

 Outlier Detection in Linked Open Data

Bachelor-Thesis von Dominik Wienand aus Darmstadt

Juni 2013

Fachbereich Informatik
Knowledge Engineering

Page 2

Outlier Detection in Linked Open Data

Vorgelegte Bachelor-Thesis von Dominik Wienand aus Darmstadt

1. Gutachten: Prof. Dr. Johannes Fürnkranz
2. Gutachten: Dr. Heiko Paulheim

Tag der Einreichung: 3.6.2013

Page 3

Table of Contents

1. INTRODUCTION ... 6

1.1 ABSTRACT .. 6

1.2 PROBLEM STATEMENT .. 6

1.3 OVERVIEW .. 7

2. BACKGROUND .. 8

2.1 SEMANTIC WEB .. 8

2.1.1 RDF ... 8

2.1.2 Ontologies .. 9

2.1.3 Linked Open Data ... 11

2.2 STATISTICS ... 13

2.2.1 Outlier Detection .. 13

2.2.2 Robust Statistics ... 15

2.2.3 Kernel Density Estimation .. 17

2.2.4 Clustering ... 18

2.3 RELATED WORK ... 18

3. APPROACHES .. 19

3.1 DATA TYPES ... 19

3.2 BASIC OUTLIER DETECTION ... 19

3.2.1 Interquantile Range .. 19

3.2.2 Dispersion and Center .. 20

3.2.3 Kernel Density Estimation .. 20

3.3 ITERATION .. 20

3.4 SEMANTIC OUTLIER DETECTION .. 20

3.4.1 Splitting by Single Type .. 21

3.4.2 Clustering by Type Vectors ... 23

3.5 IMPLEMENTATION DETAIL .. 23

3.5.1 Data Representation and Parsing .. 24

3.5.2 AnalysisMethod and Analyzor .. 24

3.5.3 Analysis Method ... 24

3.5.4 Outlier Score ... 24

3.5.5 Analyzor.. 24

4. EVALUATION .. 26

4.1 METHODS ... 26

4.1.1 IQR .. 26

4.1.2 Dispersion ... 26

4.1.3 KDE ... 26

4.2 MODES ... 26

4.3 TEST TRACKS ... 26

4.4 SIMULATED DATA .. 26

4.5 SPECIFIC PREDICATES ... 29

4.5.1 PopulationTotal .. 29

Page 4

4.5.2 Height ... 31

4.5.3 Elevation ... 33

4.6 COMPARISONS .. 35

4.6.1 Mode Comparisons... 35

4.6.2 Dispersion Estimator Comparison .. 37

4.7 ITERATION .. 39

4.8 RUNTIME .. 39

4.9 KDE ... 39

4.10 PARAMETERS .. 42

4.10.1 Quality Measure .. 42

4.10.2 IQR ... 43

4.10.3 KDE ... 44

4.11 RANDOM SAMPLE ... 44

4.12 EVALUATION ON 50 RANDOM RESOURCES ... 45

4.13 DATA TYPES ... 48

4.14 RANGE .. 48

4.15 DATA TYPE MAJORITY .. 48

4.16 PARSING ... 49

5. DBPEDIA ANALYSIS ... 50

5.1 ERRORS IN WIKIPEDIA .. 50

5.2 DBPEDIA-OWL:HEIGHT ... 50

5.2.1 Imperial Conversion .. 50

5.2.2 Metric Conversion .. 51

5.2.3 Meter Cut Off ... 51

5.3 DBPEDIA-OWL:POPULATIONTOTAL .. 51

5.3.1 Zero in Number ... 51

5.3.2 Double Information .. 52

5.3.3 Additional Number in Value ... 52

5.4 DBPEDIA-OWL:ELEVATION ... 53

5.4.1 Unit misinterpretation .. 53

5.4.2 Wiki Semi .. 53

5.5 GENERAL .. 53

5.5.1 Lists and Ranges ... 53

5.5.2 Misinterpretation Due to Inconsistencies ... 54

5.5.3 Date in value .. 54

5.5.4 Separators .. 54

5.5.5 Comma As Decimal Separator .. 55

5.5.6 Dot as Thousands Separator .. 55

5.5.7 Comma as Thousands Separator .. 55

5.5.8 Time Misinterpretation .. 55

5.6 DBPPROP VS. OWL ... 55

5.6.1 Data types .. 55

5.6.2 Property Comparison .. 57

6. CONCLUSION .. 59

6.1 RESULTS ... 59

6.1.1 Methods ... 59

Page 5

6.1.2 Modes ... 59

6.1.3 DBpedia Analysis .. 59

6.2 OUTLOOK ... 60

6.2.1 Integrated Implementation .. 60

6.2.2 Frontend Integration .. 60

6.3 SEMANTICS ... 61

6.3.1 Semantics Error Detection .. 61

6.3.2 Clustering ... 61

6.4 LINKED DATA ... 62

6.5 UNIVARIATE OUTLIER DETECTION METHODS .. 62

REFERENCES .. 63

LIST OF FIGURES ... 65

LIST OF TABLES ... 66

Page 6

1. Introduction

1.1 Abstract

Linked Open Data(LOD) makes a vast amount of information freely accessible. DBpedia is a cen-

tral hub of this LOD cloud and scrapes data from structured Wikipedia elements to make them

available to the Semantic Web. However, this scraping approach is prone to errors, which is why

error detection methods and quality assessments are needed.

We study the application of general and numerical outlier detection methods to LOD. Methods in-

vestigated include Interquantile Range(IQR), Kernel Density Estimation(KDE) and various disper-

sion estimators. We analyze data types to identify structural errors and RDF types to segregate da-

tasets for further analysis.

We manually evaluate the approaches on selected datasets as well as on random samples from

DBpedia. The data collected during this evaluation is then used to assess some quality aspects of

DBpedia.

Combinations of IQR and KDE with certain grouping strategies based on RDF types achieve about

87% precision on selected datasets as well as on random samples. Runtime-wise, however, we find

vast differences that make KDE and more sophisticated clustering methods appear unfeasible for

time-critical scenarios.

Regarding the data quality, we identify 11 different sources of errors in the DBpedia extraction

framework along with various other inconsistencies. Between the DBpedia-OWL and DBProp

namespaces, we find vast differences in quality.

1.2 Problem Statement

The goal of this Bachelor thesis is to find and evaluate methods of detecting and possibly correcting

errors in Linked Open Data. Those methods should be unsupervised so they can be incorporated

into the scraping and parsing methods already found on the Semantic Web.

In a second step we take a look at the outliers we discovered this way to identify common sources of

errors on DBpedia.

This work focuses on DBpedia for multiple reasons:

1) As can be seen on Figure 1: LOD Cloud, DBpedia is a central hub of the Linked Web and

thus one of the most important subjects to analyze

2) DBpedia, being sourced from Wikipedia, contains diverse data from all domains of life

3) The way DBpedia gathers its data from Wikipedia makes it susceptible to errors and thus

DBpedia would specifically benefit from outlier detection

Page 7

Figure 1: LOD Cloud (Cyganiak & Jentzsch, 2011)

The need for an unsupervised method combined with the extreme diversity of the data we are deal-

ing with means our methods have to be robust but we cannot make many assumptions about the

distribution of the data. Further complicating things is that we are frequently dealing with larger

datasets (up to millions of data points), which makes efficiency important.

After evaluating various outlier detection approaches, we use the data we collected during the eval-

uation to find common sources of erroneous data points in DBpedia and to assess some more gen-

eral aspects of DBpedia, such as how the dbpedia-owl namespace compares to the dbpprop

namespace.

1.3 Overview

In section 2, we give background information about the Semantic Web and the statistics of outlier

detection.

In section 3, we present the approaches that we considered to solve our problems.

In section 4, we evaluate those approaches.

In section 5, we use the data collected during the evaluation phase to perform quality analysis on

DBpedia.

In section 6, we give a conclusion of our results and an outlook on possible further questions regard-

ing the topics of this work.

Page 8

2. Background

2.1 Semantic Web

The Semantic Web is an initiative by the World Wide Web Consortium (W3C) that promotes aug-

menting the World Wide Web with semantics that are machine-readable (W3C, 2013).

The World Wide Web is full of information. It has flourished through its decentralized and inter-

linked nature. Most of this information is meant to be specifically accessible to humans, unlike da-

tabases, which are primarily geared to machine processing. That means text is structured with head-

ings, section, paragraphs etc. to help us quickly grasp its content and find the information we are

looking for. This, however, does little to enable computers to access the information contained in

the text.

If we want to know when and where a certain “Tom” was born, the following sentence provides all

the information we need: “Tom was born on January 29, 1963 in the town of Exampleton.” Howev-

er, in order to process that information with a computer, it has to be available in a structured, stand-

ardized format, because there is a practically arbitrary number of different representations of that

same information in natural language, all of which the computer would have to be able to parse au-

tomatically.

The basic structure of the WWW is provided by the HTTP protocol and the HTML markup lan-

guage. HTML consists mostly of content between tags that specify how that content will be dis-

played but hardly any information about what that content represents.

This makes it hard for a machine to directly answer even simple questions such as “When was

[some person] born?” “What is the capital of [some country/state]?” What search engines, given

such a query, will usually do, is present us with a link to a corresponding homepage or Wikipedia

article where we can then find the information we are looking for. However, if our query is some-

what more advanced, for example “find all known persons born before [some data] in [some capi-

tal]”, this approach quickly comes to an end. Given a database with the all the relevant information,

this query could easily be handled. And all the information is available on the WWW, because for

every somewhat notable person there is probably a web page that will at least state the place and

date of birth. But since there is no simple way to automatically aggregate and process that infor-

mation, because it is completely unstructured, our query remains unanswered.

There are two basic approaches to overcome those limitations of the current web: Extracting infor-

mation from the existing, unstructured data and creating new structured data in a machine friendly

format. The former is commonly known as Data Mining, the latter is the approach of the Semantic

Web.

The idea is to create a web, much like the WWW, of machine accessible information. The infor-

mation is made machine accessible by augmenting it with semantics that a computer can make use

of.

2.1.1 RDF

The “Resource Description Framework” (RDF) was created to model information graphs and forms

one of the foundations of implementations of the Semantic Web idea (Klyne, Carroll, & McBride,

2004).

At its core, there are triples of Unique Resource Identifiers (URI) and literals. As the name implies,

URIs are supposed to uniquely identify resources within their namespace. Beyond that, URIs are

generally supposed to be dereferencable, that is, it should be possible to obtain the resource they

Page 9

represent in some way. For practical purposes, that means retrieving them from the Internet via http;

thus most URIs take the form of URLs such as http://dbpedia.org/resource/Darmstadt.

Literals represent primitives such as 1 or Germany. It is possible to augment them with suffixes

indicating languages as in Germany@en and Deutschland@de or data types as in 1^^ http://

www.w3.org/2001/XMLSchema#int and "1.8542"^^http://www.w3.org/2001/

XMLSchema#double.

As part of the RDF syntax, it is possible to define prefixes such as dbpedia := http://

dbpedia.org/resource/ and then to use them in order to shorten URIs so that http://

dbpedia.org/resource/Darmstadt becomes dbpedia:Darmstadt.

Now we can model information in form of <subject predicate object> triples, for example:
< dbpedia:Merck_KGaA dbpedia-owl:locationCity dbpedia:Darmstadt >

This triple is supposed to express that the company Merck is located in the city of Darmstadt. Tech-

nically, it merely states that a resource with the URI dbpedia:Merck_KGaA is in a relationship,

identified by the URI dbpedia-owl:locationCity, with another resource, represented by the

URI dbpedia:Darmstadt. Any further meaning is inferred by us humans from the descriptive

URIs but (given only this single triple) is not available as such to a computer. This information is

codified for the Semantic Web in further triples:

< dbpedia:Merck_KGaA rdf:type dbpedia-owl:Company> (“Merck is a company”)
< dbpedia:Merck_KGaA dbpedia-owl:industry dbpedia:Pharmaceutical

_industry> (“Merck is part of the pharmaceutical industry”)

< dbpedia-owl:locationCity rdfs:range dbpedia-owl:City> (“The range(= possible

types of the object) of locationCity is city”)

< dbpedia:Darmstadt dbpedia-owl:country dbpedia:Germany> (“Darmstadt is located

in Germany”)

This demonstrates the way resources are linked to each other like websites on the WWW.

Only the object of a triple may be a literal, the subject and object must be URIs. This is meant to

foster the web structure of Linked Data by allowing users to obtain further information on all sub-

jects and predicates.

An example of a literal in a triple would be:
< dbpedia:Darmstadt dbpedia-owl:populationTotal 141471(xsd:integer)>

(“Darmstadt has a total population of 141471”)

2.1.2 Ontologies

Ontologies describe conceptual knowledge about domains, entities and their relationships in a struc-

tured way. The idea of ontologies is borrowed from classical philosophy and can be traced to an-

cient Greek philosophers. With regards to the Semantic Web, there are various languages for de-

scribing ontologies but we will focus on the most prominent ones: RDF Schema (RDFS) and the

Web Ontology Language (OWL).

By naming the relationships between resources or between resources and data we have only shifted

the problem that computers cannot properly understand strings of text to a higher level. Instead of a

single string that it cannot understand, the computer now has to deal with triples of strings that it

cannot understand.

However, if we formalize our knowledge of a domain and its classes and their properties, the triples

can actually acquire a meaning beyond the three strings they consist of.

Page 10

For example there is not a lot a machine could do with a triple like <:Berlin :capitalOf

:Germany> as such because it lacks an understanding of the intrinsic meaning of capitalOf. It

would not be able to infer seemingly trivial facts such as Berlin being a City and Germany being a

country. To do this we would have to explicitly state that the domain, i.e. all subjects of capital-

Of, are cities and the range, i.e. all objects of capitalOf, are countries. Then this deduction would

be possible.
RDFS

RDF Schema (RDFS) provides a basic vocabulary for describing ontologies in RDF (Brickley,

Guha, & McBride, 2004). It consists of a set of classes and properties.

