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1 Abstract

The game of Go has been of major relevance in the field of artificial intelligence for the last decades [11, 18] and now,
there has been a major breakthrough just recently with AlphaGo beating Lee Sedol, one of the strongest Go players in
the World [84]. In this thesis we introduce the big move heuristic. This heuristic approximates moves to play in the
Beginning stage of Go. The algorithm examines the natural vibration of the board and finds the intersection farthest
away from the border and from the other stones. It therefore needs to compute the eigenvector representing the desired
mode shape [23]. The big move heuristic is constructed to modify the widely known Monte Carlo Tree Search [18,20].

A major part of this thesis consists of testing different methods and functions for eigenvector calculation and approx-
imation to improve the heuristic timewise. The goal is to compute eigenvectors as fast as possible because they are
required to be called often during the tree policy of Monte Carlo Tree Search. We discovered that approximating a single
eigenvector tends to be much faster when using the right iterative methods. The best result we got was using methods
from Python’s SciPy [60] package which implement variants of the Arnoldi Method [91]. After optimizing the algorithm,
we incorporated the big move heuristic as a Prior into the game engine of Pachi, one of the best open source Go pro-
grams [3]. The Prior is a starting worth for a particular state action pair (s, a) consisting of an action value Qprior(s, a)
which is claimed to be achieved after nprior(s, a) simulations [19]. The results fluctuated and are not very precise, but in
the end the best result we measured had resulted in a winning expectancy of 59% against regular Pachi.
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2 Introduction

2.1 Introduction to Go

Go strategic board game where all information about the current game state is available to the players. Furthermore,
it is purely deterministic and therefore has no random elements [74]. Two players play against each other in order to
maximize their own territory. We will explain the rules in section 2.1.2. Around the world, Go is played by around
60 000 000 people [33]. It is mostly played in three countries: Japan, China, and Korea. There are about a thousand
professional Go players in these three countries [33] and a few outside of those countries, but the number is very small in
comparison. Recently, there have been Pro Qualification tournaments to establish a professional system in Europe [42].
It is difficult to construct an artificial intelligence that plays Go on a professional level. The reason for this is the large
decision tree due to the relatively large board size, among other things [11]. Compared to Chess which has a board size
of 8×8, Go has a board size of 19×19 which gives much more room for possible moves on the board [92]. Not long ago
AlphaGo [84], a Go program which uses neural networks, was the first Go program that ever beat a human professional
without handicap on a 19× 19 Go board.

2.1.1 History of the Game

The exact age of Go is unclear but its origin is dated far back in ancient China. According to legend, it is around 4000
years old, but this claim is lacking proof [17,29]. The first notion of Go is by Confucius around 500 BC who mentioned Go
in his Analects [17,29,32,83]. He called the game Yih. Furthermore, a 17×17 Go board was found which was used prior
to 200 AD in China as well as a silk painting of a Tang Lady from around 750 AD who also played on a 17×17 board [17].
Therefore, it seems reasonable to assume that an older version of the game existed that was played on a smaller board.
Even though Go was invented in China, important contributions to its growth and popularity were made by the Japanese.
In the beginning of the 17th century, Tokugawa1 unified Japan. Four Go schools were formed and a professional system
was set up subsequently. Every year the Castle Games were held until the 19th century due to the Meiji Restoration.
During that time, Go experienced a period of stagnation because the colleges lost their funding [22, 29]. In 1920, the
Japanese Go Association was formed and newspapers began to sponsor tournaments [83]. The professional system was
established in the 1950s in Korea as well as 1978 in China. Go is more popular in Korea than anywhere else in the World;
more than five percent of Koreans play it regularly [32,83]. Nowadays, the manga “Hikaru no Go” boosted the popularity
of Go overseas [83]. Also, it is possible that AlphaGo [84] by Google Deepmind promoted the awareness for Go around
the world, as it was mentioned in television and newspapers.

Figure 1: A Tang lady playing Go on a 17× 17 board. Source: [80]

1 Tokugawa Ieyasu ruled Japan in the beginning of the 17th century.
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2.1.2 Rules of the Game

Go has several different rule sets, for example AGA (American Go Association) Rules, Ing Rules or Chinese Rules [73].
The rule sets only differ in a few aspects of the game. Therefore, we will explain the Japanese Rules [67] because they
are most widely used.

Go is a two player game with a small rule set. The Go board is a grid of 19× 19 intersections. Beginners often play on
smaller boards with only 9× 9 intersections. 13× 13 is also considered a possible size2. The game starts with an empty
board. One player plays with black stones and the opponent with white stones. They will be referred to as Black and
White.

(a) (b)

Figure 2: The board in (a) has 19× 19 intersections and the board in (b) has 9× 9 intersections.

Black begins the game by placing a black stone on one of the 361 intersections3. Also, there can only be one stone on
each intersection at the same time. Both players alternate turns of which one turn consists of either placing a stone on
the board or passing [29]. It is not allowed to move stones after they have been placed. A stone can only leave the board
again, if it gets captured by the opponent.

Goal and End of the Game
In Japanese Rules a game is finished after two subsequent passes [29, 67]. After that, the status of all groups is

discussed. The status of a group can either be alive, dead or unsettled [29]. A group is a set of stones of one color working
together on the board. This is an abstract concept and can not be defined precisely. Both players try to enclose as much
territory as possible with their groups while keeping them alive. A group is dead if a player can not hinder the opponent
from capturing it [1]. If capturing is impossible, a group is considered unconditionally alive. The concept of capturing will
be explained later on. When the game is finished, territory is counted and the player leading in territory wins the game.
This is why each player strives for the maximum of territory on the board. Vacant intersections enclosed by alive groups
of one color represent territory. [29] One enclosed intersection equals one point. Dead stones on enclosed intersections
count as extra points for the player who enclosed them. Captured stones also count as points for the player who captured
them. Figure 3 shows an example of a finished 9× 9 game with marked territory.

2 Essentially it is also possible to play Go on smaller or much larger boards. KGS Go Server [51] for example allows the Player to create a new
game with 38× 38 intersections at maximum. The sizes mentioned are the most commonly used ones with 19× 19 being the standard size.

3 Stones are placed on intersections and not on the rectangles.
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Figure 3: An example of a finished 9 × 9 game. A territorial point (indicated by a square) always belongs to the player
that completely surrounds it. One territorial point equals one point in the final score. The coordinates A1, B1,
and C1 are Black’s points, because they are surrounded by black stones. The black group on the coordinates
B9, B8, and A8 can be captured by White with a move on A9. Therefore, the group is considered dead. Each
of these dead stones equals one point for White in the final score. In contrast to that, the intersection at C5 is
not marked, because it belongs to neither Black nor White and therefore does not contribute to the final score.
Therefore, without counting captured stones or Komi into the final score, Black leads with a single point.

Liberties and the capturing of stones: A stone is caught by the opponent if it has no more liberties. The liberties of a
stone are its unoccupied adjacent intersections. Adjacent intersections are connected by a line as shown in figure 4.
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Figure 4: Example demonstrating the idea of liberties. The last played move is marked with a circle. The intersections
(indicated by a square) around the stone in (a) are its liberties. Adjacent stones occupy the liberties of each
other as shown in (b). Two adjacent stones of the same color share their remaining liberties as shown in (c) [26].

Liberties are an essential attribute of a stone. Figure 4 shows that a single isolated stone has two liberties on one
of the four corner intersections, three liberties on every other border intersection, and four liberties on the remaining
intersections. If another stone is placed beside the stone, both stones occupy a liberty from each other and two stones of
the same color share their liberties [26]. This can also be seen in figure 4. If all liberties of a stone (or multiple connected
stones) are occupied by the opponent’s stones, the stone is captured by the opponent and taken from the board as a
prisoner. A captured stone does not take part in the game anymore. It counts as a point for the player who captured
it [1]. Figure 5 shows how many stones are needed to capture a single stone on the board. Compared to that, figure 5
also shows that the opponent needs more stones to catch two neighboring stones of the same color because they have
two more liberties than an isolated stone.
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Figure 5: This figure shows the idea of capturing. In (a), White took the liberties of Black in figure 4. The last liberty is
indicated by a square and the last played move is marked with a circle. If a stone has zero liberties, it is captured
and taken from the board as shown in (b). White needs more stones to capture the two black stones in figure
4 as shown in figure (c) [29].

Suicide
In Japanese rules, it is illegal to place a stone on an intersection, if it would result in zero liberties for the stone. This

concept is called suicide. The only exception to this rule is, when the placed stone would occupy the last liberty of an
opponent’s group [1, 26, 67]. The left side of figure 6 shows an example situation where Black is not allowed to play at
E14 because the placed stone would have zero liberties after being placed. The right side of figure 6 shows an example
situation where it is legal for White to play at D14 because White would capture some stones in the process.
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Figure 6: It is illegal for Black to play at E14 in (a). But it is legal for Black to play D14 in (b) because it involves capturing
E14 and F14 which results in a liberty for the stone in question. This is not considered suicide. [1,26]

Ko
The previously stated rules of Go make infinite cycles of game states possible. Such a situation can be seen in figure

7. The game state on the left s1 and the game state on the right s2 could alternate indefinitely [1, 29]. This situation
is called Ko. The situation in figure 7 is called a direct Ko, because the cycle does only involve two game states. Every
rule set prohibits the infinite cycle of a direct Ko [73]. Therefore, a player is not allowed to make a move in state s2 that
results in a direct re-occurrence of state s1. Ko situations can also be larger cycles that involve more than two states. It
depends on the rule set how these situations are handled. In Japanese rules, larger cycles like the triple Ko can cause the
game to be declared void [9,67].
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Figure 7: This situation is called a direct Ko. If Black captures F14 by placing a stone on E14 in (a), White cannot capture
back immediately in (b), but has to play a Ko threat first. A Ko threat is a move elsewhere on the board that
the opponent might want to answer rather than ending the Ko.

Komi
Black has an advantage by starting the game and placing the first stone on the board. Therefore, White gets compensa-

tion in the form of points added to the final score. This compensation is called Komi in Japanese Rules. It is still unclear
how large the Komi should be to ensure a fair game for both players. Currently, a Komi of around 6.5 points is considered
fair in Japan [70]. The 0.5 points are added to exclude draws.

2.2 Rating and Ranks in Go

The rating of a player is a single number that translates directly to a Go rank. The Go rank is a label that indicates
the playing strength of a player [71]. A player gains and loses rating points by winning and losing tournament games
respectively. The size of gain and loss is dependent on the rating of the opponent. The ranks in Go range from 30 Kyu
amateur (30k) to 9 Dan amateur (9d) [71]. Kyu are the student ranks and a lower number corresponds to a higher rank.
For example, a 10k player is stronger than a 20k player. Dan are the master ranks where a higher number corresponds to
a higher rank. A 1d is stronger than a 1k but weaker than a 2d. Professional Go players range from 1 Dan professional
(1d) to 9 Dan professional (9d). Professional players are considered stronger than their amateur counterparts [29]. The
European Go Federation [40] has a rating system similar to the ELO system in Chess [41]. It is used for tournaments all
over Europe. The difference from one rank to the next are 100 points. [41]4. The meaning of ranks is not universally
precise around the world [72], which means a specific rank does not imply the same playing strength all over the world.
The playing strength of two people from different countries with the same rating can vary strongly.

2.2.1 EGF Rating Formula

The European Go Federation calculates the rating for each player [43] that plays competitively at European tournaments.
The results are stored in the European Go Database [39]. The rating formula is derived from the ELO system used in
Chess [41]. It was adopted by the Czech Go Association in 1998. The winning expectancy of the weaker player is

SE(A) =
1

e
D
a + 1

− ϵ
2

where D = RB − RA is the difference in rating and the amount of the constant a determines the influence of D. The
winning probability of the stronger player is SE(B) with SE(B) = 1− SE(A)− ϵ which is the converse probability of SE(A)
if ϵ = 0. The variable ϵ > 0 is a correcting value to balance out deflation. At the moment, the European Go Database
uses ϵ = 0.016 as a correcting value. After an even game the difference in rating is computed with

Rnew − Rold = con · (SA− SE(D))

where SA is the achieved result and the factor con is the magnitude of the change. The factor con is a multiplier that is
anti-proportional to rating. This means that a stronger player will gain less points, when winning against even opponents
than a weaker player will, when facing a player of similar playing strength.

4 A beginner starts at 100 points (20k), an average 19k has 200 points, and an average 18k has 300 points and so on.
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2.2.2 Online Servers

There are several online servers where players can play Go with other humans or against Go programs. The focus
will be on introducing KGS [66], but there are several other popular online servers like IGS, OGS, TygemBaduk, and
WBaduk [57,58,75,76].

KGS
KGS, former known as Kiseido Go Server [51], is a popular online server, with more than 1500 people logged in at

any time [68]. Besides playing, users can also spectate or discuss other games or give live demonstrations. It is also
possible to let Go programs play on KGS via kgsGTP. KgsGTP [69] uses GTP (Go Text Protocol) [46] for communication
between KGS and the Go program. KGS can also be used as a simple SGF5 editor which can be seen on the right in figure

(a) (b) (c)

Figure 8: Screenshots of KGS displaying various functions. (a) shows the login screen with various functions. (b) shows
a chat room and users that are logged in. (c) shows the ingame screen which can be used to play but also to
discuss already played games.

