
Minimax based Artificial
Intelligences for Tourality
Minimax basierte Künstliche Intelligenzen für Tourality
Bachelor-Thesis von Daniel Tanneberg
Mai 2013

Fachbereich Informatik
Knowledge Engineering Group

Minimax based Artificial Intelligences for Tourality
Minimax basierte Künstliche Intelligenzen für Tourality

Vorgelegte Bachelor-Thesis von Daniel Tanneberg

1. Gutachten: Prof. Dr. Johannes Fürnkranz
2. Gutachten: Dr. Jens Gallenbacher

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 13.05.2013

(Daniel Tanneberg)

Summary

This Bachelor-Thesis is about the Minimax algorithm and its AlphaBeta-Pruning extension, which is
known from Game-Theory, and the application of it to the Tourality-Game. For this purpose the Entwick-
lungs und Simulationsumgebung ESU is used, which was developed for the Bundeswettbewerb Informatik.
The goal is to develop several strong opponents for the participants of the Bundeswettbewerb Informatik.

The behavior in the game of the Minimax algorithm is investigated compared to several other algo-
rithms and additionally the influence on the behavior of different parameters of the Minimax algorithm
is evaluated. This evaluation is done against three algorithms from different fields and the parameters
are investigated in small groups or individual.

The thesis starts with an introduction to the used ESU framework, the general explanation of the
Tourality-Game and afterwards the used implementation of it based on the ESU framework. Next the
main problem which has to be solved and the two underlying algorithms are explained in general.
The Breadth First Search algorithms, known from graph-theory, and the Minimax algorithm with its
AlphaBeta-Pruning extension. The next section is about the specific implementation of the algorithms
using the framework and applied to the game, different versions of them and how the informations
gathered from the Breadth First Search are used while creating the Minimax game tree. Afterwards the
behavior of the Minimax algorithm is evaluated through evaluation tournaments against the artificial
intelligences based on the different other algorithms and the parameter evaluation tournaments. In the
last section the results are recapped and some possible improvements and extensions are discussed.

2

Zusammenfassung

Die vorliegende Bachelor-Thesis beschäftigt sich damit den aus der Spieletheorie bekannten Minimax
Algorithmus und dessen AlphaBeta-Pruning Erweiterung auf das Tourality Spiel anzuwenden und zu
untersuchen. Dazu wird die Entwicklungs und Simulationsumgebung ESU verwendet, die für den Bun-
deswettbewerb Informatik entwickelt wurde. Ziel ist es dadurch verschiedene spielstarke Gegner für die
Teilnehmer des Bundeswettbewerb Informatik zu entwickeln.

Der Minimax Algorithmus wird gegen verschiedene andere Algorithmen im Hinblick auf die Spiel-
stärke verglichen und außerdem wird der Einfluss von verschiedenen Parametern auf das Spielverhalten
der Minimax KI untersucht. Getestet wird gegen drei verschiedene Algorithmen aus unterschiedlichen
Bereichen und die Parameter werden in verschiedenen kleinen Gruppen oder einzeln genauer betrachtet.

Die Arbeit beginnt mit einer Einführung in das verwendete ESU Framework, der Beschreibung des
Tourality Spiels allgemein und anschließend der auf diesem Framework basierende und verwendeten
Implementierung des Spiels. Nachfolgend wird das zu lösende Hauptproblem erklärt und die zwei ver-
wendeten Hauptalgorithmen allgemein vorgestellt. Der aus der Graphentheorie bekannte Breadth First
Search und der Minimax Algorithmus inklusive der AlphaBeta-Pruning Erweiterung. Im nächsten Ab-
schnitt geht es um die spezielle Implementierung der Algorithmen innerhalb des Frameworks und auf
das Spiel angewandt, die verschiedenen Varianten und wie die Informationen des Breadth First Search
Algorithmus schon beim Aufbau des Minimax-Spielbaums verwendet werden. Anschließend folgt die
Evaluierung des Spielverhaltens durch Turniere gegen die auf den verschiedenen anderen Algorithmen
basierenden Künstliche Intelligenzen und die Turniere für die Parameter Evaluation. Abschließend wer-
den die Ergebnisse zusammengefasst und mögliche Erweiterungen und Verbesserungen betrachtet.

3

Contents

List of Figures 6

List of Tables 7

1 Introduction 8
1.1 Motivation . 8
1.2 Bundeswettbewerb Informatik . 8
1.3 Online-Tournament . 8

2 ESU & Tourality 9
2.1 ESU . 9

2.1.1 Functionality . 9
2.1.2 Implementing a Game . 9
2.1.3 Implementing an AI . 9

2.2 The Tourality-Game . 10
2.2.1 Game-Definition . 10
2.2.2 World . 11
2.2.3 Actions . 12

3 Underlying Algorithms 13
3.1 What’s the problem to solve? . 13
3.2 Breadth First Search . 13
3.3 Minimax . 15

3.3.1 Deterministic perfect-information zero-sum game . 15
3.3.2 Game tree . 15
3.3.3 Optimal strategy . 17
3.3.4 AlphaBeta-Pruning . 19

4 Specific Implementation 22
4.1 The idea behind the AIs . 22
4.2 Breadth First Search . 22

4.2.1 Finding shortest ways to all nearest leaves . 22
4.2.2 Finding shortest ways to all leaves in a limited range 24

4.3 Minimax . 25
4.3.1 Creating the tree . 25
4.3.2 Evaluation function . 27

5 AI Evaluation - Competitive Tournaments 28
5.1 Evaluation AIs . 28

5.1.1 Reference AI 1 - Uninformed Search . 28
5.1.2 Reference AI 2 - Informed Search . 28
5.1.3 Reference AI 3 - Heuristic Method . 30
5.1.4 Evaluation AI - Minimax . 31

5.2 Evaluation against reference AIs . 32
5.3 Evaluation of parameters . 33

5.3.1 Minimax search depth . 33
5.3.2 Rewards & discount factor . 34
5.3.3 Greedy vs. smart . 35

4

5.3.4 One-Action Plan vs. N-Action Plan . 36
5.3.5 Normal-BFS input vs. Area-BFS input . 37

6 Conclusion & Outlook 38

Bibliography 39

Appendix 40

5

List of Figures

1 Screenshot of Tourality . 10
2 Definition in ESU of the objects for Tourality . 11
3 Definition in ESU of the actions for Tourality . 12
4 BFS on example graph . 14
5 Game tree for an example game . 16
6 Minimax definition . 17
7 Game tree with Minimax-values . 17
8 Pseudocode for Minimax with AlphaBeta-Pruning . 20
9 Game tree with AlphaBeta-Pruning . 21
10 Different shortest ways to all nearest leaves . 23
11 Different shortest ways to all leaves in a limited range . 24
12 Minimax game tree example on Tourality . 26
13 Best First Search AI example . 29
14 Heuristic AI example . 30

6

List of Tables

1 Evaluation Tournament against Reference AI 1 . 32
2 Evaluation Tournament against Reference AI 2 . 32
3 Evaluation Tournament against Reference AI 3 . 33
4 Parameter-Evaluation Tournament: search depth . 34
5 Parameter-Evaluation Tournament: Rewards & discountfactor 1 34
6 Parameter-Evaluation Tournament: Rewards & discountfactor 2 35
7 Parameter-Evaluation Tournament: Greedy vs. smart . 36
8 Parameter-Evaluation Tournament: One-Action Plan vs. N-Action Plan 1 36
9 Parameter-Evaluation Tournament: One-Action Plan vs. N-Action Plan 2 37
10 Parameter-Evaluation Tournament: Normal-BFS input vs. Area-BFS input 37

7

1 Introduction

1.1 Motivation

The idea and motivation for this work is principally based on two thoughts: to provide some reference
AIs to the participants of the BWINF, see Section 1.2 and Section 1.3, which they can challenge to test
themselves and to analyse the behaviour of the chosen Minimax algorithm and its AlphaBeta-Pruning
extension in that particular game. To evaluate the strength of the Minimax based AIs, they play against
several reference AIs based on different other algorithms to analyse their performance. Additionally one
Minimax based AI is chosen to analyse the different parameters of the algorithm. For this purpose the
parameters to test will be changed and this version plays against the unchanged version. By this the
influence on the behaviour of the AI by the different parameters is analysed and the crucial parameters
of the algorithm identified.

All evaluations are done by tournaments with many challenges and several values are calculated to
sort the AIs, or the parameter values, by their strength or influence depending on different criteria.

1.2 Bundeswettbewerb Informatik

The Bundeswettbewerb Informatik1 BWINF is a competition for young people up to 21 years, who haven’t
finished their job education and haven’t started to study. It is carried by the Gesellschaft für Informatik
e. V.2, the Fraunhofer-Verbund IuK-Technologie3, the Max-Planck-Institut für Informatik4 and supported by
the Bundesministerium für Bildung and Forschung5.

It starts in September, takes about a year and consists of three rounds. The first round consists of
five tasks, the second of three tasks and the third round is a colloquium for the approximately 30 best.
The participants get to talk to computer scientists and have to solve two computer science problems in a
team.

The ESU, see Section 2, framework and toolkit used in this work was developed for round two of the
competition 2012/2013. But due to it’s specification and functionality it will be used in future competi-
tions too. ESU is mostly used for the implementation of the games but can be used to develop the AIs as
well.