The classes are:

Class: defines an abstract class

Resource: the super class of everything (akin to “Object” in Java)

Property: the super class of all properties

Literal: the super class of all literals

The properties are:

type: declares a resource to be an instance of a class

subClassOf: a transitive property used to create class hierarchies

subPropertyOf: a transitive property used to create property hierarchies

domain: declares the type of the subjects of a property

range: declares the type of the objects of a property

The prefix for RDFS is rdfs. In RDF a is used as an alias for type as in <City a
rdfs:Class>.

A sample ontology built with RDFS could look like this:
:Place a rdfs:Class

:City rdfs:subClassOf :Place

:Village rdfs:subClassOf :Place

:hasPopulation a rdfs:Property

:hasPopulation rdfs:domain :Place

:hasPopulation rdfs:range xsd:nonNegativeInteger

:Darmstadt a :City

:Geldern-Kapellen a :Village

:Darmstadt :hasPopulation 149052^^xsd:int

:Geldern-Kapellen :hasPopulation 2737^^xsd:int

This ontology introduces the classes Place, City, and Village, where City and Village are

sub-classes of Place. Darmstadt is an instance of a City, Geldern-Kapellen is an instance of

a Village. It also introduces the property hasPopulation with the domain Place and the range

non-negative integer. Then follow two basic RDF triples stating the populations of the two

places.

OWL

The Web Ontology Language (OWL) extends RDFS to allow building complex ontologies (W3C

OWL Working Group, 2012).

In OWL there are classes, properties and instances. Every class is a sub class of owl:Thing and

thus every instance is an instance of type owl:Thing.

Page 11

OWL allows class definitions to use standard set operations such as union, intersection and com-

plement. Restrictions can be placed on properties, for example requiring a certain number of objects

or requiring objects to be from a certain class.

In OWL there are two distinct types of properties: Data typeProptery and ObjectProperty.

Data typeProperties have literals of a certain data type as objects, while ObjectProperties

have URIs, i.e. references to other resources as objects.

2.1.3 Linked Open Data

Linked Open Data (LOD) is a notion closely related to the Semantic Web. The term was coined by

(Berners-Lee, 2006), who proposed four basic rules for publishing data for the Semantic Web:”

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF*,

SPARQL)

4. Include links to other URIs. so that they can discover more things.

“
DBPedia

DBpedia is currently a central hub of the Linked Data Cloud as can be seen on Figure 1: LOD

Cloud.

Its goal is to make the data contained in Wikipedia available to the Semantic Web.

The current English version of DBpedia, 3.8, contains “3.77 million things, out of which 2.35 mil-

lion are classified in a consistent Ontology, including 764,000 persons, 573,000 places (including

387,000 populated places), 333,000 creative works (including 112,000 music albums, 72,000 films

and 18,000 video games), 192,000 organizations (including 45,000 companies and 42,000 educa-

tional institutions), 202,000 species and 5,500 diseases.”

Its ontology consists of 359 classes, 800 object properties and 859 data type properties. (Bizer C. ,

2012)

DBpedia scrapes data from infoboxes and other structured elements found in many Wikipedia arti-

cles to make it available as Linked Open Data. (Bizer, et al., 2009)

Infoboxes

Alongside the main text, Wikipedia offers so-called infoboxes for many articles. These infoboxes

contain semi-structured data about the subject of the article. What makes infoboxes so useful for

DBpedia is that they contain information in attribute-value pairs and those pairs are somewhat con-

sistent for subjects of a domain. For example countries will typically have attributes such as “Area”,

“Population”, “Capital”, movies have attributes such as “Directed By”, “Starring” etc.

Page 12

This makes infoboxes much more suitable for extracting infor-

mation for Linked Data than the free text that makes up most of

the article. However, the data in those infoboxes is still main-

tained by hand and neither synchronized nor otherwise linked

across the different language versions of Wikipedia. This

makes it prone to general errors and poses problems during

parsing when, for example, thousands separators are not used

consistently.

SPARQL

SPARQL is a query language for RDF. RDF by itself only al-

lows us to model information and RDF/XML enables us to se-

rialize it but neither provides means to properly query the

knowledge graph we have built this way. SPARQL is designed

to do exactly that. Its syntax is loosely based on that of SQL.

A simple SPARQL query to find the capital of Germany could

be “select ?o where { dbpedia:Germany dbpedia-
Figure 3: Darmstadt Infobox

Figure 2: Darmstadt Infobox Source

Page 13

owl:capital ?o}. SPARQL queries are run against a SPARQL endpoint; in our case that will be

the one of DBpedia, http://dbpedia.org/sparql. The ?o in the query indicates a variable

and dbpedia:Germany dbpedia-owl:capital ?o corresponds to an RDF triple. The end-

point will then try to find valid bindings for the free variable, ?o, in the query and return those. It is

possible to have multiple variables as in this query to find all countries with their respective capi-

tals: select ?s ?o where { ?s dbpedia-owl:capital ?o }. In order to create more

complex queries multiple triple patterns can be joined as in select ?s ?o where { ?s dbpe-

dia-owl:capital ?o . ?s a yago:EuropeanCountries}. Now the variables must match

both triple patterns and thus only countries and capitals in Europe will be returned.
Problems

Since the term “Semantic Web” was coined in 2001, RDF/XML was standardized in 2004 and

DBpedia started in 2007, some time has passed and the Semantic Web has still not evolved into an

integral part of the Web 3.0, as it was once held out in prospect by Tim Berners-Lee (Shannon,

2006). One problem is certainly the classic catch-22 that many new technologies suffer from: with

the existing Linked Data lacking in quantity and quality, there is little incentive to create applica-

tions that use it and without applications, that make use of Linked Data, content providers have little

incentive to make their data available to the Semantic Web.

DBpedia tries to solve this problem by scraping already existing data from Wikipedia but in doing

so deviates from the idea of publishing original data for the Semantic Web. As a consequence of

this scraping approach, the data is prone to errors.

2.2 Statistics

2.2.1 Outlier Detection

A commonly found definition of an outlier with regards to statistics is:

“An outlier is an observation which deviates so much from the other observations as to arouse sus-

picions that it was generated by a different mechanism.” (Hawkins, 1980)

The background here is that when we are talking about outliers, we often assume the valid observa-

tions to follow some known distribution. Regarding physical experiments and in many other cases,

the underlying distribution is frequently assumed to be the normal distribution. E.g., if we are meas-

uring the size of a certain kind of flowers, the underlying mechanism, that influences the distribu-

tion of the sizes, is the natural growth of the plants. If, after a significant number of observations has

been collected, this distribution is found to be normal but, later on, we discover a specimen that de-

viates by 10 standard deviations from the mean of the distribution, we could assume that the initial

assumption of a normal distribution was wrong and this species in fact varies greatly in size. How-

ever, such an extraordinary observation does “arouse suspicions that it was generated by a different

mechanism”. Namely, that the mechanism that caused this unusual size was in fact not the natural

growth of the plant but could possibly be a misidentification of the species on part of the observer.

This fundamental assumption of a specific underlying distribution, however, is problematic with

regards to the data we will be dealing with in this thesis. Thus, the following, more general defini-

tion could be more useful for us: “An outlying observation, or outlier, is one that appears to deviate

markedly from other members of the sample in which it occurs.” (Grubbs, Procedures for Detecting

Outlying Observations in Samples, 1969)

Outlier detection methods are distinguished by the amount of available training data (Chandola,

Banerjee, & Kumar, 2009). Training data are sets of data points that are explicitly labeled as either

Page 14

normal or outliers. The algorithm can then make use of that data to learn classes of normal and ab-

normal data points before analyzing the actual data at hand.

There are three main scenarios:

Supervised: training data is available for normal and abnormal cases

Semi-supervised: training data is available only for either normal or abnormal cases

Unsupervised: no training data is available

There are methods for use with one-dimensional or univariate data, where each data point consists

only of a single value, and for multi-dimensional data, where each data point is a vector of multiple

values.

Data points can either be binary labeled as normal/outlier or given an outlier score that represents

the confidence in that point being an outlier, either in a normalized way, i.e. a value from 0.0 to 1.0,

or monotonically increasing, i.e. a greater value indicates a greater confidence but does not make

direct statements about absolute probabilities.

Given an outlier score, it is generally possible to obtain a binary label by applying a threshold.

Classical Methods

Outlier detection methods were originally developed to define objective criteria for the rejection of

abnormal observations in experiments. Prior, this was done at the discretion of the experimenter:

“Geometers have, therefore, been in the habit of rejecting those observations which appeared to

them liable to unusual defects, although no exact criterion has been proposed to test and authorize

such a procedure, and this delicate subject has been left to the arbitrary discretion of individual

computers. The object of the present investigation is to produce an exact rule for the rejection of

observations, which shall be legitimately derived from the principles of the Calculus of Probabili-

ties.” (Peirce, 1852).

Classical outlier detection methods assume an underlying distribution (usually a normal distribu-

tion) and then use that assumption to identify outliers: “It should be pointed out that almost all crite-

ria for outliers are based on an assumed underlying normal (Gaussian) population or distribution.”

(Grubbs, Procedures for Detecting Outlying Observations in Samples, 1969).

For a normal distribution, 99.7% of all values lie within three standard deviations of the mean, so a

simple outlier detection approach could be to calculate the distance from each point to the mean and

declare each point, that deviates by more than three standard deviations, an outlier.

Various outlier detection schemes, based on similar premises, have been devised over time, e.g.

(Peirce, 1852), (Chauvenet, 1863), (Dean & Dixon, 1951) and (Grubbs, Sample Criteria for Testing

Outlying Observations, 1950).

However, those methods are unsuitable for our purposes because the data we are dealing with dif-

fers greatly from what those tests were designed for. Most importantly, the assumption of a normal

distribution is not compatible with the vast range of different datasets found in DBpedia and unsu-

pervised approaches. Further problems arise with regards to methods being designed for small sam-

ple sizes, e.g. (Dean & Dixon, 1951), or only being able to detect one or a few outliers at a time, e.g.

(Grubbs, Sample Criteria for Testing Outlying Observations, 1950).

General Problems

Outlier detection as a method of identifying errors has some fundamental limitations in that in order

for an erroneous data point to be detected, it has to be “outlying” in some manner. For example, if

all regular ZIP codes have 7 digits it should be possible to detect invalid ZIP codes with 3 or 13

digits. However, if a ZIP code is simply wrong as in “543892” instead of “592637”, it will be prac-

tically impossible to detect as an outlier without flagging large portions of correct ZIP codes as out-

liers.

Page 15

On the other hand, some data points are certainly outlying but

nonetheless correct: Pauline Musters (http://dbpedia.org/

resource/Pauline_Musters) was at 58 centimeters the short-

est adult woman ever recorded, which certainly makes here an

outlier regarding her size but does not mean the value of 0.5842m,

given at DBpedia for her height, is incorrect. Other cases are less

obvious, for example, Muggsy Bogues (http://dbpedia.org/

resource/Muggsy_Bogues) is, at 1.6 meters, shorter than the

average man but would probably not be identified as an outlier

among the general population. However, among basketball play-

ers, he certainly represents an outlier.

Similarly, states such as China and India with populations of over

one billion are outliers between the millions of towns and villages

with only a few hundred or thousands of people.

Therefore, we do not understand outlier detection as an objective

measure of the correctness of data but rather as a means of identi-

fying suspicious data points that should be inspected by hand.

2.2.2 Robust Statistics

Robust statistics are an important concept when dealing with out-

liers. Traditional statistical measures can be extremely sensitive to outliers whereas robust statistical

methods are supposed to perform reasonably well, even when assumptions are not exactly met. We

will now look at estimator for two important statistical properties.

Central Tendency

The central tendency of a distribution is a central value of the population that gives an idea of where

it is located. Typical measures of the central tendency are the mean (

∑

), the median (the

point in the middle of the sorted list of the data points) and the mode (the single most common val-

ue).

The mean of [1, 1, 3, 3, 4, 5, 5, 5, 6, 7] is 4 and, as would be expected, marks roughly the middle of

the population. However, if a single observation is erroneous, the mean can assume virtually arbi-

trary values. If the 4 were somehow misinterpreted as 4,000, the mean would then become 403.6,

which is nowhere near the middle of the population. If we were to use the median, we would get a

value of 4.5 for the original population and of 5.0 for the corrupted population of [1, 1, 3, 3, 5, 5, 5,

6, 7, 4000], which is still a good estimate of the central tendency of the population. In fact, we could

replace almost up to half of the population with arbitrary values and still get a reasonable estimate:

The median of [1, 3, 5, 5, 5, 6, 1000, 3000, 4000, 7000] is 6, as opposed to the mean of 1502.

If we add a fifth erroneous value, the median would finally assume arbitrary values too. We call this

behavior the breakdown point of the estimator: the proportion of incorrect values that are needed to

make the estimator yield arbitrary results. As we have seen, this value is 0 for the mean, because it

cannot handle a single incorrect value without “breaking down” and 0.5 for the median, because we

can replace half the population before it breaks down. This also happens to be the highest possible

breakdown point as there would be no way to determine which observations are supposed to be

“regular”, when half or more of the population is erroneous.

Figure 4: Pauline Musters at around age

19, next to a man of average height

Page 16

Dispersion

Another important property of a statistical population is its dispersion. The dispersion is a measure

of how close together or stretched over a wide range observations are.

The traditional measure of dispersion is the variance or the directly related standard deviation. The

standard deviation of a sample population is frequently estimated using the sample standard devia-

tion√

 ∑ ̅

 . This estimator is not robust however, as it uses the mean, which we have

already seen to be heavily affected by outliers, and squares of the distances of each point to that

mean, thus giving more weight to outliers than to regular observations.

The range, the difference between the largest and the smallest observation, is another measure of

dispersion, which too is obviously extremely affected by outliers. To mitigate this, we can use the

range of a cropped sample, which leads us to the interquartile range.

