
Creating noise pollution maps
based on user-generated noise
measurements
Erstellung von Lärmkarten basierend auf nutzergenerierten Lautstärkemessungen
Bachelor-Thesis von Jakob Karolus
Mai 2013

Fachbereich Informatik
Telecoorperation Group

Creating noise pollution maps based on user-generated noise measurements
Erstellung von Lärmkarten basierend auf nutzergenerierten Lautstärkemessungen

Vorgelegte Bachelor-Thesis von Jakob Karolus

1. Gutachten: Prof. Dr. Max Mühlhäuser
2. Gutachten: Dipl.-Wirtsch.-Inform. Axel Schulz

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind
als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungs-
behörde vorgelegen.

Darmstadt, den 15. Mai 2013

(J. Karolus)

Contents

1 Introduction 4

2 Basics 5

2.1 Participatory sensing . 5

2.2 Machine Learning and Data Mining . 5

2.3 RDF and SPARQL . 7

3 Related work 9

3.1 Participatory sensing and noise mapping . 9

3.2 LinkedGeoData and its application scenarios . 13

3.3 Data quality of OpenStreetMap and usage scenarios . 14

4 Architecture 16

4.1 Data sources . 17

4.1.1 NoiseMap . 17

4.1.2 OpenStreetMap . 18

4.1.3 LinkedGeoData . 19

4.1.4 “Deutscher Wetterdienst” . 20

4.2 Implementation . 21

4.2.1 Query and data processing pipeline . 21

4.2.2 Querying of data sources . 21

4.2.3 AbstractAttribute - How to model features . 27

4.2.4 DataBuilders - Generating a custom arff file . 30

5 Evaluation 32

5.1 Feature selection and optimization . 32

5.1.1 Single features . 32

5.1.2 Feature compositions . 38

5.1.3 Different sound level distributions . 40

5.1.4 Different classifiers . 42

5.2 Evaluation summary . 43

6 Applications 45

7 Conclusion and future work 47

2

Abstract

Environmental pollution has become a rising concern during the last decades. Especially in big cities with their huge
traffic volume, the pollution by the generated noise has become an imminent health threat to the citizen [40].

To protect their citizens, states in the EU have agreed on a directive which forces them to curtail the threat that is
noise pollution [31]. First and foremost, this gives citizens the right to be informed about noise threats as every state has
to provide noise maps for area of high population density. However, there are three major problems with this approach.
Primarily, those maps only provide sparse coverage since rural areas are not included and they also exhibit a relatively
long update cycle. Last but not least, recording the maps involves expensive high quality sensors and human resources,
resulting in a not negligible financial burden.

In this thesis, we introduce an approach making use of machine learning techniques and collected noise measurements
by a participatory sensing application to determine the noisiness factor of an area. By using the collected sound data in
conjunction with further information on the vicinity such as nearby streets or buildings, we were able to create a machine
learning model able to predict a sound level with 80.9% accuracy. As this approach is very cost-efficient it can easily be
used as an addition to common techniques for recording noise maps as well as a standalone application.

Zusammenfassung

Das Thema Umweltverschmutzung ist in den letzten Jahren zu einem ernstzunehmenden Problem herangewachsen. Vor
allem in Städten mit großem Verkehrsaufkommen ist die Belästigung durch den hervorgerufen Lärm zu einer Bedrohung
der Gesundheit der Einwohner geworden [40].

Zum Schutze ihrer Bevölkerung haben die Mitgliedsstaaten der EU eine Richtlinie verabschiedet, welche die zuneh-
mende Lärmbelästigung eindämmen soll [31]. Durch Lärmkarten von Ballungszentren sollen Bürger über Lärmquellen
informiert werden. Dieser Ansatz leidet jedoch unter drei grundsätzlichen Schwächen. Zum einen gibt es für ländliche
Gebiete keine Lärmkarten und des Weiteren verhindert der meist lange Aktualisierungszeitraum eine genaue Bestimmung
der Stärke der Lärmbelästigung. Zudem werden teure Qualitätssensoren sowie Fachkräfte zur Aufnahme einer Lärmkarte
benötigt, was eine nicht vernachlässigbare finanzielle Belastung darstellt.

In dieser Arbeit stellen wir einen Ansatz vor, welcher mithilfe gesammelter Lautstärkemessungen durch eine “Par-
ticipatory Sensing” Anwendung den Lärmfaktor einer Gegend bestimmen kann. Hierzu verwenden wir Techniken des
Maschinellen Lernens und reichern unsere Messungen mit einer genauen Beschreibung der Umgebung des Messorts an,
beispielsweise indem wir Straßen und Gebäudetypen in der Nähe ergänzen. Dadurch konnten wir ein Modell erstel-
len, welches den Lärmpegel mit einer Genauigkeit von 80.9% vorhersagen kann. Da unser Vorgehen sehr kostengünstig
ist, kann es leicht als Ergänzung zu herkömmlichen Methoden zur Erstellung von Lärmkarten oder als eigenständige
Applikation eingesetzt werden.

1 Introduction

Motivation
Environmental pollution has been one of the major topics over the last decades. As the earth’s population increases

rapidly, protecting the environment for further generations is vital. Besides air pollution and the resulting climatic change,
noise pollution has been a rising issue in recent years. High levels of noise exposure can influence productivity and social
behavior in a negative way, apart from degrading the ability to hear [40]. For this reason the European Community
passed the directive 2002/49/EC [31], which declares noise protection as one necessary objective to achieve a high level
of health and environmental conservation.

The directive imposes several actions to be made upon member states, including the mapping of noise in larger cities
via noise maps. On the basis of these maps, the countries can formulate plans to counter the threat that is noise pollu-
tion [31]. In Germany, strict threshold values were introduced concerning the construction of streets and railways [28].
Exceeding these limitations would require additional measurements such as anti-noise barriers alongside the road to
protect citizens.

Although the prospect of noise maps to curtail pollution seems promising, there exists one major problem concerning
this approach. To generate accurate and up-to-date maps, a huge network of noise sensors is needed. As this poses a
financial burden onto local authorities or authorized companies, only a limited number of sensors is used while using
simulations to interpolate missing measurements [29]. Furthermore an overlong update cycle prevents accurate noise
maps when needed [31].

In this thesis, we present an approach to create noise maps based on sound measurements recorded by a participatory
sensing application. Using machine learning techniques, we establish models to predict sound levels and generate noise
maps based on those predictions. Additionally, we include the vicinity of a measurement location as a knowledge factor
by identifying possible noise sources and including them into our model, leading to a more accurate prediction. On the
one hand, our approach could be used as a standalone application, e.g. providing noise levels for houses and apartments
as an additional advertisement factor or for simulating noise changes before building a new office tower. On the other
hand, the generated maps could be utilized in conjunction with already present noise maps delivering correlation data
for areas, which were not measured by costly noise sensors but rather calculated with models [29]. On the basis of these
results the original measurement plans could be adapted to achieve a better coverage of the relevant area by using even
fewer sensors and thus decreasing the financial burden.