To make the whole task more exciting and fun for the participants, the idea about AIs and a game
competition was introduced. Thus the participants don’t have to solve only some abstract exercises,
rather they can play against each other and instantly see how good their work is. These challenges give
higher motivation to improve themselves, so they won’t lose against another participant.

1.3 Online-Tournament

To afford this competition and interactive playing ESU isn’t enough and the BWINF KI Wettbewerbs-
Plattform6 was developed additionally. On this online platform you can upload and edit your AIs, or
even develop them only online without using ESU. There you can challenge the other participants and
compete yourself with them.

As ESU the online platform is complete game independent, which means the admin can easily upload
a new game and all the users can play the new game without changing anything, except they have to
develop new AIs of course.

1 http://www.bundeswettbewerb-informatik.de/
2 http://www.gi.de/
3 http://www.iuk.fraunhofer.de/
4 http://www.mpi-inf.mpg.de/
5 http://www.bmbf.de/
6 http://turnier.bundeswettbewerb-informatik.de/

8

2 ESU & Tourality

2.1 ESU

The Entwicklungs und Simulationsumgebung ESU was designed and developed by three students of the
TU Darmstadt - Markus Schröder, Sven Hertling and Daniel Tanneberg - for the use in the Bundeswet-
tbewerb Informatik. The requirements were to build a system that could be used to implement a large
amount of different games and automatically generates code for the game and templates in different
programming languages for the Artificial Intelligences.

It should be easy to use and helping you with not game-related details such as the communication
with the AIs, so you can focus on the game itself. The key principle was independence: operating-system
independent, game independent and programming language independent.

2.1.1 Functionality

The functions of ESU are completely focused on implementing the behaviour of the game. All you have
to do is to think about how you fit your game into the model used in ESU (see Section 2.1.2). A game is
divided in several modules, the logic of the game (called Spiellogik), the world (called Startzustand) and
the view of the game (called Spielansicht). So you have one definition of the game, but you can have
several different implementations of it, just by implementing different logics. With the world module
you can design different worlds (or levels) and with the view module you can have different ways of
how the game looks like. All this modules of one game definition can be combined in every combination.
After you have modeled your game, i.e. the definition of it see Section 2.1.2, ESU generates templates
for all the modules. The templates for the AIs are generated in all supported languages.

2.1.2 Implementing a Game

The first step you have to do if you want to implement a game is the definition of it. The definition
consists of two things:

1) the objects needed for the game

2) the actions an AI can do

The objects can have several attributes and the actions can have several parameters. After you have
finished the definition you can move on to fill it with life.

To do this you’ll have to create a new logic and a new world, a view is optional. When creating a
new logic, ESU uses your definition created previously to generate a template for you which already
implements a whole basic communication with the AIs as well as main game loop and helping functions.
This means you just have to adjust it to your implementation of your game and implement the specific
logic of it. Creating a world works the same way, you have automatically created functions for all your
defined objects which you can place in the world to create a level.

2.1.3 Implementing an AI

To create an AI with ESU you just have to select the programming language you want to use and you’ll
get a template generated. Just like implementing the logic for the game you’ll get everything that’s
not game-related out of the box and you just have to fill one method with your code. This method is
automatically called from the simulator in ESU every time it’s your turn. You get the actual worldstate
as a parameter every turn.

In the definition of the game all available actions were declared. So to make your AI play you have to
implement how to choose the best action(s) for this turn.

9

2.2 The Tourality-Game

Tourality is a grid based competitive multi-player game. The world consists of obstacles and leaves, which
are the points you have to gather. If all leaves are gathered, or no player has time left to play, the game
is over and the player with the most points wins. So the goal of the game is to gather as many leaves as
possible, or/and at least more than your opponent.

2.2.1 Game-Definition

You can have very different implementations of this game with different sets of rules used. The version
of the game used for this work is the version defined for the BWINF and has the following rules:

• the size of the world is 20x20 fields

• there are 40 obstacles and 40 leaves in it, randomly distributed

• you can’t overstep the world

• the AIs have full information about the state

• two AIs can’t stand on the same field

• a leaf is gathered automatically if the AI enters its field

• one challenge consists of two sweeps, with swapped starting positions and turn order

and restrictions:

• for one action the AI has 10 seconds to answer

• for one whole sweep the AI has 20 seconds

• the AI is allowed to use 512 MB of RAM

How this is transfered into the game definition of ESU you will see in Section 2.2.2 and Section 2.2.3.

Figure 1: Screenshot of Tourality with a simple viewer. Black boxes are obstacles, green boxes are leaves.

10

2.2.2 World

A world contains of the objects you define. By placing them into the world you can create one configu-
ration, or level. As described before you have to define a object for every type of object needed for the
game. Every object can have several parameters. The game definition seen in Section 2.2.1 leads to the
following object declarations for Tourality in ESU:

Figure 2: Definition in ESU of the objects for Tourality

Kaefer - represents the AI in the world and has the following parameters:

• Integer x - the x position of it

• Integer y - the y position of it

• Integer gehoert - ID of the AI, to find your Kaefer

• Integer punkte - points/leaves gathered so far

Blatt - represents a leaf and has the following parameters:

• Integer x - the x position of it

• Integer y - the y position of it

Hindernis - represents an obstacle and has the following parameters:

• Integer x - the x position of it

• Integer y - the y position of it

11

2.2.3 Actions

Here all actions that an AI can do have to be defined. In this implementation of Tourality all actions are
deterministic and without parameters, but actions can have parameters just like objects too. The game
definition seen in Section 2.2.1 leads to the following action declarations for Tourality in ESU:

Figure 3: Definition in ESU of the actions for Tourality

• hochLaufen - move one step up

• runterLaufen - move one step down

• rechtsLaufen - move one step right

• linksLaufen - move one step left

12

3 Underlying Algorithms

In this section the problem you need to solve for playing the Tourality-Game will be described shortly
and afterwards we’ll take a general look on the two algorithms that are used for this in this thesis. The
algorithms will be described in general to understand how they work and their properties before we will
adapt them on the Tourality-Game in Section 4.

3.1 What’s the problem to solve?

After we know the game with all of its settings we want to play it, thus we need to understand what we
have to do to play it, i.e. the problem we need to solve. As the goal of the game was defined as gathering
as many leaves as possible, it seems to be clear that the main problem we have to solve is finding ways,
i.e. sequences of actions, to get to the leaves. In a clear world, without obstacles, the ways could be
found very easily by just calculating the difference between the coordinates of your Kaefer and the leaf
you want to reach and then use the appropriate action. But in our world there are obstacles, thus we
need to find ways to the leaves which walk around the obstacles. Due to the used Tourality-Game has
a discrete world and actions we can easily handle it as a graph or tree, we will see this in more detail
later on in Section 4. But by handling the game as a graph or tree we can use a whole bunch of well
known algorithms. To find the ways to the leaves the Breadth First Search algorithm and for dealing with
the competitive game environment the Minimax algorithm with its AlphaBeta-Pruning extension were
chosen. Let’s take a general look on the algorithms to understand them and be able to use them later on.

3.2 Breadth First Search

The Breadth First Search7 (BFS) is a standard algorithm and a classic algorithm for searching a graph
or tree. Given a starting node s the BFS searches the graph systematically until it reaches the defined
goal, or until it visited all nodes (if the graph is finite). Additionally it automatically returns a search
tree containing all reachable nodes from the given starting node s as the root. BFS finds the distance,
counted in edges used, from the starting node to all reachable nodes. By recursive going backwards from
a node to the startnode you can construct the shortest way found by the algorithm. So relating to our
problem described before, we can use the BFS to find ways, i.e. sequences of actions, to one or more
leaves by using the position of our Kaefer as the starting node and defining the leaf or leaves as the goal.
You will see this in more detail later on in Section 4.

The basic idea of BFS is to search first the whole breadth of the nodes before searching deeper, i.e. it
discovers all nodes with distance d from s before a node with distance d+1 is found.

When performing BFS on a graph all nodes have a state which shows if the node has already been
seen and searched deeper from it. At the start all nodes have the state unseen and the searchqueue con-
tains only the starting node s. The state seen means that the node has been found by the algorithm,
but hasn’t looked further from it. If a node becomes seen the first time, it is added to the searchqueue,
which contains all nodes that will be used for further exploration. Because each node is only added once
when it has been discovered the first time, every node has exactly one parent node. When a node is
removed from the searchqueue the algorithm searches all its children and all that are unseen are added
to the searchqueue. The removed node gets the state explored and the next one is removed from the
searchqueue. The nodes in the searchqueue form the current search-boarder, separating the seen and un-
seen nodes. The algorithm terminates if the searchgoal has been reached, i.e. if it’s removed from the
searchqueue to be explored, or if all nodes are explored (this of course only holds for finite graphs).
The searchgoal can contain more than only one node. If several nodes should be found the terminate
test needs to be extended, because the algorithm can’t just terminate the search if a node is added or
removed from the queue. For example the searchgoal can be a list of nodes and when a node of it is
found it gets removed from the list and the BFS terminates if the searchgoal list is empty.

