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Abstract

In the field of machine learning, one particular research area is rule learning, which can be described
as modelling some learned experience with the help of conditional rules classifying new unknown data,
either in the form of a decision list going through an ordered set of rules, applying the first one that
fires, or rule sets which make use of the entirety of rules learned when classifying a new example.
Rule learning as regarded in this thesis is based on a greedy algorithm, which in turn relies heavily on
some sort of guidance during the learning process. This guidance is provided by so-called rule learning
heuristics - functions of certain properties of a rule (which can mostly be derived from coverage and
consistency goals) that output a real-valued quality rating of a rule which is used for comparisons with
other rule candidates as well as refinements of a particular rule. We will extend the generic Separate-
and-Conquer [5] algorithm in order to be able to use two different heuristics for rule selection and
refinement, and evaluate twelve combinations of heuristics with the means of accuracy and the AUC.
The results are partially statistically significant, with the former half of the experiments favoring some
heuristics combinations over others. We will conclude with a quick overview of the properties innate to
the algorithms evaluated and the theory output they produced.
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1 Introduction

We will start off with a quick introduction to rule learning, followed by an overview of the structure of
this thesis.

1.1 Rule Learning: Problem Definition

A general definition of learning is the utilization of previously gathered specific experience to increase
performance with respect to future, more general tasks. Extending this to the field of machine learning,
we follow the definition by Mitchell [16] stating a task T, a performance measure P and a quantity of
experience E with the task T. A program is then said to learn if P increases as E does. Note that while
a measure P is required for assessing the performance of the learner before and after adding to the ex-
perience E, the learning process itself must be guided towards the desired results. Since we assume the
learner to be a deterministic machine program, additional measures are required to evaluate the quality
of newly gathered experience E in each iteration.

Within this thesis, we will specifically regard a rule learner being trained and evaluated on data avail-
able in Attribute- Relation file format (which was developed for the University of Waikato WEKA project
[9]). A single instance of attribute-relation formatted data consists of a set of attributes (and possibly
associated nominal or numeric values), always including a class label attribute determining the class the
example in question belongs to. Note that without loss of generality, we can reduce the multi-class clas-
sifier problem to a binary instance where all labels can be considered as boolean variables; the method
used by our classifier will be explained later on. There are more ways to boil down a multiclass prob-
lem to one or more singular ones, but these are not relevant for later experiments. In accord with our
previous definition, we can then define T as the task of labeling new previously unknown data either
positive or negative and E as the cumulative experience gained by training the classifier on a dataset with
known labels. Note that there exist machine learners who regard the set of known pre-labeled data itself
as the collected experience (so-called lazy learners) like k-nearest-neighbour approaches, which do have
the drawbacks of computational load [8] (having to search through the entirety of known labeled data
to classify each single testing instance) and necessity [8] of a metric to determine the distance of a point
of data to other known points. For other types of rule learners including the separate-and-conquer rule
learning algorithms used within later experiments, building up experience E often involves the construc-
tion of a more abstract experience model.

In rule learning, this model consists of a set of rules constructed with the help of a pre-classified subset
of the cumulative data that can subsequently be applied to new unlabeled examples. To achieve optimal
performance, it is of utmost importance not only to measure the performance on the set of pre-labeled
training data, but rather to evaluate how well the trained rule learner generalizes to new instances. Since
rule learning relies on gathering information from the pre-labeled training data, the method of selecting
new rules or adding conditions to existing rules determines the number of rules in a theory, the length of
single rules, the coverage (meaningful rules should be based on a substantial data foundation) and con-
sistency (consistent rules cover only positive examples) of the rules themselves and as such performance
on new unknown datasets. Adapting too well to the training data is subject to a number of weaknesses,
namely noisy training data (attribute value randomness in a substantial subset of instances) to begin
with, which generates unnecessarily complex rules that may generalize insufficiently to new data. This
behavior is generally referred to as overfitting (on the set of training data).




1.2 Thesis Structure

Starting off with a recap of the base mechanics of machine learning relevant to the SeCo- Framework
[15] (currently in development by the Knowledge Engineering Group at TU Darmstadt) which is going
to be used as the underlying concrete implementation of the generic Separate-and-Conquer algorithm,
the optimization method w.r.t the performance measures cross-validation accuracy per dataset and Area
under the curve will be presented. The difference between the standard separate-and-conquer approach
and the modified algorithm with is capable of making use of two heuristics for different purposes will be
highlighted and we will give a quick overview over existing heuristics and their respective modifications
as used in later experiments. The examples chosen for visualization of certain steps are based on a
simple and small testing dataset which is not going to be included in the set of datasets used within
later experiments. Following the experiments, statistical tests will be conducted and the output of the
learning algorithms themselves will be briefly examined.

2 1 Introduction



2 Background

2.1 Terminology

Given a dataset with a fixed number of examples and a rule, the following terminology applies:

* P: number of examples with positive label

* N: number of examples with negative label

* p: number of positive examples predicted positive (true positives)

* n: number of negative examples predicted positive (false positives)

* P-p: number of positive examples predicted negative (false negatives)
* N-n: number of negative examples predicted negative (true negatives)

As such, the amount of examples correctly classified amounts to p+N-n (with n+P-p incorrect classifi-
cations, respectively). We can display these values in a confusion matrix (see table 2.1). It should be
noted that all of the heuristics presented require nothing more than the rule’s confusion matrix and in
some cases the rule predecessor’s statistics. The rule learning algorithm used in this thesis belongs to
the Separate-and-Conquer [5] family of algorithms; a type of rule learner that will be introduced in the
following section.

Classified Classified

positive negative
+ true positives |false negatives P
— | false positives | true negatives N

P+N

Figure 2.1: A confusion matrix for a binary-class classification problem

2.2 Separate-and-Conquer Rule Learning

In this thesis, we will focus on a subset of rule learning algorithms based on the covering or separate-
and-conquer strategy [5], a type of rule learner adding one rule at a time. This algorithm can be roughly
divided into two steps, the separate- and the conquer- step, where a single rule is first learned (conquer)
followed by the removal of any covered examples (separate) [13]. The remaining pieces of data are then
used to learn the next rule (return to the conquer step). More specifically, we will regard the top-down
hill-climbing method of beginning the learning process with the universal rule R covering all examples,
and subsequently adding conditions to this rule based on a heuristic h in order to achieve the goals
of consistency and coverage. The former denotes rules that minimize the amount of covered negative
examples while the latter goal strives to create rules covering as many examples as possible. These
goals often have to be traded off against each other. Increasing consistency usually causes a decrease in
coverage and vice versa [13].




In contrast to algorithms producing an unordered ruleset, the experience E in our specific implementa-
tion is modelled as a decision list made up of an ordered list of rules (including the default rule which
unconditionally applies the majority class label to any example in the absence of any conditions in the
body of the rule). This ordered list is then checked from top to bottom for any evaluated example, ap-
plying the class label present in the rule’s head to the example in question for the first rule in the list with
a condition set that is satisfied by that example.

For top-down hill-climbing (the method used in our implementation of the Separate-and-Conquer Algo-
rithm), we see that by starting off with the universal rule when the learning of a new or additional rule
for the theory being built has been deemed appropriate, we begin with maximum coverage (R covering
all examples, regardless of label) and minimum consistency (R not excluding any negative example). By
adding conditions to this rule, the amount of covered examples will decrease with each iteration, low-
ering coverage while increasing consistency. How much consistency is gained (coverage will inevitably
decrease while adding conditions to this rule) depends on the choice of conditions added to the rule in
each iteration. As such, the top-down hill-climbing learning algorithm will try to find the best condition
to add with respect to the desired tradeoff between coverage and consistency in each iteration. This
choice depends on the heuristic function applied to all possible rule refinements (added conditions to a
base rule), choosing the refinement that scores best after applying the heuristic to all refinements. It is
easy to see that the importance of a good heuristic is vital for learning a theory w.r.t. consistency and
coverage as it is the only type of guidance the rule learner can make use of during the training process.

The basic separate-and-conquer algorithm is shown below. The basic algorithm displayed in table 2.2 as
well as the subroutine shown in table 2.3 used to find one best rule for inclusion with the theory can be
found in the rule learning heuristics article written by Fiirnkranz et al. [14] and is included here for the
sake of a quick introduction to the rule learner used throughout this thesis, as the difference between
the generic algorithm and the modification made to allow later experiments can be highlighted well this
way. Note how this algorithm classifies as greedy, e.g. choices made in one iteration are not revisited.

Given the implementation of our Separate-and-Conquer main loop (see figure 2.2) and a set of training
data with known class labels, we create a new theory T to hold the decision list we aim to create. In our
implementation, the main loop will run until no examples with positive class labels are left in the training
data set; termination is guaranteed because anytime a rule is added to T, we remove examples covered
by this rule from the set of training data and use the remainder the next time we run through the loop.
The actual learning process for a single rule is described in detail in the findBestRule() subroutine found
in figure 2.3, with the main steps being the creation of a set of possible refinements and the subsequent
pairwise comparison of the refined base rule with the currently best known rule, again making use of a
heuristic function.