Interquartile Range

The quartiles of a population are the 1-quartile (=Q1) below which we find 25% of the population,

the 2-quartile (=Q2=median) below which we find 50% of the population, the 3-quartile (=Q3) be-

low which we find 75% of the population and finally the 4-quartile (=Q4), which includes the whole

population. The interquartile range (IQR) is then defined as Q3 – Q1 and gives a rough measure of

the spread of the population, while being robust to outliers because outliers, traditionally being the

largest or smallest observations, are not taken into account. The breakdown point of the IQR is 0.25

because if we replace the largest 25% of the population with large values, the next value we add will

be taken into account for the IQR.

MAD

The Median absolute deviation (MAD) is a classic (the concept is already mentioned in (Gauss,

1816)) example of a robust measure of dispersion. It is defined as MAD = (|

 |) .

This means, we first calculate the distance from each point to the median of the dataset and then

take the median of those values as the measure of dispersion.

For example, given a list of observations such as (3, 7, 15, 3, 4, 2, 1000, 5, 9), we first sort it (2, 3,

3, 4, 5, 7, 9, 15, 1000) to obtain the median of 5. We then create the list of all absolute deviations

from that median (3, 2, 2, 1, 0, 2, 4, 10, 995) and sort again (0, 1, 2, 2, 2, 3, 4, 10, 995) to get the end

result of 2.

One can intuitively see the robustness of this measure in the double use of the median, which makes

it robust to outliers when estimating the center of the population and when estimating the center of

the deviations.

Sn/Qn/scaleTau2

Sn and Qn are dispersion estimators proposed by (Rousseuw & Croux, 1993) to improve upon the

MAD. While the MAD is extremely robust, it is aimed at symmetric distributions and has subpar

efficiency for actual Gaussian distributions. Both are based on pairwise differences of all points as

opposed to differences to the median or between two single points.

Sn is defined as { | |}. This means, we calculate for each point the dis-

tance to each other point and take the median of those values. This yields n results, the median of

which will be used as the end result of the estimator. The factor c is meant to create consistency so

Page 17

that the dispersion estimate for a standard normal distribution will converge against 1 and will be

chosen as 1.1926.

The motivation behind this algorithm is to make it independent of the estimation of a center, so it

will work with asymmetric distributions as well as with symmetric ones.

Qn is defined as {| | }

where d is again a constant factor used for consistency and

 (

 ⁄

)

(

). That means we calculate the pairwise distances for all points but take

into account symmetry, so the distance between a and b will only be recorded once. We then order

those distances and take the kth order statistic of those values as the end result. Again, the pairwise

distances provide independence from location estimates but Qn features a breakdown point of 0.5 as

opposed a breakdown point of (n/2)/n for Sn.

ScaleTau2 is an estimator proposed by (Maronna & Zamar, 2002). In order to define scaleTau2, we

need to define some auxiliary functions first. Let X be our random sample of .

 ((

)

)

 | |

ScaleTau2 works in two steps. First we calculate and a set of weighting functions

 (

)

Next, we estimate the location

∑

∑

And finally the scale

∑ (

)

2.2.3 Kernel Density Estimation

Histograms provide for a simple and intuitive way to approximate an underlying density function

based on a number of observations. However, since the resulting function is essentially a sum of

rectangle functions, it is decidedly discontinuous and if we assume the data to be generated by a

natural process, a continuous function could be more desirable. Kernel Density Estimation address-

es this shortcoming by replacing the rectangle functions with a so-called kernel K, a symmetric,

non-negative function that integrates to 1. If x1, x2, … xn are independent and identically distributed

(iid) random variables, drawn from a distribution with an unknown density function f, then

 ̂

∑ (

)

is its kernel density estimator.

(Rosenblatt, 1956) and (Parzen, 1962) are credited with independently developing this method.

For our purposes, we will use the Gaussian normal distribution,

 √

 , which satisfies all

requirements of a kernel. The bandwidth h can be chosen according to “Silverman’s rule of thumb”

as(
 ̂

)

, where ̂ is the sample standard deviation. This bandwidth yields optimal results for cases

Page 18

where the underlying distribution is actually normal and reasonable results for unimodal, symmetric

distributions (Härdle, Müller, Sperlich, & Werwatz, 2004).

To calculate outlier scores for a given dataset, we first create a KDE from the data and then calcu-

late the resulting probability at each point. To put this probability into relation we compare it to the

mean probability over all points,

∑ ̂

 . The relative probability of one data point

being normal is then
 ̂

.

rp(x) > 1 indicates an above average probability, rp(x) < 1 indicates a below average probability. To

obtain a binary label, we can apply a threshold, e.g. all x with rp(x) < 0.1 could be considered outli-

ers.

2.2.4 Clustering

Clustering is the task of grouping data points in such a way that the data points in each cluster are in

some manner similar to each other. There is no definite measure of this similarity and what is con-

sidered similar may change from application to application (Estivill-Castro, 2002).

Expectation–maximization Clustering

Expectation-maximization (Dempster, Laird, & Rubin, 1977) is an iterative algorithm that can be

used for clustering.

Given a set of data points, the goal is to find parameters for clusters and determine membership of

each data point for one of those clusters, so that the overall likelihood of the model is optimized.

The algorithm is initialized by guessing parameters for the model. It then iterates in two steps:

Step 1, Expectation: Compute for each data point the probability of membership in each cluster ac-

cording to the current set of parameters

Step 2, Maximization: Vary the parameters so that the probabilities of step 1 are maximized

Those two steps are repeated until the algorithm converges, i.e. no more change is observed, or a

certain limit of iterations is reached.

2.3 Related Work

(Zaveri, et al., 2012) created a taxonomy of errors in LOD and proposed a crowd-sourcing approach

for assessing the quality of DBpedia.

The taxonomy consists of four dimensions (accuracy, relevancy, representational-consistency and

interlinking), seven categories and 17 sub-categories. It encompasses plain errors, such as incorrect-

ly extracted triples, as well as undesirable features, such as information being redundant or irrele-

vant.

For the crowd-sourcing assessment, a toolkit, TripleCheckMate, was developed that allows users to

sign up and inspect resources one by one. A competition was started, where the most diligent and

successful participants could win a prize. 58 users evaluated a total of 521 resources and identified

2,928 erroneous triples. Based on the data collected this way, 11.93% of all triples were found to be

affected by some kind of error, though most were deemed fixable through changes to the extraction

process.

(Fleischhacker, 2013) studied numerical error detection in Linked Data using KDE on the proper-

ties birthDate, birthYear, deathDate and deathYear datasets. Fleischhacker successfully

used the correlations between birthDate and deathDate and between birthYear and

deathYear to improve results. Using this method, the top-50 outliers were all found to be in fact

incorrect.

Page 19

3. Approaches

Our approaches are based on analyzing the subjects and literal values for a given predicate, that is

the results of the SPARQL query select ?s ?o where {?s predicate ?o}. This means we

are dealing with tables of triples such as <http://dbpedia.org/resource/Darmstadt

dbpedia-owl:populationTotal 141471(xsd:integer)>. The data, that we are analyzing,

will be the literals in the object column, 141471(xsd:integer) in this case. However, this data is

not necessarily available in a consistent, numeric form, which leads us to our first approach.

3.1 Data Types

A simple yet effective approach to detect faulty data is to analyze the data types of the literals.

Many properties do not have a declared range and their objects will then often be of various data

types. The idea is that most numerical properties will have a certain intended range and literals of

that range will make up the majority of its objects. For example, a population count should be repre-

sented by an integer and the height of a person by a double value. If 99% of all values for a certain

predicate share a single type then it seems fair to assume that the remaining 1% is erroneous in

some way.

In many cases numerical properties have literals that hold the correct value but in string form, for

example "−8"@en instead of "-8"^^xsd:int. This would prevent a regular user from accessing

the value of the literal because an integer would be expected. Once those triples have been identi-

fied, it should be easily possible to correct the errors by simply parsing the existing strings.

3.2 Basic Outlier Detection

We will now look into basic methods to identify outliers in numerical data. What distinguishes these

simple approaches from the following ones is that they do not take into account the semantics that

are available on the Semantic Web. We merely analyze the numerical values of all objects in a da-

taset to identify outliers. Thus, the data is one-dimensional and this allows us to sort it, use the me-

dian and yields a simple distance measure.

As mentioned earlier, we are looking at an extremely diverse set of data and this means we cannot

safely make a lot of assumptions. The main assumption we are going to make here is that the data is

unimodal to some extent. A distribution is unimodal if it consists of a single peak, i.e. the density

function f(x) has one maximum, f(m), and is monotonically increasing for all x < m and monoton-

ically decreasing for all x > m. This is a minimum requirement for most of the following methods

and generally seems reasonable. To verify this assumption, we created histograms (see appendix,

“Res50 histograms”) for the datasets created from the 50 random resources discussed later on. Visu-

al inspection showed that indeed of the 170 datasets, 154 (90.6%) were clearly unimodal.

3.2.1 Interquantile Range

Given the interquartile range (IQR) and some factor k, we can then label outliers as follows: Every

point [] with is an outlier, every point [] with

 is an outlier and every other point is considered normal.

This approach can then be generalized to quantiles where the population is split into an arbitrary

number of equal parts. For example, if we split the population into 100 parts, then called “percen-

tiles”, we can use the range between the 5-percentile (Q5), below which 5% of the population is

found, and the 95-percentile (Q95), below which 95% of the population is found, as a measure of

dispersion.

Page 20

We will call this method “IQR”.

3.2.2 Dispersion and Center

A similar approach is to use an estimate for the central tendency and combine this with a general

measure of dispersion to define the range of normal values.

We used the median to estimate the center of the population. As dispersion estimators, we used

MAD, Sn, Qn and ScaleTau2. The range of normal values is then defined as
 .

We will call this family of methods “dispersion”.

3.2.3 Kernel Density Estimation

These two approaches have obvious limitations in that they can only detect outliers among the larg-

est and smallest data points. KDE is more flexible because it does not deem one interval normal and

everything else an outlier.

We tested three implementations for generating KDE’s. The ones found in Weka (The University of

Waikato, 2013) and SSJ (L'Ecuyer, 2012) allow creating a KDE and then querying the probabilities

of arbitrary points. The drawback is that this method is rather slow for large datasets. The imple-

mentation provided by R uses fast Fourier Transform (FFT) to achieve extreme performance gains

but this requires the samples to be equidistant and their number to be a power of two. Up to about

one million samples is feasible so we either have to restrict ourselves to smaller ranges or suffer

accuracy losses. The obvious drawback of this approach is that it is extremely affected itself by out-

liers, so a sensible implementation could be to first use a more robust method to remove extreme

outliers and then use KDE(FFT) to screen for more subtle ones.

We will use “KDE” and “KDE-FFT” to refer to the respective methods.

3.3 Iteration

All the methods above can be used iteratively. That is, we apply the method to a dataset, remove all

data points that were labeled outliers and then repeat the process until no more outliers are found.

Alternatively an upper limit for the number of iterations can be set. This works because outliers

gravely affect some statistical metrics, thus removing them allows us to more closely analyze the

remaining data points.

3.4 Semantic Outlier Detection

The simple outlier detection approach is limited by the existence of natural outliers. Consider a

property such as populationTotal (http://dbpedia.org/ontology/populationTotal),

which represents the total population of a populatedPlace (http:// dbpedia.org/

ontology/PopulatedPlace). This includes villages, towns, cities, states, countries, continents

and – contrary to the label – some unpopulated places such as ghost towns and uninhabited islands.

That means China, India and continents will appear to be outliers by most metrics because they are

only few in number but exceed the population of the villages, towns and cities, that make up most of

the entries, by far.

However, if we analyze the subjects solely with regards to other subjects of their kind, e.g. examin-

ing the population of towns alone, this problem could be overcome. The semantics of the Linked

Data allow us to do exactly that.

Page 21

3.4.1 Splitting by Single Type

In RDF(S), resources can be instances of a class, i.e. have a certain type and , as can be seen on Fi-

gure 5: Type Count Frequencies, many resources on DBpedia do have one or multiple types. We can

utilize those types to separate the subjects of a predicate into groups and then further analyze them.

Figure 5: Type Count Frequencies

The obvious approach is to split the dataset into one subset for each type. To do this we have to se-

lect and filter certain types.

This is the set of rdf:types for Darmstadt. We will use those to exemplarily identify strategies for

selecting useful types:
owl:Thing

dbpedia-owl:Place

gml:_Feature

dbpedia-owl:City

http://schema.org/Place

dbpedia-owl:PopulatedPlace

dbpedia-owl:Settlement

http://schema.org/City

http://umbel.org/umbel/rc/City

yago:YagoGeoEntity

http://umbel.org/umbel/rc/Village

http://umbel.org/umbel/rc/Location_Underspecified

http://umbel.org/umbel/rc/PopulatedPlace

Generic Types

Because in OWL everything is an instance of OWL:Thing, the subset containing all subjects of type

OWL:thing will generally contain all subjects of the original set and therefore not provide any fur-

ther insight. The same can be true for other types, so when clustering by simple types it is advisable

to check first if the cluster represents a proper subset.

0

200000

400000

600000

800000

1000000

1200000

0 2 3 4 5 6 7 8 9 10 11 12 13 14 16

f

r

e

q

u

e

n

c

y

Number of Types

Type Count Frequencies

Page 22

Type Hierarchies

When we look at the types dbpedia-owl: Place, dbpedia-owl: City, dbpedia-owl:

PopulatedPlace, dbpedia-owl: Settlement and the DBpedia ontology, we can see that they

all form part of one hierarchy, where

dbpedia-owl: City < dbpedia-owl: Settlement < dbpedia-owl: PopulatedPlace <

dbpedia-owl: Place < owl: Thing. In order to only make use of the most specific types, we

can filter out all those types that are a super class of another type in the set.