7 introduced in Moore (1959) and Lee (1961)

13

The following example8 uses colors to represent the states of the nodes. Unseen nodes are white, seen
nodes are lightgrey and explored nodes are darkgrey. The value inside the nodes represent the distance to
start node s as edges needed to get there. Q represents the searchqueue, which contains the seen nodes,
with the distance of every node inside of it. The bold edges are used by the algorithm. The searchgoal
contains only v. Again, you can think about s as the position of our Kaefer, v as a leaf we want to reach
and the graph as the world. Thus you can relate this basic example to our certain problem.

1) all nodes except s are initially white with distance∞, Q contains {(s,0)}

2) s got removed from Q and is explored, found r and w, Q = {(w,1),(r,1)}

3) w got removed from Q and is explored, found t and x, Q = {(r,1),(t,2),(x,2)}

4) r got removed from Q and is explored, found v, Q = {(t,2),(x,2),(v,2)}
- Note: searchgoal v is added to Q, but isn’t found yet

5) t got removed from Q and is explored, found u, Q = {(x,2),(v,2),(u,3)}
- Note: t sees x too, but x is already seen, so this edge isn’t considered

6) x got removed from Q and is explored, found y, Q = {(v,2),(u,3),(y,3)}

In the next step v will be removed from Q and the algorithm terminates.

Figure 4: BFS on example graph

8 adapted example based on Cormen et al. (2001)

14

3.3 Minimax

The Minimax9 algorithm finds an optimal strategy for a game by searching the game tree. It was devel-
oped for deterministic perfect-information two-player zero-sum games but can be extended and used for
other types of games as well. Although it can be used for n-player games, we talk about the two-player
version, because this is the one we’ll use for Tourality. So we have the player Max, who tries to maximize
his outcome, and the player Min, who tries to minimize Max’s outcome.

3.3.1 Deterministic perfect-information zero-sum game

The Tourality implementation used in this work is a deterministic perfect-information two-player zero-sum
game, so we’ll have to explain those properties first.

Deterministic in this context means that there is no stochasticity that influences the game. All states
and all actions are complete deterministic. So if an AI chooses the action a in state s it will always end
up in the next state s’. In Tourality this implies, whenever an AI chooses to make the action runterLaufen
- and there’s no obstacle or the border of the world - it will move one field down. Similar for all other
actions.

In a game with perfect-information the players have full access to the world state. They can observe
all objects in the world, all other players, all moves, i.e. everything that’s important for the game and to
make a decision. For the Tourality game this means the AIs have vision of all leaves, all obstacles and all
AIs.

The term zero-sum describes games, in which the gain of one player is the loss for the other one, and
when adding up these values of all players it results in zero. So every player tries to maximize his value,
or equivalent tries to minimize the other players value. Values in this context don’t have to be the direct
points you can achieve in the game. It’s the result of the utility function, which evaluates the game state
in the terminal nodes of the game tree and it’s typically from the point of view of the Max player.

3.3.2 Game tree

We said that Minimax works by searching the game tree for an optimal strategy. So what is a game tree?
In a game tree the nodes represent a game state and the edges represent possible actions in that state.
The starting configuration of the world is the root and by alternating moves of the players the tree is
created. The leaves represent final situations of the game, i.e. situations in which the winner is known,
and where value of the game is computed depending on the state. In every node all possible moves of
the player who is next to act are considered and will create child nodes which represent the changed
world state in which the chosen action resulted. The algorithm simulates all variations of the game.
Because of that the whole game tree contains all possible game situations and, more important, all
possible strategies, which could be played from the starting configuration. So we just need to extract an
optimal one out of all possibilities. Relating to our game and problem, it simulates all possible variations
of actions the two Kaefer can do and due to seeing all variations of how the game could be played, it can
tell you what’s the best action you should do, i.e. what’s the best position to move to. We will see a game
related example in Section 4.3.1.

9 von Neumann and Morgenstern (1944)

15

The following game tree10 is for a very simple 2-player game, where every player has three actions to
choose out of and the game consists of only one turn for each player. Max starts and Min reacts to his
choice. Due to three actions and one turn for each, the game tree consists of 9 leaves which show the
different values for different terminal situations of the game.

By looking at this simple example it’s very easy to understand that a real game tree, even for very
simple real games like Tic-Tac-Toe, becomes very large and will contain a lot of different strategies. But
after we have understood the game tree in general, we can move on how to search it for an optimal
strategy.

Figure 5: Game tree for an example game

10 example taken from Russell and Norvig (2011)

16

3.3.3 Optimal strategy

We talked a lot about optimal strategies or playing optimal, but what is meant by this?
In a single-player game an optimal solution would simply be a series of actions which leads to a winning
final state and could be found by different search algorithms. But in our two-player game this becomes
an adversarial search problem11, because we have to find a strategy that takes the opponents actions into
account. So here an optimal solution is a strategy of how to choose your own action considering the
response action of the opponent. One important assumption is that the opponent always plays perfectly,
i.e. he never chooses an action that’s bad for him. The resulting optimal solution is always depending
on the used utility function, i.e. it is an optimal solution for a particular utility function. When using
another utility function it may, and often will, result in a different strategy, which is optimal too, but
referred to the new utility function. But how to find this optimal strategy for a given utility function?

For a certain game tree we can determine the optimal strategy by the Minimax-value of each node.
This value represents the gain for Max to be in this state, always assumed that both players play optimal.
The Minimax-value of a leaf node is the result of the utility function of the state represented by this leaf.
As defined before Max tries to maximize his gain, so he always chooses the action which gives him the
highest gain on his nodes. Similar Min tries to minimize Max’s gain, so he always chooses the action
which leads to the highest loss for Max. The Minimax-value of each node s is defined by12:

Minimax(s) =

U til i t y(s) if s is a terminal node

maxa∈ActionsMinimax(Resul t(s, a)) if Player(s) = Max

mina∈ActionsMinimax(Resul t(s, a)) if Player(s) = Min

Figure 6: Minimax definition

If we apply this algorithm to the game tree of our example game from before we get the following
result. The highlighted edges represents the actions taken by Max and Min. The value inside the nodes
are the Minimax-values of them.

Figure 7: Game tree with Minimax-values

11 searching in a competitive environment with competing goals of the AIs
12 definition taken from Russell and Norvig (2011)

17

Starting at the root of the game tree the Minimax-algorithm recursively moves deeper until it reaches
the leaves. The leaves are the recursion anchors and they get their value by the utility function. These
values are outreached upward and the parent node can do its decision based on if it is a Max or Min
node. So in our example, after the first three leaves have been reached, the first Min node can choose its
best action which in this case will be the action leading to a result of 3 and this is getting the value for
the node. Similar the other two Min nodes are evaluated and get a value of 2. After all child nodes of
the Max node have been considered, the Max node can choose its best action which will lead to a result
of 3 for it. So the result of the game if both players play optimal is 3 and the optimal strategy is given by
the actions which lead to the terminal state with value 3.

As we already noted before game trees for real games are just too big to be searched in a certain time,
what is quite important in most of the games, due to normally you have to perform your action in a
certain time. To manage this the game tree is limited to a given depth. The terminal test becomes a
cutoff test, where nodes at the limited depth are treated as terminal nodes. Also the utility function is
replaced by a evaluation function, because we now don’t value terminal states of the game, but game
states that occur within the game. These states need to be evaluated with a heuristic function which tells
how good this state seems to be, i.e. how likely it is to get to a winning terminal state when taking this
action. Obviously creating this evaluation function is the most important part to get a strong artificial
intelligence. The evaluation function often uses a linear combination of several weighted features of the
actual state to estimate the value of it. We will see this in Section 4.

18

3.3.4 AlphaBeta-Pruning

We now know how to get an optimal solution with the Minimax-Algorithm, but if we take a closer look
at our Game-tree with the Minimax-values, isn’t it considering some unnecessary nodes? The second
Min node gets his value 2 from the first move, and due to the other two moves have higher values, the
Min node doesn’t need them. And due to the number of nodes grows exponential with the number of
moves and the search deep, this is very crucial. So can we improve the search to be faster by ignoring
unnecessary nodes without affecting our result?

AlphaBeta-Pruning13 is doing exactly this, it ignores the nodes that don’t influence the chosen action
by using the knowledge the Minimax-Algorithm has gathered so far. When the second Min node in our
example is getting evaluated, we already know that the first Min node got a value of 3. So the Max node
above will get at least a value of 3 too, because it will never choose an action that will lead to a lower
value. To use this knowledge we have to carry those informations along the tree. This is done by two
values: alpha and beta which get updated along the execution.

• α = the value Max can achieve at least so far

• β = the value Max can achieve at most so far,
i.e. the value to which Min can limit the gain of Max

The range [α, β] is called search-window and limits the moves which will be considered. Only if the
value is inside of the search-window the move will be used, otherwise it will be pruned. The window
is initialized with [-∞, +∞] and while the algorithm runs this window is getting smaller, more actions
get pruned and the algorithm terminates faster. The goal is to shrink the window as fast as possible to
prune as many moves as possible. By using the search window to prune unnecessary nodes, there are
two different kinds of cutoffs:

• α-Cutoff: If there is an action with value v ≤ α at a Min node, we can prune all other alternatives,
because Max can already achieve a gain of α in a previous subtree, i.e. Max will never choose the
action leading to the actual subtree.