8. KGS game records are often used for creating pattern libraries (Pachi [3]) or as training data (AlphaGo [84]) for Go
programs. Furthermore, KGS is often used to test the playing strength of a Go program against human players.

2.3 Different Approaches to Computer Go

Go is known as a perfect information zero sum game [74]. It has a very high branching factor and is therefore a much
harder challenge for artificial intelligence than for example Chess [29]. Different approaches to computer Go that were
used from the beginning until now will be introduced. Computer Go started with pattern recognition, was followed by
Monte Carlo Tree Search methods and currently neural networks are on the rise. In 2016, AlphaGo by Google Deepmind,
which uses neural networks, was the first program ever beating a professional high Dan player on the 19 × 19 board
without handicap [84].

2.3.1 Pattern Recognition

6 ..XOO........................

.

. . . . .

. . . . .

. . O _ O . .

. . X . .

. . . . .

.

Figure 9: This is an example for the visual representation of a pattern in Go. This specific pattern is used by Pachi [3]. The
move to play is represented by the underscore right in the middle of the pattern. White stones are represented
by “O”s while black stones are represented by “X”s. The points represent free intersections. The pattern is
shown from the viewpoint of the White player. The upper line shows how the actual pattern is stored. The
number encodes the coordinates of the subsequent characters. The “6” in this example represents the following
sequence of coordinates: (0,0), (0,1), (0,-1), (1,0), (-1,0), (1,1), (-1,1), (1,-1), (-1,-1), (0,2), (0,-2), (2,0), (-2,0), (1,2),
(-1,2), (1,-2), (-1,-2), (2,1), (-2,1), (2,-1), (-2,-1), (0,3), (0,-3), (2,2), (-2,2), (2,-2), (-2,-2), (3,0), (-3,0). Source: [2].

5 Smart Game Format, used for documenting and saving games. More information at http://www.red-bean.com/sgf/sgf4.html
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The first Go program ALGOL (1969) [92] played on a 9× 9 board and had the level of skill as a human player that
just learned the rules. It featured a heuristic of visual organization which organized the board into spheres of influence.
This was used to distinguish black and white groups. It also used a collection of pattern templates. A pattern template
consisted of a small specification of the board situation. For example, a pattern could describe a situation where a black
stone with only one liberty could be connected to an outside group. The suggested move would be to connect [92]. A
representation of a modern pattern is seen in figure 9. Some templates for ALGOL even used tree search to look up to
100 moves ahead [92]. ALGOL used around 65 patterns without search tree and 20 with tree search [92]. In comparison
to that, Pachi [3] can use6 a pattern library with over 3 000 000 patterns that were generated from KGS games [2].
All pattern templates of ALGOL where applied and all necessary searches were executed by the program before ALGOL
decided on the move to play. Overall, the program took a few seconds per move [92].

2.3.2 Monte Carlo Tree Search
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0/1
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Figure 10: An example of a Monte Carlo Tree Search iteration. From left to right the distinctive steps of Selection(a),
Expansion(b), Simulation(c), and Backpropagation(d) can be seen. The nodes are all marked with a/b where
b is the number of simulations following the position s represented by the node. a is the fraction of b where
the Simulation resulted in a win. In (a), the node with the best win-loss ratio is selected which is 2/1. In (b), the
node is expanded, whereas in (c) the new node ist simulated. After that in (d), the number of wins a and the
number of simulation b is updated for the whole path back to the root. In this particular example, the MCTS
algorithm favors the child with the best win-loss ratio. This depends on the chosen tree policy.

Monte Carlo Tree Search (short MCTS) is an algorithm which iteratively builds a search tree T that consists of state
action pairs [10]. A state s represents the current position on the Go board and an action a represents a legal move in state
s. There are four distinctive steps in each iteration of MCTS: Selection, Expansion, Simulation and Backpropagation [10].
In the Selection step the algorithm starts at the root and descends through child nodes until it reaches a leaf node that
does not represent a terminal state sterminal [10,20]. How the algorithm chooses the child nodes for descent, depends on
the tree policy used [10]. For example, the algorithm could choose the node with the best win-loss ratio [10]. This node is
then expanded with available actions. How this step is carried out, also depends heavily on the chosen tree policy [10]. In
the Simulation step, the algorithm plays against itself following the rules of a certain default policy7 starting from a newly
expanded leaf node until the Simulation is finished and a reward zi is computed [10]. The reward zi is the outcome of the
ith Simulation. The action-value-function Q(s, a) calculates the value of a state action pair which approximates the worth
of an action in a particular board situation [20]. The function Q(s, a) varies depending on the chosen tree policy8 [10].
In the Backpropagation step the algorithm takes the reward zi and updates Q(s, a) for all nodes in the path from the
current node to the root. It also updates n(s, a), the number of simulations in a specific state, starting with action a. The
number of all simulations starting from s is defined as n(s) =

∑
a n(s, a) [20]. An example for the four steps of MCTS

can be seen in figure 10. MCTS repeats its steps until a threshold is reached. After the threshold, which can be either a
time, iteration, or memory constraint, the algorithm stops its computation [10]. Then the action a, corresponding to the
maximum Q(s, a), is chosen [20].

6 The pattern library is not included by default and has to be downloaded separately. It can be found at: [2]
7 The policy could, for example, determine that random moves should be played during the Simulation.
8 For example, Q(s, a) could simply calculate the winrate of a state action pair.
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UCT
UCT (Upper Confidence Bound for Trees) is the UCB1 algorithm adjusted to tree search. The algorithm UCT, which we

describe in this paragraph, is introduced in [21] by S.Gelly and Y.Wang. It follows the idea that it is important to have
a balance between exploration and exploitation of the search tree T . Exploration is important to ensure that the favored
action of MCTS has not just the highest action value locally. Actions that might seem worse at first will be considered,
as their true action value can be higher than that of the favored action. Exploitation, on the other hand, means a more
focused search following the action with maximum action value in the tree. To balance exploration and exploitation,

UCT incorporates the exploration term c ·
Ç

log n(s)
n(s,a) into the action-value function. This term is big for actions that have

not been simulated much. The new action-value function is

QUC T (s, a) =Q(s, a) + c ·
√√ log n(s)

n(s, a)

with Q(s, a) being the standard action-value function of MCTS. The amount of c decides how much exploration is made
in comparison to exploitation. As in normal MCTS the algorithm always selects the action a in state s which maximizes
QUC T (s, a).In other words, the action chosen by the algorithm is ar gmaxa(QUC T (s, a)).

Rapid Action Value
We will describe Rapid Action Value estimation (short RAVE) as it is introduced by S.Gelly and D.Silver in [20]. RAVE

uses the all-moves-as-first heuristic and is a faster way to estimate the value of an action. The assumption behind RAVE is
that actions which often reoccur in simulations or in later stages of the search should be good no matter when they are
played. Consequently, the RAVE algorithm considers actions that are further down in the tree or inside the simulation
as first moves. It creates and updates a RAVE value for each state action pair every time a simulation that action a was
part of is finished. This way the search tree gets broader with many new actions taken into consideration as first moves.
Every state action pair gets a RAVE value

QRAV E(s, a) =
1

nRAV E(s, a)

nRAV E (s)∑
i=1

Γi(s, a)zi

where

Γi(s, a) =

¨
1 if action a was selected somewhere in the path following state s

0 otherwise

is an indicator function. If Γi(s, a) = 1 the reward zi (win or loss) of the ith simulation is incorporated into the RAVE
value. nRAV E(s, a) is the number of simulations used to compute the value QRAV E(s, a) which is a fast but heavily biased
estimate of Q(s, a). Since the estimate is inaccurate RAVE is often used at the beginning of MCTS but is used less with
simulations. RAVE can be mixed with normal MCTS [3] as well as with UCT [20].

2.3.3 Neural Networks

AlphaGo
In 2016, Alpha Go [84], designed by Google Deepmind, defeated Lee Sedol, a strong professional Go player, in a five

game match. We will describe AlphaGo in this paragraph as it was introduced in [84] by Silver et al. AlphaGo combines
the former state of the art approach of Monte Carlo Tree Search with deep learning neural networks. Those networks are
divided into policy networks and a value network [84]. The policy networks are used to lead the search in a particular
direction and the value network evaluates a board position. For AlphaGo, a 13 Layer policy network was trained. The
policy network was trained with supervised learning on 30 million KGS games. This SL policy (Pσ) had an accuracy of
57% at predicting expert moves. Next, Reinforcement Learning was used to enhance the policy intending the policy not
just to be good at predicting expert moves but rather at finding good moves [84]. To improve it further, the program
played against older instances of itself. They selected those older instances at random to prevent overfitting. This RL
policy (Pρ) was really successful as it won more than 80% against the original SL policy. It also won around 85% of
games against Pachi. In comparison, the SL policy only won around 11% of games against Pachi [84]. The RL policy was
used to generate 30 000 000 distinct positions using self play and used those to train a value network Vθ which evaluates
a position s and predicts the outcome of a game if both players use a certain policy P. AlphaGo was most successful when
the evaluation of a position was composed out of the outcome of the value network Vθ and the reward of the Simulation
zi forming a leaf evaluation

Vα(sL) = (1−λ)vθ +λzi .
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AlphaGo combines its trained policy network Pσ and its trained value network Vθ (incorporated in Vα) with standard
MCTS. It is important to recognize that the RL policy Pρ was only used to train the value network and that Pσ, the
SL network policy, performed better against human players. Pσ indirectly influences the search9 to guide the MCTS
search into a favorable direction. The influence of the policy on actions decays with visits to these actions to encourage
exploration. The trained value network Vθ is used in the action value function Qα as the function is constructed as

Qα(s, a) =
1

n(s, a)

n∑
i=1

ϕ(s, a, i)V (si
L)

where ϕ(s, a, i) is an indicator function, ϕ(s, a, i) = 1, if the state action pair has been traversed during the ith simulation
and ϕ(s, a, i) = 0 otherwise. AlphaGo always chooses the action a that was most visited during the search.

2.4 Composition of this Thesis

This thesis will introduce the big move heuristic for generating Monte Carlo Tree Search Prior Knowledge [19]. The
big move heuristic approximates big moves in Fuseki, the beginning stage of a game. The heuristic assumes that it is
important to play in underdeveloped areas during Fuseki. There are many possibilities at the beginning of a game [25].
This is one reason why programs often struggle with it [18]. The thesis is divided in three distinct parts. First, we will
introduce the idea and setup of the big move heuristic in section 3. After that, we will test different eigenvector functions
to optimize the time which the algorithm behind the heuristic needs to compute a result. We will introduce different
functions from different languages and discuss the results in section 4. Last, we will incorporate the heuristic into Pachi,
an open source Go program. We will explain roughly how the game enine of Pachi works. Then, we let the modified
version Pachi* with the incorporated big move heuristic play against regular Pachi in various tests to see if Pachi benefits
from incorporating the big move heuristic. The tests and results can be seen in section 5.

9 AlphaGo adds a bonus to each state action value that is proportional to the probability proposed by the policy.

15



3 Introducing the Heuristic and its Underlying Algorithm

In this section, the big move heuristic will be presented. The heuristic was first introduced at the Conference on Applications
of Graph Spectra in Computer Science by Josef Leydold and Manja Marz [27].
First, it has to be defined what a big move is. Figure 11(a) shows a typical Fuseki position. The reader might wonder why
none of the players places a stone in the middle of the board. This is because it is advisable to play first in areas that can
be developed into territory more easily. In the corners where both players played first a player can use two borders to
build territory. On the side of the board, he can use one and in the middle he has none to build with [8, 26, 29]. Figure
11(b) illustrates this exemplarily. This is why the middle of the board is often left empty in Fuseki. However, there are
special strategies in Fuseki involving intersections farther away from the border. Therefore, we will not rule out these
moves completely. Another aspect is efficiency. Each player strives for the maximum of territory by using the minimum of
stones. Players should therefore play away from the opponent’s strength10 as it is ineffective and sometimes dangerous
to play near it. Placing stones close to the own strength is considered ineffective as well [25]. The assumption for the
heuristic is

“Play where most space is left.” [27].

This is why, in this context, a big move is a move played in an undeveloped area. The big move heuristic finds the
intersection farthest away from the border and from any stones already on the board. It is important to note, that the
heuristic is designed for Fuseki only. Over the course of the game, the size of undeveloped areas shrinks due to the
increasing number of stones on the board.
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(a) This is an example for the Fuseki of a game. The numbers indicate
the order in which the moves were played starting with move
one. First, the players play in the corners of the board because
corners are considered to be areas where less stones are needed
to develop alive groups. Then, the next biggest area is the side.
The smallest area is the middle.
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(b) This example illustrates how many stones a
player needs to build a 9 point territory in dif-
ferent areas on the board. Therefore, players
tend to build territories involving the border
first as this is far more efficient [8].

