before
was much higher than taking another split, otherwise the first classifier would have chosen it. The only
difference can now be achieved by taking the previous predictions into account. But since we do only
propagate a single previous label per instance, the propagated feature vectors are sparse and thus a
higher gain score only rarely occurs.
We now have to prevent later classifiers to choose splits that always result in the same predictions. So
we choose a approach similar to separate-and-conquer rule learning (Fürnkranz, 1999). The basic idea
is to learn a rule on some training instances, then remove all instances that are covered by this rule and
learn a new rule on the remaining data.
This approach can be easily transferred to the dynamic chain. We start by learning the first classifier
and generating predictions on the train-set, where we take the ones with the highest probability per
instance and pass them to the next node. At this point we can now apply separating. Since we have
not yet predicted all labels of an instance, we cannot remove it completely from the dataset. If we now
remember the tree construction, we know that split-finding only depends on the gradient and hessian
values of every predicted label per instance. So we just do not want labels, that are already predicted,
to affect the split calculation, by increasing the score value which would favor predicting them again.
In order to remove their influence from the gain calculation, we set their corresponding gradient and
hessian values to zero. After that follows the conquering step where a new classifier is trained. Taking
the same split as before would then result in a lower gain-score, so the tree construction is forced to
find a new optimal split. Warning: This does not mean that we now remove the possibility to learn label
dependencies. The dependencies are respected by choosing a split over one of the added feature columns
that contain previous labels (e.g. ŷ2 ≥ 0.34). Table 8 depicts an example how separate and conquer

x label 01 label 02
g h g h

1 0.5 0.25 -0.5 0.25
2 0.5 0.25 -0.5 0.25
3 -0.5 0.25 0.5 0.25
4 -0.5 0.25 -0.5 0.25
5 0.5 0.25 0.5 0.25

=⇒

x ŷ1 ŷ2

1 0.2 0.6
2 0.7 0.8
3 0.1 0.2
4 0.9 0.4
5 0.4 0.6

=⇒

x label 01 label 02
g h g h

1 0.5 0.25 0 0
2 0.5 0.25 0 0
3 -0.5 0.25 0.5 0.25
4 0 0 -0.5 0.25
5 0.5 0.25 0 0

Table 8: Example for Separate and Conquer approach

works. The first table shows all gradient and hessian values at the beginning of the chain. Then a first
classifier is trained and predicts on the training-data. The table in the middle shows these predictions.
We then propagate only the highest, green marked, probabilities above 0.5 to the next classifier. Before
starting the next training, all gradient and hessian values for the already predicted labels are set to zero,
to ignore these instances for learning the next tree-model. This is done in the third table.
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4.3.2 Cumulated Predictions

Another problem that showed up in early experiments is that the final predictions, after the chain has
been traversed, contain too little positive labels. As soon as we replace all remaining nan values with a
probability of zero, the number of false negative labels strongly goes up. So even if the chain contains
as many classifiers as labels exist in the dataset, this problem still occurs. So we need to increase the
number of positive predictions. So far each classifier only propagates a single label per instance, although
early classifiers often have high probabilities for several labels. But if we now allow to propagate more
than one label we also raise the potential error rate of later classifier, because they may then learn
dependencies to these less probable labels. Since we do not want to worsen the stagewise predictions,
we use another strategy that we call cumulated predictions. This approach does not make any changes
to the current training or prediction process of the chain. We only add one step to each node in the
prediction pipeline. At the point where one label is propagated and replaces a value in the placeholder
features, we also pass the full predictions as a matrix to the next classifier. This additional information
does not affect the further predictions, it is just taken along. All following classifiers then merge their
complete predictions into this matrix. We thereby allow to overwrite lower predictions with higher ones.
By doing this we obtain the same predictions as before, but now we also get all predictions for positive
labels which were not propagated and are lost otherwise. This approach has greatly enhanced the final
results.
Table 9 depicts this process once more. We start with the test set and its added placeholder columns

test-set
X l1 l2
x1 nan nan
x2 nan nan
x3 nan nan
x4 nan nan
x5 nan nan

=⇒

predicts 1
ŷ1 ŷ2

0.2 0.6
0.7 0.8
0.1 0.3
0.9 0.4
0.4 0.6

→

test-set
X l1 l2
x1 nan 0.6
x2 nan 0.8
x3 nan nan
x4 0.9 nan
x5 nan 0.6

=⇒

predicts 2
ŷ1 ŷ2

0.2 0.1
0.4 0.6
0.6 0.1
0.3 0.4
0.7 0.6

→

test-set
X l1 l2
x1 nan 0.6
x2 nan 0.8
x3 0.6 nan
x4 0.9 nan
x5 0.7 0.6

↓ ↓

Cumulated
Predictions
ŷ1 ŷ2

0.2 0.6
0.7 0.8
0.1 0.2
0.9 0.4
0.4 0.6

=⇒

Cumulated
Predictions
ŷ1 ŷ2

0.2 0.6
0.7 0.8
0.6 0.3
0.9 0.4
0.7 0.6

Table 9: Example for Cumulated Predictions

l1 and l2 for labels λ1 and λ2. The first classifier generates its predictions predicts 1 for this test set,
and merges its highest probabilities above 0.5 into the test-set’s placeholder columns. These propagated
probablities are highlighted blue in the second test-set table. At the same time we store the complete
predictions into the cumulated predictions table below. After that we continue with the modified test
set and the second classifier generates its predictions predicts 2 thereon. Same as before we insert these
predictions with highest probabilities into the test set and also merge the complete prediction matrix into
the cumulated predictions. The colored table cells respectively show the updated values. This process
can then be repeated for all classifiers of the chain. In order to get the final predictions afterwards, we
just have to take the latest Cumulated Predictions table and map predictions above 0.5 to positive labels
and probabilities below 0.5 to negative labels.
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5 Experimental Setup

This chapter shows the results of the dynamic chain with XGBoost base classifiers on several datasets. The
different methods for split finding and label propagation are evaluated and compared to the presented
baseline approaches from chapter 2.2.

5.1 Datasets

The following datasets in table 10 were used for evaluation. They are taken from the mulan project
(Tsoumakas et al., 2011) that provides a collection of various multilabel datasets: These datasets cover

name domain instances labels attributes cardinality
birds audio 645 19 260 1.014

emotions music 593 6 72 1.869
flags images 194 7 19 3.392

genbase biology 662 27 1186 1.252
medical text 978 45 1449 1.245
scene images 2407 6 294 1.074
yeast biology 2417 14 103 4.237

Table 10: Datasets used for the experiments

a wide variety of application areas for multilabel classification. We also have selected datasets with
different structures. There are small sets with a low number of labels, like emotions, but also some with
a higher number, like medical and other ones with high cardinalities, like yeast, which also has a larger
number of instances. The cardinality is thereby the average number of positive labels which is assigned to
an instance. Additionally we have chosen datasets with significant label dependencies that were detected
in (Loza Mencía and Janssen, 2016). Especially yeast has some high degree of label dependencies, but
also the smaller sets emotions and scene show dependencies. In particular the ones in scene are mostly
partially dependencies which means that the dependencies also depend on some instance features. All
provided datasets consist of a training and testing dataset that we used for the final evaluations.