• β-Cutoff: If there is an action with value v ≥ β at a Max node, we can prune all other alternatives,
because Min can already limit the gain of Max to β in a previous subtree, i.e. Min will never choose
the action leading to the actual subtree.

With this definition we can now reduce the numbers of nodes that have to be evaluated by the
Minimax-Algorithm. Because we start with the maximal initial search window [-∞, +∞] and let the
window shrink by values that already have been evaluated, we only prune nodes that are save to prune,
i.e. nodes that have no influence to the Minimax-value of the Game tree. Often it’s even possible to not
only prune single nodes, but instead to prune whole subtrees, what of course gives a significant speed
boost.

As we know, the speed up factor is related with the search window and how fast it shrinks. So it seems
to be even better to start with a smaller search window to have more prunes, this is called Aspiration
Search. But it has a disadvantage: due to the artificial limit at the start, where you don’t know a value to
relate on, it may occur that you will prune a necessary node or subtree. In this case you have to research
the game tree with a larger window.

13 Newell et al. (1958), Hart and Edwards (1961), Hart et al. (1972) and Knuth (1975)

19

Now that we know how to build a game tree, how to get an optimal strategy out of it and even how
to speed up the search, we can put this in an algorithm14:

function AlphaBeta-Search(state) returns action a
v ← Max-Value(state, −∞, +∞)
return action a ∈ Actions(state) with value v

function Max-Value(state, α, β) returns value v
if state is terminal return Utility(state)
v ← −∞
for each a ∈ Actions(state) do

v ← Max(v, Min-Value(Result(state, a), α, β))
if v ≥ β return v
α ← Max(α, v)

function Min-Value(state, α, β) returns value v
if state is terminal return Utility(state)
v ← +∞
for each a ∈ Actions(state) do

v ← Min(v, Max-Value(Result(state, a), α, β))
if v ≤ α return v
β ← Min(β, v)

Figure 8: Pseudocode for Minimax with AlphaBeta-Pruning

Undefined functions in the code above:

• Actions(state): a collection of all possible actions in the given state

• Utility(state): call of the utility function, which evaluates the given state and returns his value

• Result(state, a): returns the resulting state if taking action a in the the given state

And as mentioned before, when using a fixed depth, replace the terminal test with a cutoff test, and the
utility function with a evaluation function.

In Figure 9 we used the algorithm above to improve the Minimax result of our example game tree.

1) The first terminal node has been evaluated, and the search window in the first Max node has been
updated with this information.

2)-3) All terminal nodes of the first Max node have been evaluated, and the information got back to the
root.

4) The first action of the second Min node has been evaluated, which resulted in a value ≤ α, so the
other terminal nodes aren’t considered at all as we already discovered at the beginning, but now
we understand how it works.

5)-6) The last Min node has been evaluated and we got as expected the same result as with the Minimax-
Algorithm, but with less nodes evaluated.

14 adapted pseudocode algorithm based on Russell and Norvig (2011)

20

Figure 9: Game tree with AlphaBeta-Pruning

If we take a closer look at the example above, we see that the second and the third Min node have the
same value. But at the third one all terminal nodes haven been evaluated unlike at the second Min node,
where only the first terminal node got evaluated. The difference between these two cases is the order in
which the terminal nodes, i.e. the actions, are considered. Obviously the third Min node wouldn’t have
to evaluate all terminal nodes, if it would evaluate the terminal node with value 2 at first too. The move
ordering is very crucial for the performance of the AlphaBeta-Pruning. If good actions are evaluated
first, it may lead to more and more valuable cutoffs. There are different ways to presort the actions for
a node, but of course this will never be perfect. If we had a perfect move order, we would not have to
use Minimax and AlphaBeta-Pruning to get an optimal strategy anymore, we already would have it. So
having a good guess which actions are good really helps and improves the algorithm, but it’s limited.

21

4 Specific Implementation

In this section we will combine and adapt the algorithms we’ve looked at in Section 3 with the Tourality-
Game we defined in Section 2.2, Section 2.2.2 and Section 2.2.3 in more detail.

4.1 The idea behind the AIs

After we now know all the several components, we have to combine them. We described the main
problem in Section 3.1, the algorithms and the game as mentioned above. So how can the AI now use
this to play the game?

The Breadth First Search algorithm is used to find a shortest way to a leaf, or alternatively different
ways to one or more leaves. It returns a path, i.e. a sequence of actions, to reach the leaf which the AI
uses to walk as fast as possible to a leaf going round the obstacles. By this the AI gathers all the leaves
one after another.

The Minimax algorithm is used to get an optimal strategy, a sequence of actions, the AI can execute. It
takes much more information into account than the Breadth First Search. By considering the opponents
actions and looking into all possible futures, it executes the action which seems to be best. It simulates
possible futures of the game and chooses the action that seems to lead to the best future for the AI.

We will take a closer look on the implementations of both algorithms in the next sections.

4.2 Breadth First Search

After we discussed the general functionality of the Breadth First Search in Section 3.2, we now want
to use it for the Tourality-Game. Due to the game is based on a discrete world, consisting of fields and
actions to change the position in this world, we can easily see it as a graph and thus use the Breadth First
Search.

The starting node for the search is just the position of our Kaefer in the actual state of the world. The
nodes get expanded by the actions the Kaefer can do, i.e. moving one field up, down, right or left. By
using these actions on the nodes our search tree is created. The expanding function takes care of the
obstacles and the borders of the world; the Kaefer can’t enter a field on which an obstacle is placed and
can’t overstep the world borders. The enemy Kaefer is just treated as an obstacle. The implementation
can deal with different searchgoals, i.e. it can be used with the whole actual world state with all leaves
or with just one specific leaf. This is done by setting the bfs_sicht parameter which sets the search range,
e.g. if bfs_sicht = 3 all leaves within the range of [x − 3, x + 3] and [y − 3, y + 3] are considered. If
there’s no leaf inside this area, the parameter is automatically set to bfs_sicht = −1 which means unlim-
ited search deep, i.e. searching until all nearest leaves are found. The result of the algorithm is a list of
different ways, i.e. a list of lists of actions to get to the leaves.

4.2.1 Finding shortest ways to all nearest leaves

This is the default case with bfs_sicht = −1. The whole actual world state is passed to the Breadth First
Search algorithm. It uses the actual position of the own Kaefer as the startnode and has no predefined
searchgoal. The algorithm starts the search and as soon as it finds the first leaf, it saves the distance to
it as the horizont. Now it searches for further ways to this leaf and other leaves with the same distance.
The search terminates if a leaf with distance > horizont is found.

Figure 10 shows the result of this Breadth First Search with bfs_sicht = −1. There are two leaves with
the shortest distance of 3 actions and for each of it two different ways were found. By looking at this
example, you may wonder that there are even more ways to these leaves with distance 3. So why did
the Breadth First Search algorithm not find them too?

22

Let’s look at one of the not found ways to the right leaf of these two leaves, the way right - down -
right is obviously a shortest way with distance 3 too. But this way isn’t found by the algorithm because
the node below the node after taking action right to find this way has already been explored when
finding the 2nd and 3rd way (2nd and 3rd picture) in Figure 10. An explored node isn’t used again to
search further, so the 2nd action of the not-found path, down, isn’t considered at all at this point. If the
order in which the actions are searched is changed, this way could be found, but then other ways won’t
be. To really find all possible shortest ways, the algorithm has to be changed to reuse already explored
nodes.

For our purpose the introduced version of the algorithm is quite perfect, because it returns all really
different shortest ways.

Figure 10: Different shortest ways to all nearest leaves

23

4.2.2 Finding shortest ways to all leaves in a limited range

The alternative version of this implementation of the Breadth First Search algorithm uses an adjustable
search range. This is done by setting bfs_sicht > 0. When using it this way, the search isn’t started with
the whole actual world state, instead for each leaf inside the range a new search is started with only
this particular leaf in the world. So at first each leaf is tested if it’s inside the range and if that’s true, a
new search with this leaf as searchgoal is started. The single results of each search are combined in one
overall result, containing all found ways. As already explained in Section 4.2.1, not all shortest ways
are found here too. Figure 11 shows an example with bfs_sicht = 3, so the highlighted 7x7 - effectively
7x5 since the area intersects the border of the world - area is searched and 5 ways for 3 leaves are found.

Figure 11: Different shortest ways to all leaves in a limited range

24

4.3 Minimax

Next we’ll take a look on some details of the Minimax implementation and how the ways found by
the Breadth First Search algorithm are used as an input to create the search tree and, together with
additional information, to presort the possible actions for the move ordering for the AlphaBeta-Pruning.

4.3.1 Creating the tree

As we discussed in the Algorithm Section 3 we can’t search the whole game tree. Thus as the first
crucial parameter of the Minimax implementation we have the search depth limit as maxTiefe. The
search window [α, β] is initialised with [−10000000, 10000000].

The option weg_size defines how long the resulted way found by the Minimax algorithm is, i.e. if
weg_size = 1 it just delivers the next best action, but e.g. if weg_size = 3 you get the next best 3 actions.
With a longer result, i.e. more resulting actions, the overall search-time is strongly reduced of course,
because you don’t need to search again every time it’s your turn. Otherwise false assumptions of the
enemy movement may lead to bad own moves and without researching they may sum up. We will see
the different behaviour later in the evaluation.