3.1 Explanation of the Algorithm

To understand the idea behind the algorithm of the heuristic the board may be pictured as a flexible grid. The lines
between intersections are represented by springs or any other flexible element. Stones already placed on intersections fix
those intersections into place, therefore decreasing movement in those areas. The board is clamped into a rigid border
by more springs [27]. Now, the border is set in motion so that the whole board oscillates in its fundamental mode (at a

10 Strength is an abstract concept which describes effective and secure groups of stones.
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natural frequency)11. Mode 1 is wanted, as it is the mode with only one half wave in the vibration and therefore has a
definite maximum in amplitude [23,81]. The standing wave can be seen in figure 11. The algorithm finds the intersection
that has the highest amplitude as this is the move the heuristic chooses. It is important to note that the algorithm does
not distinguish between black and white stones. This may or may not change in the future.
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 2

 4
 6

 8
 10

 12
 14

 16
 18

 0

 0.02

 0.04

 0.06

 0.08

 0.1

standing wave of an empty board

x

y

 0
 0.01
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 0.03
 0.04
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 0.08
 0.09
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(a) (b)

Figure 11: (a) demonstrates the desired standing wave of an empty board (seen in (b)). The color indicates the amplitude
of an intersection. The board could also oscillate in a different mode but that would result in more half waves.

Figure 11 shows the desired mode shape of an empty board in mode 1. In this case, the algorithm chooses Tengen12

as the move to play.

3.2 Mathematical Background of the Algorithm

The board position is represented by a graph G. The intersections are the edges vi and the lines connecting intersections
are the edges ei, j where i ∈ [1,361] and j ∈ [1,361]. Additional boundary vertices [4] are added as seen in figure 12.

The graph is represented by a Dirichlet matrix which belongs to the class of generalized Laplacians [4]. A matrix M is
a generalized Laplacian if

1. it is symmetric

2. Mx ,y < 0 whenever there is an edge between x and y

3. Mx ,y = 0 if x and y are distinct and not adjacent

where x and y are vertices of M.

11 Another word for fundamental mode is mode 1. In mode 1 there is only one half wave in the vibration. [23]
12 The central point of the board at coordinate K10.
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Figure 12: The graph in (a) represents a 3 × 3 Go board (seen in (b)). Each of the vertices (marked with a coordinate)
represents an intersection on the board. Additional boundary vertices (marked with a b) are added. Boundary
vertices are not connected to each other. The corresponding boundary edges are represented by dotted lines
while the inner edges are represented by solid lines.

The Dirichlet matrix is closely related to the ordinary Laplacian matrix. The Laplacian matrix L is defined as [90]:

Li, j :=


deg(vi), if i = j
−1, if i adjacent to j and i ̸= j
0, else

In this context, deg(vi) is the degree of a vertex also known as the number of adjacent vertices of vi . The reader
might recognize the similarity to the more known Adjacency matrix. Another definition of the Laplacian matrix is the
following [90]:

L = deg(vi)× I − A

where I is the Identity matrix and A is the Adjacency matrix.
The Laplacian Matrix already represents the Go board very well. It defines which intersections are connected with

each other and how many neighbors an intersection has. The Dirichlet matrix for our system can be constructed by first
constructing a Laplacian matrix for the graph in figure 12. The represented go board has an additional border which
corresponds to the added boundary vertices. Then we delete all rows and colums that correspond to these boundary ver-
tices [4]. The resulting 361×361 Dirichlet matrix therefore represents a graph that has no direct edges to its neighboring
boundary vertices but they still contribute to the degree of its adjacent vertices. This graph can be seen in figure 12. An
example for the Dirichlet matrix of a 3× 3 Go board can be seen in figure 13. Relating to a Go board, this means that
we have an imaginary zeroth line which functions as the rigid border mentioned in the beginning. The Dirichlet matrix
therefore represents a graph that contains boundary vertices and edges that function as non-vibrating elements on the
Go board.

18



Am,n =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


(a)

A

A

B

B

C

C

1 1

2 2

3 3

(b)

Figure 13: (a) shows how the Dirichlet matrix would look like representing the 3× 3 Go board in (b). The matrix for the
19× 19 Go board is 361× 361 and would therefore be too big to display. However, the general structure is
the same, except that the 361× 361 matrix is much sparser than in (a) as it has the same amount of nonzero
entries per row. In contrast to the more known Laplacian matrix, all border intersections of the represented
graph have four neighbors (see figure 12) although, for example, in (b), only the point in the middle of the
board has four neighbors and all the other points have three or two neighbors.

Adding Boundary Vertices to the Graph
Stones can be added to the board to influence the vibration. The intersections occupied by stones will oscillate less,

as they are connected with a spring to a non vibrating border [27]. This happens when we connect additional boundary
vertices to the graph. To connect a boundary vertex to a specific inner vertex we have to increment the diagonal entry of
the matrix which corresponds to that vertex in the graph, by one. Later, it will be demonstrated how this method can be
used to influence the heuristic’s outcome.

3.3 The Purpose of Eigenvector Computation

An eigenvalue is any scalar λ for which the equation

A× v = λ× v

is true. [85] A is a matrix and v is the corresponding eigenvector of λ. An eigenvector is a special kind of vector
that never changes its direction. The eigenvalue is its scaling value. Thus, the equation above says that A scales v
the same way as λ scales v . Each eigenvalue λ has a corresponding eigenvector v . This is relevant in the domain of
vibration analysis. When analyzing an oscillating system, its eigenvalues represent the frequencies in which the system
can vibrate. The eigenvectors, on the other hand, represent the different mode shapes. Together they form a natural
mode of vibration [23, 81]. In this case the system represented by the Dirichlet matrix oscillates in its fundamental
mode [23] and the eigenvector vs representing its mode shape is chosen. This is the eigenvector corresponding to the
least dominant eigenvalue of the system [86]. Every entry of the eigenvector vs corresponds to an intersection on the
board. So the mode shape of figure 11 is exactly the least dominant eigenvector vs of a Dirichlet matrix that represents
an empty board. As the eigenvector vs represents the first mode shape, it will either be completely positive or completely
negative. This can be proven by applying the theorem of Perron-Frobenius [4] to the matrix.

Theorem 1 (Perron-Frobenius). If A ∈ Rn×n is a nonnegative, irreducible and symmetric matrix, then the spectral radius13

is a simple eigenvalue λp f of A. Its corresponding eigenvector vp f has no zero entries and all entries have the same sign.

vp f is called the perron vector of A [4]. The theorem can be applied to our matrix A although A is not nonnegative
because A can be transformed to a matrix B which is nonnegative but has the same spectrum.

13 dominant eigenvalue
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Proof. Matrix B is defined as as

B = −(A−m× I)

where I is the identity matrix and m is the largest entry on the main diagonal. Because A has positive diagonal entries
and only zeros elsewhere, B is nonnegative. The graph that B represents is also irreducible. Therefore, the theorem
of Perron-Frobenius can be applied to B. Be λp f the dominant eigenvalue of B and vp f its corresponding perron vector.
Then, one has

Bvp f = λp f vp f = −(A−mI)vp f

−(A−mI)vp f = −Avp f +mvp f

and therefore

−λp f vp f +mvp f = Avp f = (−λp f +m)vp f .

This shows that A has an eigenvalue (−λp f + m) that has the same correspondent eigenvector vp f that is the perron
vector of B. Because of the form (−λp f +m) of the eigenvalues of B, the most dominant eigenvalue of B becomes the least
dominant eigenvalue of A. This is why the eigenvector corresponding to the least dominant eigenvector of A is in fact a
perron vector and therefore has either completely positive or completely negative entries (depending on the eigenvalue).

Now, after obtaining the eigenvector vs that represents the mode shape of the oscillating system in its fundamental
mode, the first index i that corresponds to max |ei |, where ei is an entry of vs, is chosen.

3.4 Demonstration of the Algorithm

To demonstrate whether the heuristic chooses reasonable moves, a typical Fuseki board position was chosen to compare
the heuristic’s move to the moves from a Go database14. Figure 14 shows all the moves that professionals played in this
situation in games that were stored in the database. The result of our algorithm without additional potential [4, 27]
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Figure 14: The different moves a to z that were played in this position by professionals according to the database
weiqi.tools [77].

is seen in figure 15. It can be seen that the move suggested by our algorithm is indeed a move that was chosen by
professionals in this particular position. It is clear why that move was chosen by the heuristic as it was the intersection
farthest away from other stones. It is important to point out that the example in figure 14 is a well chosen example to
show that the heuristic can predict meaningful moves. In most scenarios, however, the heuristic will suggest moves that
professional players will not play. This is on one hand due to the fact that it is a move that does not regard aspects of the
game like the color of stones or where to build territory first (figure 11(b)). On the other hand, in a game local fights
often demand urgent moves and situations arise where a player can not afford to play elsewhere in an undeveloped area.
So it is important to keep in mind that the heuristic just roughly predicts the region of interest more than the actual best
move. Still, with further research, the heuristic might improve. To improve the heuristic further, potential was added
to the Dirichlet matrix. First, potential was added to the diagonal entries that correspond to the seventh line on the

14 weiqi.tools [77]
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board. Next, additionally potential was added to the entries corresponding to the sixth line. The potential had the same
weight as one stone per intersection. The result of the algorithm on the modified matrices is shown in Figure 16. In
Fuseki, adding stones to the seventh line most likely forces a move on the fourth line while additional stones on the sixth
line most likely force a move on the third line. Those two lines are really important lines in the Fuseki according to Go
theory [29]. The additional stones on the board are represented by boundary vertices which are added to the graph.

The reader might wonder why a specific move was chosen over other equally big moves. This is due to the fact that
at the moment the heuristic always chooses the first maximum entry of the vector. It is interesting how the heuristic
changes its decision with varying potential as seen in figure 17.

A

Figure 15: Suggested move A of the heuristic on a board without added potential.

A

(a)

A

(b)

Figure 16: Suggested move Aof the heuristic when adding stones on the seventh line (a) versus adding stones on the sixth
and seventh line (b). The intersections with added potential are marked.
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Figure 17: This figure shows an example of how different circles of stones influence the result of the heuristic. The inter-
sections with added potential are marked. The heuristic always chooses the smallest index i corresponding to
max |ei |, where ei is an entry of the eigenvector vs

Further Examples
We took several positions15 to show exemplarily how the current algorithm behaves.

15 Source:“A Dictionary Of Modern Fuseki, The Korean Style” [28]

22



A

B
C

(a)

A
B C

(b)

A
BC

(c)

A

B
C

(d)

Figure 18: This figure shows several Fuseki positions. The move marked with A is the move suggested by the heuristic if
no additional potential is used. B is the move the heuristic proposes if potential is added on the seventh line.
C is the move suggested by the heuristic if potential is added to the sixth and seventh line.

Figure 18 shows different typical Fuseki positions. The behaviour of the heuristic is very similar in all examples. Figure
19 shows a position at the end of Fuseki. Because the third and fourth line of the board are relatively occupied the middle
of the board becomes big again. Therefore the middle consisting of the eighth to tenth line of the board oscillates the
most, even if potential is added to the sixth or seventh line. It is unclear if this behavior is wanted or not, but it should
be taken into consideration when adjusting the potential further.
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A

(a)

Figure 19: This figure shows a board position at the end of Fuseki. A is the move that was chosen by the heuristic on
the matrix without added potential, the matrix with added potential on the seventh line, and the matrix with
added potential on the sixth and seventh line.

4 Perfomance Comparison of Eigenvector Functions

Eigenvector calculation is a time consuming part of the big move heuristics algorithm because of the size of the Dirichlet
matrices. In this section we compare different methods for the eigenvector calculation of a matrix. This function-
s/methods were chosen from different programming languages. We also test several self implementations. The time
was measured using the bash time [82] command, and we use the user time for comparison. We chose the bash time
command because it can be applied regardless of programming language. This makes the functions more comparable.
We measured the time the program needed to calculate at least one eigenvector16. The model we measured the time on
was

Intel(R) Core(TM) i7 CPU L 640 @ 2.13GHz .

The time was measured single-threaded and therefore only used one of the CPU cores.
We measured the time for one program call. Because the time of one calculation may vary from one computation to the
other we measured the time for a different number of calls of each function. We choose to measure i iterations for each
function where i is either 1,5,10,50,100,500 or 1000. This makes the result more steady. We decided on three different
board positions for performance testing. Our first matrix, A, is a Dirichlet matrix representing the graph of an empty Go
board position17. The second matrix, B, is a Dirichlet matrix representing the graph of a Fuseki board position18 where
a few stones were already placed. The last Dirichlet matrix,C , represents the graph of an endgame position [44] where
many stones have been already placed. We chose A as a minimal test example, B as an example of a typical target matrix
for our algorithm and C as an extreme case with many nonzero entries on the diagonal. We remind the reader that all
matrices only differ on the diagonal and are apart from it identical. We transformed each board position into a Dirichlet
matrix without adding any additional potential. The Definition of a Dirichlet matrix and the concept of potential are
explained in section 3. It may be of importance to take into account that all three matrices are moderately big, square,
symmetric, real and sparse19.

16 Some functions compute all eigenvalues and corresponding eigenvectors.
17 This is the beginning position where no player has placed a stone yet.
18 The experienced Go player might recognize that the example looks “unnatural”. This is due to the fact that this position was constructed for

test purposes only.
19 The Dirichlet matrices we use are very sparse with having ≈ 5 · 361= 1805 non zero entries at maximum which is around 1% of the matrix.
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(a) (b) (c)

Figure 20:We use three different board positions for testing. An empty board is shown in (a), a Fuseki position is shown
in (b), and an endgame position can be seen in (c). Source of (c): [44]

For each method, we calculated

• the arithmetic mean for one call of the program in which the method is executed exactly one time, x̄(1) =
t(A,1)+t(B,1)+t(C ,1)

3 where t(M , 1) is the measured time for one iteration on matrix M .