Separate-And-Conquer (TrainingData)
Start with empty theory T
WHILE (positive examples left in TrainingData)
Rule r = findBestRule(TrainingData)
IF (positiveCovered(r) <= negativeCovered(r) BREAK
ADD r to T
REMOVE all covered examples from TrainingData
return T

Figure 2.2: Basic separate-and-conquer algorithm as presented in [14]

4 2 Background
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findBestRule(TrainingData)

Rule rBest = best rule

bestValue = heuristic value of rBest

DO
get possible refinements
evaluate all refinements
Rule rRef = best refined rule
if (heuristic(rRef) >= bestValue)

update rBest
UNTIL (no refinements left)
return rBest

Figure 2.3: Subroutine of the separate-and-conquer algorithm as presented in [14]

2.3 Coverage Space

For our implementation of Separate-and-Conquer, it is easy to see that frequent comparisons of both en-
tire rules and different refinements of the same rule are vital for success. We have already mentioned
heuristic functions tackling this particular objective (with a more formal definition following later). For
the sake of comprehension we will now describe a method of visualizing coverage.

Given the aforementioned values (see figure 2.1) in a dataset of fixed size, Fiirnkranz and Flach [6]
have created a means of visualization with coverage space [6] schematics as shown in 2.4. In order to
obtain coverage space, we plot the number of positive examples covered over the number of negative
examples covered, resulting in a rectangular plot with the x-axis consiting of the values {0, 1, ..., P} (and
{0,1,...,N} for the y-axis). This schematic can then be used to both plot entire theories consisting of an
ordered rule list (the decision list) as well as single rules.

’ ’Q\
’ \
Ony positives covered * Al examples covered
1 { Coverage Space
Only negatives covered
No examples covered s /
N, ’
: o)
0 ‘T' N

Figure 2.4: Coverage space visualization with P total positive examples and N total negative examples

The following points are of special interest:

* (0,0) is the empty theory. It does not cover any examples, neither positive nor negative ones. A
bottom-up learning algorithm would start at this point and successively add rules.

* (0,P) is the perfect theory covering all positive, but no negative examples.

* (N,0) is the opposite theory covering all negative, but no positive examples.

* (N,P) is the universal theory. It covers all examples regardless of label.

2.3 Coverage Space 5



We have already stated that coverage space is useful for both theory and rule plots. Regarding the latter
in top-down hill-climbing, when attempting to learn a rule, neither p nor n ever increase. This invariant
holds because the algorithm started off with the universal rule, maximizing both p and n to achieve
values of p = P and n = N, and subsequently decreasing coverage by adding conditions (excluding
examples can never increase the value of p and n for a specific rule). Adding conditions, as is the case
with this particular strategy of rule learning in each iteration, specializes the rule, excluding some ex-
amples that were previously covered. Compare this to covering algorithms that start off with the empty
theory, successively adding rules to cover more examples. Note that the point in time where a rule is
considered to be specialized enough (top-down) or generalized enough (bottom-up) can be determined
by exchangeable stopping criterions; for all purposes of this paper all experiments will be conducted us-
ing a top-down algorithm, stopping the process of rule refining when the amount of true positives taken
from the rule’s stats is lowered below that of false positives.

ROC Space

Given the coverage space, the ROC (Receiver Operating Characteristic) space can be deducted by nor-

malizing the p- and n-axis. The result is a plot of the true positive rate tpr := % over the false positive
rate tpr := 1. As such, the resolution of the plot changes to ]% for the x-axis (and }l) for the y-axis,

respectively). The result is displayed in figure 2.5.

tpr @ R

N,
\
Ony positives covered e All examples covered

ip{ ROC Space

Only negatives covered
No examples covered N ’
~

fpr

4
N

Figure 2.5: ROC space visualization with P total positive examples and N total negative examples

2.4 Rule Learning Heuristics

Any separate-and-conquer rule learning algorithm relies on some sort of measure to determine the quality
of a rule on-the-fly; this is done with the help of a heuristic function. Heuristics can be classified as either
value heuristics or gain heuristics, where the former determine a value (with larger values denoting better
rules) to assert a rule and the latter taking into account the amount of information gained compared to
a predecessor rule. In this thesis, we will regard the former variant. The heuristics as regarded in this
paper disregard misclassification costs, favoring rules that cover as many positive examples as possible
(optimizing coverage) while keeping the amount of negative examples covered small (optimizing consis-
tency). In accord with the previous definition, it can thus be concluded that this type of heuristic depends
mostly on p (positive examples covered) and n (negative examples covered) [13]. Since for some of the
examined heuristics (e.g. the m-Estimate as well as the modifications suggested later) the values of P
(total positive examples) and N (total negative examples) must be known as well as the statistics of the
predecessor rule (to take into account nested coverage spaces), we generalize our definition of a rule
learning heuristic within the scope of this work as follows, analog to the more abstract characterization
found in [14]:

6 2 Background



h: (p,n,BN,predecessor(rule)) — val

Note that the rule’s predecessor (and thus the predecessor rule’s confusion matrix) are not needed for
the base heuristics examined in this thesis; however we will require access to this information for the
modified variants presented later.

Examined base heuristics

For the experiments we will choose three common base heuristics with slightly different properties.
If not otherwise specified, P and N are assumed to be constant. Figures 2.6, 2.7 and 2.8 show a vi-
sualization of the isometrics of the heuristics. Isometrics are a means of visualizing the properties of
a heuristic, with every line consisting of points (n,p) in coverage space with the same value h(p,n)
assuming constant values for P and N and the same predecessor rule [6].

* Precision: h,...(p,n) = z% Precision is a simple heuristic with trivial intention: A rule r; is prefer-
able to another rule r, if r; covers a larger percentage of positive examples. Note that this does
not take into account coverage - a rule covering one positive and zero negative examples will score
the highest possible value, while a rule covering all positive and one negative example will score
slightly lower. We will see that a theory learned with the help of the precision heuristic is likely
to be training-data orientated, with a bad performance when generalizing to new or noisy data.

Figure 2.6 shows the isometrics for the precision heuristic.

Figure 2.6: Visualization of the precision isometrics (points in coverage space with the same value)

* Laplace: hy,,(p,n) = piﬂz The laplace heuristic reduces some of the overfitting drawbacks (bad

generalization) of precision while following the same general intent of maximizing (mostly) con-
sistency. Starting the p and n count at one instead of zero, the origin of the isometrics shifts to
(—1,—1). The effects of this change include rules on the P and N axis not sharing the same value
anymore. The change in isometrics is visualized above. Applied to the exemplary rules r; and r,
described above, r; would not necessarily score better: if both r; and r, cover zero negative exam-
ples, but r; covers two positives while r, only covers one, the resulting values are h(r;) = 0.75 and
h(ry) = 0.66, while evaluating both rules with precision would have yielded h(r;) = h(r,) = 1.0.
Figure 2.7 shows the isometrics for the Laplace heuristic.

2.4 Rule Learning Heuristics 7



Figure 2.7: Visualization of the laplace isometrics

e P
PPN The m-estimate belongs to the family of configurable heuris-

* m-Estimate: h,..(p,n) = -
tics. The additional parameter m can be used to alter the isometrics. It should be noted that in
the special case m = 0, the m-Estimate equals precision, and with m — 00, the lines connecting
% (the ap_riori distribution), causing
P (B — 522, which equals

points with the same value become parallel with a slope of
~ P+N\p+n

the isometrics to equal that of weighted relative accuracy (hyga
for constant values of P and N). The optimal value for the parameter m has been empirically

p_n
determined by Fiirnkranz et al. [14] to be m = 22.466 and will be used as such within the later

PN
experiments. Figure 2.8 shows the isometrics for the m-Estimate heuristic.

"
-

Figure 2.8: Visualization of the m-estimate isometrics
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2.5 Metrics used for validation performance

We have already highlighted the problem of classifiers overfitting to the training data provided. There
are several ways to use dedicated testing data; a trivial approach would be to split a dataset into two
disjunct parts and train the classifier on the first part before validating it making use of the second part.
However, this is still prone to bias and requires a very large amount of data to be moderately effective.
In order to make the most of a single dataset provided, we will be using cross-validation throughout this
thesis. To execute k-fold cross-validation, the dataset is split into k disjunct folds. Every fold will serve
as the training data once, with the remaining k-1 folds being used for training the classifier beforehand.
The results of all k validations is then averaged to obtain a performance estimate which is less prone to
bias. In this thesis we will make use of two methods to get a performance estimate from testing a trained
classifier (which happens k times during our k-fold cross-validation).