Faulty Types

With http://umbel.org/umbel/rc/Village, we can see one fundamental problem of this

approach. With a population of almost 150,000 Darmstadt is by every common definition and the

definition given at umbel.org, “A subcollection of City. Each instance of Village consists of a small

cluster of buildings located in a rural area. Most of the buildings are typically residents' hous-

es; others might include shops, schools, churches, and the like. Many residents of a village typically

work in the surrounding coutryside (say as farmers). Since Village is a subcollection of City (q.v.),

an instance must in some way be self-governed.” (Village.rdf), not a village. However since “Any-

one Can Say Anything About Anything “ (Klyne, Carroll, & McBride, 2004) regarding Linked Da-

ta, it still appears as such in DBpedia. This is actually not an outlier in itself either, as can be seen

with the SPARQL query:
select ?s ?o where {?s a <http://umbel.org/umbel/rc/Village> . ?s dbpedia

-owl:populationTotal ?o filter(?o > 1000000)} order by desc(?o)

There are 290 “villages” with a population of over 1 million, including Shanghai, Tokyo, Mexico

City and many other mega cities.

That means we have to rely on possibly faulty data in order to fix other possibly faulty data.

To mitigate this problem, we can filter the types by prefixes to only allow types from certain

sources. For example we could limit the types to those from DBpedia only.

But even in the DBpedia ontology, there are villages with populations of over 100,000

(http://dbpedia.org/resource/Lassan_Thakral,

http://dbpedia.org/resource/Chandanaish_Upazila,

http://dbpedia.org/resource/Brgat).

On the other hand there are “cities” with less than ten inhabitants such as

http://dbpedia.org/resource/Warm_River,_Idaho,

http://en.wikipedia.org/wiki/Lakeside,_Missouri and

http://en.wikipedia.org/wiki/Ruso%2C_North_Dakota.

Similarily, the classification of the 7.4 meter high ultra class vehicle, “Liebherr T 282B” (http://

dbpedia.org/resource/Liebherr_T_282B) as dbpedia-owl:Automobile appears debat-

able and differs at the very least greatly from what one would usually imagine for an automobile.

Page 23

Figure 6: Liebherr T 282B - 7.4 meter high "automobile", photo by René Engel

Ultimately, we do not have much choice because if we limit the range of possible types too much,

there will not be much left to correct.

3.4.2 Clustering by Type Vectors

Since we have seen isolated types to be misleading and as can be seen on Figure 5: Type Count Fre-

quencies, most subjects feature a multitude of types, the natural next step is to utilize the combined

information of all types.

For this approach we consider the types of a subject as a vector of Booleans, representing whether

or not the subject is of a certain type, and then apply traditional clustering techniques to this vector.

To create these vectors, we used FeGeLOD (Paulheim & Fürnkranz, 2012).

FeGeLOD (Feature Generation from Linked Open Data) is a toolkit that is designed to automatical-

ly enrich resources with information gathered from Linked Open Data. There are various feature

generators available but we used the type generator that takes a set of input subjects and generates a

type vector for each subject. FeGeLOD first collects the information for all subjects and then ap-

plies a threshold p to remove features that are either too generic, appearing in over p % of all cases,

or too specific, appearing in less than 1-p% of all cases.

The actual clustering is done by WEKA (The University of Waikato, 2013), using the Estimation-

Maximization (EM) method.

3.5 Implementation Detail

The implementation was done in Java with major use of the Jena libraries for communication with

DBpedia and handling of the Linked Data. Other libraries used include WEKA (The University of

Page 24

Waikato, 2013) and FegeLOD (Paulheim & Fürnkranz, 2012) for the clustering algorithm and SSJ

(L'Ecuyer, 2012) for the exact KDE implementation.

The R programming language (The R Project for Statistical Computing, 2013) and its libraries (es-

pecially “robustbase”) were used for general analysis and integrated into the Java application to

utilize the dispersion estimators as well as the FFT implementation of KDE.

A MySQL database was used to store type information and original as well as parsed versions of

triples.

3.5.1 Data Representation and Parsing

We used two representations for triples. The first, RawData, consists of a predicate and a list of

Rows that each hold the information about a corresponding subject and object as a Jena node. The

objects, such as "1831.5"^^http://www.w3.org/2001/XMLSchema#, are not yet available for

processing as doubles so we have to parse them first. Since this format is standardized, this can easi-

ly and accurately be done.

We also try to parse objects that do not exactly meet the specifications, such as "1976 m"@en, to

be able to deal with as many triples as possible. To do this, we use the basic Java numberFor-

mat.parse method to convert strings to double values. This numberFormat.parse method tries

to parse a number from the beginning of a string and does not perform much error correction. We

experimented with more sophisticated parsing methods but those were prone to false positives, i.e.

even parsing strings that were not meant to be interpreted as numerical values such as a text contain-

ing some numbers.

We stored the results in DataSets consisting of a predicate and a list of DataPoints that each hold

the subject as a string and the object as a double.

3.5.2 AnalysisMethod and Analyzor

We distinguish between analysis methods and analyzors or modes.

3.5.3 Analysis Method

AnalysisMethod is an interface that represents a basic outlier detection method and consists of a

single method, void setOutlierScores(DataSet dataset), that calculates the outlier

scores for each data point in a dataset. We chose not to go with a normalized outlier score from 0.0

to 1.0, as it would not have been possible to make meaningful claims about the probability of a data

point actually being incorrect without making too many assumptions about the underlying distribu-

tion.

3.5.4 Outlier Score

Instead we used a monotonically increasing outlier score where possible. For example, with regards

to the dispersion methods this would mean that any data point that is farther than

 away from the median would get an outlier score of 1.0 + calculated

distance. This outlier score does not make any direct implications about the likelihood of the corre-

sponding data point actually being an outlier but it creates an order, where for any two data points a

and b, outlier_score(a) > outlier_score(b) indicates that a is more likely to be an outlier than b, judg-

ing by that method. Thus, if we find a large number of possible outliers, we can sort them by the

outlier score and then only choose to inspect those with the highest outlier score.

3.5.5 Analyzor

Analyzors represent a mode of operation for detecting outliers. The Analyzor interface consists of a

single method void run(DataSet dataSet, List<DataPoint> resultsIn where da-

taSet is the dataset to be analyzed and resultsIn is a list for the detected outliers to be placed in.

Possible modes of operation are:

Page 25

The default mode that runs a given analysis method on the dataset and returns all data points with an

outlier score above a certain threshold. This is the only analyzor that directly wraps an analysis

method, all other analyzors work only on analyzors themselves.

The iterative mode that runs an analyzor, removes the detected outliers from the dataset and then

reruns it until no more outliers can be found or a certain limit of iterations is reached.

The byType mode that splits the dataset up by RDF types and then analyzes each resulting subset

individually.

The cluster mode uses the type feature generator of FeGeLOD with a threshold of 0.95 to create

instances for WEKA, which are then clustered using the EM algorithm with a maximum of 100 iter-

ations, no set number of clusters to create and a minimum allowable standard deviation of 10
-6

 for

normal density calculation. Then each cluster is analyzed individually.

Page 26

4. Evaluation

We went through three stages to evaluate our approaches. Firstly, we used simulated data to test the

implementation and to get a general idea of the performance of each algorithm.

We then chose three properties to find out how well the algorithms perform on real data.

In order to obtain representative results, we finally selected 50 resources at random and used the

most successful methods from the last stage on the predicates of those resources.

4.1 Methods

We mainly evaluated the algorithms IQR, Dispersion (MAD, Sn, Qn, ScaleTau2) and KDE-FFT.

In order not to introduce more parameters, we regulated the number of outliers through the intrinsic

parameters of each method instead of only examining the top n results by outlier score.

4.1.1 IQR

We went with the percentile implementation of the IQR, so the two parameters are the percentile

used and the factor k that determines how many times larger than the interquantile range the dis-

tance of a data point to the lower or upper percentile has to be in order for that point to be consid-

ered an outlier.

4.1.2 Dispersion

We evaluated all four previously introduced dispersion estimators with the sole parameter being the

factor k that determines the range of normal values.

4.1.3 KDE

We evaluated both KDE and KDE-FFT with the single parameter being the relative probability

threshold. However, since the runtime of KDE proved to be prohibitively high for the main test

track, it will be evaluated on its own.

4.2 Modes

We used the modes default, byType, cluster and iterative as described in 3.5.5.

For the byType mode we limited the total number of subsets to the 50 largest with at least 100 data

points. We also only used types from the DBpedia ontology and only those that represent a leaf.

4.3 Test Tracks

We built test tracks that automatically run analysis methods with varying parameters on datasets.

To enable automatic evaluation, we built lists of correct and incorrect values by manually examin-

ing the results of each run. After each run, we compared the newly detected outliers to the corre-

sponding lists and classified them as either true positive, false positive, false negative or unknown.

The list of incorrect (=true positives) values not only includes clear outliers but everything that de-

viates by more than a rounding error from the correct value. That means a high number of false neg-

atives is generally to be expected.

4.4 Simulated Data

Since we do not have any training data available and accurately labeling any reasonably large data

set by hand would be infeasible, we chose to first run tests on simulated data.

We created sample data following a normal distribution. We used the Marsaglia polar method

(Marsaglia & Bray, 1964) to generate the sample data.

Page 27

We used a single normal distribution with a mean of 1,000 to create 5,000 data points and added 50

outliers uniformly distributed in the range of [-1000, 3000]. We created 49 such datasets and in-

creased the standard deviation of the normal distribution from 1 for the first set to 50 for the last set.

However, as the “outliers” are placed completely at random, some will fall into the range of valid

data points and will thus be practically impossible to detect without causing false positives.

We will now take a look at the Receiver Operating Characteristics (ROC) curves for the simulated

data. These curves plot the number of true positives against the number of false positives and give a

general idea about how well the methods perform. Ideally we would constantly have zero false posi-

tives so we would see an infinite slope. However, for any meaningful analysis, false positives have

to occur at some point so the curve will begin to move to the right, but the later that happens the

better.

Results are generally as excellent as we would expect them to be for normally distributed data. The

ROC curves of all methods are almost rectangular. All except the KDE-FFT method are able to

identify over 2,000 outliers without incorrectly flagging a single normal value. At around 2,350 out

of 2,450 possible outliers all methods begin to produce large numbers of false positives.

IQR and dispersion perform almost identically here, being able to correctly detect 2,301 and 2,300

outliers without a single false positive. Beyond that point, the number of false positives escalates

quickly, with the last useful results at 2,357:288 and 2367:530 respectively.

Figure 7: IQR simulation ROC

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

IQR Simulation

Page 28

Figure 8: Dispersion simulation ROC

The two KDE version perform slightly worse but overall still excellently. The last error free point is

at 2,199 correctly identified outliers for basic KDE. The FFT version accumulates false positives

right from the start but only 26 in total at the 1,895 point. Beyond that point, it even slightly outper-

forms the original version: The FFT version picks up only 159 false positives for 2,347 true posi-

tives while the original version finds 2,740 false positives at this point.

Figure 9: KDE simulation ROC

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

Dispersion Simulation

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE Simulation

Page 29

Figure 10: KDE-FFT simulation ROC

Overall, the results are not very surprising or meaningful, merely proving that each of the methods

is capable of finding outliers among normally distributed data points. Once we turn to real data,

results will be much different, so there is not much point in trying to optimize parameters for the

simulated data.

4.5 Specific Predicates

We chose certain predicates for more intensive manual analysis. Those predicates include dbpe-

dia-owl:populationTotal, dbpedia-owl:height and dbpedia-owl:elevation. This

choice was based on some interesting properties of those predicates.

We will have a look at the predicates first to better understand the results of our tests.

4.5.1 PopulationTotal

populationTotal has a broad data base of 237,700 triples with entities from various domain such as

villages, cities, states, countries, continents and international organizations. This makes it interesting

for semantic analysis as on first glance there is only one completely obvious outlier,

http://dbpedia.org/resource/Sisak, with a population of 476,992,030,567,891 on the oth-

er hand, there are various errors such as http://dbpedia.org/resource/Machchhegaun, a

town in Nepal with an alleged population of 59,510,000 (actually 5,951), which are masked by the

existence of real entities with such population numbers. Valid values range from zero for ghost

towns to billions for entire continents.

Furthermore, with a quarter million triples populationTotal is one of the larger predicates on DBpe-

dia, which makes it suitable as a benchmark for the feasibility of an algorithm.

Our basic parsing methods successfully parsed 237,700 (100.0%) of the triples.

The 0-10,000 inhabitants category comprises the vast majority of the records, however on the other

hand of the spectrum there are a few places with billions of people.

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE FFT Simulation

Page 30

Figure 11: Population Total Distribution

Next, we have the population split up by RDF types as done by our byType mode. The distribution

is different because not all objects feature the specific types that we are using to split the dataset.

Villages make up almost half of the dataset and subjects with population numbers of over 200,000

are sparse.

Figure 12: Population Total Distribution by Type

0

20000

40000

60000

80000

100000

120000

0

3
0

0
0

6
0

0
0

9
0

0
0

3
0

0
0

0

6
0

0
0

0

9
0

0
0

0

3
0

0
0

0
0

6
0

0
0

0
0

9
0

0
0

0
0

3
0

0
0

0
0

0

6
0

0
0

0
0

0

9
0

0
0

0
0

0

3
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

0

6
0

0
0

0
0

0
0

0

9
0

0
0

0
0

0
0

0

3
0

0
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

0
0

f

r

e

q

u

e

n

c

y

populationTotal

Population Total Distribution

0

10000

20000

30000

40000

50000

60000

f

r

e

q

u

e

n

c

y

populationTotal

PopulationTotal Distribution by Type

http://dbpedia.org/ontology/Island

http://dbpedia.org/ontology/City

http://dbpedia.org/ontology/AdministrativeRegion

http://dbpedia.org/ontology/Town

http://dbpedia.org/ontology/Village

Page 31

4.5.2 Height

height contains the heights of people (mostly athletes), vehicles, buildings and other objects in me-

ters. It is interesting mainly because of the high number of errors due to unit conversions.

In total there are 52,252 triples, out of which 52,211 (99.9%) were successfully parsed.

Legitimate values range from 0.3 meters for a land mine, http://dbpedia.org/resource/

L10_Ranger_Anti-Personnel_Mine, to 671 meters for a planned skyscraper in Las Vegas,

http://dbpedia.org/resource/Millennium_Tower_(Las_Vegas).