• the average time for one program call of the program and one iteration of method on a particular matrix, calculated
from the time for 1000 iterations, x̄(M , 1000) = t(M ,1000)

1000 for a particular matrix M .

• the arithmetic mean composed out of the averages from each matrix x̄(M , 1000), x̄(1000) = x̄(A,1000)+ x̄(B,1000)+ x̄(C ,1000)
3 .

• the standard deviation σ(1000) =
Ç
( ( x̄(A,1000)− x̄(1000))2+( x̄(B,1000)− x̄(1000))2+( x̄(C ,1000)− x̄(1000))2

3 and the coefficient of

variant cv = σ(1000)
x̄(1000) .

• the approximated average time used for other tasks of the program ε̄= x̄(1)− x̄(1000).

We calculate the arithmetic mean because we feel that one value is easier to compare and we think that the arithmetic
mean represents the overall performance well. We calculate the coefficient of variance as it can be used to compare the
robustness20 of each method. Lastly, we compare the approximated average time for other tasks of the program, which
is a rough estimate on how many percent of the program were used for other tasks like file loading. Next, we will show
the results of our tests. Later, we will discuss which function performed best. First, we will test direct methods as they
are the most commonly available methods.

4.1 Direct Methods

First we tested direct methods. By direct method we mean a method that directly computes all eigenvalues and eigen-
vectors.

4.1.1 Performance of eigen()

The original program which implemented the heuristic was written in R and used eigen(), a function that uses the
following routines from LAPACK21: DSYEVR [53], DGEEV [52], ZHEEV [55], and ZGEEV [54] [59]. These fortran routines
use eigendecomposition [89] to compute eigenvectors for real symmertic, real n× n nonsymmetric, complex hermitian
or n× n complex nonsymmetric matrices [59]. We set the parameter symmetric to TRUE, so that eigen() only uses the
lower triangle of the matrix for computation [59].

Figure 21 shows how eigen() performed on the three matrices A, B, C. The measured times for a single call of the
program and one iteration of eigen() on each matrix are

20 By robustness we mean the ability of a method to compute equally fast on different matrices.
21 The Linear Algebra Package (LAPACK) is a software library originally written in fortran77. For more information visit: [47]
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Figure 21: The performance of eigen() on the matrices A, B, and C.

tR(A, 1) = 0.52 seconds, tR(B, 1) = 0.56 seconds, and tR(C , 1) = 0.536 seconds. The corresponding arithmetic mean of
one call is x̄R(1) = 0.538667 ≈ 0.539 seconds. Furthermore, we present the times for a thousand iterations and their
corresponding averages for one iteration

tR(A, 1000) = 132.34 seconds with x̄R(A, 1000) = 0.13234 seconds,

tR(B, 1000) = 70.38 seconds with x̄R(B, 1000) = 0.07038 seconds,

tR(C , 1000) = 92.832 seconds with x̄R(C , 1000) = 0.092832 seconds.

With these averages we calculated an total average of x̄R(1000) = 0.098517 ≈ 0.099 seconds. The correspondent
standard deviation is σR(1000) = 0.025613 seconds which amounts to a coefficient of variance of cvR(1000) =

σR(1000)
x̄R(1000)=0.25998 . Lastly, we computed ε̄R = x̄R(1) − x̄R(1000) = 0.44015 seconds which is an approximation of the av-
erage time the program needed for other tasks. This time amounts to roughly 82% of the program. The reader might
see that the measured times for a thousand iterations vary heavily depending on the matrix. This can also be seen when
looking at the coefficient of variance cvR(1000). x̄R(1000) shows that eigen() roughly took the tenth of a second for one
computation. We will use this result to compare it to the other programs in this section. The 82% ε̄ takes up of the
complete time indicates that a a great part of the programs time was composed of other tasks like file loading and matrix
preparation. But ensuring this would need further investigation.

4.1.2 Performance of the EigenSolver

The next program we tested was written in C++ and used the EigenSolver of the Eigen Library [35]. The implementation
of the EigenSolver is adapted from JAMA22 [35]. The code from JAMA [15] is initially based on EISPACK [79], a collection
of Fortran subroutines [35]. The EigenSolver uses Eigendecomposition [89] to achieve the eigenvalues and vectors. We
measured tcpp(A, 1) = 0.42 seconds, tcpp(B, 1) = 0.54 seconds, and tcpp(C , 1) = 0.56 seconds for one program call and
one iteration of the EigenSolver, as well as their corresponding arithmetic mean of x̄cpp(1) = 0.506667≈ 0.507 seconds.
This result of x̄cpp(1) is similar to the result in R but not informative on its own.
The measured times for 1000 iterations and their corresponding averages for one iteration are

tcpp(A, 1000) = 406.79 seconds with x̄cpp(A, 1000) = 0.40679 seconds,

tcpp(B, 1000) = 506.78 seconds with x̄cpp(B, 1000) = 0.50678 seconds,

tcpp(C , 1000) = 408.12 seconds with x̄cpp(C , 1000) = 0.40812 seconds.

22 A basic linear algebra package for the Java programming language
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Figure 22: Performance of the EigenSolver on the test matrices A, B and C.

The arithmetic mean composed of all averages is x̄cpp(1000) = 0.440563 ≈ 0.441 seconds with a standard deviation

of σcpp(1000) = 0.046825 ≈ 0.047 seconds. The coefficient of variation is therefore cv =
σcpp(1000)
x̄cpp(1000) = 0.106285. The

program therefore seems more steady than eigen(R) in R. The approximated average time for other tasks amounts to
ε̄cpp = x̄cpp(1)− x̄cpp(1000) = 0.066104≈ 0.066 seconds. If we divide ε̄ by x̄(1) we get an amount of around 13%. When
comparing the average mean of the EigenSolver ( x̄cpp(1000)) with the arithmetic mean of eigen() ( x̄R(1000)) in section
4.1.1, it is clearly visible that the EigenSolver performed worse as it is more than the quadruple of the time of eigen().
The amount of ε̄ indicates that other tasks absorbed less time in the C++ implementation than in the R implementation.
But further investigation would be necessary to be sure.

4.1.3 Performance of gsl_eigen_symmv()

The next program was written in C, using gsl_eigen_symmv(), a function of the Gnu Scientific Library that computes all
eigenvalues and eigenvectors of a real symmetric matrix [45]. It is not stated which method the function uses.
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Figure 23: Performance of gsl_eigen_symmv() on the matrices A, B and C shown in figure 20

We measured the time for one program call and one iteration of gsl_eigen_symmv(). The times for each matrix are
t gsl(A, 1) = 0.252 seconds, t gsl(B, 1) = 0.300 seconds, and t gsl(C , 1) = 0.240 seconds. The arithmetic mean of those
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times is x̄ gsl(1) = 0.264 seconds. For one program call and 1000 iterations on the other hand we measured the following
times and calculated the average times for one iteration

t gsl(A, 1000) = 280.736 seconds with x̄ gsl(A, 1000) = 0.281736 seconds,

t gsl(B, 1000) = 306.116 seconds with x̄ gsl(B, 1000) = 0.306116 seconds, and

t gsl(C , 1000) = 258.824 seconds with x̄ gsl(C , 1000) = 0.258824 seconds.

We calculated the arithmetic mean of these average times x̄ gsl(1000) = 0.281892≈ 0.282 seconds. We also computed the
standard deviation σgsl(1000) = 0.019324≈ 0.020 seconds, together they form the coefficient of variance cvgsl(1000) =
σgsl (1000)
x̄gsl (1000) = 0.068552. The approximated average time for other tasks ε̄gsl = x̄ gsl(1)− x̄ gsl(1000) = -0.017892 seconds

is negative, meaning that x̄ gsl(1) < x̄ gsl(1000). We assume this is because of the repeated reallocation of workspace for
this method. ε̄gsl can therefore not be considered meaningful.

4.1.4 Performace of SciPy and NumPy Routines

Performance of numpy.linalg.eig()
The next program was written in Python and used numpy.linalg.eig(), a function of the NumPy package [56]. It uses

the LAPACK [47] routine _geev [48] which computes the eigenvalues and optionally corresponding eigenvectors for a
n× n non symmetric matrix [61].
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Figure 24: Performance of numpy.linalg.eig() on the matrices A, B, and C proposed in figure 20

Analogously to the last programs introduced we present the following results. We measured tneig(A, 1) =
0.62 seconds, tneig(B, 1) = 0.68 seconds, and tneig(C , 1) = 0.920 seconds for one call of the program in which
numpy.linalg.eig() was executed once. The arithmetic mean of this data is x̄neig(1) = 0.74 seconds. We also mea-
sured the times for one call of the program with a thousand executions of numpy.linalg.eig() and calculated the average
time for one execution of numpy.linalg.eig() with it. The results are

tneig(A, 1000) = 240.75 seconds with x̄neig(A, 1000) = 0.24075 seconds,

tneig(B, 1000) = 250.77 seconds with x̄neig(B, 1000) = 0.25077 seconds,

tneig(C , 1000) = 259.120 seconds with x̄neig(C , 1000) = 0.259120 seconds.

The arithmetic mean of these averages is x̄neig(1000) = 0.250213 ≈ 0.25 seconds with a standard deviation of

σneig(1000) = 0.007510 seconds. The coefficient of variation is cvneig(1000) =
σneig (1000)
x̄neig (1000) = 0.030014, which is not

particularly high. In figure 24 the reader can see that the deviation is at its lowest at a thousand iterations. So
the deviation might be a bit higher overall. The average time taken for other tasks of the program is approximately
ε̄neig = x̄neig(1)− x̄neig(1000) = 0.489787 seconds which amounts to roughly 66% of the program.
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Performance of numpy.linalg.eigh()
The next program uses numpy.linalg.eighh(), another function of the NumPy package [56]. In contrast to to

numpy.linalg.eig(), numpy.linalg.eigh() works best on a Hermitian or symmetric matrix [62]. It uses the LAPACK [47] rou-
tines _SYEVD [50] and _HEEVD [49], which compute the eigenvalues of a real symmetric matrix and complex Hermitian
matrices [62].
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Figure 25: Performance of numpy.linalg.eigh() on the matrices A, B and C proposed in figure 20

The measured times for one call of the progam and one iteration of numpy.linalg.eigh() are tneigh(A, 1) =
0.48 seconds, tneigh(B, 1) = 0.50 seconds, andtneigh(C , 1) = 0.632 seconds. The arithmetic mean of these results is
x̄neigh(1) = 0.537333 ≈ 0.537 seconds. The measured times for one call of the program and thousand iterations of
numpy.linalg.eigh() are

tneigh(A, 1000) = 62.38 seconds with x̄neigh(A, 1000) = 0.06238 seconds,

tneigh(B, 1000) = 59.59 seconds with x̄neigh(B, 1000) = 0.05959 seconds,

tneigh(C , 1000) = 91.120 seconds with x̄neigh(C , 1000) = 0.091120 seconds.

where x̄neigh(M , 1000) is the computed average for one execution of numpy.linalg.eigh() on matrix M . The arithmetic
mean of these averages is x̄neigh(1000) = 0.071030 ≈ 0.071 seconds and the standard deviation is σneigh(1000) =

0.014251 seconds which leads to a coefficient of variance of cvneigh(1000) =
σneigh(1000)
x̄neigh(1000) = 0.200639. Additionally, we

computed the program’s approximated average time for other tasks ε̄neigh = x̄neigh(1)− x̄neigh(1000) = 0.466303 seconds
which translates to roughly 87% of the program. Compared to the previous programs, numpy.linalg.eigh() performed
the best, even slightly better than eigen() in R. It performed a lot better than numpy.linalg.eig() which could be due to
the fact that numpy.linalg.eigh() works best on symmetric matrices while numpy.linalg.eig() works best on nonsymmetric
matrices [61,62].

Performance of scipy.linalg.eig()
This program used scipy.linalg.eig(), which has major similarities with numpy.linalg.eig() [61]. It uses the same

LAPACK [47] routine in the background but can be configured more by offering a variety of parameters [63]. The
measured times for one program call and one iteration of scipy.linalg.eig() are tsei g(A, 1) = 0.70 seconds,tsei g(B, 1) =
0.70 seconds, and tsei g(C , 1) = 0.73 seconds. The arithmetic mean of these results is

x̄sei g(1) = 0.71 seconds.

The times for one program call and thousand iterations of scipy.linalg.eig() for each matrix and their calculated average
times for one iteration of the function are

tsei g(A, 1000) = 239.80 seconds with x̄sei g(A, 1000) = 0.23980 seconds,
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Figure 26: Performance of scipy.linalg.eig() on the matrices A, B, and C proposed in figure 20

tsei g(B, 1000) = 250.92 seconds with x̄sei g(B, 1000) = 0.25092 seconds,

tsei g(C , 1000) = 260.42 seconds with x̄sei g(C , 1000) = 0.26042 seconds.

The arithmetic mean of the calculated averages is x̄sei g(1000) = 0.25038 seconds and the corresponding standard

deviation is σsei g(1000) = 0.008427 seconds which leads to a coefficient of variance of cv =
σsei g (1000)
x̄sei g (1000) = 0.033656.