Approach
To reach the goal of a precise model predicting noise levels, we make use of an already existing participatory sensing

system called NoiseMap1, supplying us with sound measurements tagged with timestamp and GPS location. Using this
dataset as training background for our model, we aim to predict noise levels for arbitrary locations and time. However,
we expect that this initial model will lack in accuracy as the amount of information is simply not sufficient enough. For
this reason, we analyzed several possible noise sources in the vicinity of a location, which could directly or indirectly
influence the recorded sound data and could be used to enrich the dataset generated by NoiseMap. In doing so, we were
able to establish a model predicting noise levels with much higher accuracy.

Based on our analysis, we decided to examine nearby building types using LinkedGeoData2, weather data provided by
“Deutscher Wetterdienst”3, as well as nearby streets using OpenStreetMap4 with regard to their usefulness in this scenario.

As we do not use any domain knowledge of sound propagation in our approach, we feature a thorough evaluation of
various models. Each one making different usage of our data sources and interpreting them in a different way. To be able
to evaluate arbitrary compositions of noise sources in fast succession, we developed a prototype called LOCAL5, which
administers our data sources and is able to preprocess the data, making it suitable for machine learning purposes.

Structure of this work
As an introduction to the topics of machine learning and participatory sensing themselves, Chapter 2 and 3 will provide

insight into needed basics as well as related work in this area, following up with an overview over the architecture (see
Chapter 4). While Section 4.1 will present all of our data sources, the next section (4.2) will focus on implementation
aspects of our prototype. In Chapter 5 we will closely examine the usefulness of our approach and evaluate refinements.
We will also have a quick glance at possible visualization aspects, before we conclude in Chapter 7 and follow up with a
look at future work.

1 http://www.tk.informatik.tu-darmstadt.de/de/research/smart-urban-networks/noisemap/ [accessed on 15.05.13]
2 http://linkedgeodata.org/ [accessed on 15.05.13]
3 http://dwd.de/ [accessed on 15.05.13]
4 http://www.openstreetmap.org/ [accessed on 15.05.13]
5 LOCation Aware Loudness

4

2 Basics

First, we would like to introduce some necessary basics involved with our approach. Since participatory sensing plays a
vital part for collecting our initial set of noise data, the first section provides some insight into the concept itself and its
recent development. As mentioned in the introduction, we utilize machine learning techniques to extract a connection
from the vicinity of a location to its noise level. Therefore we will introduce the concept of machine learning and popular
algorithms. The last section covers an explanation of RDF and SPARQL, as we encounter both when querying data sources
in the “Semantic web” [7].

2.1 Participatory sensing

The rise of smartphones over the last decade coupled with their huge sensing capabilities has opened up a new perception
on sensor networks. Given the right architecture, mobile devices are able to replace expensive sensor equipment, while
still providing a huge network of sensing nodes. Beside the integrated sensor possibilities, smartphones offer high
computation power and connectivity. This speeds up data processing and strengthen the aspect of “shareability” [5].
Being able to stay “on the grid” and share collected data ultimately provides a stable and consistent sensing network. [5]

Since participatory sensing focuses on interactive networks – directly involving the user – there needs to be some
form of incentive. Especially when addressing a large community where the motivations for participating differ substan-
tially [18]. Often civic concerns such as environmental issues are used as a motivational factor [5]. In big cities, air and
noise pollution are omnipresent and thus citizens become more aware of this threat. On the other side, in areas of no
imminent environmental risks, other incentives must be found in order to get the public to participate. A popular idea is
to introduce a competition between data contributors, rewarding them for collecting measurements. [26]

Apart from data quantity, its quality is a vital factor, too. Here we see the shortcomings of an approach interactively
involving users of mobile devices. It is far more difficult to achieve reliable measurements when one cannot directly
control the nodes of the sensor network. As a result, the input data may be corrupt or simply to sparse in certain areas,
which would require additional steps to ascertain a high data quality. [5]

In this work, we present several participatory sensing systems making use of mobile devices to gather data in Chapter 3
and highlight similarities as well as differences to our approach.

2.2 Machine Learning and Data Mining

In a world of data, finding patterns or concepts explaining a given set of data can certainly pose a huge challenge.
Especially since estimations show that the amount of information stored in databases worldwide doubles approximately
every 20 months [15]. However, having access to more data does not necessarily increase our knowledge. We are
basically “drowning in data yet starving for knowledge”6. To counter this, we need to find patterns within the dataset
to extract usable information, which allows us to establish a concept and makes data “explainable”. In our scenario, we
could then explain why a specific location is e.g. especially noisy.

Discovering those patterns is defined as “Data Mining”, describing an at least semi automatic process to scan data
for meaningful patterns [44]. As there exist many different approaches to “mine” data, the structural representation of
patterns differs naturally. Common ones are represented through a list of rules or a tree structure capturing the concept.
“Machine Learning” is about constructing these concept automatically and applying them to unseen data. However, as
there are infinitely many data mining problems, there cannot be one universal learning scheme. Since every algorithm
has its own specific bias, selecting the appropriate one is the user’s duty, making data mining an experimental science.
Yet there are many tools available – e.g Weka7 – which can assist the user in this matter.

Learning algorithms
Developed by the University of Waikato in New Zealand, Weka8 is a workbench providing a variety of implementations

for different machine learning schemes suitable for data mining tasks [20]. Based on distinctive features – the attributes –
of a dataset, these algorithms are able to predict the outcome of one specific attribute, typically called the “class” attribute.
Hence, the algorithm is often referred to as “classifier”. As a complete overview is not the focus of this work, we will only
introduce selected algorithms.

J48: J48 is an elaborate decision tree learner originating from C4.5 [32] by Ross Quinlan and is able to cope with “real-
world” problems such as numeric attributes and missing values. We favored J48 due to a fast creation phase compared
to other classifiers, which enabled us to perform an in-depth evaluation of our results.

In general, there are two steps when it comes to Decision Tree Classification. At first it is necessary to construct the
decision tree using a recursive divide-and-conquer algorithm. Starting with the initial set of data, the classifier tries to

6 anonymous
7 http://www.cs.waikato.ac.nz/ml/weka/ [accessed on 15.05.13]
8 Waikato Environment for Knowledge Analysis

5

find an optimal splitting point (a node in the tree) to divide the set into two parts. Based on heuristics, like Entropy
and Information Gain, the classifier ensures a certain purity9 of the resulting subset with regard towards the class value.
For example, when working with a class attribute “play golf” that possesses two possible values yes and no, finding a
splitting point, where one subset contains mostly instances with the class value yes, whereas the other subset covers
mostly no instances, is beneficial. The distribution into a subset is based upon the instances attribute values. Coming
back to our example, using the attribute “rainy” as splitting point, we would expect a subset of mostly no instances if it is
rainy (attribute’s value is true). [44]

After splitting the dataset, the same step is repeated for each subset individually until either a set is pure or a certain
heuristic threshold is reached. Eventually, the generated tree can be used to classify new instances by traversing the tree
based on the attribute tests in its nodes. The class value is then calculated based on the composition of instances in the
leaf. [44]

JRip and libSVM: Some other classifiers include rule learners (JRip) and support vector machines (libSVM). As we
merely utilizes them as a comparison to J48, only a brief introduction will be given.