This is the distribution of all objects:

Figure 13: Height Distribution

This chart shows the distribution for the eight most common RDF types. We can see that persons, or

more specifically athletes, make up the vast majority of the subjects and only lighthouses contribute

to the range beyond the five meters mark.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1 2 3 4 5 6 7 8 9

1
0

3
0

5
0

7
0

9
0

2
0

0

4
0

0

6
0

0

f

r

e

q

u

e

n

c

y

height in meters

Height Distribution

Page 32

Figure 14: Height Distribution by Type

This chart gives the frequencies for persons only on an axis scaled to the usual heights of people.

Now, we can clearly discern a normal distribution. Notable is the spike at 1.52 meters, which con-

sists almost exclusively of incorrect values. Close inspection also shows that American football and

basketball players are much taller than the average athlete.

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35 40 45 50 55 60 65

f

r

e

q

u

e

n

c

y

height in meter

Height Distribution by Type

http://dbpedia.org/ontology/Lighthouse

http://dbpedia.org/ontology/Weapon

http://dbpedia.org/ontology/SoccerManager

http://dbpedia.org/ontology/BasketballPlayer

http://dbpedia.org/ontology/RugbyPlayer

http://dbpedia.org/ontology/Automobile

http://dbpedia.org/ontology/AmericanFootballPlay
er

http://dbpedia.org/ontology/IceHockeyPlayer

Page 33

Figure 15: Height Persons Distribution

4.5.3 Elevation

The distribution for elevation is similar to that of populationTotal but also includes negative values

(for example the Dead Sea) though its overall range is far more limited. There are 206,997 triples in

total, all of which were successfully parsed. Valid values range from about -1000 for an undersea

volcano to almost 9000 for the Mount Everest.

0

1000

2000

3000

4000

5000

6000

1
.4

1
.4

6

1
.5

2

1
.5

8

1
.6

4

1
.7

1
.7

6

1
.8

2

1
.8

8

1
.9

4 2

2
.0

6

2
.1

2

2
.1

8

2
.2

4

2
.3

f

r

e

q

u

e

n

c

y

height in m

Height Persons Distribution

http://dbpedia.org/ontology/Te
nnisPlayer

http://dbpedia.org/ontology/Bo
xer

http://dbpedia.org/ontology/So
ccerManager

http://dbpedia.org/ontology/Ba
sketballPlayer

http://dbpedia.org/ontology/Ru
gbyPlayer

http://dbpedia.org/ontology/A
mericanFootballPlayer

http://dbpedia.org/ontology/Ic
eHockeyPlayer

http://dbpedia.org/ontology/So
ccerPlayer

Page 34

Figure 16: Elevation Distribution

Splitting the dataset by type does not reveal much new information. This is to be expected, consid-

ering that settlements make up most of the subjects and - unlike with populationTotal - there is no

direct correlation between the elevation of a place and the kind of settlement it constitutes.

Figure 17: Elevation Distribution by Type

0

50000

100000

150000

200000

250000

300000

350000
f

r

e

q

u

e

n

c

y

elevation AMSL in meter

Elevation Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

-5
0

0 0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0
f

r

e

q

u

e

n

c

y

elevation AMSL in meter

Elevation Distribution by Type

http://dbpedia.org/ontology/River

http://dbpedia.org/ontology/AdministrativeRegion

http://dbpedia.org/ontology/Lake

http://dbpedia.org/ontology/Village

http://dbpedia.org/ontology/Mountain

http://dbpedia.org/ontology/City

http://dbpedia.org/ontology/Airport

http://dbpedia.org/ontology/Town

Page 35

4.6 Comparisons

4.6.1 Mode Comparisons

We first determined reasonable values for the parameters responsible for the sensitivity of each

method. The lower end of the sensitivity was always chosen to be the point beyond which only

negligible change in the number of positives occurs. The upper limit of sensitivity was either

chosen at the point where the absolute number of false positives becomes too high for the meth-

od to be actually useful (i.e. in the thousands) or at the point where the ratio of true to false posi-

tives became too low.

We evaluated the three datasets together to prevent optimization for a single predicate.

Again, we will take a look at the ROC curves first to understand the general performance of

each method and mode. For these tests it was not possible to use a common axis scaling for all

methods as the results differed by magnitudes from method to method.

This chart compares the different modes for IQR. The default mode performs clearly the worst,

byType the best and cluster occupies the middle ground.

Figure 18: IQR mode comparison mixed

When we look at the same comparison for the dispersion methods, the results are somewhat

surprisingly exactly reversed. While cluster starts out a little better than default, it later causes

more false positive. ByType does not work at all with dispersion and yields by far the worst re-

sults.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

IQR Mode Comparison Mixed

default

byType

cluster

Page 36

Figure 19: dispersion mode comparison mixed

With KDE-FFT, the cluster method shows by far the worst results, byType works slightly better than

default but overall the true positive:false positive ratio does not seem to make this method usable.

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

Dispersion Mode Comparison Mixed

default

byType

cluster

Page 37

Figure 20: KDE-FFT mode comparison mixed

4.6.2 Dispersion Estimator Comparison

This chart gives a comparison of the four dispersion estimators. All four graphs overlap almost

completely so in effect there does not seem to be much difference between the estimators.

First we have the comparison for the default case:

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE FFT Mode Comparison Mixed

default

byType

cluster

Page 38

Figure 21: dispersion estimators default mixed

For the byType case ScaleTau2 falls slightly off while the other three are again almost identical.

Figure 22: dispersion estimators byType mixed

And finally for the cluster case we do not see much difference either:

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

Dispersion Estimators Default Mixed

MAD

Qn

ScaleTau2

Sn

0

1

2

3

4

5

6

7

0 20 40 60 80 100

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

Dispersion Estimators byType Mixed

MAD

Qn

ScaleTau2

Sn

Page 39

Figure 23: dispersion estimators cluster mixed

4.7 Iteration

The last mode that we have not evaluated yet is iterative. Since this mode does not affect the way

the data is separated, it can easily be combined with the other three modes. We performed the tests

on the same data and with the same parameters as in the last section (see appendix, “Iteration Re-

sults”).

For the dispersion and IQR methods, we do not see much change; this is to be expected, as the

methods used to estimate the dispersions are designed to be robust to outliers, so removing them

should not have much effect.

For FFT-KDE, iterative application only amplifies the already bad performance for a single itera-

tion.

However, we will see some interesting results with regards to iterations in the following KDE sec-

tion.

4.8 Runtime

Runtimes for one analysis run in default mode on the three datasets were 1832ms for IQR, 2,297ms

for dispersion, 6,922ms for KDE-FFT and 2,469,011ms (over 41 minutes) for KDE. These runtimes

include analysis overhead one the one hand and some caching on the other hand so they should only

be viewed in comparison to each other, not as absolute values.

In byType mode, IQR takes 41,538ms, KDE-FFT 31,336ms and dispersion 72,852 for one sample

run.

The cluster mode suffered from extremely high runtimes of around one hour for the height dataset

and over 24 hours for elevation and populationTotal.

4.9 KDE

The high runtimes of the exact KDE implementation prevented us from putting it through the same

test tracks as the other methods.

0

2

4

6

8

10

12

14

0 20 40 60 80 100

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

Dispersion Estimators cluster Mixed

MAD

Qn

ScaleTau2

Sn

Page 40

But as KDE showed promising results on the simulated data and was successfully used for outlier

detection in Linked Data by (Fleischhacker, 2013), we did not want to forego the chance of evaluat-

ing it all together.

We therefore chose to evaluate on the smallest of the three datasets, height, only.

Firstly, we have again the basic comparison of the three modes:

Default performs extremely bad but byType and especially cluster show promise with the best result

being 51:9 true positives:false positives.

Figure 24: KDE mode comparison mixed

Things get even more interesting when we turn to iterative application of KDE because for the first

time, we observe a significant improvement with increasing numbers of iterations.

At first, in default mode, we again observe the pattern of more iterations deteriorating already bad

results.

0

20

40

60

80

100

120

0 200 400 600 800 1000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE Mode Comparison Mixed

default

byType

cluster

Page 41

Figure 25: KDE default iterations height

However, once we apply multiple iterations to the already good results of byType, we see a signifi-

cant improvement after the second iteration and some further improvement after the third. Beyond

that, not much change is observed.

Figure 26: KDE byType iterations height

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE default iterations height

1 iteration

2 iterations

3 iterations

4 iterations

5 iterations

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE byType iterations height

1 iteration

2 iterations

3 iterations

4 iterations

5 iterations

Page 42

The chart for the cluster mode paints a similar picture, though overall results are not quite on the

same level as for byType.

Figure 27: KDE cluster iterations height

The point at 82 true positives : 14 false positives (85% precision) is one of the best results overall,

only equaled by IQR, albeit in much smaller numbers, 15:2 (88%). However, ultimately those re-

sults should be taken with a grain of salt, as they are only based on a single dataset, which makes

the evaluation prone to over-optimization for this specific predicate.

Our interpretation of these results is that because, unlike the other methods that are based on inher-

ently robust statistics, which are supposed to ignore outliers, KDE weighs all data points equally.

Thus, the removal of outliers can actually affect the outlier score of other outliers that had previous-

ly been masked.

4.10 Parameters

These charts give a general idea of how the different algorithms and modes would be expected to

perform. However, in order to actually utilize them we need to choose concrete values for the pa-

rameters.

4.10.1 Quality Measure

We recorded the number of detected outliers, the number of true positives, the number of false posi-

tives and the number of false negatives for each run. True positives (tp) are data points, which were

detected as outliers and which are in fact incorrect. False positives (fp) are data points, which were

detected as outliers but were actually correct. False negatives (fn) are incorrect values, which were

not identified as suspicious by the outlier detection method.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

KDE cluster iterations height

1 iteration

2 iterations

3 iterations

4 iterations

5 iterations

Page 43

From this we calculated the precision,

, and the recall,

. We chose not to use the frequent-

ly used F-measure,

, as the ultimate measure of quality since for our purposes pre-

cision is much more important than recall because of the great number of incorrect values that can-

not be identified as such by outlier detection methods alone without causing a massive number of

false positives. Precision on the other hand is important as the stated goal of this thesis is to find

unsupervised methods for identifying incorrect values and a high number of false positives would

effectively mean a higher need for human interaction.

Thus, we used , where k = 2 or 3, as a measure of an algorithm’s quality to opti-

mize for a high total count and high precision. We will call this measure the “precise total”.

We will now take a look at the most successful methods and modes as judging by our previous ex-

aminations. That means all combinations that were able to produce more true than false positives for

more than a few triples. Namely the combination of IQR and byType or cluster and the combination

of KDE, byType or cluster and iterative.

This chart depicts the parameters and results that yielded the highest precise total measures.

Low quantile values perform well, which is to be expected if we do not assume the number of incor-

rect values to exceed the quantile. Multipliers for the IQR of 30-50 appear useful. With values of

10-20, we can already recognize an increase in the number of false positives.

4.10.2 IQR

truePositive falsePositive precision preciseTotal2 preciseTotal3 multiplier quantile

18 3 0.857142857 13.2244898 11.33527697 20 0.006

19 5 0.791666667 11.90798611 9.427155671 20 0.011

15 2 0.882352941 11.67820069 10.30429473 30 0.006

15 2 0.882352941 11.67820069 10.30429473 50 0.011

16 3 0.842105263 11.34626039 9.55474559 30 0.011

21 8 0.724137931 11.01189061 7.974127681 10 0.006

14 2 0.875 10.71875 9.37890625 40 0.006

14 2 0.875 10.71875 9.37890625 50 0.006

15 3 0.833333333 10.41666667 8.680555556 40 0.011

Table 1: IQR byType parameters

The combination of IQR and cluster proved quite successful too. Useful multipliers are again be-

tween 20 and 50, while the efficient quantile values are 0.005 smaller on average.

truePositive falsePositive precision preciseTotal2 preciseTotal3 multiplier quantile

12 1 0.923076923 10.22485207 9.438324989 30 0.001

10 0 1 10 10 50 0.001

13 2 0.866666667 9.764444444 8.462518519 20 0.001

10 1 0.909090909 8.26446281 7.513148009 40 0.001

15 8 0.652173913 6.379962193 4.160844908 10 0.001

25 43 0.367647059 3.379108997 1.242319484 20 0.006

16 19 0.457142857 3.343673469 1.528536443 50 0.006

18 24 0.428571429 3.306122449 1.416909621 40 0.006

26 48 0.351351351 3.209642075 1.12771208 30 0.011

Table 2: IQR cluster parameters

Page 44

4.10.3 KDE

Next, we take a look at the results of the basic KDE implementation being applied to the height da-

taset.

The parameters for both byType and cluster mode look very similar. More than two iterations do not

improve results in this case and a threshold of 0.3 or 0.4 seems most useful. With a threshold of 0.93

for byType or 0.92, we are able to uncover a vast number of outliers (the people with an erroneous

height of 1.524m) at the expense of a large number of false positives. However, we would argue

that this success is very specific to this dataset and in general such high thresholds should be avoid-

ed.

truePositive falsePositive precision preciseTotal2 preciseTotal3 maxIterations threshold

956 1292 0.425267 172.8945 73.52629 3 0.93

82 14 0.854167 59.82726 51.10245 3 0.4

82 14 0.854167 59.82726 51.10245 4 0.4

82 14 0.854167 59.82726 51.10245 5 0.4

75 13 0.852273 54.47766 46.42982 3 0.3

75 13 0.852273 54.47766 46.42982 4 0.3

75 13 0.852273 54.47766 46.42982 5 0.3

75 14 0.842697 53.26032 44.88229 2 0.4

73 13 0.848837 52.5983 44.64739 2 0.3

Table 3: KDE byType parameters

truePositive falsePositive precision preciseTotal2 preciseTotal3 maxIterations threshold

81 11 0.880435 62.7884 55.28109 2 0.3

81 14 0.852632 58.88543 50.20758 3 0.3

81 14 0.852632 58.88543 50.20758 4 0.3

81 14 0.852632 58.88543 50.20758 5 0.3

81 18 0.818182 54.22314 44.36439 2 0.4

88 23 0.792793 55.3098 43.84921 3 0.4

667 996 0.401082 107.2983 43.03547 2 0.92

88 24 0.785714 54.32653 42.68513 4 0.4

Table 4: KDE cluster parameters

4.11 Random Sample

In order to evaluate on a representative combination of datasets, we randomly selected 50 resources

using the SPARQL query SELECT distinct ?x WHERE {?x a owl:Thing} ORDER BY

RAND() LIMIT 50 OFFSET 1234. For each resource we then read the data of all predicates.