The approximated average time for other tasks is ε̄sei g = x̄sei g(1) − x̄sei g(1000) = 0.45962 seconds which translates to
approximately 65% of the program. Because the used LAPACK routine is the same as in numpy.linalg.eig(), which is not
very suited for our problem, the results in figure 26 are similar to those in figure 24. This method proved not suitable for
our problem.

Performance of scipy.linalg.eigh()
This program uses scipy.linalg.eigh() and the documentation does not state if and which Fortran methods are used [64].
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Figure 27: Performance of scipy.linalg.eigh() on the matrices A, B and C proposed in figure 20.

We measured the following times for one call of the program in which scipy.linalg.eigh() was executed once,
tsei gh(A, 1) = 0.56 seconds,tsei gh(B, 1) = 0.50 seconds, and tsei gh(C , 1) = 0.684 seconds. The corresponding arithmetic
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mean is x̄sei gh(1) = 0.581333 ≈ 0.581 seconds. For thousand iterations of scipy.linalgeigh() we measured the following
times and calculated their average times for one iteration,

tsei gh(A, 1000) = 117.22 seconds with x̄sei gh(A, 1000) = 0.11722 seconds,

tsei gh(B, 1000) = 59.59 seconds with x̄sei gh(B, 1000) = 0.05959 seconds, and

tsei gh(C , 1000) = 63.232 seconds with x̄sei gh(C , 1000) = 0.063232 seconds.

The arithmetic mean of these averages is x̄sei gh(1000) = 0.080014 seconds and the corresponding standard deviation

is σsei gh(1000) = 0.026351 seconds. The coefficient of variance is cv =
σsei gh(1000)=
x̄sei gh(1000) = 0.319325. The approximated

average time for other tasks in the program is ε̄sei gh = x̄sei gh(1) − x̄sei gh(1000) = 0.501323 seconds. This translates
≈ 86% of the program. Overall, scipy.linalg.eigh() behaved similar to numpy.linalg.eigh() and both performed slightly
better than eigen() introduced in section 4.1.1.

4.1.5 Overview and Discussion of Direct Methods

Now, we will discuss the results of all programs listed. We will compare all functions and methods in three different cat-
egories. First, we will compare the arithmetic mean x̄(1000) of each program as an indicator of its overall performance.
Second, we compare the results for the coefficient of variance cv (1000), which gives information about the robustness
of a function or method to changes of the matrices. Last, we compare ε̄, the approximated average time for other tasks
of the program. This is a rough estimate and should be handled with caution. But it gives a vague idea which languages
handled the tasks such as file loading better.

Comparison of the Arithmetic Mean
The arithmetic mean of all methods from best to worst is:

1. numpy.linalg.eigh() with x̄neigh(1000)≈ 0.071 seconds

2. scipy.linalg.eigh() with x̄sei gh(1000)≈ 0.080 seconds

3. eigen() with x̄R(1000)≈ 0.098 seconds

4. gsl_eigen_symmv() with x̄ gsl(1000)≈ 0.282 seconds

5. numpy.linalg.eig() with x̄neig(1000)≈ 0.25 seconds

6. scipy.linalg.eig() with x̄sei g(1000)≈ 0.25 seconds

7. EigenSolver with x̄cpp(1000)≈ 0.441 seconds

There were not many functions that performed better than eigen(), the first first function introduced in 4.1.1. The
only functions performing slightly better were numpy.linalg.eigh() and scipy.linalg.eigh() which were presented in section
4.1.4. Both functions used routines that worked better on symmetrical matrices [62,64] and therefore did perform much
better than their nonsymmetrical counterparts numpy.linalg.eig() and scipy.linalg.eig() [61,63].

Coefficient of Variance
To see how robust a function worked on different matrices, we calculated cv (1000)which is a percentage showing how

much the the performance deviated from the arithmetic mean x̄(1000). A lower value of cv (1000) indicates a higher
robustness. In this category from best to worst are:

1. numpy.linalg.eig() with cvneig(1000)≈ 0.03

2. scipy.linalg.eigh() with cvsei g(1000)≈ 0.03

3. gsl_eigen_symmv() with cvgsl(1000)≈ 0.07

4. EigenSolver with cvcpp(1000)≈ 0.11

5. numpy.linalg.eigh() with cvneigh(1000)≈ 0.20

6. eigen() with cvR(1000)≈ 0.26

7. scipy.linalg.eigh() with cvsei gh(1000)≈ 0.33

It is interesting to see that the programs which performed worse when comparing the arithmetic mean, seem much more
robust to matrix changes. The functions numpy.linalg.eigh() and scipy.linalg.eigh() appear least robust when compared
to the other methods although they were the fastest overall.
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Approximated Average Time for Other Tasks
When comparing the approximated average time for other tasks ε̄ some programs were faster than others. We exclude

the function gsl_eigen_symmv() from this category as the ε̄gsl had no meaning being a negative value. The EigenSolver
performed best in this category with ε̄cpp = 0.066104 which translates to around 13% of the program. The other
function were significantly worse, with 82% in eigen(), 66% in numpy.linalg.eig(), 65% in scipy.linalg.eig(), 87% in
numpy.linalg.eigh(), and 86% in scipy.linalg.eigh(). Our assumption is that programming languages like C and C++ might
be faster at handling tasks like file loading than Python or R. But this can not be considered more than an assumption
because more investigation would be needed.

Conclusion on Direct Methods
All in all, the times we measured using direct functions or methods were not fast enough for our needs. Therefore, we

will discuss more methods we tried in the next section. Those methods approximate certain eigenvalues and eigenvectors
iteratively.

4.2 Iterative Methods

We switched to iterative methods because we assumed that approximating the eigenvector directly could potentially be
much faster.

4.2.1 Performance of the Arnoldi and Lanczos Method

Both subsequent functions are based on ARPACK [31] routines which is a Fortran package that uses the Arnoldi Method
[91] and its simplification for symmetric matrices, the Lanczos Method [6]. Both methods are designed for sparse
matrices.

Performance of scipy.sparse.linalg.eigs()
Scipy.sparse.linalg.eigs() works on square matrices. It uses the implicitly restarted Arnoldi Method [91] of ARPACK

[31] which is designed for sparse matrices.
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Figure 28: This diagram shows the performance of scipy.sparse.linalg.eigs() on the matrices A, B, and C shown in figure
20

One call of the program with one iteration of scipy.sparse.linalg.eigs() took tspeigs(A, 1) = 0.496 seconds on matrix A, tspeigs(B, 1) =
0.500 seconds on matrix B, andtspeigs(C , 1) = 0.496 seconds on matrix C. The average of those three results is
x̄speigs(1) = 0.497333 seconds. We also present the times for 1000 iterations of scipy.sparse.linalg.eigs() on each ma-
trix and the calculated averages for 1 iteration

tspeigs(A, 1000) = 5.004 seconds with x̄speigs(A, 1000) = 0.005004 seconds,

tspeigs(B, 1000) = 5.884 seconds with x̄speigs(B, 1000) = 0.005884 seconds,
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tspeigs(C , 1000) = 8.976 seconds with x̄speigs(C , 1000) = 0.008976 seconds.

The total average composed off these averages is x̄speigs(1000) = 0.006621 seconds and the standard deviation is

σspeigs(1000) = 0.001703 seconds. this results in a coefficient of variance of cv =
σspeigs(1000)
x̄speigs(1000) = 0.257247 Lastly, we

calculated ε̄speigs = x̄speigs(1) − x̄speigs(1000) = 0.49712 seconds, the approximated average time the program took for
other tasks. This translates to around 99% of the program.

Figure 28 shows how well this method performed in comparison to all direct methods. It worked best on an empty
matrix taking only around 5.004 seconds for 1000 iteratins. That translates to ≈ 0.005 seconds which is ten times faster
than the faster direct methods.

Performance of scipy.sparse.linalg.eigsh()
In contrast to scipy.sparse.linalg.eigs(), scipy.sparse.linalg.eigsh() is also specialised on symmetric matrices [65]. It uses

the Lanczos Method [6] implemented in the Fortran package Arpack [31]. The Lanczos Method is a specialization of
the Implicitly Restarted Arnoldi Method for symmetric matrices. It is an effective method for the computation of a few
eigenvalues and corresponding eigenvectors of large symmetric matrices [6,12].
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Figure 29: This diagram shows the performance of scipy.sparse.linalg.eigsh() on the matrices A, B, and C shown in figure
20

The measured times for one program call in which one iteration of scipy.sparse.linalg.eigsh() took place are
tspeigsh(A, 1) = 0.496 seconds,tspeigsh(B, 1) = 0.480 seconds, andtspeigsh(C , 1) = 0.468 seconds. The average time com-
posed of these results is x̄speigsh(1) = 0.481333 seconds. The times for one call of the program with 1000 iterations and
their respective averages are

tspeigsh(A, 1000) = 4.812 seconds with x̄speigsh(A, 1000) = 0.004812 seconds,

tspeigsh(B, 1000) = 6.324 seconds with x̄speigsh(B, 1000) = 0.006324 seconds,

tspeigsh(C , 1000) = 10.204 seconds with x̄speigsh(C , 1000) = 0.010204 seconds.

The calculated average of one iteration of all matrices is
x̄speigsh(1000) = 0.007113 seconds with a standard deviation of σspeigsh(1000) = 0.002271 seconds. The coefficient of

variance is cvspeigsh(1000) = 0.31925. The approximated average for other tasks is ε̄speigsh = x̄speigsh(1)− x̄speigsh(1000) =
0.47422 seconds which translates to 99% of the program. Figure 29 shows that scipy.sparse.linalg.eigsh() works similarly
good on our matrices than scipy.sparse.linalg.eigs(). Here it seems not to matter much that our matrix is symmetrical.

Conclusion of the scipy.sparse.linalg Eigenvalue Functions
Although we were satisfied with the performance of these iterative functions, we had the problems finding a Go

program which was actually written in Python. We wanted to test the heuristic with Pachi [3] which is written in C.
Calling Python from C seemed inconvenient. Using the Fortran Routines of ARPACK [31] directly with C was a possibility
that we contemplated but then dismissed because it would have gotten to far beyond the scope of this thesis.
So we tried to obtain a solution in C or C++ that is as fast as the Python’s functions.
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4.2.2 Performance of the Spectral Shift Power Method

We wanted to experiment with the Power Method [30] because it is a simple method for approximation of the dominant
eigenvector of a matrix. At each step of the Power Method the following is calculated:

v =
Av

λ
where λ= ∥Av∥

where v is a vector, λ is a norm, and A is the matrix we want to compute the dominant eigenvalue and eigenvector of.
This calculation is repeated until a threshold is reached. The threshold can either a fixed number of iterations or

a certain tolerance. The resulting scalar λ is the approximated dominant eigenvalue λdominant eigenvalue and v its
approximated corresponding eigenvector vdominant . For our purpose we need to find the least dominant eigenvector λs.
Thats why we have to shift the Matrix A by its dominant eigenvalue λdominant :

B = −A+ (λdominant I).

Here, I is the identity matrix. The eigenvalues of B have the shape (−λi − λdominant) which makes the least dominant
eigenvalue of A the dominant eigenvalue of B. Now, we calculate the eigenvector of B using the Power method again to
obtain the least dominant eigenvector λs of A. This method only works on symmetric matrices [30].

Performance of a Naive Self Implementation
To further deepen our understanding for the subject we implemented a version of the Spectral Shift Power Method

without using any libraries. We included this naive approach only for comparison. We measured the following times for
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Figure 30: This diagram shows the performance of our naive self implementation using Spectral Shift on the matrices that
represent the board positions shown in figure 20

one call of the program and one iteration: tspecc(A, 1) = 0.272 seconds, tspecc(B, 1) = 22.44 seconds, and tspecc(C , 1) =
1.184 seconds. On the first glance it is very visible how slow this approach is compared to the others. It seems also very
vulnerable to slight differences in matrices. The arithmetic mean for these values is x̄specc(1) = 7.965333 seconds. We
also calculated the averages for one call on a particular matrix using the times for one call of the program with a 1000
iterations. The measured times and calculated averages are

tspecc(A, 1000) = 131.092 seconds with x̄specc(A, 1000) = 0.131092 seconds,

tspecc(B, 1000) = 11273.832 seconds with x̄specc(B, 1000) = 11.273832 seconds, and

tspecc(C , 1000) = 577.404 seconds with x̄specc(C , 1000) = 0.577407 seconds.

The calculated arithmetic mean of these averages is x̄specc(1000) = 3.994 seconds and the standard deviation is

σspecc(1000) = 5.150956 seconds, which leads to a coefficient of variant of cvspecc(1000) =
σspecc (1000)
x̄specc (1000) = 1.289674.

This an unusual high coefficient which emphasizes the programs vulnerability towards changes on the matrix diagonal.
The average time for other tasks of the program is approximately ε̄specc = x̄specc(1) − x̄specc(1000) = 3.97133 seconds
which translates to around 50%. Figure 30 and the results show that the program using the naive self implementation is
much slower than the other programs so far. We assume this is because of the time consuming matrix vector product.
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Performance of Spectral Shift using Eigen
In Contrast to the Naive Self Implementation we tried another approach of the Spectral Shift Power Method using matrix

routines from the Eigen Library [36].
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Figure 31: This diagram shows the performance of Spectral Shift using Eigen on the matrices that represent the board
positions shown in figure 20.