Accuracy per Dataset

A means of validation is to calculate the percentage of correctly classified instances in the testing data.
This value is more straightforward than the AUC and as we will see later, less prone to error on small
datasets evaluated with the help of cross-validation in the case of an algorithm with decision list-type
theory output. The baseline implementation of the separate-and-conquer algorithm in the SeCo- Frame-
work already offers the ability to calcuate this value.

Area under the curve

Recall that a visualization of coverage space is a rectangular plot where both the x- and y-axis share a
resolution of 1 as shown in figure 2.4. We have seen that this representation can be normalized to feature
axis lengths of 1 (see figure 2.5), changing the resolution of the x-axis to 1/N and of the y-axis to 1/P
As such, the axis labels change from N and P to the false positive rate and true positive rate, respectively.
Since we are using decision lists as output of our classifiers, the approach to plot a ROC curve (and thus
obtain the area underneath) is as follows (figure 2.9):

* Group examples covered by the first rule in the decision list and plot coverage in ROC space.

* Remove examples covered by the first rule (because we are using a decision list classifier), then
proceed with the next rule until reaching the default rule covering all leftover examples.

* Calculate the AUC based on the points in ROC space determined in the above steps.

Figure 2.9: Calculation of the AUC in our binary (non-scoring) classifier

Given an example ROC plot, we can easily visually identify the quality of class separation with the help
of the ROC. Less concavities correspond to better class separation and vice versa. As such, we can mea-
sure the quality by regarding the area under the ROC curve (referred to as AUC). Figure 2.10 shows an
example using a top-down classifier that produced an unspecified decision list with two rules followed
by the default rule after being trained on some data. The colored area under the curve represents the
AUC. If the values plotted below were obtained from a real classifier, the concave shape would denote
performance above mere guessing. In order to be able to calculate the AUC, modifications of the SeCo-
implementation were necessary to keep track of required data. Figure 2.10 (right) shows an example
ROC plot with corresponding AUC based on a decision list plotted in coverage space (left) with N = 10
and P = 5. Out of these, rule 1 covers 3 positive and 2 negative examples. Then the covered examples
are removed; rule 2 subsequently covers 1 positive and 2 negative examples out of the 10 left examples.

2.5 Metrics used for validation performance 9



Finally, again after removing the examples newly covered, the default rule covers the leftover 1 posi-
tive and 6 negative examples. To obtain the ROC (figure 2.10, right) we normalize the coverage space.
The AUC can then be calculated as the area under the curve, e.g. the integral.

P tpr

Default Rule

Rule 2 ! | |
AUC

Rule 1

0 N O fpr

Figure 2.10: From decision lists to the Area under the curve
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3 Derived method

The traditional generic Separate-and-Conquer rule learning algorithm uses exactly one measure to both
develop new rules from a base rule by adding conditions as well as select the best rule at the end of each
conquer step to add to the theory. We will first explain the learning of a theory on a simple example
dataset in detail, followed by an explanation of the intent of the optimization approach as well as a
step-by-step comparison, making use of weather.nominal dataset provided by the UCI repository [1].

3.1 Baseline implementation: an example

The data contained in the example dataset outlined in table 3.1 describes a set of weather conditions
(temperature, humidity and outlook) as well as a binary class label determining whether a fictional
game will take place under these conditions or not. It was chosen for our example because of the
relative simplicity of the theory learned and the steps taken to aquire such a theory.

Example | Outlook | Temperature | Humidity | Windy? | Play?
D1 sunny hot high false NO
Do sunny hot high true NO
Ds rainy cool normal TRUE NO
Da sunny mild high FALSE NO
Ds rainy mild high TRUE NO
n; overcast hot high FALSE | YES
ny rainy mild high FALSE | YES
ng rainy cool normal FALSE | YES
ny overcast cool normal TRUE | YES
ns sunny cool normal FALSE | YES
ne rainy mild normal FALSE | YES
n, sunny mild normal TRUE | YES
ng overcast mild high TRUE | YES
ng overcast hot normal FALSE | YES

Table 3.1: Overview of the 14 instances of data. Possible class values are yes and no (right column)

We will now train a classifier on the entire dataset. Since we are using an algorithm that produces a
decision list defaulting to the majority class, the default rule is play = yes. All other rules will predict
play = no, and if none of these does trigger, the default rule will predict the majority class (yes). As
such, the values for P and N in the above dataset are 5 and 9, respectively. Rules will be denoted by
the format head :- condition,, condition,, ..., condition, with head denoting the predicted class label
for an instance that matches all attribute conditions. The heuristic used for both selecting the optimal
refinement and comparing whole rules is h,, ...

As our algorithm is a top-down learner, we start off with an empty theory (table 2.2, line 2) and begin
to refine the base rule play = no. To achieve this, we evaluate all possible refinements for this rule with
the help of the subroutine shown in figure 2.3. A top-down rule refinement is one condition added to
the body of the rule. Given our base rule play = no, the refined rule candidates and their corresponding
heuristic values as calculated with precision are shown in figure 3.2. r; is kept as refinement because it
scored the highest value among refinements and thus always won the comparison (figure 2.3, line 8).

1



Refined rule Coverage | Heuristic
r; | head :- body (p,n) hyrec
r, | play = no :- outlook = sunny (3,2) 0.6
ro | play = no :- outlook = rainy (2,3) 0.4
r3 | play = no :- temperature = hot (2,2) 0.5
r4 | play = no :- temperature = mild (2,4) 0.33
rs | play = no :- temperature = cool (1,3) 0.25
re | play = no :- humidity = high 4,3) 0.57
r, | play = no :- humidity = normal (1,6) 0.14
rg | play = no :- windy = TRUE (3,3) 0.5
r9 | play = no :- windy = FALSE (2,6) 0.25

Table 3.2: Coverage of possible refinements of the rule play = no.

Note that the refinement outlook = overcast is excluded as there exists no positive example meeting this
condition. The set of refinements and their evaluation results are shown in figure 3.1.
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Figure 3.1: Refinements of the rule play = no in coverage space

The best refinement as chosen by precision is the condition outlook = sunny, which will thus be added to
the body of the base rule. Our new base rule is play = no :- outlook = sunny. We now have to rate our
rule to compare it with the previous best rule found. Since we use the same heuristic for rating the rule
as we have used for determining the best refinement, the value of our rule is h,,.. = 0.6, as it consists of
the added condition only. Since it scores higher than our previous best rule (which labeled all examples
as positive), our new best rule is play = no :- outlook = sunny as displayed in figure 3.2.
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Figure 3.2: Comparison of previous best and newly refined rule
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We will now attempt to refine this rule as we still have options (figure 2.3, line 10), starting with making
a list of applicable refinements again (figure 2.3, line 5; table 3.3). The plot is shown in figure 3.3.

Refined rule Coverage | Heuristic
r; | head :- body (p,n) hyrec
ro | play = no :- outlook = sunny, temperature = hot (2,0) 1.0
r1; | play = no :- outlook = sunny, temperature = mild (1,1) 0.5
r15 | play = no :- outlook = sunny, humidity = high (3,0) 1.0
r13 | play = no :- outlook = sunny, windy = TRUE (2,1) 0.5
r14 | play = no :- outlook = sunny, windy = FALSE 2,1) 0.66

Table 3.3: Coverage of possible refinements of the rule play = no :- outlook = sunny.

0 N

Figure 3.3: Refinements of the rule play = no :- outlook = sunny in coverage space

Note that there are two refinements that score the same value. In this case the refinement selection
depends on the implementation; here we select humidity = high because of a larger value for p and thus
have a new best rule play = no :- outlook = sunny, humidity = high scoring a value of 1.0 with three
covered positive examples and no covered negative (compared to our previous best rule rated 0.6). We
now stop since this rule cannot be improved anymore by refinements (as neither p or n ever increase,
as we have established, and n is already zero, we could only decrease the value of p), and add it to the
theory (figure 2.2, line 6). We are now finished with the first conquer step (figure 3.4). Following the
separate step, the covered examples are removed (figure 2.2, line 7) and since there are still examples
left, we start off with the base rule play := no again, attempting to learn a second rule for our theory
(conquer step again), this time only regarding the examples not covered by the first rule we have chosen
to be part of our theory.
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Figure 3.4: A rule covering three positive and zero negative examples has been learned
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3.2 Optimization via modified heuristics for rule refinement

In the standard Separate-and-Conquer implementation, we use the same heuristic function everytime we
want to evaluate an entire rule or a refinement of a rule to determine the current best rule and the best
refinement w.r.t. the goals of the heuristic (usually coverage and consistency). The approach highlighted
in this paper modifies this standard algorithm to use different heuristics for rule selection and rule refine-
ment. We will again use the three value heuristics described above for rule selection, but use modified
variants of these heuristics for rule refinement. Since the goal of this paper is to optimize the AUC, the
choice of these secondary heuristics must reflect that.