JRip uses a seperate-and-conquer algorithm to find a list of rules explaining a given dataset. Starting from the initial
data, it successively refines one rule10 by adding conditions until a certain heuristic threshold is reached, e.g. until the
rule has at least a precision of 80%. After this step, the algorithm removes all instances which were predicted by the rule
and starts over. This process can either be stopped prematurely or when all data instances have been correctly covered.
Eventually we obtain a list of rules describing patterns in the data set. Note that when classifying new instances the rules
must be evaluated starting at the top of the list. The first rule which matches predicts the class value. [44]

LibSVM [12], a wrapper class for a popular SVM library, covers a more mathematical approach towards machine
learning. In principle, a support vector machine classifier tries to find a hyperplane in the vector space of all instances,
which separates different classes. Although there exist many possible hyperplanes, extracting the one where the distance
between two classes is maximal is most beneficial as classification becomes easier. [44]

Ordinal meta classifier: The “meta” classifier implemented by Eibe Frank and Mark Hall [14] makes use of partially
ordered class labels to extract further knowledge. By adding an extra class, Frank and Hall were able to establish an
order between class labels. The modified dataset could then be learned by any classifier predicting one of the new labels.
Converting them back delivers the original class. This flexibility allows the usage of many different classification schemes
within the meta classifier.

Input data
Weka uses a standard attribute-relation file format (arff) to represent datasets. It consists of two section: header and

data part. The first specifies the name (line 1) and attributes (line 3-5) of the dataset. Possible attribute types are often
numeric or nominal as well as strings or dates. The second part contains information about the data itself (line 7-10).
Each line represents one instance and each value – for the prior defined attributes – is separated by a comma. Missing
values can be marked by a single question mark. Listing 1 shows a small example arff with two nominal and one numeric
attribute as well as missing values for some data instances. Note that there is no indication whatsoever to identify the
class attribute. Since the arff file only provides a dataset, specifying the attribute to be predicted with the help of the
other attributes, is to be done during runtime. This also enables the user to make different predictions with the same
dataset. [20]

1 @relation weather
2

3 @attribute out look {sunny , overcas t , ra iny }
4 @attribute temperature r e a l
5 @attribute play { yes , no}
6

7 @data
8 sunny ,85 , no
9 sunny , ? , no

10 ? ,83 , yes

Listing 1: Modified arff example of Weka ’s weather dataset.

Output data and performance indicators
Since the internal model structure of each classifiers differs, there is no method to directly compare them. For example,

there is no practical way to compare a decision tree (see Fig. 1) with a set of rules (see Fig. 2). Both could predict class
values just as well.

9 a pure set only contains instances of one class value
10 rule format: IF condition1 AND condition2 ... THEN class1

6

Figure 1: Decision Tree learned by J48, containing internal nodes (ellipses) and leafs (rectangles). The presented number
in the leafs conforms to the amount of instances within.

Figure 2: Rule set learned by JRip. The third line contains a default rule which matches any conditions. The numbers
correspond to the amount of correctly covered instances (first one) as well as incorrect classifications (second
one) for each rule.

Therefore we need another way to determine whether a certain classifier performs better on a given dataset then
another one. To address this issue, various indicators can be used to judge the performance of a classifier. At first, a good
classifier should make right predictions and thereby the amount of correctly classified examples – the accuracy – is a good
indication of how well a classifier is performing. There are many more indexes that can be used to rate the usefulness
of a classifier. As most of them correlate between each other, e.g. a high accuracy indicates a low error rate, we refrain
from displaying a huge amount of measurements, only mentioning them if we spot irregularities. [44]

However, testing a classifier on the training set itself will probably lead to good results anyway. Hence, we use only
a part of the whole dataset to train a prediction model and test it on unseen data, comparing the predicted class value
to the real one. A good way to fully utilize all available data for training, is to perform a cross validation on the whole
dataset. By doing so, we divide the set into n folds, where we use n-1 fold to train a model and the last fold to test
its performance. Note that every fold needs to be the test set at least once, leading to a total of n cycles of creating a
model and testing it. By averaging the results, we get a good estimation of the classifiers performance for the desired
indicator. [44]

2.3 RDF and SPARQL

RDF11 – much like XML12 – can be used to describe web resources and is a vital part of the “Semantic Web”. Designed
as a standard by W3C13, RDF is a simple data model to describe arbitrary facts about a resource in the form of triples
(a subject-predicate-object expression). Extending XML, it possesses a far more powerful semantic, enabling a more
elaborate way to describe entities and to visualize relations between them (often trough graphs). Listing 2 shows a
simple RDF document written in XML syntax. [6]

As in any XML document, the first line is occupied by the XML declaration, followed by the root element of the RDF
document in line 3 and namespace declarations in line 4 and 5. To describe a resource we use the <rdf:Description
rdf:about=resource> ... </rdf:Description> syntax as shown in lines 7-12 and 14-19. Within this block we can
specify attributes and their values of the resource, e.g. stating the artist or price of the album. The possible attributes are
defined in the respective namespaces, which are not part of RDF itself, but must be designed separately via an ontology,

11 Resource Description Framework
12 Extensible Markup Language
13 World Wide Web Consortium

7

1 <?xml ver s ion ="1.0"?>
2

3 <rdf:RDF
4 xmlns : rd f ="ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#"
5 xmlns : cd="ht tp ://www. recshop . fake /cd#">
6

7 <rdf:Description
8 rd f : about="http://www.recshop.fake/cd/Empire Burlesque">
9 <cd : a r t i s t >Bob Dylan</cd : a r t i s t >

10 <cd : pr ice >10.90</cd : pr i ce>
11 <cd : year >1985</cd : year>
12 </rdf:Description>
13

14 <rdf:Description
15 rd f : about="http://www.recshop.fake/cd/Hide your heart">
16 <cd : a r t i s t >Bonnie Tyler </cd : a r t i s t >
17 <cd : pr ice >9.90</cd : pr i ce>
18 <cd : year >1988</cd : year>
19 </rdf:Description>
20 </rdf:RDF>

Listing 2: Modified RDF example document from: http://www.w3schools.com/rdf/rdf_example.asp.

e.g. by using RDFS14, which corresponds to DTD15 for XML. Note that there exist various methods to actually write down
a RDF description. While using a XML-like structure is still readable for humans, listing all possible triples makes things
more difficult. [6][41]

However, as RDF is designed to be read by computers anyway, this is were SPARQL16 comes into play. Utilizing the
syntax and semantics specification of RDF, SPARQL enables the user to use SQL-like statements (as shown in Listing 3) to
query data sources, which display their data as RDF natively or through middleware. Yet, to fully utilize SPARQL queries,
one must be familiar with the underlying RDF ontology just as one must know the database schema to successfully
execute SQL queries on a specific dataset. [8]

1 P r e f i x lgdo : <ht tp :// l inkedgeodata . org / ontology/>
2 Select *
3 From <http :// l inkedgeodata . org>
4 {
5 ? s a lgdo : Amenity .
6 ? s r d f s : l a b e l ? l .
7 ? s geo : geometry ?g .
8 F i l t e r (b i f : s t _ i n t e r s e c t s (?g , b i f : s t _ p o i n t (12.372966 , 51.310228) , 0 .1)) .
9 }

Listing 3: SPARQL example querying all buildings of type “Amenity” in a given area (line 8).