The measured times for one call of the program in which one iteration of the algorithm took place are tspeccpp(A, 1) =
0.032 seconds, tspeccpp(B, 1) = 0.576 seconds, andtspeccpp(C , 1) = 0.076 seconds. The arithmetic mean of the measured
times is x̄speccpp(1) = 0.228 seconds. The measured times for a thousand iterations of the algorithm and their corre-
sponding averages for one iteration on a specific matrix are

tspeccpp(A, 1000) = 8.276 seconds with x̄speccpp(A, 1000) = 0.008276 seconds,

tspeccpp(B, 1000) = 384.872 seconds with x̄speccpp(B, 1000) = 0.384872 seconds, and

tspeccpp(C , 1000) = 38.552 seconds with x̄speccpp(C , 1000) = 0.038552 seconds.

The arithmetic mean of those averages is x̄speccpp(1000) = 0.1439 seconds and together with the standard deviation

σspeccpp(1000) = 0.170841 seconds, they form the coefficient of variance cvspeccpp(1000) =
σspeccpp(1000)
x̄speccpp(1000) = 1.187218. The

average time for other tasks of the program was approximately ε̄speccpp = x̄speccpp(1)− x̄speccpp(1000) = 0.0841 seconds
which is about 37%. Like with the Naive Self Implementation the robustness of the algorithm when treating slight changes
in the matrix is really bad. The program was very fast on matrix A but really bad on matrix B. The Spectral Shift Method
seems rather unstable, so we left it at that and tried another method.

4.2.3 Performance of the Inverse Power Method

After observing the instability of the Spectral Shift Method, we decided to use the Inverse Power iteration to find the
least dominant eigenvector. We still use the Eigen Library for this test. The Inverse Power Method [7,30] is similar to the
Power Method.

v =
(A−µI)−1 × v

λ
where λ= ∥A∗ v∥

So instead of applying the Power Iteration directly to A, in each iteration it is applied to the (A−µI)−1. The Inverse Power
Iteration finds eigenvalues near µ. Because we want the least dominant eigenvector it is sufficient to choose µ = 0 and
calculate A−1 once. This makes the algorithm much faster. So first, we have to choose a method to invert the matrix.
Next, we apply Power Iteration to the inverse of A. We use matrix decomposition to solve

A× x = i

for each column i of the Identity matrix. The resulting vectors x i are the columns of A−1. So we use matrix decompo-
sition to acquire the inverse of A. So next, we will discuss the results of Inverse Power Method using different matrix
decompositions to achieve A−1.
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Inverse Power Method with LU Factorization
The SparseLU class uses supernodal LU factorization for general matrices [38]. It uses the techniques from sequential

SuperLU package [16]. We will give a short description of a standard LU factorization. The matrix A is factored into a
lower triangular matrix L and an upper triangular matrix U [88].

A= LU

The linear equation Ax = b is solved by solving the two linear systems Lz2 = z1 and U x = z2 SparseLU uses routines
from BLAS [78].
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Figure 32: This diagram shows the performance of our implementation using the SparseLU solver (for preparing thematrix
for inverting) on the matrices that represent the board positions shown in figure 20.

The measured times for one call of the program which uses one itertation of inverse Power Method are tLU(A, 1) =
0.044 seconds,tLU(B, 1) = 0.052 seconds, andtLU(C , 1) = 0.056 seconds. The arithmetic mean for these times is
x̄LU(1) = 0.050667 seconds. The measured times for thousand iterations of the Inverse Power Method and there
correspondent averages for one iteration are

tLU(A, 1000) = 17.704 seconds with x̄LU(A, 1000) = 0.017704 seconds,

tLU(B, 1000) = 18.224 seconds with x̄LU(B, 1000) = 0.018224 seconds, and

tLU(C , 1000) = 21.792 seconds with x̄LU(C , 1000) = 0.021792 seconds.

The arithmetic mean of these averages is x̄LU(1000) = 0.019240 seconds. Together with the standard deviation
σLU(1000) = 0.001817 seconds, this leads to a coefficient of variant of cvLU(1000) = σLU (1000)

x̄LU (1000) = 0.094438. The av-
erage time for other tasks is approximately ε̄LU = x̄LU(1)− x̄LU(1000) = 0.031427 seconds which translates to roughly
62% of the program. The program using the SparseLU solver for inverting was not as fast as scipy.sparse.linalg.eigs()
and scipy.sparse.linalg.eigsh() but relatively fast as well. The coefficient of variance cvLU(1000) tells us that the program
is robust towards slight differences of the matrices.

Figure 33 shows how much time the Power Method took for approximating the eigenvector. It is remarkable
how fast the Power Method works on A−1. It only takes a fraction of the time that scipy.sparse.linalg.eigs() and
scipy.sparse.linalg.eigsh() needed to calculate the eigenvector. So a huge part of the actual program consists of the
factorization of the matrix and the computing of the inverse.
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Figure 33: This figure shows the time the Power Method took after the LU decomposition on the matrix to calculate the
eigenvector.

Inverse Power Method with Cholesky Factorization
The SimplicialLDLT solver is a solver build into Eigen that is recommended for very sparse but not to large problems

[37]. The solver uses the LDLT Cholesky Factorization. The matrix A is decomposed into

A= LDLT

and solved in three steps

LT x = y

D y = z

Lz = b

[13] .
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Figure 34: This diagram shows the performance of our implementation using the SimplicialLDLT solver (for preparing the
matrix for inverting) on the matrices that reoresent the board positions shown in figure 20.
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First, the times for one call of the program and one iteration: tchol(A, 1) = 0.040 seconds,tchol(B, 1) =
0.040 seconds, andtchol(C , 1) = 0.052 seconds. The corresponding arithmetic mean is x̄chol(1) = 0.044 seconds. Again,
we calculate the times for a thousand iteration and calculate the average for one iteration for a specific matrix:

tchol(A, 1000) = 9.708 seconds with x̄chol(A, 1000) = 0.009708 seconds,

tchol(B, 1000) = 10.512 seconds with x̄chol(B, 1000) = 0.010512 seconds, and

tchol(C , 1000) = 14.072 seconds with x̄chol(C , 1000) = 0.014072 seconds.

The arithmetic mean of the averages for one iteration is x̄chol(1000) = 0.011431 seconds where σchol(1000) =
0.001896 seconds is the standard deviation and cvchol(1000) = σchol (1000)

x̄chol (1000) = 0.165898 is the coefficient of variance.
The average time for other tasks of the program is approximated to ε̄chol = x̄chol(1)− x̄chol(1000) = 0.032569 seconds
which seems to be roughly 74% of the program.Overall, SimplicialLLT performed a bit better than SparseLU but still worse
than scipy.sparse.linalg.eigs() and scipy.sparse.linalg.eigsh(). Although, it seems to be slighty less robust than SparseLU
when observing the coefficient of variance. Figure 35 shows how much time the Power Method took for approximating
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Figure 35: This figure shows the time the Power Method took after the LDLT decomposition on the matrix to calculate
the eigenvector.

the eigenvector after the inverse of the matrix was computed. The Power Method converges not nearly as fast as it does
when using the LU decomposition but it still works faster than scipy.sparse.linalg.eigs() and scipy.sparse.linalg.eigsh().
We conclude that it is important which method for factorization is used.

Inverse Power Method with Conjugate Gradient Descent
We also tested how fast Conjugate Gradient Descent [87] would invert the matrix and prepare it for the Inverse Power

Method. We tested ConjugateGradient, a solver from Eigen, which is recommended for large symmetric problems [36].
We measured the following times for one call of the program and one iteration of the ConjugateGradient solver:

tcg(A, 1) = 0.392 seconds,tcg(B, 1) = 0.432 seconds, andtcg(C , 1) = 0.208 seconds. The arithmetic mean of these val-
ues is x̄cg(1) = 0.344 seconds.

We also calculate the average for one call of each matrix using the measured times of a 1000 iterations for each matrix.
The results are

tcg(A, 1000) = 291.596 seconds with x̄cg(A, 1000) = 0.291596 seconds,

tcg(B, 1000) = 331.712 seconds with x̄cg(B, 1000) = 0.331712 seconds, and

tcg(C , 1000) = 137.468 seconds with x̄cg(C , 1000) = 0.137468 seconds.

The average mean composed of this averages on the other hand is x̄cg(1000) = 0.253592 seconds and the corresponding

standard deviation is σcg(1000) = 0.083729 seconds with a coefficient of variance of cvcg(1000) =
σcg (1000)
x̄cg (1000) = 0.330174.

The approximated average time for other tasks is ε̄cg = x̄cg(1) − x̄cg(1000) = 0.090408 seconds which translates to
roughly 26% of the program.
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Performance of the Iterative Method with BiCGSTAB
We also tried the Biconjugate Gradient Stabilized Method [5], a variant of the Conjugate Gradient Descent [87] using

the BiCGSTAB solver of the Eigen Library [34].
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Figure 36

We measured tbcg(A, 1) = 0.196 seconds,tbcg(B, 1) = 0.156 seconds, andtbcg(C , 1) = 0.124 seconds for one call of the
program and one iteration of the BiCGSTAB solver. The corresponding arithmetic mean is x̄bcg(1) = 0.158667 seconds.
The measured times for 1000 iterations on each matrix and their corresponding averages for one iteration are

tbcg(A, 1000) = 117.448 seconds with x̄bcg(A, 1000) = 0.117448tex tseconds,

tbcg(B, 1000) = 93.468 seconds with x̄bcg(B, 1000) = 0.093468 seconds, and

tbcg(C , 1000) = 42.380 seconds with x̄bcg(C , 1000) = 0.042380 seconds.

The arithmetic mean composed of these averages is x̄bcg(1000) = 0.084432 seconds andσbcg(1000) = 0.031305 seconds

is the standard deviation. The coefficient of variance is cv bcg(1000) =
σbcg (1000)
x̄bcg (1000) = 0.370776.

The approximated average time for other tasks is ε̄bcg = x̄bcg(1)− x̄bcg(1000) = 0.074235 seconds which translates to
roughly 47% of the program.
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4.2.4 Overview and Discussion of Iterative Methods

We tried three different approaches:

• the Arnoldi/Lanczos Method using SciPy methods

• Spectral Shift Power Method

• Inverse Power Iteration using several solver from Eigen [36]

To give a general overview of the tested methods we will compare them in three categories as already done in section
4.1.

Comparing the Arithmetic Mean
1. scipy.sparse.linalg.eigs() with x̄speigs(1000)≈ 0.007 seconds

2. scipy.sparse.linalg.eigsh() x̄speigsh(1000)≈ 0.007 seconds

3. SimplicialLDLT with x̄chol ≈ 0.011 seconds

4. SparseLU with x̄LU ≈ 0.019 seconds

5. BiCGSTAB with x̄bcg ≈ 0.084 seconds

6. Spectral Shift using Eigen with x̄speccpp ≈ 0.144 seconds

7. ConjugateGradient with x̄cg ≈ 0.254 seconds

8. Naive Self Implementation with x̄specc ≈ 3.994 seconds

The best method, in regards to average time consumption, was scipy.sparse.linalg.eigsh(), closely followed by
scipy.sparse.linalg.eigs(). Therefore, the matrix’ symmetry seemingly had no big impact. The second best method
was the Inverse Power Method using the SimplicialLLT solver to compute the inverse for the matrices. This method
roughly took around twice as much time as the SciPy methods. SparseLU took roughly a quadruple of the SciPy’s meth-
ods time. Interesting is that the Power Method converged really fast on the inverse using both factorization methods. The
Power Method performed especially on the inverse computed with the SparseLU solver. So we conclude, that it seems to
be of importance which method is used. The Spectral Shift Power Methods on the other hand did not perform sufficiently.
The C++ implementation using the Eigen Library was not faster than some direct methods in section 4.1 and the Naive
Self Implementation was the overall worst approach.

Coefficient of Variance
1. SparseLU with cvLU(1000)≈ 0.09

2. SimplicialLDLT with cvchol(1000)≈ 0.17

3. scipy.sparse.linalg.eigs() with cvspeigs(1000)≈ 0.26

4. scipy.sparse.linalg.eigsh() with cvspeigsh(1000)≈ 0.32

5. ConjugateGradient with cvcg(1000)≈ 0.33

6. BiCGSTAB with cvbcg(1000)≈ 0.37

7. Spectral Shift using Eigen with cvspeccpp(1000)≈ 1.19

8. Naive Self Implementation with cvspecc(1000)≈ 1.29

It is interesting to see that the programs who performed best in aspect of time also performed best in the aspect of
robustness. This means that they handled changes in the matrices better than the slower methods. The Spectral Shift
Power Methods performed by far worse and were exceptionally vulnerable to slight changes on the matrix diagonal.
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Approximated Average Time for Other Tasks
The summary of all ε̄ ordered from smallest to largest percentage is presented here:

1. ConjugateGradient with ε̄cg ≈ 26%

2. Spectral Shift using Eigen with ε̄speccpp ≈ 37%

3. BiCGSTAB with ε̄bcg ≈ 47%

4. Naive Self Implementation with ε̄specc ≈ 50%

5. SparseLU with ε̄LU ≈ 62%

6. SimplicialLDLT with ε̄chol ≈ 74%

7. scipy.sparse.linalg.eigs() with ε̄speigs ≈ 99%

8. scipy.sparse.linalg.eigsh() with ε̄speigsh ≈ 99%

Again (like in section 4.1), the methods which performed faster overall did take up smaller amounts of the whole
program. The amounts of ε̄speigs and ε̄speigsh indicate that for both SciPy methods only 1% of the whole program’s time
was dedicated to the eigenvector computation. It seems logical to assume, that the bottleneck of the program shifts if it
computes the eigenvalues faster. We feel that this is the major significance which can be concluded from this data. On the
other hand, it is likely that the percentage is also influenced by other variables, such as chosen programming language.