5.2 Evaluation Measures

In contrast to multiclass or single-label regression tasks, we now have more than one target value.
This means we cannot apply the same measures for multilabel evaluation (Maimon and Rokach, 2009)
anymore. Bipartition measures for multilabel classification can be divided into two groups of example-
based and label-based evaluation metrics.
Example-based measures are calculated based on the average differences of the real target values and
the predicted labels over all test instances.
Label-based measures are calculated per label and afterward averaged over all labels.
We use measures from both groups for evaluation. To calculate them we need to know the proportions
of correct and incorrect classified labels. Therefore we define a confusion matrix:

predicted not predicted
relevant / positive true positive false negative

irrelevant / negative false positive true negative

Table 11: Confusion matrix for predictions
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Example Based
• Hamming Loss denotes the percentage of missclassified labels. This means false positive and false

negative labels. Therefore we calculate the missclassification rate for all labels of an instance and
sum these rates up over all n instances.

Hamming-Loss=
1
n

n
∑

i=1

ŷi ⊕ yi

k
=

1
n

n
∑

i=1

fpi + fni

k
(23)

where fpi and fni denote the number of false positive and false negative labels by comparing the
vectors ŷi and yi.

• Subset accuracy (sometimes also called classification accuracy) denotes the percentage of in-
stances where the predictions match exactly with the true labels.

Subset-Accuracy=
1
n

n
∑

i=1

I( ŷi = yi) (24)

where I(true) = 1 if the prediction vector ŷi matches with the real label vector yi and I(false) = 0
if these vectors differ.

Label Based
Here we can now apply any measure for binary evaluation. To get a result for all labels we have

to average over them. Therefore two variants exist, called macro averaging and micro averaging. Let
E(tp, fp, tn, fn) denote an evaluation function, we can define macro-averaging as

Emacro =
1
k

k
∑

i=1

E(tp(i), fp(i), tn(i), fn(i)) (25)

where we calculate the macro-score as the sum of the evaluations per label. In this case tp(i) denotes the
number of true positive predictions over all instances for label λ. The calculation of fp(i), tn(i) and fn(i)

is performed analogical for false positive, true negative and false negative predictions. Similarly we can
define micro-averaging as

Emicro = E

�

k
∑

i=1

tp(i),
k
∑

i=1

fp(i),
k
∑

i=1

tn(i),
k
∑

i=1

fn(i)
�

(26)

where the evaluation score is calculated on the summed up confusion matrices for all labels. We use
both of these methods and apply them to different evaluation functions. Therefore we introduce a new
notation ẑλ for the prediction vector and zλ for the real label vector. In contrast to yi and ŷi which denote
all labels for a single instance, zλ now denotes the real labels of all instances for a single label λ and ẑλ
denotes the predictions of all instances for this label (with ẑλ, zλ ∈ {0, 1}n).

• Precision denotes the percentage of correct predictions for positive labels given the number of all
positive predicted labels.

precision=
||ẑλ · zλ||1
||ẑλ||1

=
tp(i)

tp(i) + fp(i)
(27)

If both vectors for predictions and ground truth are empty (ẑλ and zλ only contain negative labels),
the precision is considered equal to 1. If ẑλ is empty, but zλ is not empty and contains also positive
labels, we consider the precision equal to 0.
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• Recall denotes the percentage of correct predictions for positive labels given the true number of
positive label.

recall=
||ẑλ · zλ||1
||zλ||1

=
tp(i)

tp(i) + fn(i)
(28)

Similar as before we consider the recall equal to 1 if ẑλ and zλ are empty and we consider it equal
to 0 if the the prediction vector is empty but the ground truth vector is not empty.

• F1-measure denotes the harmonic mean of precision and recall cf. e.g. (Lipton et al., 2014)

F1=
2 · ||ẑλ · zλ||1
||zλ||1 + ||ẑλ||1

=
2 · tp(i)

2 · tp(i) + fp(i) + fn(i)
(29)

If ẑλ and zλ are both empty we consider the F1 measure equal to 1 and if only one of both vectors
is empty the measure is considered equal to 0. We use this F1 measure also as an example-
based measure, where the score is firstly calculated over a single instance with all labels and
then averaged over all instances.

5.3 Baseline Setup

All experiments were performed using the MULAN Java library (Tsoumakas et al., 2011) that offers a large
collection of tools to support the work with multilabel-problems. It allows to easily process multilabel-
datasets and apply different pre-implemented algorithms for problem transformations, including Binary
Relevance, Classifier Chains and Label Powerset, to them. Besides this MULAN also provides an evaluation
framework to compute a wide variety of evaluation measures. Since many multilabel algorithms are
based on label transformation methods, we need base classifiers to use them. Therefore the MULAN

library is built on top of WEKA (Hall et al., 2009). WEKA is a widespread open source machine-learning
toolbox that provides a vast collection of state-of-the-art supervised learning algorithms. These learning
algorithms can be used for classical problems like classification and regression tasks, but in order to
deal with multilabel problems, we have to combine them with the MULAN library. For all tests we have
selected Subset Accuracy and Hamming Loss as our main optimization goals.

5.3.1 Baseline Algorithms

The problem-transformation baseline methods are taken directly from the MULAN library, so we were
able run these tests without the need to implement the methods from scratch.

Label Powerset, Binary Relevance and Classifier Chains
Since these three algorithms are all pre-implemented in MULAN, the only requirement was to pass a

binary classifier to the algorithm, that generates binary predictions or probabilities between zero and
one. This classifier was then trained on the automatically transformed dataset and the predictions were
mapped back to a vector of probabilities for each label of an instance. For classifier chains the default
configuration was used that predicts labels in the static order of their occurrence in the dataset and
we did not evaluate other chain orders. So the first model of the chain predicts label λ1 and the last
model predicts the last label λk. In order to obtain the best results on the test-set, we performed a grid
search, for each baseline-method, on the train-set to find the best parameters for the base classifiers. We
evaluated the different parameter-sets by using a full cross-validation with 3 folds on the train-set. The
best parameters were then used to train the corresponding classifier on the full train-set and to generate
the final predictions on the test-set afterwards.

36



Multi-Target Tree
To get the baseline results for an algorithm adaption method, we decided to use a single multitarget

tree, that was introduced in section 4.1. Therefore we trained our modified XGBoost with only one
boosting round and a fixed maximum depth of 50, in order to obtain a single tree only. This helps
us to analyze the quality of a single multilabel-tree in order to determine how much the ensemble
version improves the results. For generating the results on the test-set we evaluated the six different
split methods from in section 4.1.2 on a hold-out validation set. This validation set contained 25% of the
instances from the train-set and the remaining 75% of the instances were used to train the model. The
split that generated the best results on the validation set was then used to train the last classifier which
predicted on the test-set.