The last two main parameters are zug_faktor and zug_kosten. They define the reward you’ll get when
gathering a leaf according how far away it was, e.g. with zug_faktor = 10 and zug_kosten = 2 a leaf
gathered with 2 actions gives a reward of 8, but a leaf gathered with 4 actions only gives a reward of 4.
After each action the zug_faktor is reduced by the zug_kosten. This is done to give near leaves a higher
reward than further leaves and thus a higher priority.

Due to the fact zug_faktor is reduced by the zug_kosten after each action, these parameters depend on
the search depth maxTiefe. The maxTiefe is always an odd number, because we want to start and end
with an own action. That gives the constraint for the zug_faktor and the zug_kosten:

zug_faktor ≥ zug_kosten · ((maxTiefe+1)/2)
zug_kosten = k with k ∈ N+

So if we have a search depth maxTiefe = 11 which means 6 own actions to look ahead and we want
near leaves to have a strongly higher reward than further ones, we choose zug_kosten = 3 and get
zug_faktor ≥ 18. The zug_faktor can be additionally increased by adding n * zug_kosten, n ∈ N.

The search tree now is created with the actual world state as the root node and Max, which is our
player in the algorithm, starts to search his actions. Each node in the search tree has a value named wert
which saves the information we gather on the way down and it’s initialised for the root node with 0 or
the leaves gathered in the game so far. Max now expands the tree with all of his possible actions in this
state which creates a new node for each action. The wert of these new nodes are always initialised with
the wert of the parent node. If a leaf is gathered with an action the wert of the related node is increased
by the current zug_faktor and the leaf is removed from the world for this particular path in the tree.

The expanding function has a parameter schritt_kosten = n, n ∈ N which is subtracted from the
wert of a node to put costs on each action. This can be used to amplify prioritizing short ways. With
schritt_kosten = 0 this is turned off.

We always talked about the information input of the Breadth First Search, but so far it wasn’t used. So
how is it used? For each possible action all of the ways found by the Breadth First Search are checked up
if this action is part of the way at this depth, i.e. if it’s the 3rd action in the Minimax algorithm of Max,
the 3rd action of all Breadth First Search ways are compared to it. And for each match the parameter
bfs_dist is added to the wert of the related node with bfs_dist ∈ N. By this actions, respectively ways, that
follow the ways found by the Breadth First Search have a higher wert and thus get prioritized.

We can now easily do a move ordering by just sorting the nodes according to their wert, so we prefer,
i.e. searching deeper first, paths which seem to be good so far. As we found out in Section 3.3.4 this can
speed up the algorithm.

25

Figure 12: Minimax game tree example on Tourality

Figure 12 above shows a part of the game tree of a smaller version of Tourality to demonstrate the
Minimax algorithm on Tourality. For this purpose the world in this example has only a size of 3x3 fields
with one obstacle and one leaf in it.

As we know the nodes in the game tree represent game states and the edges represent the possible
actions in this state. In the example above you can easily see this and how each action leads to a new
node with a changed game state. The arrows represent the action done on this edge, i.e. ↑ stands for
the action hochLaufen, which moves the actual player one field up. The icon above the nodes illustrates
what a kind of node it is, i.e. if its a Max or a Min node.

So using the start configuration of the world as the root of the game tree and alternating between
actions of Max and Min the game tree is created as we already know. Each applicable action, as you
easily see in the example not all actions are available in each node, leads to a new node. Here Max has
three actions to choose from at the root node and each action results in a different new node in which
now Min applies its actions. As mentioned before the game tree is not complete, the nodes with ... below
aren’t expanded anymore in this example to keep the example clear. The evaluation function in this case
just computes a value based on the gathered leaves and due to there is only one leaf in the world the
value of the evaluated node is 1 if Max gathered the leaf or -1 if Min gathered the leaf. By looking at a
node with a value of 1 and going back upwards in the tree, Max can obtain a optimal strategy to end up
in a winning state.

Although this is only a very small and simple example, we now understand the nodes and edges in
the game tree and how to adapt the Minimax algorithm on Tourality. We see how each action changes
the state and creates a new node, what was meant by saying simulating all possible futures and how the
optimal strategy, the sequence of actions, is extracted from it.

26

4.3.2 Evaluation function

So far we are able to use the output of the Breadth First Search as an input to the Minimax algorithm,
building the search tree and do a move ordering for the AlphaBeta-Pruning. But the most important part
is still missing: the evaluation function, which defines the values of the nodes at the limited search
depth and by this creating the foundation on which the best action is chosen.

Due to the states which are evaluated by the evaluation function aren’t terminal states of the game,
the evaluation function is a heuristic function which tries to predict how likely it is to win from this state,
i.e. how good this state is. The evaluation function used in this work is a weighted linear combination
of several features of the game state. With n=number of features, f = a feature and w = the weight of it,
the general form is:15

Ev al(state) = w0 · f0+w1 · f1+ ...+wn · fn
Ev al(state) =

∑n
i=0 wi · fi

Finding and combining good features is very crucial for the result of the algorithm. Due to the memory
and time restrictions the evaluation function has to be as simple as possible because it is used on all nodes
at the limited depth. For the linear combination the following features were used:

• meinePunkte: the amount of leaves MAX gathered

• gegnerPunkte: the amount of leaves the enemy, MIN, gathered

• meinUmfeld: the amount of leaves around MAX in a certain range, weighted by their distance,
ignoring obstacles

• gegnerUmfeld: the amount of leaves around MIN in a certain range, weighted by their distance,
ignoring obstacles

• naehstesBlatt: the distance from MAX to the nearest leaf, ignoring obstacles

• gegner: the distance from MAX to MIN, , ignoring obstacles

• wert: the wert of the node so far as explained in Section 4.3.1

• wert2: the wert of the node so far as explained in Section 4.3.1, but calculated for MIN

By changing the weights of the features or dropping some and including others, and the general
parameters described in Section 4.3.1 different AIs can be created.

15 based on Russell and Norvig (2011)

27

5 AI Evaluation - Competitive Tournaments

To evaluate the strength and behaviour of the Minimax based AI, it is tested against different reference
AIs based on different other algorithms. The Minimax based AI plays a tournament consisting of many
challenges against each of them. The world in each challenge is completely random, i.e. the positions of
all leaves, obstacles and AIs are randomly distributed. To get a proper mean 500 challenges are played
in each tournament.

To evaluate the strength of the AIs, the Wins, Draws and lost challenges for each AI are counted. From
this information the following different values are calculated:

• Points: sum of all challenges with 3 points for a win and 1 point for a draw

• Won: percentage on won challenges

• Not-Lost: percentage on not-lost challenges, i.e. won or draw

• WD/L-Ratio: ratio between not-lost challenges (W = wins, D = draws) and lost challenges (L =
lost), calculated as: (W + D)/L
This is directly related to Not-Lost, but it gives a factor instead of a percentage. The factor represents
how much more challenges were not-lost compared to lost ones, i.e. a factor of 2.3 means: 2.3
times more challenges were not-lost than lost.

• W/L-Ratio: ratio between won challenges (W = wins) and lost challenges (L = lost), calculated
as: W/L
As the WD/L-Ratio this is directly related to the Won percentage, but gives a factor again repre-
senting how much more challenges were won compared to lost.

The WD/L-Ratio and W/L-Ratio are based on the KDA-Ratio16 used for the DotA2 game. We now have
several criteria to evaluate and compare the different AIs.

5.1 Evaluation AIs

As described before we want to evaluate the behaviour and strength of the Minimax based AI in com-
parison to some other algorithms. For this purpose three algorithms from different fields were chosen as
the Reference AIs and will be explained shortly next.

5.1.1 Reference AI 1 - Uninformed Search

The first Reference AI is just a very simple seeker and based on the simplest version of the Breadth First
Search algorithm explained previously. It searches until it found the first leaf and the first shortest way
to it and then simply follows that way towards it. So it doesn’t care about other nearest leaves, other
ways, other further leaves, any other information and the only way the other AI is considered is that it
is treated as an obstacle. It is an uninformed search that uses no further knowledge about the game and
world and is basically the version explained in Section 4.2.1, it just terminates earlier.

5.1.2 Reference AI 2 - Informed Search

As the second Reference AI an improved seeker was chosen which is based on the Best First Search
algorithm. This algorithm principally works the same as the Breadth First Search, but it uses further
knowledge about the world. Instead of expanding all nodes with depth d completely before expanding
a node with depth d+1 like the Breadth First Search, it expands the node which seems to be best, no
matter which depth it has. For this it uses a heuristic function, similar to the evaluation function of the

16 Kill-Death-Assist Ratio used on http://dotabuff.com/

28

Minimax algorithm, that calculates a value for each node describing how good it is. The value for each
node used here is just the direct heuristic distance to the nearest leaf, thus the Best First Search always
expands the node with the smallest valued distance to a leaf next and uses the knowledge of the world
for this. The algorithm terminates when the first way to a leaf was found and simply follows that way.