4.3 Conclusion on Performance Tests

We can conclude that iterative methods seem to be the better choice for large sparse matrices. The SciPy methods
scipy.sparse.linalg.eigs() and scipy.sparse.linalg.eigsh() performed best overall. What we can not recommend using on
the matrices is the Spectral Shift Power Method, as she converged slowly and was not robust as well. Inverse Power
Iteration seemed like a simple but also slightly slower approach compared to the methods in Python. Also, it seems
to be of importance to look for a fitting decomposition when computing the inverse. The Power method converged
much faster on the LU factored matrix than on the LDLT and was even faster than the functions in Python. The power
method on its own worked pretty well, although more complex methods could enhance the performance further. As
scipy.sparse.linalg.eigs() and scipy.sparse.linalg.eigsh() using the Arnoldi and Lanczos methods [6,91] performed best in
the end, we recommend experimenting with these methods.
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5 Testing the Heuristic in Pachi

In this section, several experiments were run to determine the effect of the big move heuristic incorporated as Prior
Knowledge in Pachi’s Monte Carlo Tree Search [19]. The meaning of Prior Knowledge will be explained in section 5.1.
Pachi*, the modified Pachi, will be tested against original Pachi using several different modifications.

5.1 About Pachi

Pachi is one of the leading open source Go programs at the moment [3]. Pachi consists of the main loop, the game engine,
the playout policy, the Go board representation and the tactical and Aux Library [3]. The focus will be on the parts of
Pachi relevant for incorporating the heuristic, namingly the game engine and the playout policy23.

The Game Engine
The default tree policy is called ucb1amaf and consists of MCTS with RAVE [3, 20]. The policy will be described as

specified in [3] by P.Baudis and J.Gailly.

Q(s, a) =
w(s, a)
n(s, a)

is the action value function of the standard MCTS and n(s, a) is the number of simulations of action a in state s. w(s, a)
is the number of won simulations started with action a in state s.

QRAV E(s, a) =
wRAV E(s, a)
nRAV E(s, a)

is the action value function of the RAVE component. The details on how QRAV E(s, a) is computed can be found in
the section 2.3.2. Analogously, nRAV E(s, a) is the number of simulations where action a happened somewhere in the
simulation that started with state s. The action value of ucb1amaf is a mixed value of Q(s, a), the action value of a
standard MCTS, and QRAV E(s, a), the RAVE value of an action in a specific state s. It is

Qucb1ama f (s, a) = (1− β)Q(s, a) + βQRAV E(s, a)

where

β =
nRAV E(s, a)

nRAV E(s, a) + n(s, a) + nRAV E (s,a)·n(s,a)
equivRAV E

is the mixing parameter. The value of β is initialized with 1, hence, RAVE is used in the beginning of a game, but is used
less as β decreases [3]. It might confuse the reader that the policy is called ucb1amaf but does not actually use UCT. This
seems to have historical reasons.Each state action pair has a value Qucb1ama f (s, a) and the action a that corresponds to
the highest Qucb1ama f (s, a) is chosen [3]. The playout policy is by default called moggy. It produces semi-random MCTS
playouts using 3× 3 patterns and various technical checks [3].

Adding Domain Knowledge
Pachi uses the idea of incorporating Domain Knowledge, also known as Prior Knowledge, into MCTS that was previ-

ously used in the MoGo Go program [3, 19]. Pachi has several heuristics that approximate the value of certain moves
on the board. This heuristics are used as so called Priors which manipulate the Monte Carlo Tree Search. The Priors are
state-action pairs with a Prior value Qprior(s, a) and an equivalent experience nprior(s, a) which is similar to n(s, a) but is
the number of simulations the Prior would have needed to achieve a value of Qprior(s, a) [19]. So a Prior is an state action
pair (s,a) that has an assumed value of Qprior(s, a) if it would have been simulated nprior times. Per default Prior values
and their equivalent experience are counted to the normal MCTS value (Q(s, a)) and not to QRAV E(s, a) in the Qucbama f
formula. The big move heuristic also incorporates Domain knowledge about the game of Go into Pachi. Therefore, the
heuristic is implemented as a Prior into Pachi. So the program implementing the heuristic will be called for every state
of the search tree.

5.2 Testing Pachi* against Pachi

The big move heuristic was tested using GOGUI [14], an interface where it is possible to test Go programs via GTP [46].
We use its gogui-twogtp, a Go Text Protocol which lets two go programs play against each other. So we let Pachi*, the
modified version of Pachi play against the original Pachi.

23 Also known as default policy
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5.3 First Tests

Here, we present the first tests for Pachi*. The basic settings for all tests are given in table 1. Every test, Pachi and Pachi*
played hundred games against each other and alternated colors each game. We chose a Komi24 of 6.5 points. We used
the default version of Pachi, but chose to include its pattern library [2]. Furthermore, we had to enable the use of Priors.
We decided to give each program a thinking time of 20 min S.D.25. We let the programs alternate colors after each game.
We added three different Priors for the big move heuristic to Pachi*. Those three Priors differ in the amount of potential

Komi 6.5
number of games 100
thinking time 20 min S.D
patterns yes
Priors yes
alternation of colors yes
board size 19× 19
eqex -800

Table 1: Basic Settings for Pachi and Pachi*. By eqex we mean the equivalent experience nprior(s, a). Komi are compen-
sation points for White which are added to the final score.

added to the matrix representing the board state. The concept of potential is explained in section 3. The three Priors are

• p1= big move heuristic on a Dirichlet matrix without extra potential.

• p2= big move heuristic on a Dirichlet matrix with potential corresponding to all stones on the seventh line of the
Go Board.

• p3= big move heuristic on a Dirichlet matrix with potential corresponding to all stones on the sixth and seventh
line of the Go board.

We chose to use the same value for equivalent experience as the pattern Prior of Pachi which is -800. The number
connotes that the eightfold of the base equivalent experience is used26.

5.3.1 First Test without modifications

The first test we made was simple and without further modifications. Table 2 shows the main modifications.

Prior value 1.0
eqex -800
matrix modification p1,p2,p3

Table 2: Settings for the first test. By prior value we mean Qprior(s, a), by eqex we mean the equivalent experience
nprior(s, a). The term “matrix modifications” refers to different potential added to the matrix before computa-
tion.

Pachi* won 0% of games with this configuration. Our assumption was that the heuristic still takes too much time and
that Pachi simply had more time for building the search tree and simulations.

5.3.2 Test 2: Adding a Phantom Function to Pachi

Seeing that Pachi* performed really bad in the first test, we incorporated a phantom function into Pachi which also
calculates the heuristics’ algorithm but does not save the result. Therefore, it does not matter anymore how long the
algorithm needs for computing the eigenvector. The main settings for this test are given in table 3.

After incorporating a phantom function into Pachi, Pachi* performed better and won around 19% of the games.

24 explained in section 2.1.2
25 Sudden Death. A player loses the game if his or her 20 minutes are over
26 According to the source code of Pachi [3] or more specifically the file prior.c
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prior value 1.0
eqex -800
matrix modification p1,p2,p3
phantom function yes

Table 3: Settings for test 2. By prior value we mean Qprior(s, a), by eqex we mean the equivalent experience nprior(s, a).
The matrix modifications determine the potential for the matrices. The matrix modifications determine the
potential for the matrices. A phantom function is added to balance out certain time advantages of Pachi.

5.3.3 Test 3: Confining the Algorithm to Fuseki

The next test checks if Pachi* performs better when having a move restriction. By move restriction we mean that Pachi*
only calculates the algorithm up to a specific move on the board. We chose 50 moves as that value. We choose this setting
because we wanted to restrain the heuristic to Fuseki. The settings can be viewed in table 4. Pachi* won around 47%

prior value 1.0
eqex -800
matrix modification p1,p2,p3
phantom function yes
move restriction 50 moves

Table 4: Settings for test 3. By prior value we mean Qprior(s, a), by eqex we mean the equivalent experience nprior(s, a).
The matrix modifications determine the potential for the matrices. The term “matrix modifications” refers to
different potential which is added to the matrix before computation. The heuristic in now confined to the 50
first moves of the game.

against Pachi which proved this restriction to be very effective.

5.3.4 Test 4: Without p1

While looking at the SGF [24] files we noticed that some moves of Pachi* looked very “unnatural” in a sense that too
many moves were played on the sixth to tenth line on the go board. These lines are not considered to be very helpful in
the Fuseki as already mentioned in section 3. We assumed that it could be due to the matrix modification p1. We decided
to test the performance of Pachi* without p1 to see if Pachi* performes better without it. With the configurations in table

prior value 1.0
eqex -800
matrix modification p2,p3
phantom function yes
move restriction 50 moves

Table 5: Settings for test 4. This time we test how Pachi* performs without the p1 Prior.

5 Pachi* won 48% of the games against Pachi. We decided to further test without p1, as it did not contribute to the result
significantly.

5.3.5 Conclusion on the First Tests

prior value 1.0
matrix modification p2,p3
phantom function yes
move restriction 50 moves

Table 6: Here, the main settings are presented that will not change in the following tests.

We decided to take the settings in table 6 to the next round of tests. We assumed that the reason why Pachi* still
performed worse than Pachi could be due to the fact that we were not sure how to balance the Prior with the other Priors
of Pachi. The goal was that Pachi* should use the big move heuristic but not to often, so that for example important
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patterns would still be played preferably. This is why we experimented with the equivalent experience next, as it is is the
parameter varying in other Priors of Pachi27.

5.4 Additional Tests: Varying Equivalent Experience

In this section we will test with varying equivalent experience to better incorporate the big move heuristic into Pachi’s
original design. We do that, because we want to have a good balance between the big move heuristic and the other Priors
of Pachi. For example, a local move that could save a group from dying should be played instead of the big move the
heuristic approximates.

5.4.1 Eqex Formula inspired by Pachi’s Pattern Prior

We examined the source code of Pachi [3] to see how it incorporates other Priors and with which amount the value
Qprior(s, a) and the equivalent experience nprior were initiated for these Priors.

The patterns of Pachi’s Pattern Library [2] are incorporated as Priors into Pachi as well [3].
All moves suggested by patterns have the same value Qprior(s, a) which is set to an amount of 1.0 for the pattern Prior.

The equivalent experience on the other hand varies slightly. The equivalence experience is calculated as:

eqexpat tern(x) =
Æ

P(x) · eqex

where eqex, the basic equivalent experience, is set to a default value of −80028 and P(x) is the playing probability of a
pattern x after it occurred on the board [2].
Figure 37 shows the playing probability distribution of all patterns. It shows how often patterns were actually played
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Figure 37: This figure depicts how many patterns (y-axis) were actually played with a certain probability (x-axis) when
occurring in a game that was used for the pattern library. For example, 41% of all patterns that have occurred
at some point have not been played at all in any games recorded. We extracted these values from the pattern
files directly [2].

by people when encountered in games used for the library. Now, we know how the pattern Prior is set. This means we
can set Pachi* accordingly. Because the formula for each pattern Prior holds that

p
(p(x)) ≤ 1 ≥ 0 ∀P(x), we designed

a formula that behaves similarly but takes the number of moves played on the board into account, because we want
to decrease the influence of our heuristic with each moves. The formula for the equivalent experience of the big move
heuristic is therefore

eqexbig =
s

1.0− mov es
x · 100

· eqex

27 When looking at the source code of Pachi [3], one can see, that the value of a Prior is set at a fixed value. The priority of one Prior over the
other seems to be depending only on the varying equivalent experience.

28 as explained in section 5.3.
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where moves is the number of moves already played on the board, and equex is the equivalent experience. The number
of moves indicates how far the game has progressed and confines the heuristic to Fuseki decreasing big_eqex , the equiv-
alent experience for the big move heuristic. proportionally with the number of moves already played.

We will choose x so that the term
q

1.0− mov es
x ·100 will always be between 0 and 1 just like

p
(P(x)). The larger x inq

1.0− mov es
x ·100 , the smaller the decrease proportionally to the number of moves becomes.

Now, we did a few tests to check if decreasing the equivalent experience increases the win rate. The test arrangement
can be seen in table 7.

prior value 1.0
eqexbig

q
1.0− mov es

x ·100 · (eqex) with x = {1,2,3, 4,5} with eqex = −800
matrix modification p2,p3
phantom function yes
move restriction 50 moves

Table 7: Settings for the test which tests the new formula for the equivalent experience eqexbig .
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Figure 38: This figure depicts the win rate of Pachi* with varying values for x in
q

1.0− mov es
x ·100 · (eqex).