In our example query (see Listing 3), we extract all buildings of type “Amenity” as well as their name and geometry.
Note that in line 8 we additionally restrict the search to buildings around a specific location. As SPARQL needs access
to the underlying ontology as well, line 1 contains a namespace declaration to LinkedGeoData’s ontology, which we will
examine further in Chapter 4.1.3.

14 Resource Description Framework Schema
15 Document Type Definition
16 SPARQL Protocol And RDF Query Language

8

3 Related work

Our approach covers topics from various research areas. Therefore we structured related work accordingly. First, we will
look into work associated with participatory sensing and processing audio data. As auxiliary data sources play a vital
part in our approach, we additionally provide some insight into the data quality of two sources, namely LinkedGeoData
and OpenStreetMap, and present applications utilizing them.

3.1 Participatory sensing and noise mapping

Participatory Sensing is a huge and active research area. In our case, we focus on noise pollution mapping applications.
The following examples of related work fall into this category.

Laermometer
Laermometer’s aim is to provide “noise information for any place in the world” [3]. By collecting noise measurements

on-the-go and uploading them to a server, each user can view the noise maps via the web interface. It is also possible
to add comments to the measurements, e.g. explaining a particularly high value. However, the authors conclude that
the system is yet to be tested in real-world scenarios as it does not address the issue of calibrating different devices or
detecting the position of the phone, e.g. whether the phone reside in the user’s pocket or hand. Furthermore, a scheme
to convert the audio signals to a usable loudness scale (e.g. sound pressure level) is yet to be implemented.

NoiseSPY
A more elaborated work is present by Kanjo in NoiseSPY [23], a sound sensing system for monitoring environmental

noise. Apart from recording sound measurements by the user, it features a visualization in real-time and a web portal,
which allows contributors to access their recordings. Important aspects in Kanjo’s work include the personalization of
data samples. The application features a personal exposure statistic, allowing a more people-centric approach to noise
monitoring. This directly addresses the issue of motivating people to participate, while also providing collaboratively
collected measurements via a noise map, shown in Figure 3.

Figure 3: Noise map featured by NoiseSPY from a two weeks pilot phase. [23]

To improve data quality, Kanjo uses A-weighting [13] and averages audio signals from the microphone over a given
timespan. This conforms to the “long term equivalent noise level” specified in the EU directive [31]. Additionally, before
executing a case study, they calibrated the used phones with accurate sound meters. Upon finishing the aggregation of
sound samples, the mobile application sends the noise levels to a central server.

The web portal supports two different visualization aspects: a standard noise map and a journey based visualization.
The latter provides all data for a specific series of recordings, e.g. a bicycle trip. While privacy is not an issue, if the

9

user can only view his private recordings, the approach to publicly share measurements needs to protect the privacy of
contributors. In NoiseSPY a coarse grained privacy policy is implemented by blurring spatial and temporal dimension of
noise recordings to hinder user tracking.

A trial run in Cambridge for two weeks with 8 users showed that almost all participants found the idea of monitoring
noise levels useful and fun. For the future, the authors want to examine noise interference from user movements or
conversation which may lead to compromised measurements, such as a high peak level in an usually quiet area. Applying
a correction factor could reduce background noise and help focusing on the real noise source. Additionally, the team
wants to address the high power consumption, which degrades usability, and port the application to Android as well
as iPhone, making it accessible for a wider range of people. Furthermore, the integrated privacy policy should be
extended by informing users actively about the data handling practices as well as using verification protocols to increase
data integrity and reduce compromised noise samples. A final aspect addresses the issue of sparsely covered regions
by suggesting an interpolation between noise levels and using data aggregation with third party sources, such as air
pollution and weather data. In our approach, we pick up this idea by including the vicinity of a measurement’s location
into noise level calculation as a mean to predict levels for uncovered areas.

NoiseBattle and NoiseQuest
The work of Marti et al. [26] features a prototype to address the issue of motivating users to participate in collecting

noise measurements. By applying gamification techniques, the authors aim to get rid of the boredom when doing
repetitive tasks such as recording a series of sound levels and thereby motivating users to contribute. As the team does
not focus on providing an implementation to capture noise measurements, they use an open source application called
NoiseDroid17 to collect data. The important aspects of their work include the realization of gamification techniques in the
mobile apps NoiseBattle and NoiseQuest. The former one features a more competitive play style by letting users conquer
area and win points. For example, a user can conquer an area by providing more noise samples than any other user
in this area. However, other users can still reconquer ares in the same fashion. By additionally providing rewards for
certain locations, e.g. allowing the possibility to send “noise” to one’s foes, an optimal distribution of measurements can
be ensured. Figure 4 illustrates different stages of a NoiseBattle.

Figure 4: Different stages of a NoiseBattle with three players. Colored areas are conquered by the respective players. [26]

Contrary to NoiseBattle, NoiseQuest pursues a single player oriented approach. In this scenario, the “goodness” of
a measurement is more important. By completing quests, challenges and missions the player advances in the game,
which follows a story line. As the game progresses, the quests get more difficult and the area increases demanding more
commitment by the user to achieve points. At the time of this writing, both game approaches are still in development
and not yet publicly available. Possible refinement include the grid mapping onto cities, as this could be adapted to the
actual city layout, as well as the idea to decrease the player’s points over time, which would encourage a continuously
contribution of noise samples. Despite lack of a real-world evaluation, the team concludes that the approach to use
gamification as a motivation factor can be applied in other environmental monitoring application as well. An approach
also used by NoiseMap – the participatory sensing system we used – as the app implements a ranking system rewarding
contributors with special titles, like mayor of a city.

17 https://play.google.com/store/apps/details?id=de.noisedroid&hl=de [accessed on 15.05.13]

10

NoiseTube
Motivating users to participate in noise sensing, is also a vital part of the work behind NoiseTube [24, 25]. Apart from

creating noise maps through sharing public measurements, the app aims to provide a personal noise exposure for ever
contributor as shown in Figure 5. By doing so, the authors actively involve the users and hope to raise the awareness of
people towards noise pollution. For example, tagging noise sources or providing an annoyance rating delivers important
semantic information for the underlying system. The noise map itself (see Fig. 6) can be viewed via a web interface,
providing semantical exploration, like showing only traffic noise on Monday morning, and an additional API to query the
huge dataset for scientific purposes.