5.3.2 XGBoost Base Classifier

In order to get a proper comparison of the modified XGBoost with the dynamic chain approach and the
baseline methods, we decided to use the default XGBoost as a base classifier. Therewith we can easily
detect if our modifications can improve the results on multilabel datasets. The problem with this idea
was that all MULAN problem-transformation algorithms require a Weka classifier. But at the beginning of
this work there were no appropriate Weka wrappers for XGBoost available and thus we had to implement
this wrapper ourselves. Fortunately, Weka classifiers are implemented in Java and XGBoost provides an
Java interface which made it not too difficult to solve this problem.
As mentioned before we performed a grid search with a cross-validation on the train-set to get the best
parameters. In order to make a fair comparison we only tuned the parameters, which were also tuned
for the dynamic chain approach. Since the dynamic chain also tunes a variety of other parameters, we
decided to limit the XGBoost parameter tuning to max_depth, that represents the maximum depth each
tree is allowed to grow, and num_round, that denotes the number of boosting rounds per model. Both
parameters were evaluated with all combinations of the values [10,25, 50,100, 150]. For the training
objective we choose logistic regression which is also used in the dynamic approach. The remaining
parameters kept their default values.

5.3.3 J48 Base Classifier

The second base classifier we used is the Weka J48 algorithm which is also based on decision trees. But
instead of XGBoost where we learn a tree forest, J48 only learns a single C4.5 decision tree (Korting,
2006). The biggest difference to CART trees from XGBoost is that C4.5 splits are not forced to be binary
which means that every tree node can have an arbitrary number of child nodes. These trees are also
called univariate trees because they contain one attribute in a inner node to test where to pass a test-
instance.
For training we used the default parameters and tuned only pruning confidence threshold C with ten
linear steps between 0.05 and 0.5.

5.4 Dynamic Chain Setup

We decided to implement the dynamic chain algorithm into the MULAN library. This helps us to deal
with the multilabel dataset and allows us to evaluate the results with the built-in evaluation library. The
modifications of the XGBoost algorithm were made in the C++ implementation. Since our changes were
compatible to the existing interfaces we were able to use the previous implemented Weka wrapper to
combine the modified algorithm with the dynamic chain.
For the first evaluation we initialized the number of chain-nodes with the number of labels of the dataset.
The trees were initialized with a max_depth of 50 and the number of boosting rounds num_round with
50. The dynamic chain was trained on 75% of the train-set and evaluated on the split off 25% of the
train set. This setup was used to evaluate the six different split-calculations for the tree construction
in combination with the three different methods of propagating the predictions along the chain. We
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also compared the results of the default prediction pipeline with the cumulated predictions, from section
4.3.2, for each combination. Since these cumulated predictions are calculated parallel to the chain
propagation and do not affect the training process, we get them together with the default predictions
by only using a single model. So all in all we trained 18 dynamic chain models per dataset for this first
evaluation. We also analyzed the gain of information by propagating the test instances along the chain.
So if a chain with ten nodes does not make any new predictions after the fifth node, we could shorten
the training process and train only a dynamic chain with five nodes.
After this first evaluation, we took the best two split-calculation and propagation-method combinations
for each dataset and evaluated them with a different number of boosting rounds and tree depths. For this
grid search we used the same parameters as for training the XGBoost models for the baseline models.
Both parameters were taken from [10, 25,50,100, 150]. At the end we initialized the dynamic chain for
each dataset with the corresponding best parameter set, trained it on the full train-set and generated the
final predictions on the test-set.
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6 Evaluation

In this section we will now compare and discuss the different setups and parameter-sets of the dynamic
chain. Afterwards we will compare these results to the baseline multilabel classifiers. The results on each
dataset were generated on the validation sets which contain 25% of the instances split off the train set.

6.1 Comparison of Split Calculation and Label Propagation methods

We used the first evaluation round to determine the best split calculation and label propagation methods
for each dataset. Tables 12-18 show the results of training the chain where each XGBoost classifier
does 50 boosting rounds with trees of maximum size 50. We only observe Hamming Loss and Subset
Accuracy in the result tables because these are the measures we want to optimize. The first column
always shows the propagation methods which correspond to the ones proposed in section 4.2.1. Method
0 means that only positive labels with probabilities above 0.5 are propagated, method 1 means that we
again propagate positive labels with the highest probability, but also pass negative labels with probabili-
ties below 0.5 if no positive ones are predicted and method 3 means propagating positive and negative
labels with the highest absolute probability. The second column Prediction Type denotes the way the
predictions were generated. DEF stands for default and means that we used the prediction pipeline from
section 4.2.2. CUM stands for cumulated and means that we used the modified prediction pipeline from
section 4.3.2. Furthermore each block of the table belongs to a single split method that is denoted in
the row above the block and corresponds directly to the split calculation methods from section 4.1.2.
For each of these blocks we highlighted the best measures green, the overall best result for the main
optimization goals, hamming loss and subset accuracy, yellow and the second best ones red. We also
marked the two splits with the best and second best scores for both measures blue.
For the datasets emotions, flags, medical and yeast we can see that the best parameters for hamming
loss also provide the best result for subset accuracy. In the scene dataset the best subset accuracy result
belongs to the second best hamming loss result and vice versa. The genbase dataset in table 15 seems
to be the only exception, but if we take a look at the different subset accuracies we notice that the best
subset accuracies are very close together in contrast to the other datasets. The difference between the
best one with 0.9460 and the second best with 0.9438 is only 0.0022 which can be neglected.
If we now take a closer look at the different propagation types we can clearly see that propagation
method 2 never returns really good results. For all datasets it is outperformed by the other methods and
especially the subset accuracy is often equal to zero. This phenomenon can be explained by taking a
look at the predictions. The problem was that since we treated positive and negative labels equally, most
of the classifiers only predicted negative labels, because they are the majority of occurring labels, and
passed them along the chain. So in the end the predictions only contained negative labels and therefore
have a very low subset accuracy. Again we have an exception for this case in the genbase dataset with
split 3 where the results of all three propagation methods are the same for the cumulated predictions.
This can be explained by taking a look at the prediction pipeline and the structure of the dataset. The
dataset has a low cardinality and each instance is assigned to an average of 1.245 labels. A deeper look
at the prediction pipeline showed that propagation method 0 and 1 predicted and passed most of the
true positive labels, which results in a good subset accuracy for the DEF method, whereas method 2
only propagated negative labels and hence got a subset accuracy of 0. The reason why the CUM results
are the same is that the first model of the chain was the same for all propagation methods. Although it
could only propagate a single label per instance for the DEF predictions, it was already able to predict
all labels which were otherwise added from later classifiers. The CUM method now takes all predictions
of this first classifier and since later classifiers do not predict additional labels, we already got the final
predictions after the first round. Figure 14, which will be further discussed in section 6.2, depicts this
process. Thus the CUM predictions did not change by going through the chain, remained the same for
all propagation methods and hence got the same scores.
After this analysis, we made the first decision to ignore propagation method 2 for further tests because
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it was always outperformed by the other approaches.
For the next aspect we have a look at the impact of using the cumulated predictions for evaluation. In
most cases the best results per split method are the CUM predictions and if they beat the DEF results,
they surpass them in both measures, hamming loss and subset accuracy. But there are also some exam-
ples where the DEF results are better than the CUM results. This applies especially for the datasets birds,
medical and scene. In these cases the results of both methods are very close together and sometimes
even equal. If we take a look at the structure of these datasets we can see that all of them have a very
low label cardinality where mostly only one positive label is assigned to an instance. Figures 11, 15 and
16 also depict this fact by showing that the first model of the chain is the only model to predict new
labels. The advantage of the cumulated predictions, where we allow each model to predict more than
one positive label per instance, is lost if there exists only one positive label per instance.
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Split 1 Split 3 Split 5