Note that the three base heuristics (h,e., hiqp and hp,) all share similar isometrics, with the only
difference being the origin (in the latter case, the location of the origin can be configured via the param-
eter m). We will want to preserve this attribute, but shift the origin to the top right corner of the coverage
space. The intend of this is that in our case the rule refiner follows the top-down strategy (starting off
with the most general rule and successively adding conditions). We have to take into account that the
values of P and N are not constant this time w.r.t. the heuristic function, but depend on the predeces-
sor of the rule. This is because for our approach to work, we will want the origin of the isometrics to
be placed at the point in coverage space corresponding to the base rule we want to refine, which will
produce nested coverage spaces, and subsequently evaluate the refinements within the base rule’s nested
coverage space. Figure 3.5 visualizes the intend of geometrically optimizing the area under the curve
during the rule refinement stage.
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Figure 3.5: Isometrics of the rule refinement heuristic evaluation process

It becomes apparent that if the top-down refinement of a rule is driven by the modified heuristic (isomet-
rics visualized in blue) and the choice of rules for our theory depends on the original heuristic (isometrics
visualized in red), the resulting ROC should be of a more convex shape given our geometric optimization
approach. We will attempt to validate this claim with the help of the later experiments. The modified
heuristics regarded here are as follows, with one variant for each base heuristic.
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Figure 3.6: Visualization of the modified precision isometrics (points in coverage space with the same value)
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Figure 3.7: Visualization of the modified laplace isometrics
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Figure 3.8: Visualization of the modified m-estimate isometrics
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While in theory the modified variants could be used for rule selection too, it is easy to see that this would
not lead to the desired results, especially with h;re .» since all rules covering all positive examples share
the same (maximal) heuristic value of 1.0, even if covering different amounts of negative examples. In
the case of th o and to a lesser extend h{ap being used for rule selection, while rules with high coverage are
still preferred by these heuristics, the rule learning process is not steered towards a consistent theory very
well, especially in the case of h;m, which would assign the maximum score to any rule that covers only
positive examples within the nested coverage space (examples already covered not taken into account)
while completely disregarding consistency. In preceding experiments training a classifier with modified
heuristics being used for rule selection as well as rule refinement, the resulting classifiers were sometimes
unable to label any new testing example correctly. This first approach has as such been dismissed early
on.methnh;“isamnunmﬁnaibrp=Pandn=N¢thsmmuMlaﬂtoadWﬁbnbyzmo.An
interesting property of h,,,, and h/ . is that with m increasing, their isometrics converge towards those
of a cost metric taking into account the apriori distribution of examples. With our parameter setting of
m=22.446, the difference between h,,,,, and h/ __ is rather marginal in practice. Recall the findBestRule-
subroutine of the generic Separate-and-Conquer algorithm (figure 2.3). In order to apply the modified
heuristics to rule refinements specifically, we have to alter the subroutine as shown in figure 3.9; the

updated parts are lines 3, 7 and 8.

findBestRule(TrainingData)
Rule rBest = best rule
bestValue = selection_heuristic(rBest)
DO
get possible refinements
evaluate all refinements
Rule rRef = best refimenent w.r.t. refinement_heuristic(rRef)
if (selection_heuristic(rRef) >= bestValue)
update rBest
UNTIL (no refinements left)
return rBest

Figure 3.9: Altered subroutine of the separate-and-conquer generic algorithm as used in later experiments

Analogous to the previous example, we will again describe the rule learning and refinement process

for one step making use of the weathernominal UCI [1] dataset (see table 3.1. For this we will use

hyree = }% as the rule selection heuristic again, but this time evaluate the refinements with the help of
h/ _ N—n

prec — (P+N)—(p+n)*

Again we start off with the universal rule play = no and look at the possible refinements. The value

of this universal rule according to the rule selection heuristic is h,.,. = }% = 0.357. Note that for the

following refinements (table 3.4), the values are calculated by the modified precision variant.
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Refined rule Coverage | Heuristic

r; | head :- body (p,n) h;m
r, | play = no :- outlook = sunny (3,2) 0.77
r, | play = no :- outlook = rainy 2,3) 0.66
r3 | play = no :- temperature = hot (2,2) 0.7

r4 | play = no :- temperature = mild (2,4 0.625
rs | play = no :- temperature = cool (1,3) 0.6

s | play = no :- humidity = high 4,3) 0.857
r, | play = no :- humidity = normal (1,6) 0.428
rg | play = no :- windy = TRUE (3,3) 0.75
ro | play = no :- windy = FALSE (2,6) 0.5

Table 3.4: Coverage of possible refinements of the rule play = no.

Even though our example was a simple one, the new approach has taken a different path at this point
already. Instead of refining the base rule with the condition outlook = sunny, the refinement humidity
= high now scores higher. Figure 3.10 shows the chosen refinement and it’s position in coverage space
w.r.t the base rule.
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Figure 3.10: Refinements of the rule play = no with the modified rule refinement heuristic

Recall that the value of the base rule w.r.t the rule selection heuristic (ordinary precision) was 0.357. We
now calculate the value of the rule obtained via refining the base rule with the condition that scored best
w.r.t. the rule refinement heuristic with the help of the rule selection heuristic, obtaining the value h,,,... =
0,571 for the rule play = no :- humidity = high (which covers 4 positive and 3 negative examples), which
thus is an improvement of the base rule according to h,,,,.

Again removing the examples covered by this rule (recall that our algorithm produces an ordered deci-
sion list), we proceed to evaluate the possible refinements of play = no :- humidity = high.

3.2 Optimization via modified heuristics for rule refinement 17



Refined rule Coverage | Heuristic
r; | head :- body (p,n) h;m
o | play = no :- humidity = high, outlook = sunny (3,0) 0.75
r1; | play = no :- humidity = high, outlook = rainy (1,1) 0.4
r15 | play = no :- humidity = high, temperature = hot 2,1 0.5
r13 | play = no :- humidity = high, temperature = mild (2,2) 0.33
r4 | play = no :- humidity = high, windy = TRUE 2,1 0.5
r15 | play = no :- humidity = high, windy = FALSE (2,2) 0.33

Table 3.5: Coverage of possible refinements of the rule play = no :- humidity = high.

Given these values, the refinement outlook = sunny is chosen by the rule refinement heuristic. Figure
3.11 visualizes the nested coverage space including the isometrics of the h; o heuristic as well as the
possible refinements.
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Figure 3.11: Refinements of the rule play = no :- humidity = high with the modified rule refinement heuristic

At this point we would stop learning the rule again, add it to the theory and attempt to learn a new rule
on the leftover data. Figure 3.12 gives a quick overview over the difference in the learning process of a
single rule in our example. The assumption is that a theory consisting of rules refined via the modified
approach will reflect in the performance of the resulting classifier measured by accuracy and the AUC
in a positive way. The goal of the optimization method is to learn different rules (possibly in a different
order in the decision list) in order to achieve a better classifier.

Original Modified Approach
«— /

0 N O N

Figure 3.12: Comparison of the learning process of a single rule in the previous example.
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4 Experiments

Note that for all of the experiments conducted below, no additional procedures (like pruning) to avoid
overfitting on the training data have been used following the same strategy as Fiirnkranz and Janssen
[14], focusing on the heuristics used to achieve the goal of a classifier that generalizes well to new data.

4.1 Examined algorithms

For the following experiments, the Separate-and-Conquer algorithm implementation remains constant,
with the only changes being made to the heuristics used for rule selection and refinement. We can thus
denote an algorithm by a pair (Aseiections Mrefinement)- The following twelve combinations will be tested
and compared:

¢ (hprea hprec)
(standard algorithm using the precision heuristic for all purposes)

¢ (hlap)hlap)
(standard algorithm using the Laplace heuristic for all purposes)

* (hmestihmest)
(standard algorithm using the m-Estimate heuristic for all purposes)

 (prees ), (ryrees i) and Gy, )
(modified algorithm with precision-based rule selection and a new refinement heuristic)

. (hlap’ h;rec)’ (hlap> h;ap) and (hlapJ h:nest)
(modified algorithm with laplace-based rule selection and a new refinement heuristic)

* (hmesb hl/:)rEC)J (hmestJ h;ap) and (hmestJ h;ngst)
(modified algorithm with m-Estimate-based rule selection and a new refinement heuristic)

4.2 Examined datasets

We will evaluate the twelve combinations listed above on 20 binary- and multiclass datasets by the means
of average accuracy. The evalutation method is ten-fold cross validation to reduce bias and increase the
quality of the resulting performance estimate.

4.2.1 Arbitrary number of classes

The following table gives a quick overview of the datasets used in the first part of the experiments and
their most important properties.
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Table 4.1: Overview of the binary- and multiclass datasets used in the comparisons based on average accuracy.
Attribute counts include the class label.