Figure 5: Personal Exposure featuring current noise level and a histogram. [24, 25]

Figure 6: Map interface of NoiseTube showing different noise level in Google Earth. [24, 25]

By focusing a people-centric approach to collect data, the team wants to establish a new social perspective towards
noise pollution. Social translucence is one of the important keywords in this case. The users are able to create a personal
exposure log (Elog) and share their “noise experience” on web platforms, such as Twitter and Facebook. Following this,
the authors expect the formation of small communities based on sharing similar noise problems, e.g. a group of villagers
living in the entry lane of an airport.

The architecture of the system consists of a mobile application working with a central server. Using an long term
equivalent noise level (secondly timespans) corrected by A-weighing [13], the phone uploads the aggregated levels onto
the server. By applying preprocessing steps, like automatic tagging (day or night, street location, etc.) and GPS correction
(pulling measurements towards streets), the data gets refined for the purpose of displaying an accurate noise map. In
future work, the team wants to focus on the problem of calibrating mobile devices. For the moment the app includes

11

only a limited number of calibration profiles for end devices. Another issue may be the sustainability of human networks
for a longer period of time. Therefore extending the Elog with more collaborative features to strengthen such networks
is the next step. A small pilot project using NoiseTube can be seen in BrusSense18 [10]. Furthermore the app is publicly
available19 for mobile phones running Android, iOS or Java ME with currently over 1600 registered users.

Contrary to our approach, none of the mentioned noise pollution mapping system above interpolates missing values.
Thereby, they can only display data collected by the user and fail by design if data coverage is sparse for a particular
area. Possible methods to address this issue are illustrated in Kaiser’s and Pozdnoukhov’s work as well as the application
EarPhone [34, 33].

Kernel stream oracles
Kaiser et al. [22] feature a scalable algorithmic architecture for modeling data streams from various sensing infras-

tructures. Using kernel methods [21], the authors leverage machine learning to create predictive models for real-time
estimation. Possible data stream include, for example, readings from phone sensors (noise levels) or even twitter message
generated by users as shown in Figure 7.

Figure 7: Possible data streams in a city sensing scenario. [22]

To be able to process a large amount of data, a scalable framework using the MapReduce [9] paradigm was used. By
distributing the overall calculations on several compute nodes, the team was able to provide a stable and robust system
to handle the input of many sensors in parallel. In their paper, the team showcases their approach by establish a real-time
noise map based on a continuous stream of sound measurements from mobile devices and stationary sensors. In con-
junction with a human density estimation (another showcase presented in the paper), the authors calculate noise levels
based on traffic density data provided by a multi-agent [2] simulation of individual vehicles, such as buses. Simulated
“ground-truth” data was provided by 5-minute-aggregates of the vehicle count and their estimated noise. The evaluation
showed, that the model has difficulties predicting peak noise levels as well as regions which miss recent measurements.

Ear-Phone
Closest to our approach is the urban noise mapping system Ear-Phone [34, 33] by Rana et al. The authors utilize a

crowdsourcing approach to collect noise measurements. Due to the random distribution of sound samples associated
with this kind of approach, they present a reconstruction method for incomplete and missing noise data.

The whole architecture of the system is illustrated in Figure 8. It consists of a signal processing and communication
unit on the mobile phone as well as the reconstruction module and visualization on a central server. The signal processing
unit is responsible for calculating a long term equivalent noise level. By sampling the signals from the microphone and
applying A-weighting [13], the authors ensure the high sound data quality needed for reconstruction. Upon communi-
cating the noise levels to the server, the reconstruction module uses compressive sensing [11] to recover missing samples.
Since the team focused on two different method to transmit and recover the sound signals, they feature an evaluation for
the so called “projection method”, where they use aggregated sound levels as explained above and an evaluation for the
“raw-data” method, where no aggregation of sound signals is executed. As a result, the latter has a slight communication
overhead, but performs better when it comes to reconstruct missing signals. The method was able to recover noise maps,
where 40% of the original data were missing, while only making a negligible error.

18 http://www.brussense.be/ [accessed on 15.05.13]
19 http://www.noisetube.net/ [accessed on 15.05.13]

12

Figure 8: Architecture of Ear-Phone showing the separation between mobile phone and server. [33]

Apart from evaluating the performance of their reconstruction accuracy, Rana et al. also consider the possibility of
compromised sound levels caused by the placement of the mobile device (e.g. in a backpack or in the user’s hand).
Surprisingly, the difference was rather slim, with mostly the variance of the measurements increasing. Nevertheless,
the team concluded that adding some kind of “context-awareness” would benefit their approach. Other open factors
include the optimization of battery and CPU usage, as the high consumption only allowed to take measurements every
30 seconds, and the need for an automatic calibration. Since the authors operated with only two phones (Nokia N95 and
HP iPAQ) a simple calibration with a sound level meter was sufficient in this case.

Ear-Phone provides an elaborate method to reconstruct missing audio samples, however, the approach is not designed
to predict noise level at completely unknown location in contrary to our system.

Summary of noise mapping systems
Table 1 provides an overview over the presented related work in this section. Additionally, we compare the different

systems – including our approach – with regard to selected features they provide. These include a form of noise map-
ping, supplied by every system, but also more distinctive features, like predicting noise levels for unknown locations or
reconstructing missing audio samples (only provided by Ear-Phone [34, 33]). As shown in the comparison, our approach
is the only one which includes the vicinity of measurements for predicting sound levels and thus enables us to achieve a
higher accuracy.

Noise map-
ping

Evaluation on
real-word data

Reconstructing
missing audio
samples

Predicting levels
through machine
learning

Including the
vicinity of mea-
surements

[23] NoiseSPY Ø Ø
[24, 25] NoiseTube Ø Ø
[22] Kernel stream
oracles

Ø Ø

[34, 33] Ear-Phone Ø Ø Ø
Our approach using
NoiseMap

Ø Ø Ø Ø

Table 1: Comparison of selected related work and our approach with regard to different features.

3.2 LinkedGeoData and its application scenarios

As mentioned before, the inclusion of information about the vicinity is a vital part of our approach, e.g. using Linked-
GeoData (LGD) to extract nearby buildings. As we will have a detailed look at LGD itself in Chapter 4.1.3, we introduce
some third party systems, which also use LGD, in this section to provide an overview over the capabilities of LGD.

STEVIE20 [4], is an Android app developed by Braun, Scherp and Staab at the University of Koblenz. It allows the user
to create, edit and share semantic points of interest as presented in Figure 9. The ontology for the approach is created
collaboratively by using DBpedia21 and LGD on the one hand, but also including classifications by users. To improve the
quality of the collected points of interest, data mining techniques for clustering are used. Furthermore the application
allows the user to create events and thereby combining temporal and spatial information.