Figure 38 shows how Pachi* performed. As the reader might see, the setting with x = 3 seemed to be the best and had
a win rate of 57%. So the next tests will focus on further enhancing the formula with x = 3.

5.4.2 Enhancing the Formula

Next, different settings for y in

eqexbig =
s

y − mov es
3 · 100

· (eqex)

were tested. The results can be seen in figure 39.
This time we also experimented with values for y that made

q
y − mov es

3·100 > 1, to see what happens. When setting
y = 3.0, Pachi* performed really badly as seen in figure 39. Setting y to 0.9 slightly increased the win rate as it resulted
in 59 of 100 games won.
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Figure 39: This figure shows the win rate of Pachi* with a varying equivalent experience of
q

y − mov es
3·100 · (eqex) for differ-

ent values of y .

5.5 Conclusion on Pachi

The big move heuristic, aside from the obvious problem that it still consumes too much time, altered Pachi so that Pachi*
(with the best configuration) won around 59% of games against Pachi. We had the most success using

q
0.9− mov es

3·100 ·
(eqex) as the equivalent experience for the big move Prior. We incorporated a phantom function into Pachi* to compensate
the time Pachi* needed for the calculation of the heuristic. Without it, Pachi* would have never performed nearly as
good. Also, restricting the heuristic to a certain number of moves proved to be a good choice. Although, it is uncertain
if the move restriction to 50 moves of the game was optimal. Over all, we are unsure about the results’ relevance. The
win rate seems rather high but further testing is crucial to see if Pachi* can perform better than Pachi on the long run.
We had not enough time to test this sufficiently as the tests were very time consuming. Lowering the thinking time to
raise the number of games could mitigate that problem in the future. A further improvement we suggest is optimizing
the performance of the algorithm further. The faster the heuristic works the more Simulations of MCTS can be made.
Additional Performance could also be achieved by restricting the heuristic in terms of search tree depth. For example, if
the heuristic would be called only for the root node and its direct child nodes it could save a lot of time and we assume it
would not hinder the end result. Also, the example in figure 19 of section 3.4 showed that experimenting with potential
could be crucial or at least beneficial. Testing with different Prior values Qprior(s, a) could also be profitable. Last but not
least, we feel that the whole potential of the eigenvector is not used sufficiently. The whole eigenvector could also be
used as a rough estimate of the whole board by giving each state action pair (s, a) a Qprior(s, a) and nprior(s, a) according
to the amount of the corresponding eigenvector entry.
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6 Conclusion

At the beginning of this thesis, the reader was introduced to the game of Go, some of its historical background, and its
rules. Then, the reader was introduced to the big move heuristic and its purpose and mathematical background. After
that, the performance of several eigenvector functions was tested. In the last section, the modified Go program Pachi*
was tested against Pachi*. As a last point, we will list all critique and ideas that we collected from the different sections
of the thesis.

Conclusion on the Heuristic Approach
The big move heuristic in itself seems to be an interesting approach, even if slightly flawed, and could potentially

be used for other games than Go as well. It is unclear if the current algorithm is the easiest and fastest solution for
implementing the heuristic. Further investigation could potentially simplify this approach by computing the intersection
farthest away from other stones directly without using eigenvectors. Eigenvector computation still has some advantages.
The algorithm could be enhanced in various ways. One idea would be to use the full potential of the eigenvector for
calculation of a rough biased estimate for every legal move on the board. Every state action pair (s, a) would have a
value Qprior(s, a) that determines how far away it is from other stones and from the border. The whole board could be
estimated fast and roughly just as RAVE [20] does, explained in section 2.3.2. Another question that arose while working
on this thesis was how equivalent big points should be treated. If for example two or more areas are equally big as
shown in figure 16 section 3, the heuristic only proposes one move to play, which translates to one particular entry of the
computed eigenvector. One could change the output of the algorithm to an array containing all biggest moves to mitigate
this problem. This problem would also be solved when using the proposed whole board approach. Another part of the
heuristic that could need more attention is the aspect of potential. Right now, the heuristic always searches for the center
of the largest area. Figure 19 in section 3.4 illustrates a board situation in which the current algorithm does not perform
very well. The center of the board oscillates the most, even with potential on the sixth and seventh line, because the
third and fourth line are relatively occupied. It is uncertain, if this behavior is wanted or not, as the example is already
at the end of Fuseki.

Conclusion on Performance Tests
Several direct and iterative methods were tested. In the end, the best methods were using the Arnoldi Method [91]. It

was interesting to see how well the Iterative Power Method performed on the Dirichlet matrices [4] and how important
the choice of factorization is when computing the inverse of a matrix. It seems possible that the performance of eigenvec-
tor computation can be improved further. Fortran Libraries seem to be still relevant as they were used in the background
of several methods. ARPACK [31] seems to be a good choice performance wise, as the Arnoldi Method [91] did perform
best in the end. Therefore, it could be fruitful to write a wrapper for ARPACK in C. Furthermore, investigating more time
in finding an optimal factorization for the Dirichlet matrices could turn out successful as well. Spectral Shift, on the other
hand, seems impractical due to its overall weak performance. Maybe it would have performed better with a different
method than the Power Method but it cannot be said for sure.

Conclusions on Testing Pachi*
Pachi*, the modified version incorporating the big move heuristic, played against Pachi, an open source Go program [3].

It is possible, that the test results are not reliable due to the small test size. The tests were very time consuming so it
was not possible to double check all results. Thus, the reader should take into account that the results could be partially
inconclusive. Nevertheless, it is plausible to conclude that Pachi* performed at a similar level as Pachi. The best result
achieved was Pachi* winning 59 out of 100 games against Pachi. If possible, it could be beneficial to increase the test
size from a hundred to a thousand games to minimize fluctuation in the future. If this is too time consuming, decreasing
the thinking time of the Go programs could help. All in all, this would be a faster way to estimate the strength of Pachi*.
Later, the thinking time could be increased again in order to test the more promising results. It also seems very important
to test future versions of Pachi* against humans. Even if Pachi* performs better than Pachi on the long run, it could be
due to overfitting. Testing against different opponents seems crucial. Due to the scope of this thesis, different values
Qprior(s, a) for the big move heuristic in Pachi have not been tested. Investing more time to balance the influence of
the heuristic in Pachi* seems crucial. Another important question that came up was how often the heuristic should be
computed. It may be beneficial to compute the heuristic only until a specific depth in the search tree is reached. After
all, the heuristic’s significance decreases with more moves on the board. Therefore, it is also questionable if confining
the heuristic to exactly 50 moves is best. If the reader might want to implement the whole board estimation proposed
earlier in this section he could use the Pattern Prior of Pachi as reference. The implementation could be similar as each
state action pair would get a particular equivalent experience depending on the correspondent eigenvector entry.
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A Performance Files of eigen()

A.1 matrix A

1 0.52
5 1.07
10 1.86
50 7.26
100 13.66
500 67.00
1000 132.34

A.2 matrix B

1 0.56
5 0.80
10 1.19
50 4.11
100 7.76
500 36.48
1000 70.38

A.3 matrix C

1 0.536
5 0.936
10 1.472
50 5.080
100 9.580
500 46.256
1000 92.832
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B Performance Files of gsl_eigen_symmv()

B.1 matrix A

1 0.240
5 1.252
10 2.184
50 11.072
100 22.700
500 136.180
1000 258.824

B.2 matrix B

1 0.300
5 1.280
10 2.480
50 12.816
100 31.464
500 158.684
1000 306.116

B.3 matrix C

1 0.252
5 1.276
10 2.460
50 11.440
100 25.896
500 151.700
1000 280.736
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C Performance Files of Naive Self Implementation

C.1 matrix A

1 0.62
5 1.67
10 2.92
50 12.53
100 24.39
500 120.76
1000 240.75

C.2 matrix B

1 0.68
5 1.66
10 2.90
50 12.91
100 25.37
500 125.37
1000 250.77

C.3 matrix C

1 0.920
5 2.264
10 3.920
50 17.304
100 33.828
500 171.232
1000 259.120
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D Performance Files of numpy.linalg.eigh()

D.1 matrix A

1 0.48
5 0.74
10 1.03
50 3.47
100 6.58
500 30.92
1000 62.38

D.2 matrix B

1 0.50
5 0.75
10 1.06
50 3.45
100 6.41
500 30.05
1000 59.59

D.3 matrix C

1 0.632
5 1.056
10 1.536
50 5.376
100 10.124
500 48.800
1000 91.120
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E Performance Files of scipy.linalg.eig

E.1 matrix A

1 0.70
5 1.67
10 2.83
50 12.42
100 24.57
500 120.29
1000 239.80

E.2 matrix B

1 0.70
5 1.72
10 2.95
50 12.92
100 25.34
500 125.17
1000 250.92

E.3 matrix C

1 0.73
5 1.76
10 3.11
50 13.60
100 26.56
500 131.40
1000 260.42
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F Performance Files of scipy.linalg.eigh()

F.1 matrix A

1 0.56
5 1.03
10 1.62
50 6.33
100 12.18
500 58.92
1000 117.22

F.2 matrix B

1 0.50
5 0.75
10 1.06
50 3.45
100 6.41
500 30.05
1000 59.59

F.3 matrix C

1 0.684
5 1.000
10 1.408
50 4.648
100 8.708
500 42.252
1000 63.232
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G Performance Files of EigenSolver

G.1 matrix A

1 0.42
5 2.02
10 4.11
50 20.32
100 40.12
500 202.02
1000 406.79

G.2 matrix B

1 0.54
5 2.74
10 5.22
50 25.51
100 50.14
500 249.93
1000 506.78

G.3 matrix C

1 0.44
5 2.12
10 4.27
50 21.19
100 41.14
500 205.86
1000 408.12
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H Performance Files of Naive Self Implementation

H.1 matrix A

1 0.272
5 0.788
10 1.452
50 6.808
100 13.340
500 65.660
1000 131.092

H.2 matrix B

1 22.44
5 66.296
10 132.208
50 581.924
100 1153.904
500 5652.776
1000 11273.832

H.3 matrix C

1 1.184
5 3.420
10 6.344
50 29.000
100 58.924
500 288.848
1000 577.404
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I Performance Files of Spectral Shift using Eigen

I.1 matrix A

1 0.032
5 0.084
10 0.136
50 0.580
100 0.856
500 4.156
1000 8.276

I.2 matrix B

1 0.576
5 2.576
10 5.020
50 27.344
100 49.184
500 189.536
1000 384.872

I.3 matrix C

1 0.076
5 0.276
10 0.532
50 2.648
100 5.384
500 19.000
1000 38.552
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J Performance Files of scipy.sparse.linalg.eigs

J.1 matrix A

1 0.496
5 0.512
10 0.528
50 0.704
100 0.944
500 2.736
1000 5.004
5000 22.944

J.2 matrix B

1 0.500
5 0.468
10 0.548
50 0.760
100 1.012
500 3.164
1000 5.884
5000 27.43

J.3 matrix C

1 0.496
5 0.552
10 0.568
50 0.908
100 1.312
500 4.760
1000 8.976
5000 43.092
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K Performance Files of scipy.sparse.linalg.eigsh

K.1 matrix A

1 0.496
5 0.500
10 0.512
50 0.708
100 0.884
500 2.656
1000 4.812
5000 22.068

K.2 matrix B

1 0.480
5 0.512
10 0.548
50 0.760
100 1.064
500 3.416
1000 6.324
5000 29.920

K.3 matrix C

1 0.468
5 0.520
10 0.568
50 0.980
100 1.460
500 5.324
1000 10.204
5000 49.392
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L Performance Files of ConjugateGradient

L.1 matrix A

1 0.392
5 1.528
10 3.324
50 14.960
100 29.564
500 148.260
1000 291.596

L.2 matrix B

1 0.432
5 1.852
10 3.472
50 16.980
100 33.456
500 169.572
1000 331.712

L.3 matrix C

1 0.208
5 0.864
10 1.496
50 7.272
100 14.14
500 70.716
1000 137.468
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M Performance Files of BiCSTAB

M.1 matrix A

1 0.196
5 0.620
10 1.252
50 5.708
100 11.028
500 56.172
1000 117.448

M.2 matrix B

1 0.156
5 0.548
10 1.004
50 4.864
100 9.400
500 46.372
1000 93.468

M.3 matrix C

1 0.124
5 0.292
10 0.496
50 2.176
100 4.384
500 21.600
1000 42.380
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N Performance Files of SparseLU

N.1 matrix A

1 0.044
5 0.128
10 0.200
50 0.908
100 2.004
500 8.780
1000 17.704

N.2 matrix B

1 0.052
5 0.132
10 0.196
50 0.924
100 1.804
500 9.100
1000 18.224

N.3 matrix C

1 0.056
5 0.144
10 0.268
50 1.148
100 2.184
500 10.612
1000 21.792
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O Performance Files of SimplicialLDLT

O.1 matrix A

1 0.040
5 0.084
10 0.128
50 0.496
100 0.972
500 4.692
1000 9.708

O.2 matrix B

1 0.040
5 0.076
10 0.140
50 0.548
100 1.060
500 5.060
1000 10.512

O.3 matrix C

1 0.052
5 0.100
10 0.172
50 0.732
100 1.528
500 6.916
1000 14.072
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