0 DEF 0.0508 0.4318 0 DEF 0.0498 0.5000 0 DEF 0.0395 0.4861
CUM 0.0502 0.4318 CUM 0.0498 0.5000 CUM 0.0409 0.4861

1
DEF 0.0858 0.1852

1
DEF 0.0862 0.2048

1
DEF 0.0774 0.3529

CUM 0.1884 0.0000 CUM 0.2175 0.0000 CUM 0.1912 0.0000

2 DEF 0.0699 0.3421 2 DEF 0.0829 0.3250 2 DEF 0.0628 0.3974
CUM 0.4418 0.0000 CUM 0.6020 0.0000 CUM 0.4486 0.0000

Split 2 Split 4 Split 6

0 DEF 0.0532 0.5000 0 DEF 0.0584 0.3659 0 DEF 0.0490 0.5205
CUM 0.0520 0.5000 CUM 0.0584 0.3659 CUM 0.0497 0.5205

1
DEF 0.0573 0.4177

1
DEF 0.0905 0.1011

1
DEF 0.0854 0.1948

CUM 0.0740 0.2911 CUM 0.2496 0.0000 CUM 0.2064 0.0000

2 DEF 0.0658 0.4375 2 DEF 0.0652 0.3864 2 DEF 0.0627 0.4286
CUM 0.3487 0.0000 CUM 0.4689 0.0000 CUM 0.5808 0.0000

Table 12: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on birds dataset
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Split 1 Split 3 Split 5

0 DEF 0.2259 0.2000 0 DEF 0.2044 0.2267 0 DEF 0.2375 0.1264
CUM 0.1889 0.3333 CUM 0.1911 0.2667 CUM 0.2107 0.2874

1
DEF 0.2195 0.1683

1
DEF 0.2233 0.2400

1
DEF 0.2211 0.1735

CUM 0.2013 0.3069 CUM 0.1983 0.3200 CUM 0.2041 0.2551

2 DEF 0.2697 0.1011 2 DEF 0.2891 0.0612 2 DEF 0.2812 0.0938
CUM 0.5131 0.0000 CUM 0.5646 0.0102 CUM 0.5937 0.0000

Split 2 Split 4 Split 6

0 DEF 0.2378 0.2396 0 DEF 0.2412 0.1647 0 DEF 0.2289 0.1928
CUM 0.2274 0.2604 CUM 0.2451 0.1647 CUM 0.2269 0.2169

1
DEF 0.2340 0.1515

1
DEF 0.2484 0.1471

1
DEF 0.2228 0.2247

CUM 0.2222 0.1818 CUM 0.2696 0.1275 CUM 0.2285 0.2022

2 DEF 0.3093 0.1000 2 DEF 0.3384 0.0202 2 DEF 0.3163 0.0682
CUM 0.5593 0.0000 CUM 0.5673 0.0000 CUM 0.5606 0.0114

Table 13: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on emotions dataset

Pr
op

ag
at

io
n

Pr
ed

.
Ty

pe

H
am

m
in

g

Su
bs

et
A

cc
.

Pr
op

ag
at

io
n

Pr
ed

.
Ty

pe

H
am

m
in

g

Su
bs

et
A

cc
.

Pr
op

ag
at

io
n

Pr
ed

.
Ty

pe

H
am

m
in

g

Su
bs

et
A

cc
.

Split 1 Split 3 Split 5

0 DEF 0.3086 0.0400 0 DEF 0.3290 0.0606 0 DEF 0.3398 0.1081
CUM 0.2743 0.1600 CUM 0.2900 0.0909 CUM 0.2741 0.1351

1
DEF 0.4152 0.0625

1
DEF 0.3512 0.0833

1
DEF 0.3333 0.0833

CUM 0.3571 0.0313 CUM 0.3274 0.1250 CUM 0.3214 0.1389

2 DEF 0.3609 0.0526 2 DEF 0.3680 0.0000 2 DEF 0.3502 0.0000
CUM 0.4361 0.0263 CUM 0.5108 0.0303 CUM 0.5115 0.0000

Split 2 Split 4 Split 6

0 DEF 0.3297 0.0385 0 DEF 0.3824 0.0294 0 DEF 0.3771 0.0400
CUM 0.2308 0.1923 CUM 0.2857 0.1176 CUM 0.2686 0.1600

1
DEF 0.3532 0.0556

1
DEF 0.3143 0.0400

1
DEF 0.2808 0.1034

CUM 0.3175 0.0833 CUM 0.3029 0.0800 CUM 0.3103 0.1379

2 DEF 0.3918 0.0000 2 DEF 0.3498 0.0345 2 DEF 0.3687 0.0323
CUM 0.3714 0.0000 CUM 0.4138 0.1034 CUM 0.4839 0.0000

Table 14: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on flags dataset
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Split 1 Split 3 Split 5

0 DEF 0.0053 0.9028 0 DEF 0.0038 0.9352 0 DEF 0.0037 0.9244
CUM 0.0030 0.9309 CUM 0.0022 0.9438 CUM 0.0024 0.9374

1
DEF 0.0056 0.8834

1
DEF 0.0038 0.9352

1
DEF 0.0031 0.9287

CUM 0.0039 0.9071 CUM 0.0022 0.9438 CUM 0.0021 0.9438

2 DEF 0.0467 0.0000 2 DEF 0.0467 0.0000 2 DEF 0.0467 0.0000
CUM 0.0082 0.8272 CUM 0.0022 0.9438 CUM 0.0042 0.9201

Split 2 Split 4 Split 6

0 DEF 0.0173 0.6631 0 DEF 0.0294 0.4406 0 DEF 0.0041 0.9287
CUM 0.0167 0.6760 CUM 0.0292 0.4471 CUM 0.0028 0.9460

1
DEF 0.0181 0.6609

1
DEF 0.0299 0.4579

1
DEF 0.0038 0.9352

CUM 0.0181 0.6609 CUM 0.0295 0.4622 CUM 0.0026 0.9430

2 DEF 0.0467 0.0000 2 DEF 0.0467 0.0000 2 DEF 0.0466 0.0000
CUM 0.0182 0.6739 CUM 0.0334 0.4147 CUM 0.0024 0.9438

Table 15: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on genbase dataset
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Split 1 Split 3 Split 5