20 http://tiny.cc/stevie10 [accessed on 15.05.13]
21 http://dbpedia.org/About [accessed on 15.05.13]

13

Figure 9: Creating a point of interest in STEVIE.

Another system that uses LGD to enrich a map interface is the augmented reality browser Layar22. The app uses LGD
to display the name of objects captured by the phone camera and to classify them [39]. Two discontinued application
include BeAware, a website to manage events utilizing LGD’s ontology, and Vicibit23 which allowed to create customized
views of LGD’s dataset on a map, e.g. only displaying restaurants [39].

3.3 Data quality of OpenStreetMap and usage scenarios

Additionally to LinkedGeoData, we use OpenStreetMap (OSM) to extract information about streets in the vicinity. In 2010,
Zielstra and Zipf evaluated the data quality of the project [46]. In their work, the dataset of OSM was tested against the
set of a commercial provider (TeleAtlas24). Similar to Haklay [19], who investigated OSM data quality against Ordnance
Survey datasets, they used the total street length difference as a quality indicator. Furthermore, using a circular buffer
method around selected German cities, which calculated the length difference for various radii, enabled them to simulate
the transition from urban to rural ares. Their results showed, that OSM contains less data than the commercial application
with regard to the total length, but demonstrates tremendous growth over the last years. Especially in rural areas, as the
buffer method illustrated, the dataset of OSM was sparse.

Figure 10: Evolution of OSM street network in comparison to TeleAtlas for different categories.

22 http://www.layar.com/ [accessed on 15.05.13]
23 exhibit your vicinity
24 united with TomTom in 2011

14

In 2011, the same team with the addition of Neis, illustrated the evolution of OSM with regard to its data quality
form 2007 to 2011 [27]. In this newer work, OSM claimed the leading position in total street length (with a difference
of 27%) against a commercial system from TomTom, while only taking second play in car-routing-related streets with a
9% difference. Figure 10 shows the development of the OSM street network in comparison with the commercial system
TeleAtlas for different categories. According to the team’s estimation correlated with the current growth of OSM’s dataset,
the project could claim the top position in both sections by mid 2012. In big cities, the dataset of OSM related to car
navigation is already superior to the commercial system.

An approach using OSM for data mining task is presented in [18], where Hagenauer and Helbich utilize artificial neural
networks and genetic algorithms to predict the delineation of urban areas. By using urban land use datasets – provided
by GMES25 – in conjunction with the data from OSM, they were able to achieve an overall squared correlation coefficient
R2 of 0.589. However, R2 ranged from 0.129 up to 0.789 indicating a spatial heterogeneity in model performance. As
previously mentioned, this is due to the sparser dataset of OSM in rural areas.

25 Global Monitoring for Environment and Security; now Copernicus: http://copernicus.eu/ [accessed on 15.05.13]

15

4 Architecture

In this thesis, we present an iterative approach to create a model which can predict the noise level of a location by using
sound measurements collected by a participatory sensing application. This enables us to generate urban noise maps even
for areas with only a few or no measurements at all. As mentioned in the introduction (see Chapter 1), solely relying on
sound measurements was not sufficient to construct an accurate model. Therefore we suggest to utilize the vicinity of a
measurement’s location to find out why a certain place is especially noisy or quiet. Since there exist many possible noise
sources, a prior selection was necessary to preserve the feasibility of our method.

Eventually, we extracted three additional sources (left side of Fig. 11), which – in our opinion – greatly influence the
sound level of a location. Consider, for example, a noisy motorway nearby or a park during a sunny and warm day, where
we would except a rather high noise level compared to colder days. To accommodate future noise sources, we designed
the architecture to be highly modular to support any input source as long as they conform to the interface used by our
prototype LOCAL. The current sources provide information on building and streets in the vicinity as well as the current
weather situation. These will be presented in Chapter 4.1.

After identifying our noise sources, we need to convert the obtained data information into a format usable for machine
learning purposes. This process is called “Feature Generation” (see Fig. 11). As explained in Chapter 2.2, Weka uses
a list of attributes and their corresponding values to describe datasets. Following this concept, we need to find a good
conversion of the data information provided by our sources into a fixed list of attribute and values. For example, the
feature “Weather” may be described as a list of meteorological measurements – such as temperature, sunshine duration,
etc. – and their respective values. In Chapter 4.2, we illustrate the process of querying our data sources and extracting the
needed information. Additionally, we will present possible strategies on modeling features as well as depict advantages
and disadvantages that come along with each strategy.

Since we do not know exactly how the noise level gets influenced by environmental factors, we propose an iterative
“Feature Selection and Refinement” (see Fig. 11) in Chapter 5. We evaluate the usefulness of various feature compositions
and their resulting models until we ascertain the best possible representation of each feature. After doing so, we can
use the optimal model to predict noise levels of unknown locations, for example to create noise maps of various cities as
shown in Chapter 6.

Figure 11: Architecture of our approach showing the steps from querying data information over feature generation, se-
lection and optimization to a final model and its visualization.

16

4.1 Data sources

As outlined in the introduction, we utilize several data sources beside NoiseMap itself to predict sound levels. By iden-
tifying possible noise factors and connecting them to appropriate data sources, we are able to enrich our initial dataset
with further knowledge and increase the accuracy in predicting noise levels. In this chapter, we introduce our initial data
source – NoiseMap – as well as all secondary sources we used in our approach. The process of querying these sources will
be explained in Chapter 4.2.2, as this is part of the implementation.

4.1.1 NoiseMap

NoiseMap [36, 37, 35] is a participatory sensing system to gather noise data, first released for Android26. Users are able
to record series of noise data using the microphone of their smartphones (see Fig. 13a). As NoiseMap is connected to the
da_sense27 platform, every user can review his data via an unique account. This allows them to establish their own “noise
profile” by running several recordings. Additionally, a user can share their recordings, which get used to establish a noise
mapping as shown in Figure 12. To increase participation, NoiseMap also provides a ranking system (see Fig. 13b) and
implements gamification techniques (as presented in [26]), rewarding those which are most active in collecting data.
The huge amount of noise measurements (75000) during the time period from February until October 2012, confirmed
the incentives to motivate citizens to be effective. We use this snapshot as our ground truth data to judge the predicted
noise levels at the same locations. Thereby we are able to estimate the performance of our approach, as we can ascertain
if a prediction was right or wrong.

Figure 12: Noise map of the city center of Darmstadt by da_Sense.