Dataset Classes | Instances | Attributes | Notes
breast-cancer 2 286 10 -

car 4 1728 7 -
contact-lenses 3 24 5 -

futebol 2 14 5 -

glass 7 214 10 -
hepatitis 2 155 20 -
hypothyroid 2 3163 26 -
horse-colic 2 368 23 -

idh 3 29 5 -

iris 3 150 5 -
ionosphere 2 351 35 -

labor 2 57 17 -
lymphography 4 148 19 -
mushroom 2 8124 23 low noise
monk3 2 122 7 -
primary-tumor 22 339 18 large number of classes
soybean 19 683 36 large number of classes
tic-tac-toe 2 958 10 -

vote 2 435 17 -

Z0O 7 101 18 -

4.2.2 Binary-class datasets

We will now repeat the same experiment on 9 binary-class datasets by the means of Area-under-the-
Curve, as this is the performance measure we are primarily interested in optimizing. We have limited
the amount of classes to two for simplicity, because the baseline implementation did not provide support
for calculating the AUC and the implemented solution shown in figure 2.9 assumes a class count of two.
Table 4.2 again gives a quick overview of the datasets used in the second part of the experiments and

their most important properties.

Table 4.2: Overview of the binary-class datasets used in the comparisons based on the AUC. Attribute counts
include the class label.

Recall the method of calculating the AUC, slightly altered to accommodate ten-pass ten-fold cross-

Dataset Classes | Instances | Attributes | Notes
breast-cancer 2 286 10 -
hepatitis 2 155 20 -
horse-colic 2 368 23 -
kr-vs-kp 2 3196 37 -
monk3 2 122 7 -
tic-tac-toe 2 958 10 -
vote 2 435 17 -

validation, shown in figure 4.1.
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* Group examples covered by the first rule in the decision list and plot coverage in ROC space.

* Remove examples covered by the first rule (because we are using a decision list classifier), then
proceed with the next rule until reaching the default rule covering all leftover examples.

* Calculate the AUC for the current fold based on above ROC plot.

* Average the per-fold AUC results to obtain an AUC estimate for one pass of a ten-fold cross-
validation.

Figure 4.1: Approach to calculate the AUC after cross-validation

Note that for the second experiment 10x10 cross-validation will be used (repeating the above procedure
for a total of 10 passes and again averaging the results). Because of the comparably small size of the
binary class datasets in question, a lack of data in the respective testing fold may cause significant bias;
this problem is reduced considerably by increasing the number of passes. It should also be noted that
the algorithm implementation does not permit a more reliable way of calculating the AUC, given that for
any two examples e; and e,, if both e; and e, are covered by a rule 1, the algorithm will assign the same
confidence value to both e; and e,, limiting the number of points in the ROC plot to the number of rules
in the decision list (including the default rule) plus one (as the point (0, 0) is always included).

4.3 Comparison of average accuracies (19 datasets)

The results of the experiments on the first set of datasets can be found in tables 4.3 and 4.4. Note that the
dataset mushroom is an useful measure to check basic functionality of modified algorithms as the data
is easy to learn. For the sake of easier readability, the resulting table has been split into two successive
tables. Note that for calculating the ranks of the respective algorithms later, both tables are being taken
into account.

Dataset hprec’ hprec hprec’ h;rec hprec’ h;ap hprec’ h:nest hlap: hlap hlap: h;rec
breast-cancer 68.53 72.38 72.03 73.43 69.58 70.63
car 90.10 90.34 90.51 88.66 90.45 91.20
contact-lenses 79.17 87.50 87.50 83.33 79.17 87.50
futebol 28.57 64.29 57.14 42.88 28.57 64.29
glass 56.54 65.89 68.69 62.15 61.22 65.89
hepatitis 78.07 79.36 80.00 76.77 78.71 79.36
hypothyroid 98.23 98.61 98.74 98.83 98.39 98.61
horse-colic 72.01 79.35 79.35 77.99 70.65 79.35
idh 62.07 82.76 75.86 75.86 62.07 82.76
iris 92.67 93.33 95.33 94.67 94.00 93.33
ionosphere 95.16 82.62 83.19 89.46 94.87 82.62
labor 91.23 80.70 82.46 89.47 91.23 80.70
lymphography 83.78 77.70 84.46 83.11 85.14 77.70
mushroom 100.0 100.0 100.0 100.0 100.0 100.0
monk3 87.71 82.79 82.79 84.43 88.53 85.25
primary-tumor 33.63 39.23 35.10 30.97 32.45 39.23
soybean 90.04 91.51 92.24 91.36 90.34 91.80
tic-tac-toe 97.39 98.02 97.60 97.81 97.60 98.02
vote 94.94 93.56 94.25 94.48 95.40 94.25
700 84.16 88.12 92.08 90.01 86.14 88.12

Table 4.3: Average accuracies obtained via ten-fold cross-validation on 20 datasets
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Dataset hlap: h;ap hlap: h;nest hmest7 hmest hmest: h;rec hmest’ h{ap hmest: h;nest
breast-cancer 71.33 72.73 71.33 72.03 72.38 73.78
car 91.73 91.20 89.64 90.45 90.28 87.91
contact-lenses 87.50 83.33 87.50 87.50 87.50 83.33
futebol 57.14 42.88 50.00 64.29 57.14 42.86
glass 68.69 62.15 69.16 67.29 71.50 63.55
hepatitis 80.00 76.74 78.07 79.36 80.00 76.77
hypothyroid 98.74 98.83 98.80 98.61 98.74 98.83
horse-colic 80.16 77.99 77.45 79.35 78.80 77.99
idh 75.86 75.86 68.97 82.76 75.86 75.86
iris 95.33 94.67 94.00 93.33 95.33 94.67
ionosphere 93.19 89.46 91.74 82.91 83.19 91.17
labor 82.46 89.47 85.97 80.70 82.46 89.47
lymphography 84.46 83.11 75.00 76.35 81.08 83.78
mushroom 100.0 100.0 100.0 100.0 100.0 100.0
monk3 84.43 86.89 81.15 79.51 81.15 82.79
primary-tumor | 35.99 30.38 33.92 37.76 34.51 30.68
soybean 92.39 90.63 91.51 90.92 90.48 91.36
tic-tac-toe 97.60 97.91 98.12 98.02 97.60 97.81
vote 94.25 94.94 93.33 93.56 94.71 96.09
Z00 92.08 90.10 89.11 88.12 92.08 90.10

Table 4.4: (cont’d.) Average accuracies obtained via ten-fold cross-validation on 20 datasets

Looking at tables 4.3 and 4.4, we notice that the algorithm (h;,, h;ap) outperforms other combinations
on a whole 7 datasets (namely car, contact-lenses, hepatitis, horse-colic, iris, soybean and zoo). As such,
this combination in particular becomes interesting for further validation. We will later conduct statistical

. . . / . .
tests to try and prove the assumption that the combination (h;gp, hlap) is superior w.r.t. accuracy.

Algorithm | Average rank
(hprec’ hprec) 8.82
(Mprecs h;m) 6.18
(hprec,h;ap) 5.21
(Mprecs Mot 6.76

(higp>hiap) 7.76
(hiaps h;m) 6.18

(hlap,h;ap) 4.37
(Riaps M)se) 6.37
(hmest: hmest) 7‘13
(Ppest > h;rec) 6.76
(hmest,h;ap) 5.92
(Minese> 1, 6.53

Table 4.5: Average ranks for all twelve algorithms based on above experiments

Table 4.5 shows the average ranks for the twelve combinations taking into account 19 datasets
(mushroom is omitted). We will need these values for further testing later. Our most promising can-
didate (hyqp, h{ap) scored a notable rank of 4.37 (the average expected rank for any algorithm would be
6.5).
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4.4 Comparison of the AUC (7 binary-class datasets)

The results of the experiments on the second set of datasets can be found in tables 4.6 and 4.7. Note
that as previously mentioned, 10x10 cross-validation has been used as a method for evaluation.

Dataset hprec’ hprec hprec’ h;rec hprec’ h;ap hprec: h:nest hlap: hlap hlap: h;rec
breast-cancer 0,605 0,617 0,626 0,639 0,601 0,617
hepatitis 0,685 0,670 0,668 0,639 0,704 0,670
tic-tac-toe 0,981 0,980 0,982 0,976 0,978 0,980
vote 0,949 0,937 0,938 0,948 0,955 0,941
horse-colic 0,747 0,782 0,783 0,796 0,737 0,782
monk3 0,886 0,847 0,850 0,862 0,893 0,846
kr-vs-kp 0,995 0,990 0,993 0,993 0,996 0,989

Table 4.6: AUC obtained via ten-pass ten-fold cross-validation on 7 datasets

Dataset hlap: h;ap hlap: hinest hmesn hmest hmest: h;rec hmest’ h{ap hmest: hinest
breast-cancer 0,619 0,634 0,606 0,611 0,620 0,635
hepatitis 0,668 0,639 0,685 0,670 0,668 0,639
tic-tac-toe 0,982 0,976 0,984 0,980 0,982 0,976
vote 0,939 0,947 0,940 0,934 0,943 0,955
horse-colic 0,783 0,796 0,785 0,783 0,789 0,797
monk3 0,848 0,856 0,793 0,785 0,795 0,807
kr-vs-kp 0,993 0,994 0,997 0,990 0,993 0,993

Table 4.7: (cont’'d) AUC obtained via ten-pass ten-fold cross-validation on 7 datasets

Tables 4.6 and 4.7 show mixed results. This is also shown in table 4.8 listing the average ranks for the
twelve combinations. We will later try to explain why the results do not show a notable correlation with
the experiments based on accuracy; this is partially due to implementation constraints.