During parsing we filtered out datasets with less than 100 data points to allow for significant statis-

tical results. Furthermore, we only used datasets where more than 50% of all data points could be

successfully parsed as lower rates indicate that the data is in fact not numerical.
Data Acquisition

One problem with this evaluation approach is that DBpedia’s SPARQL endpoint is not geared for

mass downloading data and places various restrictions on requests. One being that a single query

can only return 40,000 triples. For queries with larger result sets we have to order the result set and

then walk it using an offset.

Page 45

Beyond this limit on the absolute number of triples returned, there seems to be a bandwidth limit

that applies when the result of a single query exceeds a certain number of bytes. That is, for a predi-

cate with numerical objects 40,000 triples will generally return fine but when dealing with a predi-

cate such as dbpedia-owl:abstract, which contains a description of a few sentences for each

subject in multiple languages, this limit will be hit. To mitigate this we can iteratively reduce the

window size but this decreases performance even further to the point where acquiring all data for

dbpedia-owl:abstract would take days. Since this problem occurs only with predicates that

have long strings as objects – exactly the kind of data that we are not interested in for numerical

analysis – we decided to exclude those predicates by hand in order to prevent automatic queries

from getting stuck. This resulted in a list of 15 excluded predicates:

http://www.w3.org/2000/01/rdf-schema#comment,

http://dbpedia.org/ontology/thumbnail,

http://dbpedia.org/property/wikiPageUsesTemplate,

http://dbpedia.org/property/hasPhotoCollection,

http://purl.org/dc/terms/subject,

http://dbpedia.org/ontology/wikiPageExternalLink,

http://www.w3.org/2000/01/rdf-schema#label,

http://www.w3.org/2002/07/owl#sameAs,

http://www.w3.org/ns/prov#wasDerivedFrom,

http://xmlns.com/foaf/0.1/depiction,

http://xmlns.com/foaf/0.1/isPrimaryTopicOf,

http://dbpedia.org/ontology/abstract,

http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

http://dbpedia.org/property/name and http://xmlns.com/foaf/0.1/name.

None of those contain numerical data and they can therefore be excluded from analysis. Other than

that resources/predicates were chosen completely at random.

After parsing, this left us with 13,053,007 triples in 168 datasets to work with.

4.12 Evaluation on 50 Random Resources

The combination of IQR and byType had shown high precision (88%) as well as runtimes that

seemed suitable for large scale analysis, so we chose to evaluate this combination further on the

representative sample of 50 random resources we collected.

For a first test, we used the parameters that had shown the highest precision (Quantile=0.011, multi-

plier = 50) to keep the need for manual analysis as low as possible. This yielded 1,703 suspicious

triples, which we then evaluated by hand. Manual verification was made feasible by using some

shortcuts: The outliers did not occur at random but in clusters. For example, we found 122 area

codes with eight or more digits. Since US area codes are all three digits in length, all resources of

the form “[some place],_[US state/borough]” (which made up the vast majority) could be discarded

at a glance. In some cases, however, we were not able to confidently determine what a certain prop-

erty is supposed to represent and thus what values its objects should have. For example, the objects

of the property http://dbpedia.org/property/map are so diverse that it is hard to tell what

exactly they are supposed to represent. Thus, we labeled outliers for those properties as “unknown”.

Even discounting unknown values, IQR achieved a precision of 81% on this sample of 50 random

resources.

Based on this successful run, we created the full ROC plots for IQR on the 50 resources.

We again used parameters for high precision only to allow for semi-manual analysis of all outliers.

Page 46

The highest precision is achieved at 88% with 859 true positives and 108 false positives.

Figure 28: IQR byType random 50

The parameters for the most useful runs can be seen here:

falsePositive truePositive precision preciseTotal2 preciseTotal3 multiplier quantile

302 1330 0.81495098 883.3129836 719.856782 30 0.009

414 1421 0.774386921 852.1383219 659.8847714 20 0.009

126 901 0.877312561 693.4792738 608.3980776 50 0.007

233 1038 0.81667978 692.3105654 565.39604 50 0.009

151 931 0.860443623 689.2781655 593.0850019 50 0.008

142 914 0.865530303 684.7164328 592.6428216 60 0.008

121 881 0.879241517 681.0708334 598.8257527 60 0.007

112 865 0.885363357 678.0460573 600.3171336 70 0.007

108 859 0.888314374 677.8389854 602.1341142 80 0.007

Table 5: IQR byType random 50 parameters

We applied the methods in default mode to the sample data, which yielded nominally impressing

results of thousands of outliers. The reason that we can find so many more outliers in general is that

in order for an outlier to be found using the byType mode, its triple has to have a useful type.

However, three predicates, http://dbpedia.org/property/date, http://dbpedia.org/

property/years and http://dbpedia.org/property/postalCode were responsible for

the vast majority of those outliers. For those predicates, identifying true positives is extremely easy

because years and dates with more than four digits do not make sense and the same goes for post-

codes with more than ten digits.

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

IQR byType random 50

Page 47

By merely counting the corresponding objects for those three predicates we would achieve true pos-

itive:unknown/ false positive ratios of 7838:8751 (89%) with dispersion (MAD, constant factor =

300,000) and 5917:7216 (82%) with IQR (quantile = 0.01, multiplier = 41).

To verify that the results of our first test run were not dependent on only a few low quality datasets,

we chose to evaluate on the higher quality dbpedia-OWL properties only as well, which left us with

4,150,26738 triples (32.8%) in 38 datasets (22.6 %) to analyze.

Since we are dealing with a subset, the number of true and false positives cannot increase. For the

same sensitivities, we find fewer outliers but the overall excellent trend remains.

Figure 29: IQR byType random 50 OWL only

The parameters for the most useful runs can be seen here. We attribute the lower multiplier values

to the smaller sample size. That is, with less overall datasets there may be less need for safety mar-

gins against certain datasets that are likely to cause large numbers of false positives.

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80

t

r

u

e

p

o

s

i

t

i

v

e

s

false positives

IQR byType res50 OWL only

Page 48

falsePositive truePositive precision preciseTotal2 preciseTotal3 multiplier quantile

60 406 0.871245 308.1813 268.5013 10 0.007

69 417 0.858025 306.9981 263.4119 10 0.008

154 426 0.734483 229.8121 168.793 10 0.009

55 259 0.824841 176.2138 145.3484 10 0.006

46 240 0.839161 169.0058 141.8231 10 0.004

55 246 0.817276 164.3132 134.2892 10 0.005

42 216 0.837209 151.3986 126.7523 20 0.008

42 199 0.825726 135.6829 112.0369 20 0.007

36 178 0.831776 123.1494 102.4327 20 0.006

Table 6: IQR byType random 50 OWL only parameters

With precisions of over 80% for hundreds of outliers, the combination of IQR and byType has prov-

en itself to be extremely useful. However, the parameters needed to achieve those precisions are still

dependent on the respective dataset.

4.13 Data types

Methods based on data types lend themselves so evaluation on larger number of resources too.

4.14 Range

We first looked for inconsistencies between the declared range of a property and the actual data

types of its objects. When a property has a declared range, all its objects should share the data type

of that range. We found this to be the case for almost all predicates we inspected. The only excep-

tion are: http://dbpedia.org/ontology/deathDate and http://dbpedia.org/

ontology/birthDate have a range of xsd:date but 886 (0.35%) and 1431 (0.23 %) objects re-

spectively are instead of the data type http://www.w3.org/2001/XMLSchema#gMonthDay ,

thus featuring only a month and day but no year. Other than that, the only discrepancy occurred re-

garding properties with a range of xsd:nonNegativeInteger. The objects of those properties always

were of type xsd:int exclusively but as all values were in fact non-negative, this should not cause

much problems.

4.15 Data type Majority

Since range proved to be very consistent, we turned to

analyzing the actual rates at which certain data types

occurred for a given property as described in 3.1 Data

Types.

We used a threshold of 80% for the main data type, so

if more than 80% of the objects are of a single data

type, we assume that data type to be the true data type

for this property and every other one to be erroneous.

The results for the random50 sample can be seen here:

For about one in five resources, there is no data type

that makes up at least 80% of the values. For about

one in three, all objects are exclusively of one type.

For the remaining 45% we could easily detect objects

21%
5%

5%

4%

9%

22%

34%

main datatype shares

no main type 80-85% 85-90%

90-95% 95-99% 99-100%

100%

Figure 30: Majority Data type Shares

Page 49

that have a wrong data type. Because frequently only the data type is wrong but the data itself is

mostly correct, this can be used to identify triples that need parsing.

4.16 Parsing

In order to make the raw triples available for processing, we need to parse them first. Since the

number format is standardized, the parsing phase can be used for error detection. If we assume that

a certain property has numerical objects then all of its objects should be parsed successfully; other-

wise we are dealing with erroneous data.

By looking at the distribution of the ratios of successfully parsed objects, we can identify two peaks.

The first peak at less than 5% successfully parsed objects are the properties that do not have numer-

ical objects and the same is likely true for the next few percentages. On the other side of the spec-

trum, we see the properties with 100% successfully parsed objects, where there is nothing to be

done either. However, the second largest peak can be found right next to the 100% peak, in the 95%

to100-ε% range. If over 95% of the objects of a certain property could successfully be parsed as

numbers, this certainly indicates that the remaining 0.ε%-5% should be numeric too and thus require

correction.

Figure 31: parsing success ratios distribution

0

20

40

60

80

100

120

f

r

e

q

u

e

n

c

y

parsing success ratio

Parsing Success Ratios

Page 50

5. DBpedia Analysis

We examined common patterns in the outliers we found to identify their causes. There are two basic

classes of errors: those that exist already in Wikipedia and those that occur while parsing the data

from Wikipedia to DBpedia. Wikipedia itself automatically imports data from sources like public

population statistics, which makes it, like DBpedia, prone to parsing errors. On the other hand, user

generated and manually entered data can suffer from inconsistencies, which can cause errors while

parsing the data into DBpedia.

We now present a list of the error types that we identified. First for each of the three specific predi-

cates we inspected and then general errors in DBpedia.

5.1 Errors in Wikipedia

In some cases, the data is corrupted at the source, i.e. the Wikipedia infobox. For example

http://en.wikipedia.org/wiki/Lerma,_State_of_Mexico gives the elevation of a town

in Mexico as “25,700 m 84,300 ft)”. These errors are hard to quantify, as they do not seem to follow a

specific pattern.

5.2 Dbpedia-owl:height

We will first look at the height dataset. This dataset contains 52,211 triples and we identified a total

of 1,621 incorrect values. The distribution of the error sources we identified for those triples can be

seen here.

We will now explain those error sources

in detail.

5.2.1 Imperial Conversion

In many cases, the given value differs

only between about 0.025 and 0.3 me-

ters from the actual value. In most cases

the given height equals a round number

of feet. For persons, the most common

incorrect height is 1.524 meters or 5

feet; for example, the goalkeeper Ray

Wood (http://dbpedia.org/

resource/Ray_Wood) is 1.80 meters

in height according to Wikipedia but

DBpedia gives his height as 1.524 me-

ters. Another example would be locomo-

tives with an incorrect height of 3.9624 meters or 13 feet, such as the

“South_African_Class_NG10_4-6-2”, (http:// dbpedia.org/resource/South_African_

Class_NG10_4-6-2). In each case the correct value would only add a few inches or less than 0.3

meters. This indicates that this error is caused by an incorrect parsing procedure from Imperial units

to metric units where only the value in feet is correctly read while the remaining inches are cut off.

Height Error Sources

conversion
imperial

wiki

unknown

conversion metric

meter cut off

Figure 32: Height Error Sources

Page 51

5.2.2 Metric Conversion

In some cases, heights appear too small by a factor of one hundred. For example, the correct height

for http://dbpedia.org/resource/Humberto_Contreras would be 1.76 meters according

to Wikipedia, however DBpedia gives a value of 0.0176 meters. It would seem that DBpedia ex-

pects the value to be given in centimeters and thus converts it to meters by dividing by 100.

However, in many other cases, this error is already present in Wikipedia. For example, the height of

Katrina Porter (http://en.wikipedia.org/wiki/Katrina_Porter) is given as 1.55cm,

which DBpedia then converts to 0.0155 meters accordingly.

A similar error can be observed with regards to some resources that have their height given in mil-

limeters at Wikipedia, e.g. http://en.wikipedia.org/wiki/FS_Class_E491/2 states the

height of this locomotive as 4,310 mm (14 ft 1.7 in), which is rendered as 0.004310m =

4.31mm at DBpedia.

5.2.3 Meter Cut Off

A number of people with actual heights of around 1.5-1.9 meters have their heights represented in

DBpedia as 1.0 meter exactly. This does seem to happen most often with somewhat unclean height

specifications in Wikipedia. For example, Wikipedia states the height of the footballer Guy Poitevin

as “1 m 81, 80 kg”, which then gets interpreted as 1.0m at http://dbpedia.org/resource/

Guy_Poitevin.

5.3 DBpedia-owl:populationTotal

We next examined the dataset for populationTotal. This dataset contains 237,700 triples and we

identified a total of 50 incorrect values.

The distribution of the error sources can be seen here:

Figure 33: populationTotal error sources

5.3.1 Zero in Number

http://dbpedia.org/resource/Durg gives the population of the city of Durg as 2810436

(xsd:integer), when it really is 281,436.

populationTotal Error
Sources

additional
number in value

unknown

separator

zero in value

wiki

Page 52

A similar error can be seen with regards to the city of Nantong (http://dbpedia.org/

resource/Nantong). DBpedia gives the population as 72828350(xsd:integer), when, ac-

cording to Wikipedia, it is actually 7,282,835.