Figure 13: Best First Search AI example

As said before the Best First Search works very similar to the Breadth First Search and it builds a
search tree in the same way, i.e. the nodes represent the position of the Kaefer and the edges the possible
actions. Figure 13 illustrates how the Best First Search algorithm finds a way to a leaf in Tourality. In
the first picture the starting position is expanded, due to the obstacle left to it there are three possible
actions. The dark gray fields are seen and in the searchqueue, just like at the Breadth First Search, and
the blue field represents the node that is chosen to be expanded next. For each node the heuristic value
is calculated which are the numbers on the fields in the picture and the algorithm now chooses the node
which seems to be best so far, in our case the node with the lowest estimated distance to a leaf which
is the node above the Kaefer with value 4. This node is expanded in the second picture and leads to a
new node with value 3 which is added to the searchqueue and will be expanded next. In contrast to the
Breadth First Search the new node with value 3 gets expanded next although it is deeper, because the
Best First Search always chooses the best node no matter how deep it is. Repeating this until a position
with a leaf on it is found, the algorithm finds a way to this leaf, represented by the blue fields. If you take
a closer look at the last picture of the example, you will see that the found way isn’t a shortest way. At
the blue field with value 3 there are two child nodes with value 2 and by following the left one you will
reach another leaf with a shorter way. This way isn’t found by this Best First Search because it considers
the action hochLaufen before the action linksLaufen when expanding a node and just terminates if the
first way was found. Thus the algorithm doesn’t always find a shortest way.

29

5.1.3 Reference AI 3 - Heuristic Method

Both of the first two Reference AIs use a search algorithm to find their best action. The third Reference
AI was chosen to work completely different, without a search at all. Like the Best First Search based AI
it uses the knowledge about the world to determine the best action to take just without a search. In each
turn the AIs have up to 4 possible actions they can take, depending on obstacles or the border of the
world around them. The Heuristic AI uses an evaluation function to calculate a value for each possible
action in the current state and takes the action which seems to be best. Comparing to the two other
Reference AIs it only looks one action ahead. The evaluation function doesn’t use a search algorithm,
it really only looks on the current state to determine the value. The used evaluation function is very
simple and the calculated value for a node only depends on the heuristic distance to the nearest leaf and
the number of leaves in an 3x3-area around the actual node. Additionally if the AI moves up the action
for moving down gets a worse value in the next turn, and vice versa, to prevent getting stuck jumping
between two positions. The same is done for left and right of course. A neighbouring field with a leaf on
it directly gets a very good value.

Figure 14: Heuristic AI example

In Figure 14 the behaviour of this AI is illustrated. It calculates a value for each possible action at the
current position and simply takes the best action, i.e. the one with the smallest value. If there are actions
with the same value it chooses in the order up - down - right - left. The pictures show how this AI plays
without using a search at all. It calculates a value for each action, without a search too, and immediately
executes the best action.

30

5.1.4 Evaluation AI - Minimax

This is the AI that will represent the Minimax based AIs in the evaluation tournaments against the other
algorithms. The Minimax based AI used for this has the following values for the parameters described in
Section 4.3:

• wert: initialized with 0

• maxTiefe: 11→ looking 6 own and 5 opponents actions ahead

• zug_faktor: 18

• zug_kosten: 3

• weg_size: 1→ result is only the next best action

• bfs_sicht: -1→ uses the normal Breadth First Search, see Section 4.2.1

• bfs_dist: 2

• schritt_kosten: 0

• Evaluation function:
Ev al(state) = 6 ∗wer t +meinePunkte+meinUmf eld(range = 3)− 4 ∗ naehstesBlat t
→ see Section 4.3.2

The parameters generate an AI that discounts future rewards more compared to early rewards, has
no costs for an action and prefers the ways found by the Breadth First Search before. The evaluation
function calculates a value that is roughly just trying to maximize the gathered leaves on that path of the
game tree and to get in a good position for the next action depending on the surrounding leaves.

31

5.2 Evaluation against reference AIs

Now we start to evaluate the behaviour and strength of the created Minimax based AI compared to
the Reference AIs as described before. Thus we will play three evaluation tournaments consisting of
500 challenges each. The first evaluation tournament is played between the Minimax based AI and the
Breadth First Search AI.

The played 500 challenges resulted in the following statistics:

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
Minimax 258 90 152 2.29 1.70 51.60% 69.60% 864

BFS 152 90 258 0.94 0.59 30.40% 48.40% 546

Table 1: Evaluation Tournament against Reference AI 1

Regarding the results of the tournament we recognize that the Minimax based AI performs better than
the Breadth First Search AI and has a WD/L-Ratio of 2.29, i.e. for each lost game the Minimax based AI
plays in 2.29 games at least a draw. But the WD/L-Ratio of 0.94 of the Breadth First Search AI, which
has no intelligence and is just an uninformed search, also shows that it is able to play at least a draw in
almost half of the challenges. Having more information to use for the decision makes it harder to tune
every part of it, but already that not perfectly optimized Minimax based AI shows a significantly better
performance than an uninformed search based AI. Using the knowledge about the world, the state and
the game itself the Minimax based AI can search and play goal-oriented and thus more efficiently.

In the next evaluation tournament the Minimax based AI plays against the Best First Search AI, i.e.
against an informed search just like itself. Intuitively we would suppose that the Best First Search, the
informed search, will perform better than the Breadth First Search, the uninformed search, due to the
knowledge it uses. The evaluation tournament led to the following result:

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
Minimax 332 59 109 3.59 3.05 66.40% 78.20% 1055
BestFS 109 59 332 0.51 0.33 21.80% 33.60% 386

Table 2: Evaluation Tournament against Reference AI 2

The statistics may be quite surprisingly, because they show that the Best First Search performed worse
than the Breadth First Search. The WD/L-Ratio of the Minimax based AI increased to 3.59 and the
WD/L-Ratio of the Best First Search is only 0.51, and the same holds for the W/L-Ratio. Overall the Best
First Search AI wins less challenges and plays less draws, it just loses more. This isn’t the behaviour we
expected. Using the knowledge of the world and state, like the Minimax based AI, should increase the
performance of the informed search AI, not decreasing it. To understand this we have to think back to
the description of the Best First Search AI in Section 5.1.2. The heuristic the AI uses for the search,
i.e. the information added to the search compared to the uninformed Breadth First Search AI, is only
very small and limited. As said it just takes the heuristic distance to the nearest leaf to value the nodes
for the search. Thus it sometimes tries to find a path to a leaf that seems to be near, nearer than all
others, but in reality the path to get there may be way longer due to the obstacles which were ignored
in the heuristic distance value of the nodes and it just terminates after it found the first way. As already
noted in the description of this AI, the algorithm doesn’t always find a shortest way, thus the AI makes
a detour and this leads to the initially unexpected worse behaviour. The Minimax based AI uses much
more information and in a way more complex way and significantly outperforms the simple Best First
Search AI.

32

In the next evaluation tournament the Minimax based AI is tested against the third Reference AI,
which is based on a completely different approach. Thinking back to Section 5.1.3, the third Reference
AI uses an heuristic method without any search algorithm. Using no search and just trying to predict the
best next action by looking at the current state shouldn’t be able to perform well against the Minimax
based AI. But the evaluation tournament against the Best First Search AI already surprised us with an
unexpected result, so maybe the third evaluation tournament will do it again. Here is the result:

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
Minimax 394 45 61 7.20 6.46 78.80% 87.80% 1227
Heuristic 61 45 394 0.27 0.15 12.20% 21.20% 228

Table 3: Evaluation Tournament against Reference AI 3

No surprise again, but a very clear result. The heuristic method AI has no chance against the Mini-
max based AI, which results in WD/L-Ratios of 7.20 compared to 0.27 and W/L-Ratios of 6.46 compared
to 0.15. This is the most clear defeat in the three evaluation tournaments and kind of the result we
expected. The simple heuristic evaluation function without a search can’t keep up with the way more
complex Minimax based AI.

We tested the Minimax algorithm against three different other approaches and based on these three
evaluation tournaments, we found out that the Minimax based AI performs best. It defeated all other
algorithms, some more clearly than others. The used Minimax based AI was kind of a simpler and
only handcrafted version and already showed that good performance. An optimized version may even
increase the performance. But to find the optimized version we need to know which are the crucial
parameters and parts of the Minimax based AI and how to tune them. Thus we need to evaluate these
parameters.

5.3 Evaluation of parameters

In the previous Section 5.2 we evaluated the Minimax AI according to its performance in the tour-
naments it played against the different Reference AIs. We saw how the Minimax algorithm behaves
compared to several other algorithms.

Now we want to analyse the behaviour of the Minimax based AI in more detail, i.e. analyse several of
its parameters individually. For this we choose a Minimax based AI and turn on/off or change the values
of parameters and let the original version playing against the modified. These small tournaments give
information about the effect of the changed parameters, i.e. how crucial they are for the strength and
behaviour of the AI.

5.3.1 Minimax search depth

The first parameter we’ll a take closer look on is the main parameter of the Minimax algorithm: the search
depth. As earlier mentioned in Section 3.3 the game trees are way too big to be searched completely
and thus the search has to be limited to a certain depth.

Due to this will terminate the search before the game reaches an end-situation, this parameter seems
to be very crucial. The smaller the search depth is the less information is available to be used for finding
the optimal strategy. The algorithm can’t see what will happen further in the game and may evaluate an
action too bad although it may be the best choice, or the other way round, but this will only be seen a
few steps deeper. This is called the horizon-effect.