Algorithm | Average rank
(Mprecs Pprec) 5,36
(Mprecs h;rec) 8,21
(Mprecs h{ap) 6,29
(hprec’ h;‘lest) 5’64
(hlap’ hlap) 5,50
(higps h;m) 8,00
(hiaps h;ap) 6,57
(hlap: h:nest) 5’79
(hmest’ hmest) 5)50
ot o
by | 607
mest> " “mest ’

Table 4.8: Average ranks for all twelve algorithms based on the second experiment
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After obtaining results for all planned experiments, we will proceed with testing for significant differ-
ences in the entire group as well as comparisons of the individual algorithms with each other. For t}21e
(N-1Z
[11]. If the F; statistic is greater than or equal to the critical value for a significance level of 0.05 (based
on the F-distribution with k—1 and (k—1)(N —1) degrees of freedom [3]) we will reject the null hypoth-
esis of no significant differences within the set of algorithms and proceed with a comparison of single
algorithms based on the Post-hoc Nemenyi Test [3] using studentized range tables [10]. In the case of
failure of the Friedman test, potential reasons for the experiment group in question will be identified. We
will also take a look at the actual output of the individual algorithms regarding average amount of rules
per decision list, average number of conditions (rule length) and notable phenomenons when validating
certain algorithms on specific datasets to give a quick overview on possible further experiments that are
not included in the scope of this thesis.

former the Friedman test [3] will be used with the less conservative [3] [11] statistic Fp =

4.5 Results on 20 datasets based on accuracy

Recall the average ranks of the twelve algorithms obtained during the first experiment. To allow for
further analysis, a Friedman test must first be conducted to test the entire set of results for statistical
relevance.

4.5.1 Validity of the set of results

Using N=19 datasets with k=12 algorithms, we obtain a chi-square value of 20,834 and a corresponding
Fp statistic of 1,993. The corresponding critical value based on a significance level of 0.05 as well as 11
and 198 degrees of freedom is 1,837, resulting in a passed Friedman test (failure at level 0.01). With a
probability of at least 95 percent, the results obtained include significant differences, as such allowing
further research to be done.

4.5.2 Comparison of individual algorithms

Following a passed Friedman test, the individual algorithms were compared to each other making use of
the Post-hoc Nemenyi test as described above. The ranks of the algorithms as well as the critical distance
are shown in figure 4.2 with comparable algorithms (no significant difference according to the Nemenyi
test) connected. The significance level is 0.1 (no interesting results show for lower levels).

Critical Distance

9 8 7 6 5 4

L 1 4 1 [ 1 |
(hprec ,hprec )— —( hlap ,h7ap )
(hlap ’hlap )— —(hprec ,h'Iap )
(hmest,hmest) (hmest,h'lap )
( hmest,h:orec) ( hlap ,h;Jrec )
( hprec ,hr'nest) ( hprec ’h;')rec)
(h mest; hr'nest)

(hlap s h;nest)

Figure 4.2: Nemenyi Test with a significance level of 0.1
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The Nemenyi test supports the theory of the modified algorithm variants performing significantly better
than an unaltered algorithm using pure precision for both rule selection and refinement. It can be noted
that with the exception of the algorithm making use of the m-Estimate heuristic in both cases, the ap-
proach of using two different heuristics for selection and refinement in general seems to perform better,
with the three algorithms making use of the modified laplace heuristic achieving best results.

In subsequent sections, we will try to uncover reasons for this behavior as well as the notable drop
in performance when switching to the modified precision or m-Estimate heuristic for rule refinement.
For this to work, more data concerning the properties of the learned theories is required. We will regard
the m-Estimate being used for rule selection in combination with the unmodified m-Estimate as well as
all three modified heuristics for rule refining; note that all of these four algorithms have been grouped
by the Nemenyi test, yet they exhibit properties that change drastically depending on the heuristic used
for rule refinement.

Number of rules and conditions

Dataset (hmesh hmest) (hmestJ h;rec) (hmest’ h;ap) (hmestJ h;nest)
breast-cancer 34/158 33/189 39/179 20/66
car 161/846 161/833 162/834 165/845
contact-lenses 3/8 3/9 3/8 4/13
futebol 2/4 2/9 2/5 4/7
glass 17/55 15/241 15/90 28/84
hepatitis 8/30 6/60 7/46 6/24
hypothyroid 10/52 11/285 9/69 15/80
horse-colic 23/114 18/163 19/111 31/111
idh 3/4 2/9 2/5 2/5
iris 5/15 5/28 5/17 6/15
ionosphere 9/21 7/111 8/42 12/40
labor 3/4 3/22 3/12 3/5
lymphography 13/46 10/97 10/49 16/49
mushroom 11/13 7/44 7/35 7/29
monk3 14/44 14/50 14/45 14/40
primary-tumor 77/521 81/1001 79/563 74/298
soybean 46/151 43/516 44/192 53/163
tic-tac-toe 15/64 16/74 16/69 25/93
vote 12/63 12/69 12/59 7/25
Z00 11/15 6/48 6/14 12/14

Table 4.9: Number of rules and conditions for four different algorithms sharing the same rule selection heuristic

Based on table 4.9, the following observations can be stated, including a possible explanation for the
behavior in question.

Overfitting on the training data with modified precision

Looking at above results it becomes apparent that the average number of conditions added to a rule
(especially when using modified precision) for rule selection slightly supersedes the number of condi-
tions found in other algorithm’s output rules. At the same time, the amount of rules remains relatively
constant or decreases slightly. A unusually large number of conditions means that the separate-and-
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conquer learner has chosen the rule refinements in question based on only a small set of examples in
each step, as the number of steps required to trigger the stopping criterion rises when coverage de-
creases only slowly during the refinement process. Recalling the isometrics of the modified precision
variant, the reason for this behavior becomes apparent. Given an exemplary rule r, a refined rule cov-
ering only one positive and no negative examples would score the highest possible value (1.0) when
evaluated with modified precision.

However, a rule constructed this way is prone to low coverage, and rules consisting entirely of con-
ditions that only cover a small percentage of examples each are subject to noise in the training data to
such an extent that the performance measured with the help of cross-validation (which aims to provide
an unbiased estimate of the performance of the algorithm on new unknown testing data) drops notably.
Note that basic precision already suffers from this problem, even though it usually applies to the number
of positive examples while with our modification, the problem shifts to disregard the number of negative
ones. This is especially true in cases of noisy datasets with a large number of attributes compared to the
number of instances (and as such, alot of opportunities for the rule refinement process to overfit on the
training data provided). In the case of the hypothyroid UCI [1] dataset, the average number of conditions
in each rule is more than three times as high with modified precision being used for rule refinement than
the number of conditions found in rules learned by the other three variants. This observation might
explain the performance drop of modified precision being used compared to modified laplace, which
is less prone to overfitting, since rule refinements with no negative examples but different amounts of
positive examples covered will no longer score the same value, and better coverage will result in a higher
heuristic value even if consistency stays the same.

P h(ref1) = h(ref2)
h(ref3) < h(ref1)
“pase rule| h(ref3) < h(ref2)

0 l N

Figure 4.3: Visualization of the usage of modified precision to refine a base rule

Looking at figure 4.3, refinements 1, 2 score the exact same heuristic value, while refinement 3 scores
slightly lower. Yet refinement 1 is trivially a worse refinement than refinement 2, and not necessarily
better than refinement 3. Plus, if the rule is constructed out of a large amount of refinements that only
denote a small step in coverage space, the problem of training data overfitting becomes apparent, result-
ing in lower quality rules that may still be selected by the algorithm later on based on their statistics.
Note that the small shift of the isometrics origin caused by the modified laplace heuristic considerably
reduces this problem during the refinement stage. I must be noted though that intelligent tie-breaking
may be able to help resolve this issue partially; the tie-breaking mechanism (default behavior is to prefer
a higher number of covered positives in case two rules score the same heuristic value) has not been
altered from the baseline algorithm w.r.t. this thesis.