Compared to other noise recording system presented in Section 3.1, NoiseMap focuses on providing accurate noise
levels, including a multi-point calibration of devices and frequency adjustments. First, sampling the discrete audio
signals over a given timespan provides us with an initial loudness level. This value is measured in dbFS (db full scale).
Note that 0 dbFS corresponds to the maximum loudness value perceivable by the phone. All lower values are negative.
To calibrate a device, we need to convert the values into the sound pressure level (dbSPL). [36, 37]

We can distinguish between single-point calibration, e.g used in Ear-Phone [34, 33], or multi-point calibration used in
NoiseTube [24, 25]. The former method includes a single calibration factor for the whole frequency range. As there is
no direct relationship between dbFS and dbSPL, this calculation is erroneous. Multi-point calibration tries to minimize
this error by using multiple frequency points for calibration purposes, calculating a correction factor for a frequency
range. [35]

By additionally capturing the frequency response of the phone and applying a Fast Fourier Transformation (FFT) to
convert the input signal from the time to the frequency domain, NoiseMap features multi-point calibration while also
providing correction of middle frequencies (the range of the human voice), as those are amplified by the phone for
better communication. It is now possible to apply a calibration factor for each frequency range separately. Conveniently,
applying A-weighting in this domain is also more accurate than in the time domain. The final loudness is then calculated

26 https://play.google.com/store/apps/details?id=de.tudarmstadt.tk.noisemap [accessed on 15.05.13]
27 http://www.da-sense.de/ [accessed on 15.05.13]

17

(a) Recording a series of noise measurements. (b) Ranking system showing contributors and their points.

Figure 13: Android app NoiseMap

from the corrected signal after using an inverse FFT to get back to the time domain. As of now, NoiseMap is the only
noise monitoring system that provides such a sophisticated calibration method. [35]

4.1.2 OpenStreetMap

Inspired by Wikipedia28, OpenStreetMap29 (OSM) strives to provide a free to use, editable map of the word. Since its
foundation in 2004 [46], the project grew to be one of the most promising VGI30 [17] projects, exceeding the number of
one million contributors in January 2013 [42]. OSM is licensed under the ODbL31 and similar to Wikipedia’s approach,
every OSM user can edit the data and thereby contribute to the whole project.

Keeping the necessary background knowledge to a minimum, OSM introduces a simple yet very powerful data structure
to model the world. There are three geographical entities that can be edited by contributors. Nodes represent the basis as
the most primitive data type, resembling only a geographic location via its coordinates in the WGS8432 reference system.
Combining two or more nodes leads to ways, which can be used to represent linestring geometries, such as streets. The
most complex entities are relations which combine an arbitrary amount of nodes, ways or even relations themselves.
These can be used to model multipolygons for example. [39]

Although this structure enables us to model a geographically correct map, we are still missing vital properties of the
described objects. To address this issue, OSM also features a tagging system. Each tag consists of a key-value pair,
which provides domain knowledge about the specified object as illustrates in Figure 14. Contributors can use these tags
to further characterize OSM entities (nodes, ways or relations) via properties. Otherwise it would be impossible to
distinguish a motorway from a cycleway, as both are represented as ways. Note that a user can add any kind of key-
value pair. To control tags to a certain extend, a so called Watchlist33 provides an overview of tags accepted by the
community. [16]

28 http://www.wikipedia.org/ [accessed on 15.05.13]
29 http://www.openstreetmap.org/ [accessed on 15.05.13]
30 Volunteered geographic information
31 Open Data Commons Open Database License
32 World Geodetic System 1984
33 http://tagwatch.stoecker.eu [accessed on 15.05.13]

18

Figure 14: Example of an OSM map with corresponding tags from [16].

As of March 2013, the planet file – the whole database of OSM – contains more than 1.7 billion nodes, 171 million
ways and 1.8 million relations [30], which make up approximately 27 GB of disk space. To enable easy access to this
vast amount of data, several community websites provide localized data dumps in XML format as well as changesets via
the OSM wiki34, which can be used to keep a local dataset up-to-date. Also provided are tools to parse and process these
data dumps, like Osmosis35, enabling everyone to use the available data to its fullest extent.

4.1.3 LinkedGeoData

Initially brought to life in 2009 the LinkedGeoData36 (LGD) project aims to “add[..] a spatial dimension to the Web
of data”[1]. Using OpenStreetMap to create an ontology and interlinking it with other sources, such as DBpedia37,
GeoNames38 and the Food and Agriculture Organization of the United Nations39 has surfaced an “integrated and interlinked
geographic dataset for the Semantic Web”[39].

A vital pillar of the project is the mapping of the internal OSM ontology, mainly represented by additional tags of an
entity, to a newly created lightweight ontology. Further following the idea of a Sematic Web, LGD provides access to every
entity via their respective URI. Each one holds the extracted OSM values mapped to the new ontology, which e.g. links
nodes to their building types as well as providing geographical information via coordinates. As long as it is applicable,
OSM tags get mapped to RDF properties of the respective entity. [39]

What are the benefits of this modified data structure? Firstly, by providing OSM entities via RDF triples, the system
allows us to efficiently search for those relevant to our case. Last but not least, upon finding an interesting entity, we can
extract its data and ascertain a semantic context thanks to the ontology. To sum it up, LGD provides us with the means to
find interesting entities, particularly buildings, for a given geographical location and exploits their properties in an easy
to parse fashion.

By 2011, the LGD dataset contained up to 65 million triples relating to approximately 6.3 million nodes. In the
timespan from November 2010 to April 2011, the SPARQL endpoint was queried for a total of 127.000 times showing a
drastic increase towards the end of the timespan. This could indicate that the popularity of LGD has further augmented
since then.[39]

As far as collecting the necessary data goes, we already mentioned the SPARQL endpoint. However, LGD offers many
possibilities, varying e.g. in their granularity and completeness. To get the whole package, one can simple download
the complete dataset, which sadly is outdated at the moment40 and does not provide changesets. Using the live query
possibilities such as the REST interface or the SPARQL endpoint seemed more feasible. Due to the powerful query syntax,
we chose the latter as our entry point in the world of LinkedGeoData. The detailed structure of the implemented adapter
and the used queries will be presented in Chapter 4.2.2.

34 http://wiki.openstreetmap.org/wiki/Planet.osm [accessed on 15.05.13]
35 http://wiki.openstreetmap.org/wiki/Osmosis [accessed on 15.05.13]
36 http://linkedgeodata.org/About [accessed on 15.05.13]
37 http://wiki.dbpedia.org/About [accessed on 15.05.13]
38 http://www.geonames.org/ [accessed on 15.05.13]
39 http://www.fao.org/index_en.htm [accessed on 15.05.13]
40 Dataset is of April 2011

19

The LGD Browser41 (see Fig. 15) implemented by the LinkedGeoData team, features a visualization of known entities
on a map and provides the functionality to highlight a shown entity exploiting their properties.

Figure 15: LGD Browser showing the center of Darmstadt. The red rhombuses as well as the black and white symbols
mark entities in LinkedGeoData’s database.

4.1.4 “Deutscher Wetterdienst”

The German meteorological service known as “Deutscher Wetterdienst” (DWD) provides us with weather information of
a given location. Founded in 1952, the DWD’s main duty is to provide meteorological safety for aviation and navy.
Furthermore, it issues warnings about upcoming weather events which may endanger the public safety. Most importantly
for us in this case is the fact that the DWD also maintains the national climatic archive for Germany. [43]

Since almost all of NoiseMap’s data is bound to a location in Germany, we considered using a local service providing
stable and consistent as well as daily weather information. There are, however, further services providing world-wide
coverage such as OpenWeatherMap42, but may lack in density. Aiming at high density coverage in Germany, we decided
crawling weather data from DWD.