To analyse the influence of the search depth we create three different AIs, which are equal in all
parameters and weights except in the search depth. The parameter for the search depth is called maxTiefe

33

in the implementation. We choose the three depths 9, 11 and 13 for the evaluation tournament, because
13 is the highest possible depth due to the time restrictions of the Tourality implementation for the
BWINF. Only odd depths are used because we want that the last action is done by MAX, i.e. that the last
action is an own action.

In the tournament each AI is playing 250 times against each other, so at the end all have played 500
challenges in the whole tournament.

This led to the following results:

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
maxTiefe = 9 131 206 163 2.07 0.80 26.20% 67.40% 599

maxTiefe = 11 132 232 136 2.68 0.97 26.40% 72.80% 628
maxTiefe = 13 166 204 130 2.85 1.28 33.20% 74.00% 702

Table 4: Parameter-Evaluation Tournament: search depth

The result proves what we already intuitionally thought: the deeper the algorithm searches the
stronger the AI becomes. No matter which criteria we look at, the deeper version is always better
throughout the whole statistics. Thus the search depth is a very crucial parameter of the Minimax algo-
rithm and a higher depth clearly improves the behaviour of the AI, but at the expense of the calculating
time and needed memory and thus is limited too.

5.3.2 Rewards & discount factor

The next parameters that we want to take a closer look at are the rewards and discount factors. As de-
scribed in Section 4.3.1 the parameters which control the rewards and discount factors are zug_kosten,
zug_faktor, schrittkosten and bfs_dist. We also already know that zug_kosten and zug_faktor are related
and belong together, thus we will treat them together. The same holds for schrittkosten and bfs_dist.

The first pair of parameters that we will evaluate are schrittkosten and bfs_dist. As a short recap, the
schrittkosten parameter is a discount factor, that is subtracted from the wert of the node in the game tree
whenever an action is performed, i.e. each action you take has schrittkosten costs. The bfs_dist parameter
is a reward, that is added to the wert of the node in the game tree, if the related action is part of a path
found by the Breadth First Search algorithm, i.e. it’s a reward you get when following the Breadth First
Search paths. The settings of the two AIs for the first evaluation tournament are:

AI 1: schrittkosten = 0 and bfs_dist = 1

AI 2: schrittkosten = 1 and bfs_dist = 3

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
AI 1 155 267 78 5.41 1.99 31.00% 84.40% 732
AI 2 78 267 155 2.23 0.50 15.60% 69.00% 501

Table 5: Parameter-Evaluation Tournament: Rewards & discountfactor 1

The statistics lead to a clear result: AI 1 performs significantly better than AI 2. The higher reward for
following the Breadth First Search paths and the costs for each action are decreasing the strength of the
Minimax based AI. Having no costs for an action and a lower reward for the Breadth First Search paths
increase the performance of the Minimax algorithm, due to it plays more independent from the Breadth

34

First Search algorithm and only uses it as one information input.

Now we test the other parameter pair, the zug_kosten and the zug_faktor. Again as a short recap, the
zug_faktor is a reward that is added to the wert of the node when picking up a leaf in the game tree.
The zug_kosten is the discount factor which is subtracted from the zug_faktor for each action in the game
tree, i.e. it lowers the reward of leaves that are further away. The settings of the two AIs for the second
evaluation tournament are:

AI 1: zug_kosten = 3 and zug_faktor = 18

AI 2: zug_kosten= 1 and zug_faktor = 6

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
AI 1 167 202 131 2.82 1.27 33.40% 73.80% 703
AI 2 131 202 167 1.99 0.78 26.20% 66.60% 595

Table 6: Parameter-Evaluation Tournament: Rewards & discountfactor 2

This time the performances of the two AIs are closer to each other, but AI 1 still has a noticeable
advantage. Thus, giving leaves that can be gathered faster than others a significant higher reward
increases the performance of Minimax algorithm. Additionally the higher reward for near leaves makes
sure that the AI doesn’t ignore a near leaf, e.g. doesn’t move fast to an area with many leaves without
gathering the near leaf on the run.

5.3.3 Greedy vs. smart

In the previous evaluation tournaments we changed single parameters of an AI and let it play against
the unchanged version of itself. Because we didn’t change anything else, both version of course used the
same evaluation function. So in this section we will take two versions that have only some very small
differences in their parameters, but a very different evaluation function.

The evaluation function of the first AI is defined as:
Ev al(state) = 5 ∗ knoten.wer t − 2 ∗ knoten.wer t2+meinUmf eld(range = 3)− naehstesBlat t

This AI uses 4 different factors to value the state. It not only tries to maximize its own gain, it addition-
ally considers its environment and the actions taken by the opponent in the game tree path. Thus it tries
to maximize its outcome, while also trying to get in a good position for the next turn and minimizing the
outcome for the opponent. Due to the AI is considering the environment and the opponent and not only
itself, it will be the smart AI in the evaluation tournament.

The evaluation function of the second AI is defined as:
Ev al(state) = 4 ∗ knoten.wer t + 2 ∗ knoten.meinePunkte

The evaluation function of the second AI is much easier than the one of the first AI. This AI doesn’t
really care about its environment and the opponent in the evaluation function. It just tries to maximize
its own outcome, gathering as many leaves as possible, no matter what happens around it. Thus this will
be the greedy AI in the evaluation tournament.

Again the evaluation tournament consists of 500 challenges between the greedy and the smart AI and
led to the following statistics:

35

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
smart 216 170 114 3.39 1.89 43.20% 77.20% 818
greedy 114 170 216 1.31 0.53 22.80% 56.80% 512

Table 7: Parameter-Evaluation Tournament: Greedy vs. smart

What seems to be intuitively right is verified by the result of the evaluation tournament: the smart AI
performs better than the greedy AI. Trying to steal a leaf from the opponent, considering the actions of
the opponent, don’t just running to the nearest leave but instead going to an area with more leaves, i.e.
considering the whole state and information improves the performance of the AI.

But the more complex the evaluation function becomes, i.e. if the AI becomes smarter, the harder it is
to tune the weights for each factor.

5.3.4 One-Action Plan vs. N -Action Plan

Due to the Minimax algorithm creates a game tree up to a given depth, we can extract a sequence of the
next best actions and not only one next best action. If we got the next best N actions out of the Minimax
algorithm, we can play N turns without doing a new calculation again. Thus this would save a lot of
calculating time. But on the other hand for the next N-1 turns you don’t react to the actions of your
opponent. Although the Minimax algorithm simulates the actions of the opponent, it only considers the
actions that it believes the opponent will do, not what he really does. So this could be a problem.

To evaluate the influence of different N-Action plans we create two different AIs again, which are equal
in all parameters and weights except the planning size of their actions. The parameter that controls this
is called weg_size in the implementation. In the first tournament an AI with weg_size = 1 plays against
an AI with weg_size = 3, i.e. an AI which calculates a new Minimax run every turn and performing one
resulting action against an AI which only calculates a new Minimax run after it performed 3 actions of
the last run. As before they played 500 challenges for the following statistics:

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
weg_size = 1 251 104 145 2.45 1.73 50.20% 71.00% 857
weg_size = 3 145 104 251 0.99 0.58 29.00% 49.80% 539

Table 8: Parameter-Evaluation Tournament: One-Action Plan vs. N -Action Plan 1

The result of the evaluation tournament is quite clear and matches with the thoughts we had before:
calculating a new Minimax run in every turn and reacting to the performed actions of the opponent
clearly improves the strength of the AI. The huge difference between the two AIs is even more surpris-
ingly and interesting, because they use the exact same version of the Minimax algorithm. So reacting
in each turn to the performed action of the opponent is very crucial for the strength, i.e. weg_size = 1
seems to be the best setting.

We said that if we don’t calculate a new Minimax run in every turn, we save a lot of time. So can
we improve the performance of the weg_size = 3 AI if we use this saved time? We already know that
searching deeper improves the strength, but at the expense of time. Now we have some saved time we
can put into a deeper search. Thus for the next evaluation tournament, we take the same two AIs as
before, but increasing maxTiefe from 11 to 13 for the weg_size = 3 AI.

36

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
weg_size = 1 213 141 146 2.42 1.46 42.60% 70.80% 780
weg_size = 3 146 141 213 1.35 0.69 29.20% 57.40% 579

Table 9: Parameter-Evaluation Tournament: One-Action Plan vs. N -Action Plan 2

We see that the increased search depth has improved the performance of the weg_size = 3 AI. So with
a larger weg_size you save a lot of time which can be used for a deeper search, which can be very useful
in a environment with restrictions. The disadvantage of not reacting to every action of the opponent
immediately still affects the performance of the AI and calculating a new Minimax run every turn still
gives the best performance.

5.3.5 Normal -BFS input vs. Area -BFS input

In Section 4.2 we described two different implementations of the Breadth First Search algorithm and
in Section 4.3.1 we saw how we can use the information from the Breadth First Search while creating
the Minimax game tree. Now in this section we want to test the two versions against each other. For
this purpose we change the bfs_sicht parameter, which controls the Breadth First Search input for the
Minimax algorithm as described in Section 4.2 of our evaluation AI. One version plays with the normal
Breadth First Search version, i.e. bfs_sicht = −1, and the other one plays with the Area Breadth First
Search version with a range of 5, i.e. bfs_sicht = 5. As before all other parameters are equal.