Larger amount of rules within decision lists with modified m-Estimate
While smaller and more symbolic datasets being used for validation do not result in any notable dif-

ferences between the modified m-Estimate rule refinement heuristic compared to the other variants, a
slight increase in the amount of rules learned (and as such, complexity of the theory learned) can be
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noted on certain other, generally larger datasets (notably horse-colic, soybean and hypothyroid). Since
in the case of decision lists used within these experiments, decision list length and order do matter w.r.t.
performance of the algorithm, this may be a possible explanation of why the modified laplace heuristic,
which does not feature this property, performs slightly, although not significantly, better. While not di-
rectly related to the family of algorithms that are subject to this thesis, it should be noted that simple
theories consisting of fewer rules with large support seem to be preferable, which is the underlying mo-
tivation for algorithms such as ROCCER [17] that aim to reduce the size of the output theory via ROC
analysis.

One reason for the slightly increased theory size when using the m-Estimate with the parameter set-
ting of m = 22,446 to refine rules may be the increasing similarity to the weighted relative accuracy
heuristic with large values of m, which follows a different intent than the precision-family heuristics and
tends to over-generalize [12]. While the learning of a single rule will usually incorporate only a limited
amount of conditions, the above results show that in some cases, this will result in more rules required
to cover all positive examples (which is when the algorithm will stop adding rules to the theory and
terminate with a result).

4.6 Results on 7 binary-class datasets based on the AUC

Executing a Friedman test based on the results obtained in the second half of the experiments, the
null hypothesis of no significant differences between algorithms cannot be refuted at a significant level.
Therefore a Nemenyi test is not admissible. Since these results differ from those obtained earlier for
accuracy and generally seem to be of a more mixed nature, possible reasons will be discussed, focusing
mostly on the method of obtaining the AUC measure for a given algorithm and dataset.

Influence of the lack of testing data within one fold of a cross-validation

Recall that conducting a ten-fold cross-validation will produce testing datasets of roughly 10 percent of
the original dataset’s size. This is especially relevant due to the following factors which apply to the
second half of the experiments:

* The binary-class datasets already have low instance counts on average.

* The amount of datasets used may be too low to uncover statistically significant differences.

* The method used to calculate the AUC per-fold is potentially prone to bias, especially if the dataset
is too sparse to reliably obtain well-stratified testing folds.

Particularly due to the reasons listed above, the results obtained show no similarity to those obtained in
the previous experiment. Raising the amount of passes to ten (resulting in 10x10 cross-validation) did
decrease the amount of randomness but did not cause any significant differences between algorithms
as determined by the Friedman test. Recall that any two examples covered by the same rule cannot
be differentiated w.r.t. the method of calculating the AUC in the underlying implementation of our
decision-list based Separate-and-Conquer algorithm.
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5 Related Work

We will now give a quick overview over related work in the field of AUC optimization, namely PRIE [4],
ROCCER [17] and Bostrém’s work [2].

5.1 PRIE

PRIE is a separate-and-conquer rule learner that, like the classifier previously examined in this thesis,
produces a theory in the form of a single ordered rule list that is sequentially checked for the first rule to
match a given example [4, p. 3]. We will first describe the method used in more detail before discussing
differences with our approach.

5.1.1 Underlying basic algorithm

Initialize empty rule list RL
FOREACH class c: initialize ROC hull of c with ((0,0),(1,1))
Create initial rules for discrete and set-valued attributes
Create initial rules for continuous attributes
WHILE (<criterion>)

FOREACH class c: rules_for_ROC(c)

Rule r = best rule

Add r to the end of RL

Figure 5.1: Initialization and outer loop of PRIE. See [4, p. 8]

Figure 5.1 shows the outer loop of PRIE.The algorithm starts off with an initially empty rule list (line 1)
that will form the output theory after termination. PRIE maintains a ROC space and the corresponding
convex hull (referred to as ROCCH [4]) for each class ¢; € C under consideration by setting the positive
class to ¢ and the negative class to {c; € C : j # i}. This hull is initialized with the endpoints (0,0) and
(1,1), resulting in an initial default value of 0.5 for the AUC (line 2). Lines 3 to 4 describe the creation
of singleton rules for every attribute a; with value v, as shown in table 5.1.

Attribute | Attribute type Value | Rule(s) generated

a; discrete-valued Uy ¢ - (a; =)

a; set-valued Vi ¢; - (v €q)

a continuous-valued | v ¢; - (a; <wy)and ¢ :- (a; >= y)

Table 5.1: PRIE: Initial creation of rules

After creation of these rules, their statistics are calculated (TB FB tpr, fpr) as well as their respective
position in ROC(c;). PRIE now enters its outer loop as shown in figure 5.1, line 5. For every class, it
will now develop rules for ROC(c;) (line 6) as described in subsection 5.1.2, and subsequently extract
the best rule (line 7) of all convex hulls. The best rule in this context can be found by choosing the rule
in the segment with minimal false positive rate of the corresponding ROCCH(c;), preferring a higher
true positive rate in case of a tie. This rule is then added to the end of the rule list (line 8), following a
recomputation of the ROC(c;)- spaces and the convex hulls. The stopping criterion for the loop (line 5)
is exhaustion of all ROC spaces, reducing them to a single line with the endpoints (0,0) and (1, 1).
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5.1.2 Generating new rules

PRIE generates rules by combining existing ones, joining their conditions to form a new rule. The rule
generation process is done for each class (and thus, each ROC space maintained), forming the inner loop
of PRIE further elaborated in subsection 5.1.3. In order to combat the problem of NP-complete enumer-
ation of all possible combinations, PRIE (as any separate-and-conquer rule learner) must use some sort
of heuristic measure to exclude some possible combinations. PRIE does this by eliminating rules that
are unlikely to extend the convex hull of each ROC space, as such attempting to optimize the resulting
AUC directly. For this to work, it needs to have access to certain estimates of the performance of a rule
Teombined CONsisting of the conjoined conditions of two rules r; and r,. The relevant statistics (tpr and
fpr) of r; and r, can be assumed to be known as they have been previously calculated.

Assuming conditionally independent rules

Fawcett has shown that if the above assumption holds, given tpr;, tpry, fpr, and f pr,, the combined
rule’s position in ROC space is (fpry - fpry, tpry - tpry) [4, p. 9 ff.]. Figure 5.2 shows the resulting
position in ROC space for i, gependent» @ssuming conditional independence.

tpr

%

g

@,

independent

0 fpr

Figure 5.2: ROC position of combined rule if rules 1 and 2 are conditionally independent

Assuming the best possible result w.r.t. ROC performance

Given two rules r; and r,, the best possible combination result would obviously maximize the true
positive rate, while at the same time minimizing the false positive rate. Because rules are combined by
conjoining their conditions, an example matching the resulting rule would have to match both r; and
5. As such the upper bound for the true positive rate of the result would be the minimum of tpr; and
tpr,. Fawcett further derived the lower bound for the false positive rate of the resulting rule to be zero if
fpri+fpry=0and fpr,+ f pr,—1 otherwise as the false positives of r; and r, might have examples in
common, leading to an optimal rule located at (max(f pr, + f pr,—1,0), min(tpr,, tpry)) in ROC space
[4, p. 10]. The result is shown in figure 5.3.
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Figure 5.3: ROC position of best possible combined rule according to Fawcett

Optimism parameter and interpolation

After calculating ripgependent @0d Toprimar> the optimism parameter can be used to execute linear interpo-
lation between both points in ROC space. This parameter ranges from zero to one, resulting in r,ptimal
for optimism =1, ripgependent fOr optimism = 0 and a linear interpolation for any value in between. The
result of using a value of optimism = 0.5 is shown in figure 5.4. Using these assumptions, rules that can
be expected not to extend the convex hull of the ROC space in question can be eliminated [4, p. 10 ff.].

tpr

r -
S optimal

[~
8. r,
O,

ndependent

0 fpr

Figure 5.4: Result of using a value of 0.5 for the optimism parameter

The constraint line concept

Fawcett showed the concept of constraint lines for the independence assumption to further eliminate
rule pairs that are unlikely to produce new quality rules w.r.t. ROC performance, and stating that this
can be extended towards the optimistic and interpolated assumptions [4, p. 11f.]. Starting off with a
rule r; and the set of hull segments H, a set of boundary segments B is created such as that for a rule r,,
if r, lies below B then the conjunction of r; and r, will not lie above H and as such, r, does not have to
be considered for combination with r;.

A segment h; € H is a line expressed by the equation y = my,;; - x + by,;;; given true and false positive
rates tpr; and f pr; of ry, Fawcett concluded that a rule r, can only be combined with r; resulting in a

rule above the hull line if r, satisfies the inequality tpr, > fp?};% - fpro+ % [4, p. 11].
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5.1.3 PRIE inner loop

The inner loop is where the combining of conditions to form new rules happens. This is done for
each maintained ROC space making use of the techniques outlined in [4, p. 4-12]. For every hull
segment examined, rule pairs that can be expected to extend the hull (based on the assumptions listed
in subsection 5.1.2) are considered.

There may also be cases where the combination of two rules will result in a rule with zero coverage. This
trivially is the case with two rules r; and r, where r; :- (a; = v;) and r, :- (a; = v,) for discrete-valued
attributes a;, as well as rules r; :- (a; < v) and r, :- (a; >= v) checking a continuous attribute g;. In
addition, duplicates in the set of conditions can be removed immediately.