0 DEF 0.0214 0.2805 0 DEF 0.0225 0.2099 0 DEF 0.0146 0.3947
CUM 0.0214 0.2805 CUM 0.0225 0.2099 CUM 0.0143 0.4079

1
DEF 0.0611 0.0000

1
DEF 0.0801 0.0000

1
DEF 0.0368 0.1778

CUM 0.4820 0.0000 CUM 0.5907 0.0000 CUM 0.4165 0.0000

2 DEF 0.0280 0.0000 2 DEF 0.0302 0.0543 2 DEF 0.0285 0.0000
CUM 0.6981 0.0000 CUM 0.8273 0.0000 CUM 0.7911 0.0000

Split 2 Split 4 Split 6

0 DEF 0.0107 0.6437 0 DEF 0.0174 0.3750 0 DEF 0.0209 0.1860
CUM 0.0100 0.6782 CUM 0.0172 0.3864 CUM 0.0209 0.1860

1
DEF 0.0111 0.6220

1
DEF 0.0204 0.3611

1
DEF 0.0948 0.0000

CUM 0.0106 0.6341 CUM 0.0210 0.3472 CUM 0.5676 0.0000

2 DEF 0.0269 0.0000 2 DEF 0.0274 0.0000 2 DEF 0.0267 0.0714
CUM 0.0123 0.6667 CUM 0.0214 0.3580 CUM 0.7553 0.0000

Table 16: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on medical dataset
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Split 1 Split 3 Split 5

0 DEF 0.1130 0.3926 0 DEF 0.1020 0.4898 0 DEF 0.1076 0.4636
CUM 0.1130 0.3926 CUM 0.1020 0.4864 CUM 0.1076 0.4603

1
DEF 0.1050 0.4429

1
DEF 0.1115 0.4808

1
DEF 0.1104 0.4570

CUM 0.1044 0.4464 CUM 0.1121 0.4774 CUM 0.1093 0.4570

2 DEF 0.1519 0.2935 2 DEF 0.1501 0.3509 2 DEF 0.1536 0.4510
CUM 0.2895 0.2765 CUM 0.4156 0.2019 CUM 0.4276 0.0980

Split 2 Split 4 Split 6

0 DEF 0.1348 0.4130 0 DEF 0.1614 0.1533 0 DEF 0.1176 0.4940
CUM 0.1348 0.4130 CUM 0.1620 0.1498 CUM 0.1181 0.4911

1
DEF 0.1330 0.4263

1
DEF 0.1689 0.1815

1
DEF 0.1030 0.5574

CUM 0.1335 0.4199 CUM 0.1733 0.1716 CUM 0.1025 0.5608

2 DEF 0.1534 0.1981 2 DEF 0.1865 0.1190 2 DEF 0.1529 0.4868
CUM 0.2700 0.1821 CUM 0.4399 0.0782 CUM 0.5883 0.1258

Table 17: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on scene dataset
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Split 1 Split 3 Split 5

0 DEF 0.2199 0.1041 0 DEF 0.2241 0.1013 0 DEF 0.2229 0.0546
CUM 0.2078 0.1269 CUM 0.1987 0.1620 CUM 0.2121 0.1284

1
DEF 0.2464 0.0542

1
DEF 0.2333 0.0705

1
DEF 0.2321 0.0769

CUM 0.2462 0.0678 CUM 0.2236 0.1220 CUM 0.2165 0.1333

2 DEF 0.2570 0.0197 2 DEF 0.2732 0.0165 2 DEF 0.2783 0.0079
CUM 0.5778 0.0000 CUM 0.6091 0.0055 CUM 0.6523 0.0000

Split 2 Split 4 Split 6

0 DEF 0.2265 0.0296 0 DEF 0.2455 0.0208 0 DEF 0.2212 0.0940
CUM 0.2101 0.1506 CUM 0.2466 0.0519 CUM 0.2057 0.1462

1
DEF 0.2351 0.0260

1
DEF 0.2598 0.0173

1
DEF 0.2259 0.0613

CUM 0.2189 0.1302 CUM 0.2715 0.0202 CUM 0.2143 0.1333

2 DEF 0.2769 0.0082 2 DEF 0.2919 0.0056 2 DEF 0.2807 0.0260
CUM 0.5995 0.0000 CUM 0.6210 0.0000 CUM 0.6399 0.0000

Table 18: First evaluation with 50 boosting rounds and maximum tree depth 50 per base XGBoost model
on yeast dataset
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6.2 Prediction Pipeline

In this section we want to analyze the label propagation along the chain and use it to optimize the total
length of the dynamic chain. Therefore we took the best parameters from the first evaluation round of
section 6.1, reran the experiments and recorded the label propagation pipeline. Figures 11-17 depict
this process. They count the number of true-positive (TP), true negative (TN), false positive (FP) and
false negative (FP) labels predicted in each label round, where label round i stands for the i-th classifier
node of the chain.

6.2.1 Comparison of Default and Cumulated Predictions

We start with comparing the course of the graphs from the default (DEF) predictions to the graphs from
the cumulated (CUM) predictions. The first thing to notice is that the datasets birds, genbase, medical
and scene seem to predict most of their labels in the first round and have later on only minor changes.
For the CUM and DEF predictions of birds and scene this observation is strongest, where for birds only
one true negative switches to a false positive in round two and for scene actually no predictions change.
Genbase predicts between the forth and the fifth model 110 new true positive labels and medical predicts
up to round three 12 more true positive labels which is not very much compared to the absolute number
of label-instance combinations. The same applies to the CUM predictions where genbase predicts 87 new
true positive labels until round 4 and medical 2 true positive labels until round 3. The reason that the
first chain-classifier predicts nearly all positive labels is again connected to the label cardinalities of the
datasets. For birds and scene it is nearly one, which explains why the first model is the only one to predict
positive labels, and for genbase and medical the cardinality is also very low with 1.25, so the first model
is not able to predict all positive labels alone.
The three remaining sets are the more interesting ones. All of their true negative counts for DEF start very
high and then start to slightly decline. This is due to the fact that, as the label cardinality shows, most of
the true target labels are negative labels. So if a classifier predicts no positive label for an instance, we
assume it to be a negative label. When we then go along the chain the classifiers begin to predict more
and more positive labels. On the one hand side this raises the true positive rate, but on the other side the
number of true negative labels declines because, since the classifiers are not perfect, they also start to
predict false positive labels. Figure 13a for the flags dataset show this very well. We can see the number
of true negative labels declining from 80 to 73, while the number of false positives increases from 8 to
15, and at the same time the number of true positive labels raising from 18 to 49 while simultaneous
the number of false negatives decreases from 76 to 45. All in all the number of correctly predicted labels
raises from 98 to 122 and the number of falsely predicted labels declines from 84 to 60. This effect can
also be observed in figures 12a and 17a for the emotions and yeast datasets.
Although we can see that the number of true positive labels is raising there is still a problem with the DEF
prediction pipeline. If we have a look at the number of false negative labels we can see that it is indeed
decreasing, but remains, even on the lowest points, very high and above the number of true positives.
This is where the idea for the CUM predictions comes in. Due to the fact that we now allow each model
of the chain to predict more than one positive label per instance, the number of true positive labels starts
now with a much higher value. We take again figure 13 as an example where the true positive count
in 13b starts even higher than the maximum value of the true positives in 13a. This causes that also
the positive labels start with a higher count and the true negatives are lower than before. We can now
compare the total number of correctly and falsely predicted labels of the CUM predictions to the DEF
predictions. The number of correct predictions starts at 137 and raises to 140 while the number of false
predictions decline from 45 to 42. So even after the first label round, the CUM results are better than
the DEF results after 7 label rounds. For the remaining and larger datasets this effect is even stronger.
The number of correct DEF predictions raises for yeast from 4291 to 4431 correct CUM predictions and
for the emotions dataset from 418 to 438. All in all, we have between 2.2% and 4.8% more correct
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predictions for these first experiments and as tables 12-18 show this difference can often significantly
increase the end results.