5.3.2 Double Information

The Wikipedia article for Johnstown, Colorado

(http://en.wikipedia.org/wiki/Johnstown,_Colora

do) gives its population as 9,887 in the infobox.

However, in the introduction, a population of

3,827 in 2000 is also mentioned. In DBpedia

(http://dbpedia.org/page/Johnstown,_

Colorado), we find a combination of those two

values as 38,279,887.

5.3.3 Additional Number in Value

Of the 38 incorrect resources we found, 22 had in

common being small villages or towns in South

Australia and their population always ending in

“2006”. For example http://dbpedia.org/
resource/Semaphore,_South_Australia

has a stated population of 28,322,006.

Inspection of the infobox in the original Wikipe-

dia articles shows that the population along with

the year of the census, 2006.

It appears that the “2,832 <small><i>2006

Census</i></small>” in the page’s HTML is

read as a single number, thus causing the incor-

rect value of 28,322,006.

Figure 34: Semaphore - Date in Value

Page 53

5.4 Dbpedia-owl:elevation

Elevation contains 207,105 triples and we identified a total of 26 incorrect values.

The distribution can be seen here:

Figure 35: Elevation Error Sources

5.4.1 Unit misinterpretation

Wikipedia gives the elevation of Shadow Mountain Lake as 8367' (8367 ft.), which DBpedia mis-

interprets as 8367 meters, thus causing the parsed value at http://dbpedia.org/resource/

Shadow_Mountain_Lake to be about three times (1 meter = 3.28084 feet) larger than it actually

is.

http://dbpedia.org/resource/Zapatoca features this error in an odd way. Wikipedia gives

the elevation as Elevation 1,720 m (4,000 ft) and DBpedia renders this as both

1219.200000 (xsd:double) and 13123.000000 (xsd:double). The first value corre-

sponds to converting 4,000ft to meter and the latter to converting 4,000 meter to feet.

5.4.2 Wiki Semi

In some cases the correct data exists at Wikipedia along with another incorrect value and DBpedia

selects the wrong value. http://en.wikipedia.org/wiki/Portland,_Michigan gives the

elevation of this town as 30,035 ft (221 m). 221 meters would be the correct value, but DBpe-

dia picks up the elevation in feet and converts it to the incorrect value of 9154.67 meters.

5.5 General

The following are errors that we encountered with regards to predicates other than the three we in-

spected in detail. As we cannot estimate the total number of errors for all datasets with reasonable

accuracy, we will not be giving figures for the distribution of those errors.

5.5.1 Lists and Ranges

One of the most common errors we observed with regards to dbpprop properties concerns multiple

values being concatenated into a single one.

Area codes suffer from this problem in particular because they are frequently given as lists or rang-

es, for example, Wikipedia gives the area code of Central California as “Area code 805, 559,

831”, which DBpedia turns into 805559831 (xsd:integer) at http://dbpedia.org/page/

Central_California for the predicate dbpprop:areaCode.

Elevation Error Sources
wiki

unknown

unit
misinterpretation

wiki semi

Page 54

5.5.2 Misinterpretation Due to Inconsistencies

Runtime

There is a property for the runtime of various media products. DBpedia extracts this from the “Run-

ning time” attribute in the corresponding infoboxes and converts the value to a common unit of

time. Wikipedia does not use this property completely consistently though; for some TV shows, the

runtime given is not the runtime of a single episode but the period of time over which the show

aired. For example “Wielie Walie” (http://dbpedia.org/resource/Wielie_Wielie_

Walie), a South African children’s program was on for 18 years, which DBpedia interprets as a

runtime of seconds.

Another problem with regards to the runtime occurs when Wikipedia gives the running time in me-

ters (of film), which then gets interpreted as minutes. For example, the runtime of the 1919 movie

“The Unpardonable Sin” is given as “9 reels (2,700 meters)” on Wikipedia, which then gets con-

verted to 162,000 second = 2,700 minutes athttp://dbpedia.org/resource/

The_Unpardonable_Sin_(1919_film) for http://dbpedia.org/ontology/runtime.

The http:// dbpedia.org/ontology/activeYearsEndYear and http://

dbpedia.org/ontology/activeYearsStartYear properties suffer from similar problems

when a timespan is given and misinterpreted as a date. For example,

http://en.wikipedia.org/wiki/Lions_Gate_Chorus has a “Years active” attribute with a

value of 53, which http://dbpedia.org/resource/Lions_Gate_Chorus interprets as the

year 53.

In some cases, however, this is caused by misinterpreting a decade given at Wikipedia, such as

“Mid-90s – present” for http://en.wikipedia.org/wiki/Depswa as an absolute year.

Elevation Ballistics vs. Geographical

A similar case of misinterpretation due to double meaning can be observed with regards to dbp-

prop:elevation, where for resources of type dbpedia-ontology:weapon ballistic elevation

(the angle between the barrel and the ground) has been misinterpreted as geographic elevation.

5.5.3 Date in value

Some songs have a date in the runtime field for a specific version. For example the Wikipedia arti-

cle for “White Christmas” features this in its infobox:

Length 3:02 (1942recording)

3:04 (1947 recording)

This is then misinterpreted as a runtime of 1942 (seconds) at http://dbpedia.org/resource/

White_Christmas_(song) for http://dbpedia.org/ontology/Work/runtime. Other

examples are http://dbpedia.org/resource/The_First_Time_Ever_I_Saw_Your_

Face,http://dbpedia.org/resource/The_Singer_Sang_his_Song and http://

dbpedia.org/ontology/Work/runtime.

5.5.4 Separators

DBpedia will sometimes assume dots to represent decimal separators and commas to represent

thousands separators, so if this assumption is violated, errors occur.

Page 55

5.5.5 Comma As Decimal Separator

Commas are sometimes interpreted as thousands separators, so when a comma is used to indicate

the decimal point, it gets lost, e.g. for the property http:// dbpedia.org/property/

eccentricity and the subjects http:// dbpedia.org/resource/1134_Kepler,

http:// dbpedia.org/resource/2644_Victor_Jara and http:// dbpedia.org/

resource/266983_Josepbosch.

5.5.6 Dot as Thousands Separator

If a dot is used as a thousands separator it is interpreted as a decimal separator and especially when

the value is expected to be an integer, such as for the population of http://dbpedia.org/

resource/Garg%C5%BEdai , a city with a population of “16.814”, which becomes a population

of 17 after misinterpretation and rounding.

5.5.7 Comma as Thousands Separator

This behavior is not consistent though and we have seen the interpretation going wrong the other

way around. http://dbpedia.org/resource/Fruitland,_Maryland states a population of

5, when in reality it is 4,866.

5.5.8 Time Misinterpretation

Wikipedia lists the runtime of some albums as mm:ss:msms, for example http://

en.wikipedia.org/wiki/Les_Dudek_(album). DBpedia reads this as hh:mm:ss and con-

verts it to "2589.1666666666665"^^http://dbpedia.org/datatype/minute" at

.http:// dbpedia.org/page/Les_Dudek_(album).

5.6 Dbpprop vs. OWL

DBpedia features two kinds of ontologies: dbpprop (http://dbpedia.org/property) and

dbpedia-owl (http://dbpedia.org/ontology) . Dbpprop aims at high coverage and thus in-

cludes a wide range of different properties with various units at the expense of proper range and

domain specifications. (The DBpedia Data Set, 2013)Dbpedia-owl on the other hand aims at con-

sistency and higher data quality.

We have seen this during our evaluation where we found thousands of incorrect values for some

dbpprop properties while errors in the dbpedia-owl properties were much more spurious and much

harder to come by.

5.6.1 Data types

We first took a look at the available properties for each ontology using the 50 random resources that

we already used for evaluation earlier on. This yielded 121 different properties for dbpedia-owl and

315 for dbpprop.
DBpedia-OWL

Next, we inspected the data types of the corresponding objects. 63 of the 121 dbpedia-owl proper-

ties were of type ObjectProperty and thus the objects are URIs that cannot have a data type. 19

of the remaining 58 (~33%) dbpedia-owl properties did not feature a single object with a defined

data type. However, 18 of those had a range of string so a data type would not be necessary.

The only property that appeared inconsistent regarding the declared range and the actual data types

of the objects was http://dbpedia.org/ontology/individualisedPnd, which represents

“PND (Personennamendatei) data about a person. PND is published by the German National Li-

Page 56

brary. For each person there is a record with her/his name, birth and occupation connected with a

unique identifier, the PND number.” This property has a declared range of

xsd:nonNegativeInteger, however all objects are German language strings. The reason ap-

pears to be that in some cases, the last digit is replaced by an “X”, which would not be possible with

true integers.

DBprop

DBpprop properties are all only of type rdf:property so there is no indication of whether they

are supposed to have literals or other resources as objects. They do not feature declared ranges ei-

ther, so we have to go completely by what objects we find. 21 of the 315 (6.7%) properties did not

have any objects with data types. We found 76 different data types for dbpprop, including exotic

currencies such as the Ghanaian Cedi (http://dbpedia.org/datatype/ghanaianCedi) or

the Nicaraguan córdoba (http://dbpedia.org/datatype/nicaraguanC%C3%B3rdoba) and

metric units with rarely used prefixes such as the giga meter (http://dbpedia.org/datatype/

gigametre) or the mega liter (http://dbpedia.org/datatype/megalitre).

In contrast, the data types for dbpedia-owl do appear quite consistent. There are only 15 of them, 7

of which are sourced from w3.org.

Further corroborating the consistency of dbpedia-owl as compared to dbpprop is that of the 121

properties 115 (95%) featured exclusively objects of a single type and only 6 (5%) properties fea-

tured objects of two different types.

For dbpprop we found the following distribution regarding the frequency of different data types:

Figure 36: number of data types distribution

There is one property, http://dbpedia.org/property/altNames, which features objects of

25 different types. This would obviously make automatic processing extremely complicated. How-

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 22 25

f

r

e

q

u

e

n

c

y

number of different datatypes

Page 57

ever, even dealing with the most common case of three different data types would mean a large

amount of additional work.

Data types of http://dbpedia.org/property/altNames objects:

data type count

http://www.w3.org/2001/XMLSchema#integer 647

http://www.w3.org/2001/XMLSchema#int 10820

 673

http://dbpedia.org/datatype/terabyte 10

http://dbpedia.org/datatype/joule 1

http://dbpedia.org/datatype/newton 2

http://dbpedia.org/datatype/kelvin 2

http://dbpedia.org/datatype/degreeRankine 2

http://dbpedia.org/datatype/volt 2

http://dbpedia.org/datatype/astronomicalUnit 4

http://dbpedia.org/datatype/usDollar 6

http://dbpedia.org/datatype/gigalitre 4

http://dbpedia.org/datatype/gigabyte 9

http://dbpedia.org/datatype/giganewton 7

http://dbpedia.org/datatype/pferdestaerke 5

http://dbpedia.org/datatype/meganewton 2

http://dbpedia.org/datatype/megalitre 2

http://dbpedia.org/datatype/megabyte 7

http://dbpedia.org/datatype/megawatt 2

http://dbpedia.org/datatype/gigawatt 4

http://dbpedia.org/datatype/second 2

http://dbpedia.org/datatype/megavolt 2

http://dbpedia.org/datatype/litre 1

http://dbpedia.org/datatype/degreeFahrenheit 2

http://dbpedia.org/datatype/ampere 1

Table 7: altNames data types

This is another example of a predicate that is obviously meant to have integer objects, as 22 of the

data types only appear in an extremely small fraction of the cases.

5.6.2 Property Comparison

The three specific predicates, height, populationTotal and elevation, which we already used for

evaluation earlier, are not only available in dbpedia-owl but in dbpprop as well, so we used those

pairs to performs some comparisons.
Elevation

The dbpprop version of the elevation dataset contains only 13,162 data points, compared to 206,997

for the dbpedia-owl version. Yet we found 178 resources with elevations greater than that of Mount

Everest (8,848 meters). We further found 501 resources of type dbpedia-ontology:weapon

where obviously the ballistic elevation (the angle between the barrel and the ground) had been mis-

Page 58

interpreted as geographic elevation. That makes for a total of 679 easily identifiable errors (5%) as

opposed to only 28 (0.01%) in the dbpedia-owl version.
Height

For height, there are 14,382 triples in the dbpprop version and 52,252 in the dbpedia-owl version.

But beyond that, comparison is much more difficult. While the default unit for dbpedia-

owl:height is defined as meter, for dbpprop:height objects are of many different data types on

the one hand and of type xsd:int or completely untyped on the other, which makes it impossible to

accurately infer a single default unit.

Valid units of length used in the dbpprop:height dataset are http://dbpedia.org/data

type/millimetre and http://dbpedia.org/datatype/inch (mostly cars), http://

dbpedia.org/datatype/centimetre (persons) http:// dbpedia.org/datatype/foot,

http:// dbpedia.org/datatype/kilometre and http:// dbpedia.org/datatype/

astronomicalUnit. However, objects of those data types only make up 3,267 of all objects

(22.7%), so further analysis does not seem viable.

populationTotal

For populationTotal, both versions are similar in size (237,700 for dbpedia-owl vs. 164,407 for

dbpprop). However, we were not able to identify any significant errors in the dbpprop version be-

yond those that occur in the dbpedia-owl version too.

50 Random Resources

We were not able to examine all 50 datasets in detail so we cannot make an accurate estimate of the

error ratios for all 50 datasets. However, of the 9,039 outliers we detected, only 1009 (11.2%) be-

longed to the dbpedia-owl namespace and the remaining 8,030 (88.4%) belonged to the dbpprop

namespace.

Page 59

6. Conclusion

6.1 Results

6.1.1 Methods

The simple IQR method delivers some of the best results in our tests. Combined with the byType

mode, we achieved about 87% precision on small high quality samples as well as on large random

samples. Multipliers of 30-50 and quantiles of about 0.006 to 0.011 yield the best results in our

manually evaluated tests. However, those parameters are still dependent on the dataset under inspec-

tion, as can be seen with regards to the tests on random samples.