AI Wins Draws Lost WD/L-Ratio W/L-Ratio Won Not-Lost Points
bfs_sicht = −1 270 54 176 1.84 1.53 54.00% 64.80% 864
bfs_sicht = 5 176 54 270 0.85 0.65 32.20% 46.00% 582

Table 10: Parameter-Evaluation Tournament: Normal -BFS input vs. Area -BFS input

The statistics of the evaluation tournament show a clearly better performance of the normal version
as input than of the area version. This may be a bit unintuitive, because the area version provides more
paths to more leaves, and thus more information about the world that the Minimax algorithm could use.
Obviously the Minimax algorithm can’t use that more information directly to improve its behaviour. The
parameters and weights need to be adapted to deal with this more information. When only changing
the Breadth First Search parameter, the normal Breadth First Search version as input for the Minimax
algorithm leads to the best performance of the Minimax based AI.

37

6 Conclusion & Outlook

Our evaluation tournaments against the three different Reference AIs showed that the Minimax based AI
is the best, strongest AI of them. The Minimax algorithm together with the AlphaBeta-Pruning uses the
most information about the world and state in the most complex way. Acting more game dependent and
goal oriented significantly improves the behaviour of the AI, i.e. informed search, with a good evalua-
tion function, outperforms uninformed search. The Minimax based AI additionally takes the opponent
behaviour into account and by this improves the behaviour even more and performs smarter, i.e. isn’t
just gathering as many leaves as possible, but tries to gather them in a smart way, e.g. stealing from the
opponent. Dealing with the opponents behaviour is very crucial in a competitive environment to get a
strong AI.

With the parameter evaluation tournaments we identified the crucial parts of the Minimax based AIs.
The most crucial parameters are the search depth and the evaluation function. Searching deeper clearly
improves the behaviour due to the AI sees further into the future and to the end of the challenge and
by this can choose an action that leads more likely to the best situation for it. We also saw that giving
closer leaves a higher reward, i.e. discounting future rewards, leads to a better behaviour of the AI.
What we already found out at the evaluation tournaments was proved again when we tested a greedy
against a smart AI, i.e. using more information, especially information about the opponent, is very crucial
and the evaluation function defines the behaviour of the AI, i.e. what kind of AI it is. When we tried
to speed up the AI by using more than one action of the Minimax search, we saw that the behaviour
decreases because the AI couldn’t react anymore to each action of the opponent immediately. But we
also found out that we can use the saved time to search deeper and thus improve the behaviour again.
These two parameters can be tuned together to get the best behaviour under the given restrictions of
the environment. With the last parameter evaluation tournament we found out that just increasing the
used amount of information doesn’t automatically lead to a better performance. Using more information
needs tuning all involved parameters and weights again and this becomes more complex.

Using all this knowledge and different AIs that were created, we got several reference AIs for the
participants of the BWINF with different behaviour that they can challenge to test their own AIs and
improve themselves.

We investigated the behaviour and strength of the Minimax based AI against several other approaches,
evaluated the influence of different parameters and were able to adapt the Minimax algorithm to the cer-
tain game and setting of the BWINF. The resulting, completely handcrafted, Minimax based AI performed
very well, even though it misses one very crucial part of (artificial) intelligence: learning; the ability to
improve yourself from feedback of the environment and past experiences. The performance of the Min-
imax based AI may be increased through adding learning, e.g. using machine learning approaches for
learning the weights of the factors in the evaluation function, or the different parameters used while
creating the game tree. Besides weights and parameter learning, the setting of the used Tourality game
is quite perfect for some Reinforcement Learning17 like e.g. Q-Learning. Through the complete discrete
and deterministic setting, basic approaches like Policy/Value Iteration can be adapted, or approximating
approaches like Value Function Methods and Policy Search. They just need to be adapted to deal with
the competitive environment. Another kind of approach that could improve the behaviour is Imitation
Learning, even in two different styles: learning from a demonstrated game of a teacher or by using the
behaviour of the opponent AI as input. Remember the game setting, each challenge consists of two
sweeps with swapped positions. Thus the AI can look at the behaviour of the opponent in the first sweep
and using this for its own behaviour in the second sweep and thus play maybe at least a draw in every
challenge. So adding any kind of learning to our Minimax based AI to improve its performance, is a very
interesting and exciting approach to be investigated and may lead the AI to behave more like something
intelligent.

17 see Russell and Norvig (2011) chapter 21 and Mitchell (1997) chapter 13

38

References

Cormen, T. H., Leiserson, C. E., Rivest, R., and Stein, C. (2001). Introduction to Algorithms. MIT Press,
McGraw-Hill.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1972). Correction to ’A formal basis for the heuristic determi-
nation of minimum cost paths’. SIGART Newsletter, 37, pp. 28-29.

Hart, T. P. and Edwards, D. J. (1961). The tree prune (TP) algorithm. Artificial intelligence project memo
30. Massachusetts Institute of Technology.

Knuth, D. E. (1975). An analysis of alpha-beta pruning. AIJ, 6(4), pp. 293-326.

Lee, C. Y. (1961). An algorithm for path connection and its applications - IRE Transactions on Electronic
Computers. EC-10(3), pp. 346-365.

Millington, I. and Funge, J. (2009). Artificial Intelligence for Games. Morgan Kaufmann.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Moore, E. F. (1959). The shortest path through a maze - In Proceedings of the International Symposium on
the Theory of Switching. Harvard University Press, pp. 285-292.

Newell, A., Shaw, C., and Simon, H. (1958). Chess Playing Programs and the Problem of Complexity - IBM
Journal of Research and Development. 4(2), pp. 320-335.

Russell, S. and Norvig, P. (2011). Artificial Intelligence - A Modern Approach. Pearson Education.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton
University Press.

39

Appendix

Source-code snippet of the Minimax based AIs:

1 private int ab_decision(Node node, byte maxTiefe , int alpha, int beta, byte
zug_faktor) {

2 int value = max_value(node, alpha, beta, maxTiefe, zug_faktor);
3 node.wert = value;

4 return value;
5 }

6

7 private int max_value(Node node, int alpha, int beta, byte tiefe, byte
zug_faktor) {

8 if (tiefe == 0 || (blaetter.size() - node.blaetter.size()) == 0) {
9 wert(node);

10 return node.wert;
11 }

12

13 int value = -10000000;
14 if (node.kinder == null)
15 node.kinder = expand(node, meineID, zug_faktor);

16

17 if (node.kinder != null && node.kinder.size() > 0) {
18 Collections.sort(node.kinder);

19 for (Node kind : node.kinder) {
20 value = Math.max(value, min_value(kind, alpha, beta, (byte) (

tiefe - 1), zug_faktor));

21

22 if (value >= beta) {
23 while (node.kinder.getLast() != kind)
24 node.kinder.removeLast();

25

26 return value;
27 }

28 alpha = Math.max(alpha, value);

29 }

30 }

31

32 node.wert = value;

33 return value;
34 }

35

36 private int min_value(Node node, int alpha, int beta, byte tiefe, byte
zug_faktor) {

37 if (tiefe == 0 || (blaetter.size() - node.blaetter.size()) == 0) {
38 wert(node);

39 return node.wert;
40 }

41

42 int value = 10000000;
43 if (node.kinder == null)

40

44 node.kinder = expand(node, gegnerID , zug_faktor);

45

46 if (node.kinder != null && node.kinder.size() > 0) {
47 Collections.sort(node.kinder);

48 Collections.reverse(node.kinder);

49 for (Node kind : node.kinder) {
50 value = Math.min(value, max_value(kind, alpha, beta, (byte) (

tiefe - 1), (byte) (zug_faktor - zug_kosten)));
51

52 if (value <= alpha) {
53 while (node.kinder.getLast() != kind)
54 node.kinder.removeLast();

55

56 return value;
57 }

58 beta = Math.min(beta, value);

59 }

60 }

61

62 node.wert = value;

63 return value;
64 }

Listing 1: Minimax algorithm with AlphaBeta-Pruning in Java

41

	List of Figures
	List of Tables
	Introduction
	Motivation
	Bundeswettbewerb Informatik
	Online-Tournament

	ESU & Tourality
	ESU
	Functionality
	Implementing a Game
	Implementing an AI

	The Tourality-Game
	Game-Definition
	World
	Actions

	Underlying Algorithms
	What's the problem to solve?
	Breadth First Search
	Minimax
	Deterministic perfect-information zero-sum game
	Game tree
	Optimal strategy
	AlphaBeta-Pruning

	Specific Implementation
	The idea behind the AIs
	Breadth First Search
	Finding shortest ways to all nearest leaves
	Finding shortest ways to all leaves in a limited range

	Minimax
	Creating the tree
	Evaluation function

	AI Evaluation - Competitive Tournaments
	Evaluation AIs
	Reference AI 1 - Uninformed Search
	Reference AI 2 - Informed Search
	Reference AI 3 - Heuristic Method
	Evaluation AI - Minimax

	Evaluation against reference AIs
	Evaluation of parameters
	Minimax search depth
	Rewards & discount factor
	Greedy vs. smart
	One-Action Plan vs. N-Action Plan
	Normal-BFS input vs. Area-BFS input

	Conclusion & Outlook
	Bibliography
	Appendix