6.2.2 Dynamic Chain length Optimization

Besides this comparison of the two prediction methods, we also use this prediction pipeline analysis to
determine the optimal length of the dynamic chain. The experiments depicted in table 12-18 were all
performed by a chain with the length equal to the number of labels. So for the emotions dataset we used
a chain with 6 classifier-nodes and for the medical dataset a chain with 45 classifiers. One problem of
this is the current implementation of the dynamic chain and the modified XGBoost algorithm. Because
of some compromises that were made during the practical implementation, the training of the chain is
currently not very efficient and depends linearly on the number of labels. So in order to speed up further
testing, we want to optimize the length of the chain in order to decrease the computational time.
In order to find the optimal lengths we took again a look at figures 11-17 and determined the label round
from where the predictions did not change anymore. If we take for example the yeast dataset, we see
in figure 17 that after label round five the TP, TN, FP and FN counts stay the same. So for this example
we could choose a chain with five classifiers. We finally chose a chain with length six for this dataset in
order to add some buffer. Table 19 shows the selected chain lengths for each dataset. For some of the
smaller sets like birds we decided to keep the original full length because the training was already very
fast, but especially for genbase, medical and yeast it was important to reduce the length, since these were
the datasets with the highest computational time.

Dataset Chain Length
birds 19
emotions 6
flags 7
genbase 4
medical 4
scene 6
yeast 6

Table 19: Dynamic chain lengths used for further testing
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Figure 11: Predicted labels per label round - birds
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Figure 13: Predicted labels per label round - flags
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Figure 15: Predicted labels per label round - medical
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Figure 16: Predicted labels per label round - scene
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Figure 17: Predicted labels per label round - yeast
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6.3 Comparison of Dynamic Chain and Baseline Approaches

After the chain parameters for split-calculation, label-propagation and prediction-type have been eval-
uated, the next step was to tune the XGBoost base classifiers. Therefore, we took for each dataset the
two splits with the best results (blue highlighted in tables 12-18) and tuned the XGBoost parameters for
maximum tree depth and number of boosting rounds. The parameter set with the best results on the
validation set was then used to train the dynamic chain on the complete train set and generate the final
predictions on the test set. Note that one especialness that occurred during this evaluation was that the
parameter sets for the best Subset Accuracy also corresponded to the best Hamming Loss results. The final
prediction results on the test sets and their corresponding parameter initialization can be found in figure
21. Except for the scene dataset we always used the CUM predictions for this final evaluation. This can
again be justified by the low label cardinality of this dataset. Thereby the scores for the DEF predictions
were slightly better than the ones for the CUM predictions, because the CUM predictions seemed to have
added some more false positives. For the birds dataset with even a lower cardinality we got the same
scores for DEF and CUM and therefore chose the CUM ones since they provided better results in the
majority of all cases.
Let us now look at the final results on the test sets. The results for the baseline methods can be found
in table 20. In table 22 we compare the results of these baselines to the ones of the dynamic chain, but
we only regard our main optimization goals Hamming Loss and Subset Accuracy. Thereby LP denotes the
Label Powerset method, BR is short for Binary Relevance, CC means Classifier Chains, MTRT stands for the
single Multi Target Regression Tree and DC denotes our Dynamic Chain approach. For some easier analysis
we also highlighted the best results for each dataset. Additionally, we added figures 18 - 24 to give some
more intuitive understanding of how the different approaches performed. The x-axis thereby shows the
Hamming Loss, which we want to minimize, and the y-axis shows the Subset Accuracies, which need to
be maximized. The different colors and forms then show the different algorithms. Red are the J48 ap-
proaches, blue the XGBoost approaches, the Multi Target Tree is green and the Dynamic Chain results are
orange. At first, we will focus on these tables and the measures Hamming Loss and Subset Accuracy. For
Hamming Loss the dynamic chain provides the best results for the datasets emotions, medical, scene and
yeast and also in the remaining datasets the results are close to the best one, but in Subset Accuracy they
are always outperformed by LP and CC methods combined with XGBoost. The success of LP methods is
due to the fact that the datasets are not very big and therefore the number of unique label combinations
is rather low. The scene set for example contains only 14 unique label combinations. If the label powerset
method then chooses the correct class, all labels of this instance are set correctly which then boosts both
measures. Especially in the flags dataset these Subset Accuracy results are worst among all classifiers.
Therefore, we can now also consider the precision results in tables 20 and 21. Although DC has the
best results for Recall, which means a lower false negative rate, especially the micro averaged precision
results are lower than for the other approaches. This means that the other approaches have a lower
number of false positive predictions. Since the dataset only contains 194 instances, this higher number
of false positives heavily worsens the Subset Accuracy. Another thing we can clearly detect is that the
transformation methods in combination with XGBoost mostly outperform the corresponding approaches
combined with J48. An explanation therefore can be found in (Wyner et al., 2015) where it is shown
that random forest approaches, where also XGBoost belongs to, generate better results than single tree
classifiers like J48. We also notice that the dynamic chain approach always exceeds the results of single
multi-target-regression-trees and that the MTRT mostly generate bad results. In figure 21 they are not
even shown since the corresponding subset accuracy is far below the other ones. We can therefore give
two reasons. One is similar as before that a single tree is always outperformed by a forest of trees. The
other one is that the results of the remaining methods, except for LP that transforms the whole problem,
are generated by an ensemble or a chain of classifiers. So where the MTRT has to learn all label in a
single tree, BR or CC predict each label with an own classifier.
Besides this, figure 21 also shows some anomalies. Both LP results perform bad in Subset Accuracy and
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the CC and BR results are nearly the same for their corresponding base classifiers. But looking at the
axes shows that the hamming loss results are, except for MTRT which we have already shown, nearly the
same and only differ at most 1 · 10−3 from each other. Also for the subset accuracy we can see that they
are very close together. So already a single different predicted label can make the difference.
By having a look at the other evaluation measures, we detect that DC has often really good results on
Micro averaged precision, which shows that the they have the best rate of true positive classified labels
among all labels that have been predicted positive. Since the subset accuracies are still lower compared
to the other approaches, we can conclude that we still have a high number of negative predicted labels
where the true target label is positive. We can also see this by comparing the Micro Averaged Recall
results where they are mostly low for datasets with high Micro Averaged Precision values. For flags and
yeast we have the opposite case for these measures and we predict to much false positives. Even the F1
measures confirm this observation and are mostly low compared to the other approaches. Again there
is an exception for flags and yeast and both of them have really good F1 results. This is due to the fact
that the corresponding Recall values which influence the F1 measures, are a whole lot better than for the
other methods.
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LP+XGB 0.0477 0.5387 0.3601 0.4604 0.6500 0.4101 0.3287 0.5435 0.3994
LP+J48 0.0650 0.3932 0.2951 0.4036 0.5337 0.2828 0.3306 0.3792 0.4313
BR+XGB 0.0365 0.5635 0.3217 0.5109 0.6695 0.6085 0.2428 0.8069 0.3738
BR+J48 0.0473 0.4892 0.1997 0.3750 0.5864 0.2913 0.1646 0.5762 0.2780
CC+XGB 0.0365 0.5666 0.3228 0.5109 0.6699 0.6066 0.2435 0.8069 0.3738
CC+J48 0.0505 0.4551 0.1790 0.3648 0.5521 0.2505 0.1549 0.5086 0.2843
MTRT 0.0510 0.4675 0.0000 0.0000 0.4675 0.0000 0.0000 0.0000 0.0000