Basic KDE shows similar results with relative probability thresholds of 0.3 to 0.4 but suffers from

high runtimes. A high threshold of 0.93 to 0.94 allowed KDE to discover outliers that no other

method could identify with similar precision. However, this result is very specific to the height da-

taset and even then precision falls below 50%.

The other methods, dispersion and KDE-FFT, mostly fail to deliver results with more true than false

positives.

In order to be able to use a single method with a single set of parameters for a large amount of dif-

ferent datasets it has to be extremely robust and work with a large safety margin. Without this safety

margin, one dataset with a large number of natural outliers can often cause more false positives than

what would be feasible to inspect manually. This again means, however, that recall will generally

low because once the algorithm begins to pick up false positives, it is generally not possible to com-

pensate by increasing the sensitivity as that would only cause more false positives, in addition to the

ones that already exist.

6.1.2 Modes

Regarding semantics, the biggest improvement upon the baseline can be achieved by splitting the

datasets by RDF types.

Clustering by type vectors does produce promising results as well but is, at least in our current im-

plementation, not feasible runtime-wise.

Iterative application of analysis methods does not improve results for most methods. Only KDE

clearly benefits from using more than one iteration; with all other methods, results either do not

change or, if they were bad to begin with, tend to get even worse.

Overall, the combinations of IQR and byType or cluster and the combinations of KDE, byType or

cluster and iterative produce the best results.

6.1.3 DBpedia Analysis

We identified a number of common sources of errors in DBpedia. Large amounts of the corrupted

data points in DBpedia are caused by only a few of those error sources.

Overall, 11 different types of errors in the DBpedia extraction framework regarding properties in the

dbpedia-owl namespace were identified and forwarded as bug reports to the developers of DBpedia.

Direct comparisons between dbpedia-owl and dbpprop do not seem particularly meaningful because

they aim for completely different goals. While dbpedia-owl is based on consistency with declared

ranges and domains, dbpprop aims for as much coverage as possible. Thus, when comparing the

two, we are faced with comparing a mostly correct and consistent dataset with one, where we can

Page 60

often not even determine what the data is meant to represent. However, to put them into some rela-

tion: of the outliers we inspected in our random sample, 88% came from the dbpprop namespace

and only the remaining 12% from dbpedia-owl.

6.2 Outlook

6.2.1 Integrated Implementation

Our implementation is mainly optimized for the test tracks we built for evaluation.

We did not use a complete local copy of DBpedia and to compensate we employed disk and

memory caches to speed up repeated operations on the same data.

This does not reflect the regular use case where all the data is locally available but only processed

once.

If outlier detection were deployed alongside a full copy of DBpedia some variables would change.

Performance-wise, we do not see much room for improvement on most basic analysis methods (ex-

cept KDE) but the advanced methods that actively utilize Semantic Web features could certainly

profit from having all data available locally.

If outlier detection has to be done on the fly, probably only IQR (with default or byType mode)

would be feasible. If, on the other hand, the outlier detection could run as a background task that

uses free processing power, even the more time-consuming methods and modes such as KDE and

cluster could become feasible.

6.2.2 Frontend Integration

Outlier detection and particularly subsequent parsing could be integrated on the fly into LOD

frontends to allow users to judge the reliability of triples and possibly show alternative values.

We created a simple implementation of the 4.15 majority data type approach with subsequent pars-

ing in the MoB4LOD framework (MoB4LOD, 2012) that would mostly be beneficial for develop-

ers.

Figure 37: Majority Data type Parsing MoB4LOD shows an example screenshot of this implementa-

tion, displaying a snippet of the results for the property dbpprop:aprRecordLowC. In the lower

half, we see (a small part of) the triples featuring the majority data type xsd:int. At the top, we

see triples that were deemed incorrect because they were given as strings and subsequently parsed to

the majority data type of integer.

Page 61

Figure 37: Majority Data type Parsing MoB4LOD

6.3 Semantics

By using the type information of the resources, we have only scratched the surface of the semantics

in Linked Data. As we (partially) explained in the introduction, the Semantic Web provides for an

incredibly rich theoretical foundation that could potentially be utilized for outlier detection.

The two main problems are:

1. Actual implementations are still lacking far behind what is theoretically possible.

2. The lower the general quality of the data - and thus the greater the need for outlier detec-

tion - the fewer semantics tend to be available.

However, once a basis of consistent data, which is properly augmented with semantics, has been

created, outlier detection for further data could be vastly improved.

6.3.1 Semantics Error Detection

Another path could be to extend the outlier detection to the semantics themselves. So, instead of

taking the semantics, such as types and ranges, for granted and using them to look for errors in the

numerical data, one could work in the opposite direction and use the numerical data to detect errors

in the semantics. For example, if an entity of type “village” has a population of over one million, do

not necessarily assume the population to be wrong but instead the type.

6.3.2 Clustering

We evaluated one clustering approach on RDF types, which showed promising results but suffered

from extremely high runtimes. However, there is a myriad of different clustering algorithms and

Page 62

there is much more information available for each subject beyond its type that could be used in the

clustering process. Other clustering algorithms could be evaluated for better runtime performance

on RDF types and further attributes could be combined with various clustering algorithms to

achieve more useful clustering results.

6.4 Linked Data

By studying DBpedia, we have actually just examined a single point of the Linked Data cloud in

isolation. A natural expansion to outlier detection in Linked Data would be to utilize the linkage

inherent in the data. By comparing suspicious values corresponding values from other sources, it

could not only be possible to detect more outliers but to correct them automatically too.

Another approach could be to use a Linked Data source that features low quantity but high quality

data to build training data for (semi) supervised outlier detection schemes on lower quality but high-

er quantity sources such as DBpedia.

6.5 Univariate Outlier Detection Methods

The numerical outlier detection methods we inspected and used are fairly simple but development

has recently only been made in the area of multivariate outlier detection schemes. IQR and the dis-

persion methods would obviously be unable to cope with bimodal distributions. Basic KDE does

not seem feasible for large datasets while the FFT supported version is, at least in its naïve imple-

mentation, not precise enough for our purposes. However, seeing how promising the results of KDE

are, a middle ground between performance and precision could be the silver bullet.

Page 63

References

MoB4LOD. (2012). Retrieved from ke.tu-darmstadt.de: http://www.ke.tu-

darmstadt.de/resources/mob4lod

The DBpedia Data Set. (2013, 2 22). Retrieved 5 25, 2013, from dbpedia.org:

http://wiki.dbpedia.org/Datasets?v=bli

The R Project for Statistical Computing. (2013). Retrieved 5 26, 2013, from r-project.org.

Berners-Lee, T. (2006, 7 27). Linked Data. Retrieved 5 27, 2013, from w3.org:

http://www.w3.org/DesignIssues/LinkedData.html

Bizer, C. (2012, 8 6). DBpedia 3.8 released, including enlarged Ontology and additional localized Versions.

Retrieved 5 24, 2013, from DBpedia.org: http://blog.dbpedia.org/2012/08/06/dbpedia-38-

released-including-enlarged-ontology-and-additional-localized-versions/

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S. (2009).

DBpedia - A Crystallization Point for the. Journal of Web Semantics: Science, Services and Agents on the

World Wide Web(7), 154-165.

Brickley, D., Guha, R., & McBride, B. (2004, 2 10). RDF Vocabulary Description Language 1.0: RDF

Schema. Retrieved from w3.org: http://www.w3.org/TR/rdf-schema/

Chandola, V., Banerjee, A., & Kumar, V. (2009, 7). Anomaly detection: A survey. ACM Computing

Surveys (CSUR), 3(41).

Chauvenet, W. (1863). A Manual of Spherical and Practical Astronomy V. II. Philadelphia: J. B. Lippincott &

co.

Cyganiak, R., & Jentzsch, A. (2011, 9 19). The Linking Open Data cloud diagram. Retrieved 5 24, 2013,

from lod-cloud.net: http://lod-cloud.net/

Dean, R. B., & Dixon, W. J. (1951). Simplified Statistics for Small Numbers of Observations. Analytical

Chemistry, 23(4), 636-638.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via

the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1(31), 1-38.

Estivill-Castro, V. (2002, 6). Why so many clustering algorithms — A Position Paper . ACM SIGKDD

Explorations Newsletter, 1(4), 65-75.

Fleischhacker, D. (2013). Detecting Data Errors in Linked Data.

Gauss, F. (1816). Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift für Astronomie und verwandte

Wissenschaften, 195.

Grubbs, F. (1950). Sample Criteria for Testing Outlying Observations. Annals of Math. Statistics, 21, 27-

58.

Grubbs, F. (1969, 2). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1),

1-21.

Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004, 6 9). Nonparametric and Semiparametric Models.

Retrieved 5 25, 2013, from wiwi.hu-berlin.de: http://sfb649.wiwi.hu-

berlin.de/fedc_homepage/xplore/ebooks/html/spm/

Hawkins, D. (1980). Identification of Outliers. London: Chapman and Hall.

Klyne, G., Carroll, J., & McBride, B. (2004, 2 10). Resource Description Framework (RDF): Concepts and

Abstract Data Model. Retrieved from w3.org: http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/

L'Ecuyer, P. (2012, 2 16). SSJ: Stochastic Simulation in Java. Retrieved 5 25, 2013, from iro.umontreal.ca:

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html

Maronna, R. A., & Zamar, R. H. (2002). Robust Estimates of Location and Dispersion for High-

Dimensional Datasets. Technometrics, 4(44), 307-317.

Page 64

Marsaglia, G., & Bray, T. A. (1964, 7). A Convenient Method for Generating Normal Variables. (S. f.

Mathematics, Ed.) SIAM Review, 3(6), 260-264.

Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of

Mathematical Statistics, 3(33), 1065-1076.

Paulheim, H., & Fürnkranz, J. (2012). Unsupervised Generation of Data Mining Features. WIMS'12.

Craiova: ACM.

Peirce, B. (1852, 7 24). Criterion for the Rejection of Doubtful Observations. Astronomical Journal, 2(45).

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals

of Mathematical Statistics, 3(27), 832-837.

Rousseuw, P. J., & Croux, C. (1993, 12). Alternatives to the Median Absolute Deviation. Journal of the

American Statistical Association, 424(88), 1273-1283.

Shannon, V. (2006, 5 23). A 'more revolutionary' Web - The New York Times. Retrieved 5 24, 2013, from

The New York Times: http://www.nytimes.com/2006/05/23/technology/23iht-web.html

The University of Waikato. (2013). Weka 3: Data Mining Software in Java. Retrieved 5 25, 2013, from

cs.waikato.ac.nz: http://www.cs.waikato.ac.nz/ml/weka/index.html

Village.rdf. (n.d.). Retrieved 5 24, 2013, from umbel.org: http://umbel.org/umbel/rc/Village

W3C. (2013). SEMANTIC WEB. Retrieved 5 27, 2013, from w3.org:

http://www.w3.org/standards/semanticweb/

W3C OWL Working Group. (2012, 12 11). OWL 2 Web Ontology Language . Retrieved from w3.org:

http://www.w3.org/TR/owl2-overview/

Zaveri, A., Kontokostas, D., Sherif, M. A., Morsey, M., Bühmann, L., Auer, S., & Lehmann, J. (2012).

Crowd-sourcing the Evaluation of Linked Data. Leipzig.

Page 65

List of Figures

Figure 1: LOD Cloud (Cyganiak & Jentzsch, 2011) __ 7

Figure 2: Darmstadt Infobox Source ___ 12

Figure 3: Darmstadt Infobox ___ 12

Figure 4: Pauline Musters at around age 19, next to a man of average height ____________________________ 15

Figure 5: Type Count Frequencies ___ 21

Figure 6: Liebherr T 282B - 7.4 meter high "automobile", photo by René Engel ____________________________ 23

Figure 7: IQR simulation ROC ___ 27

Figure 8: Dispersion simulation ROC ___ 28

Figure 9: KDE simulation ROC ___ 28

Figure 10: KDE-FFT simulation ROC __ 29

Figure 11: Population Total Distribution __ 30

Figure 12: Population Total Distribution by Type __ 30

Figure 13: Height Distribution __ 31

Figure 14: Height Distribution by Type __ 32

Figure 15: Height Persons Distribution__ 33

Figure 16: Elevation Distribution __ 34

Figure 17: Elevation Distribution by Type ___ 34

Figure 18: IQR mode comparison mixed __ 35

Figure 19: dispersion mode comparison mixed ___ 36

Figure 20: KDE-FFT mode comparison mixed ___ 37

Figure 21: dispersion estimators default mixed ___ 38

Figure 22: dispersion estimators byType mixed ___ 38

Figure 23: dispersion estimators cluster mixed ___ 39

Figure 24: KDE mode comparison mixed __ 40

Figure 25: KDE default iterations height __ 41

Figure 26: KDE byType iterations height __ 41

Figure 27: KDE cluster iterations height ___ 42

Figure 28: IQR byType random 50 ___ 46

Figure 29: IQR byType random 50 OWL only ___ 47

Figure 30: Majority Data type Shares __ 48

Figure 31: parsing success ratios distribution __ 49

Figure 32: Height Error Sources ___ 50

Figure 33: populationTotal error sources __ 51

Figure 34: Semaphore - Date in Value __ 52

Figure 35: Elevation Error Sources ___ 53

Figure 36: number of data types distribution __ 56

Figure 37: Majority Data type Parsing MoB4LOD ___ 61

Page 66

List of Tables

Table 1: IQR byType parameters __ 43

Table 2: IQR cluster parameters ___ 43

Table 3: KDE byType parameters __ 44

Table 4: KDE cluster parameters __ 44

Table 5: IQR byType random 50 parameters ___ 46

Table 6: IQR byType random 50 OWL only parameters ___ 48

Table 7: altNames data types __ 57

Page 67

Erklärung
Hiermit versichere ich gemäß der Allgemeinen Prüfungsbestimmungen der Technischen

Universität Darmstadt (APB) §23 (7), die vorliegende Bachelorarbeit ohne

Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.

Alle Stellen, die aus den Quellen entnommen wurden, sind als solche kenntlich gemacht wor-

den. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgele-

gen.

Darmstadt, den 3. Juni 2013 Dominik Wienand