5.1.4 Comparison with our derived method

PRIE, being a separate-and-conquer rule learner with a decision list-type output shares some character-
istics with the algorithm described in chapter 3. Most notably, the greedy method of adding one rule
per iteration to the end of a rule list remains unchanged. However, the approach to generate rules both
at initialization and in the rule development process differs greatly. PRIE naturally works with multiple
classes [4, p. 3], while our approach has to learn a theory for every class starting with the least frequent
one, subsequently adding the resulting class-specific theories to the main one.

The main differences start when we begin to learn rules. The approach of combining rules by conjoining
their conditions may seem similar to the rule refinement process of our approach described in section 3.2
as rules will grow w.r.t. the size of the condition set starting from trivial rules, however PRIE combines
rules, while our approach combines a rule and exactly one condition in every refinement step. As such,
for the rule refinement process to produce quality rules, we had to make use of rule learning heuristics
as described in section 2.4 and 3.2. Our approach was to use heuristics to geometrically optimize the
resulting AUC by guiding the refinement process along a preferably convex curve, but as the results in
chapter 4 have shown this method might be better suited for optimizing precision, but not necessarily the
AUC in all cases. PRIE can do without such a measure by working directly on the AUC; the criterion for
dropping candidates in the case of PRIE is based on estimates entirely relying on AUC analysis, making
use of upper- and lower bound estimates, a method of weighting these and an inequality for dismissing
candidates purely based on predicted AUC performance (see constraint line concept in subsection 5.1.2).
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5.2 Bostrom'’s experiments

The experiments conducted in this thesis are all based on a decision list theory output. Bostrom has
compared this approach to rule learning with the method of generating order-independent rule sets and
described the impact on the AUC in his work [2, p. 1]. We are going to summarize the key results in this
section.

Problems with unordered rule sets

Unordered rule sets require a more sophisticated classification procedure than decision lists, since the
contents of the latter can be checked one by one and only the first matching rule must be considered.
For rule sets however, this does not apply, and more sophisticated methods must be executed. The two
main problems encountered are as follows:

* For a given example, no rule at all might apply.
* For a given example, multiple rules might apply.

Using decision lists, both of these problems are avoided, since only one rule (the first matching rule)
is considered for classification, and the default rule will apply to any example the previous rules failed
to classify. In Bostrom’s work, the former problem is solved by assigning the majority class to examples
with no matching rules [2]; this is equal to the default rule in the decision list- approach. Two possible
solutions for the latter problem are discussed. By imposing an order to the rules in the rule set based on
class probability, this can be solved. Another approach would be to use Naive Bayes to compine the class
distributions of all applicable rules.

The algorithms used in Bostréom’s work to generate decision lists and rule sets are variants of the IREP
(Incremental Reduced Error Pruning [7]) technique, namely IREP-O for ordered decision lists and IREP-U
for unordered rule sets. IREP uses pruning [7, p. 1] to avoid the generation of heavily specialized rules;
several common pruning techniques used in IREP maximize precision [2, p. 29].

Employed methods and results

_b
Bostrom has conducted experiments based on IREP-O and IREP-U, using accuracy and lift (£5~) as ex-
P+N

clusion criteria for the former, and evaluating each method both with and without post-processing. For
classifying based on rule sets, both solutions to the problem of multiple applicable rules mentioned above
were applied. The pruning criterion is always precision, splitting the training data into a growing and
pruning set with sizes % and %, respectively [2, p. 30].

The author has come to the conclusion that the benefits of decision lists come at the cost of a negative
impact on the AUC. The explanation given by Bostrom centers around the problem of a default rule
prohibiting the differentiation of examples belonging to the default class. Using all applicable rules
and a method of combining the results resulted in a higher value for the AUC than using only the first
applicable rule [2, p. 31ff.].
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5.3 ROCCER

ROCCER [17] differs from standard covering algorithms (such as the algorithms examined in this thesis)
as it relies on ROC analysis for selecting rules instead of employing a greedy method of adding rules
based on certain heuristics. Rules are created with the help of the Apriori association algorithm and
selected based on the ROC curve itself. ROCCER keeps rules in an ordered decision list separately for
each class and employs a similar method to PRIE [4] by regarding the class rules are currently being
selected for as positive and the union of all other classes as negative. Every rule list is initialized with
a default rule predicting the positive class cite[p. 2]roccer, forming a ROC convex hull described by the
points (0,0) and (1, 1) in ROC space.

Consider for example a rule r; that did indeed extend the ROC convex hull. Given another rule r,,
ROCCER will now attempt to find the best position within the rule list for insertion of r,. This is done by
first checking if the rule’s statistics (namely false and true positive rate) position the rule outside of the
ROC convex hull, in which case r, is inserted before the first rule in the rule list. If this is not the case,
ROCCER will remove all examples covered by the rule to compare r, with (this would be r; in this case),
update the false and true positive rates of the rule and apply the same procedure, this time comparing
ro, with the next rule in the decision list. If no rule is left to compare with, and the position of r, in ROC
space never extended the convex hull, r, is discarded; as such, concavities in the ROC curve are avoided.

Classification with ROCCER

Since ROCCER selects rules separately for each class, it maintains multiple ROC convex hulls (compara-
ble to PRIE [4]). Given an example instance, each class is thus considered separately and the first rule
that fires is determined. ROCCER is capable of generating both a ranking output and a classification
output. For the former, the probability is calculated from the posterior odds (recall that each rule has an
associated point (f pr, tpr) in ROC space, yielding a likelihood ratio); alternatively, ROCCER selects the
class with maximum posterior odds to achieve the latter [17, p. 3].

AUC Performance of ROCCER

ROCCER has been compared with CN2 (both ordered and unordered), C4.5 (both with and without
pruning) and other approaches in [17]. The results obtained showed comparable values for the AUC
while at the same time generating more meaningful rule sets based on fewer rules with larger support
and weighted relative accuracy, which led Prati et al. to the conclusion that the rules generated by
ROCCER are more expressive by themselves compared to the output of other approaches including
unpruned decision trees [17, p. 5].
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6 Conclusion and Future Work

Based on the experiments on 19 datasets, we can see that the choice of heuristics has a notable in-
fluence on the performance of the respective algorithm, with one of the modified approaches, namely
(hlapl,h;apl), performing best. We can observe significantly better performance with the modified ap-
proaches compared to using the baseline algorithm with h,,,.., backed by a Nemenyi test. The average
ranks obtained seem to suggest further research of Separate-and-Conquer making use of the modified
laplace or m-Estimate heuristic for rule refinement. We have determined possible reasons for the lack of
performance of certain algorithms, such as Separate-and-Conquer with precision (both the original vari-
ant for rule selection and the modified one for rule refinement) tending to overfit on training data and
the m-Estimate heuristic with a parameter setting of m = 22.446 possibly being too similar to weighted
relative accuracy in order for the basic intend of mirroring the isometrics to net a profit during the rule
refinement process.

The average length of the rules produced by the algorithms is a good indicator of the degree of gen-
eralization (or specialization) when compared to a baseline experiment (notably usage of Separate-and-
Conquer without a distinction between rule selection and rule refinement). Given the slight performance
peak when moving the origin of the modified precision isometrics to take the form of the modified laplace
heuristic, which drops off after further origin shifting (recall that the m-Estimate in cases of P=N is ba-
sically a configurable laplace heuristic), it might be worth evaluating different parameter settings for m
in the context of this optimization approach.

The experiments on the AUC did not provide any significant results; this may be partially due to the
size and amount of datasets used as well as the method of calculating the AUC based on a decision-
list output. The solution of using ten-pass ten-fold cross-validation did not relieve this issue; using
larger datasets with ten passes of a ten-fold cross-validation was not possible at the time of writing due
to memory constraints when running the implementation of Separate-and-Conquer found in the SeCo
framework with modifications to accomodate for calculating the AUC on a per-fold basis.

The results of the experiments on 19 datasets seem to indicate that the optimal distance of the rule

. . . . . . / . / .
refinement heuristics origin is larger than zero (hprec), but not as large as when using h; ., with the

parameter setting of m = 22.446. This is because we observe a performance peak when using h;apl com-

pared to the other two choices, suggesting that the optimal value for the h’ - heuristic is likely to be

found within the interval [1,22.446]. As such, future experiments may attempt to determine an optimal
value for m in the case of the modified m-Estimate analog to Fiirnkranz and Janssen [14].

Given larger binary-class datasets the experiments based on the AUC can be repeated and checked for
compatibility with the results found in the first block of experiments conducted in this paper. In addition,
we have disregarded tie-breaking in the case of multiple refinements scoring the same value, but (h;rec)
could benefit from this to some extent (the default tie-breaking mechanism used has not been optimized

for the modified heuristics approach).
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