emotions

LP+XGB 0.2129 0.3515 0.6655 0.6718 0.6408 0.6746 0.6605 0.6822 0.6617
LP+J48 0.2987 0.2129 0.5076 0.5347 0.4985 0.5259 0.4961 0.5488 0.5213
BR+XGB 0.2071 0.2723 0.6441 0.6557 0.5886 0.7249 0.5902 0.7242 0.5990
BR+J48 0.2475 0.1436 0.6156 0.6173 0.5680 0.6361 0.6029 0.6286 0.6065
CC+XGB 0.2087 0.3218 0.6600 0.6735 0.6309 0.6867 0.6430 0.6941 0.6541
CC+J48 0.2558 0.1980 0.5790 0.5921 0.5558 0.6175 0.5631 0.6233 0.5639
MTRT 0.3259 0.1782 0.5029 0.5117 0.4802 0.5017 0.5145 0.5049 0.5188

flags

LP+XGB 0.2462 0.2615 0.6452 0.7431 0.7166 0.6862 0.6370 0.7397 0.7465
LP+J48 0.2769 0.2154 0.6257 0.7123 0.6953 0.6405 0.6338 0.7059 0.7189
BR+XGB 0.2791 0.1692 0.6317 0.7107 0.6806 0.6306 0.6409 0.7027 0.7189
BR+J48 0.2659 0.1846 0.5765 0.7056 0.6870 0.6976 0.5492 0.7474 0.6682
CC+XGB 0.2791 0.2462 0.6461 0.7107 0.6815 0.6390 0.6570 0.7027 0.7189
CC+J48 0.2615 0.2615 0.6224 0.7252 0.7051 0.6540 0.6116 0.7269 0.7235
MTRT 0.2769 0.1385 0.5949 0.7083 0.6816 0.6218 0.5886 0.7116 0.7051

genbase

LP+XGB 0.0013 0.9698 0.8342 0.9856 0.9910 0.8426 0.8333 0.9958 0.9755
LP+J48 0.0013 0.9749 0.8758 0.9856 0.9889 0.8882 0.8667 0.9958 0.9755
BR+XGB 0.0009 0.9799 0.8494 0.9897 0.9925 0.8472 0.8519 0.9959 0.9837
BR+J48 0.0007 0.9799 0.8885 0.9918 0.9946 0.8882 0.8889 0.9918 0.9918
CC+XGB 0.0009 0.9799 0.8494 0.9897 0.9925 0.8472 0.8519 0.9959 0.9837
CC+J48 0.0007 0.9799 0.8885 0.9918 0.9946 0.8882 0.8889 0.9918 0.9918
MTRT 0.0516 0.1709 0.1888 0.2063 0.1759 0.2348 0.1723 0.3462 0.1469

medical

LP+XGB 0.0122 0.6744 0.4261 0.7686 0.7752 0.4643 0.4127 0.8055 0.7350
LP+J48 0.0177 0.5736 0.4415 0.6743 0.6857 0.4569 0.4419 0.6852 0.6638
BR+XGB 0.0109 0.6419 0.4368 0.7929 0.7521 0.4555 0.4309 0.8333 0.7563
BR+J48 0.0149 0.5550 0.3669 0.7251 0.6849 0.3760 0.3699 0.7368 0.7138
CC+XGB 0.0113 0.6434 0.4384 0.7881 0.7507 0.4760 0.4374 0.8183 0.7600
CC+J48 0.0149 0.5550 0.3718 0.7265 0.6878 0.3767 0.3757 0.7344 0.7188
MTRT 0.0136 0.5845 0.3881 0.7227 0.7207 0.4290 0.3732 0.8217 0.6450

scene

LP+XGB 0.0864 0.7099 0.7577 0.7534 0.7595 0.7828 0.7356 0.7794 0.7290
LP+J48 0.1506 0.5251 0.5871 0.5792 0.5832 0.6005 0.5764 0.5858 0.5727
BR+XGB 0.0864 0.5828 0.7235 0.7254 0.6380 0.8494 0.6357 0.8540 0.6305
BR+J48 0.1384 0.4005 0.6156 0.6070 0.5484 0.6407 0.5957 0.6246 0.5905
CC+XGB 0.0889 0.6538 0.7393 0.7337 0.6990 0.8120 0.6833 0.8013 0.6767
CC+J48 0.1410 0.5443 0.6164 0.6044 0.6062 0.6401 0.5992 0.6140 0.5951
MTRT 0.1557 0.4156 0.5190 0.5200 0.4738 0.5800 0.4743 0.5885 0.4657

yeast

LP+XGB 0.2345 0.2214 0.4193 0.6009 0.5763 0.4483 0.4034 0.6218 0.5814
LP+J48 0.2844 0.1145 0.3594 0.5277 0.4997 0.3633 0.3581 0.5324 0.5232
BR+XGB 0.1993 0.1679 0.3948 0.6397 0.6106 0.5616 0.3598 0.7095 0.5825
BR+J48 0.2415 0.0763 0.3761 0.5873 0.5650 0.3965 0.3670 0.6106 0.5658
CC+XGB 0.2066 0.2323 0.4053 0.6288 0.5927 0.4866 0.3701 0.6921 0.5760
CC+J48 0.2324 0.1788 0.3573 0.5810 0.5546 0.3977 0.3349 0.6419 0.5306
MTRT 0.2625 0.1210 0.3515 0.5504 0.5143 0.3777 0.3388 0.5735 0.5291

Table 20: Results of the baseline methods on the test sets
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7 Related Work

In this section we give a short insight to some other methods for multilabel classification and multi-target
trees.
In (Schapire and Singer, 2000) two modified version of the AdaBoost algorithm (Freund and Schapire,
1995), AdaBoost.MH and AdaBoost.MR, are used for the task of text categorization. AdaBoost.MH main-
tains a set of weights and passes it each round to a set of weak classifiers. The sign of the output of these
weak classifiers is then used to predict a label. Afterwards the weight distribution is updated and the
process repeats. This version is used to minimize Hamming Loss. AdaBoost.MR is also based on weak
classifiers where their output is used to find a ranking that tries to put the correct labels to the top.
Another tree classifier for extreme multilabel problems is FastXML (Prabhu and Varma, 2014) which
scales very well on datasets with a tremendous number of labels and solves these problems efficiently
with a low computational time complexity.
Besides these approach for tree models, there also exist some other methods to directly detect and exploit
dependencies between labels. One of these proposes a modified SVM (Godbole and Sarawagi, 2004) that
is able to exploit co-occurences of labels. Therefore, a binary classifier is trained for each label and the
predictions of these classifiers are then used to create an extended dataset by adding them as features
to the train-set. Afterwards a second ensemble of classifiers is trained on this extended dataset. For pre-
dicting a new test instance, the first classifier ensemble generates predictions for each label, adds them
as features to this instance and the second ensemble generates the final predictions.
Two other approaches for exploiting label dependencies can be found in (Loza Mencía and Janssen,
2016). The first one combines rule learning with bootstrapped stacking where for each label a separate
ruleset is learned on a train set which includes the remaining labels as attributes. The second one com-
bines multilabel rule learning with a separate and conquer approach. Therefore, covered examples with
predicted labels are re-included to allow learning of subsequent rules. Especially the stacking approach
is very effective at learning rules that depend on other labels.
Another method that tries to incorporate label dependencies to improve multilabel classification can be
found in (Zhang and Zhang, 2010). There a Bayesian network is used to efficiently encode the label de-
pendencies. The problem is then decomposed into single-label tasks where parental labels are added as
additional features. Unseen instances are then recursively predicted by the network. A similar approach
can also be found in (Guo and Gu, 2011) where a cyclic directed graphical model is used to represent
label dependencies.
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8 Future Work

The dynamic chain proposed in this thesis still has some potential for improvements. In this section
we will shortly introduce some points that may improve the performance, usability and the prediction
results.

8.1 Performance Improvements

The first point, that was already mentioned before, concerns the computational time and performance of
the algorithm. The current implementation and especially the XGBoost modifications are a compromise
that allowed us to experiment with the dynamic chain. The main problem is the computation complexity
that is linear with the number of labels. So the current implementation is not able to run on really
large datasets like the mediamill or bookmarks datasets which are both available in the MULAN library.
Therefore, the need arises to make some more profound changes to the XGBoost source code which adapt
the fundamental tree representation and add the ability to directly deal with multilabel data. Another
recommendation is to reduce the number of frameworks the data is passed through. At the moment we
use MULAN to process the multilabel data. This data is then forwarded to a WEKA classifier that passes
the data to the XGBoost Java interface which finally propagates it to the actual XGBoost core that learn
the model.

8.2 Refinement of Tree Construction

For now, we have only focused on the two XGBoost parameters maximum tree depth and number of
boosting rounds. Besides tuning the high number of remaining parameters, we assume that there is
still space for improvement in the multitarget tree construction. Up until now we have combined the
cross entropy objective with various kinds of split calculation approaches. Since the objective function
can be easily swapped out, we could evaluate the performance of several other objective functions like
a linear regression. Another idea is to analyze different split calculations. So far, they are based on
the gain calculation for the default regression task or based on the leaf weight calculation. Some other
split calculations could aim for a compromise of maximizing the probability for a single label while also
obtaining decent results for the remaining ones. Furthermore, we could adapt the tree structure and
allow the tree to connect nodes to more than two child-nodes or leaves.

8.3 Early Stopping and Self Correction

The last attempt for improvement concerns the structure of the dynamic chain. The evaluation showed
that often a very short chain is sufficient to provide good results. So a idea could be to combine the chain
with some early stopping criterion. We could therefore introduce a new label, called stopping label, in
order to build a chain with a dynamic length. If this stopping label is predicted during the training
or predicting process it means that this particular instance has no more positive labels missing. This
instance could then be removed from the set and if no more instances are propagated along the chain
the process stops.
The second idea for improving the prediction results is to add the ability for the chain to correct itself.
If the current version of the chain predicts a label, this label is fixed and cannot be changed later on.
Even if all following classifiers would predict it differently, they have no chance to update it. An idea of
self-correction is to add another label, called the correction label. If this label is predicted it means that
the lastly propagated label is very likely a wrong prediction. In this case the label could be removed or
updated.
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9 Conclusion

In this thesis we have developed a novel approach to solve multilabel problems by predicting the labels
dynamically and individually per instance in order to exploit potential dependencies between them. In
a first step we have therefore proposed a new tree structure that builds on top of the popular XGBoost
algorithm for gradient tree boosting and adds the capability to predict multiple labels simultaneously. In
a second step this modified XGBoost algorithm was then used as a base classifier for a dynamic chain of
classifiers. This dynamic chain gradually trains these tree classifiers and propagates their most probable
predicted labels to the next classification-node which can use this additional information to detect and
exploit dependencies to previous predicted labels. Afterwards we introduced the additional refinement
approaches separate and conquer and cumulated predictions which massively increased the predictive
performance and robustness of the dynamic chain.
Besides the idea of detecting and exploiting label dependencies, the main advantage of this approach is
that we no longer have to determine a static order of the dynamic chain as it was required for classifier
chains. Each test instance, that is now passed along, gets its labels predicted in an individual order
where only labels with high probabilities are assigned. Nevertheless, the current implementation has
some drawbacks which do not allow an evaluation on larger datasets. Furthermore, the we have some
pretty high computational times which make it hard to tune the high number of parameters for the chain
and its base classifiers.
However, the final comparison with the baseline methods showed that the dynamic chain can compete
with current state-of-the-art algorithms for multilabel-classification. Especially the results for Hamming
Loss are pretty good and we were able to generate the best scores on four out of seven test datasets.
So all in all, we can say that the proposed dynamic chain in combination with extreme gradient tree
boosting shows some great potential, but still needs some further work to overcome its weaknesses and
boost its predictive performance.
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