Although the website of DWD provides historical meteorological information about 78 weather stations, it can be
quite a hassle to collect the weather data for a specific location. Since there exists no real API to collect the weather
information, e.g. via a REST interface, we developed a crawler downloading the appropriate files from their website. As
this is part of the data collection itself, it will be discussed more detailed in Chapter 4.2.2.

41 http://browser.linkedgeodata.org/ [accessed on 15.05.13]
42 http://openweathermap.org/ [accessed on 15.05.13]

20

4.2 Implementation

In the previous chapter we presented all data sources used in our implementation. This chapter will focus on the
techniques and methods used to extract the needed information from those sources as well as introduce the originated
features used for the learning process. Since this section focuses on technical aspects of the program, we will also provide
some insight into the used class architecture.

4.2.1 Query and data processing pipeline

As we expect the number of our data sources to grow further in the future, we designed our pipeline accordingly. This
means that modularity and extensibility is of utmost importance to be able to not only replace current data source, but to
accommodate to the needs of future ones. The resulting design strictly separates the process of querying the data sources
and establish an internal data structure, from the task of adding refined information for learning into the constructed arff
file as shown in listing 4. The internal data structure is provided by the PointOfInterest (POI) class, encapsulating one
noise datum and exploiting its auxiliary information gathered during the query phase.

1 //−−−−−−−−−−−−− INIT PHASE −−−−−−−−−−−−//
2 f e a t u r e s // user−s e l e c t a b l e
3 sources = extractNeededSourcesFromFeatures (f e a t u r e s) ;
4 L i s t <POI> poi s = empty ;
5 A r f f F i l e a r f f ;
6

7 //−−−−−−−−−−−−− QUERY PHASE −−−−−−−−−−−//
8 FOR NOISE DATA source
9 FOR every datum

10 poi = constructPOIFromNoiseDatum (datum) ;
11 po i s . add(poi) ;
12

13 FOR ALL REMAINING sources
14 FOR every poi in po i s
15 poi . addInformationFromSource (source) ;
16

17 //−−−−−−−−−−−−− ADD PHASE −−−−−−−−−−−−//
18 FOR every poi in po i s
19 a r f f . addData (poi) ;

Listing 4: Pseudo-Code explaining the query and data processing pipeline.

A more detailed view is presented in Figure 16, where the first two boxes represent the “QUERY” phase. First, we
gather all known instances of noise data, which will be later used to query our other data sources based on each noise
datum’s location. The details of this phase are covered in Section 4.2.2, where we will present a query adapter for every
source. The final “ADD” phase is explained in Sections 4.2.3 and 4.2.4 respectively. In these, we provide ideas on how to
convert the queried data into machine learning features and how to combine them into an arff file.

4.2.2 Querying of data sources

Currently, LOCAL possesses query adapters for the four mentioned data sources in Chapter 4.1 on page 17. The following
section will introduce all of them and explain how the different sources are queried. We also provide some insight into
refinements and improvements for selected adapters.

NoiseDataAdapter - Getting initial noise data
The most important source of information and also our initial dataset is the data obtained by the Android app

NoiseMap. It provides us with a sound level in dB at a location – defined by geographical coordinates – and a corre-
sponding timestamp. As an extra we get to know the id of the used sensor. For easy access the dataset is stored in a
SQLite database, whereas the NoiseDataAdapter supplies methods to query different subsets of the data. This includes
delivering the whole dataset of course, but also subsets including only a defined fraction or a localized subset, such as all
data of Darmstadt.

LGDQueryAdapter - Searching for buildings
As explained in Chapter 4.1.3 on page 19, we chose to use the SPARQL endpoint of LGD to extract needed information

of entities nearby a given location. These are encapsulated in the class LGDNode providing access to its unique node id,
its label, the “direct type” marking the most specific type of an entity in the LGD ontology, a list of more general types
and of course its location via gps coordinates. Listing 5 shows an example RDF notation (only the description part) of
“node344613398”.

21

O
pe

nS
tr
ee
tM

ap
 D
B

(P
os
tG
IS
)

Ex
tr
ac
tin

g
in
fo
rm

at
io
n
on

ne

ar
by

 st
re
et
s

Ty
pe

 o
f s
tr
ee
t

N
um

be
r o

f L
an
es

Su
rf
ac
e

M
ax
. S
pe

ed

Di
st
an
ce
 to

st
re
et

Li
nk

ed
G
eo

D
at
a

(S
Q
Li
te
)

Ex
tr
ac
tin

g
in
fo
rm

at
io
n
on

ne

ar
by

 b
ui
ld
in
g

ty
pe

s

Q
ua
nt
ity

 fo
r a

ty
pe

Di
st
an
ce
 to

ne

ar
es
t o

f a

ty
pe

W
ea
th
er
D
at
a

(S
Q
Li
te
)

N
oi
se
D
at
a

(S
Q
Li
te
)

Ex
tr
ac
tin

g
w
ea
th
er

in
fo
rm

at
io
n
in
 th

e
ar
ea

De
liv
er
s k

no
w
n

in
st
an
ce
s o

f n
oi
se

da
ta

Ti
m
es
ta
m
p

So
un

d
va
lu
e

G
PS
 c
oo

rd
in
at
es

ID
 o
f t
he

 se
ns
or

Te
m
pe

ra
tu
re
s

Pr
ec
ip
ita

tio
n

So
lid
ity

 ra
tio

Hu

m
id
ity

W
in
d
ve
lo
ci
ty

Su
nh

in
e
du

ra
tio

n

Ba
ro
m
et
ric

 p
re
ss
ur
e

AR
FF
 W

rit
er

AR
FF
 fi
le
 c
on

ta
in
in
g:

Se
le
ct
ed

 a
tt
rib

ut
es
 g
en

er
at
ed

 fr
om

 th
e
da
ta
se
t

M
at
ch
in
g
da
ta
 fo

r e
ve
ry
 a
tt
rib

ut
e
de

pe
nd

in
g
on

pr
ov
id
ed

 se
ar
ch
 v
al
ue

s

In
iti
al
 D
at
as
et

Ex
te
rn
al
 S
ou

rc
es

Da
ta
 fo

r m
od

el
 g
en

er
at
io
n

Figure 16: Query and data processing pipeline illustrating the involved databases and the information they provide.

22

Note the highlighted parts as they contain the information we want to extract. In this case the RDF tells us that the
real name of this entity is “Schlosskeller” as stated in line 13. Furthermore we can extract its associated types within
the LGD ontology by looking at lines 10 and 12 identifying the facility as a nightclub, which also falls into the amenity
category. Last but not least, we can ascertain its geographical location by examining lines 15 and 17.

1 <rdf :Descr ipt ion rd f : abou t=" h t t p : // l inkedgeodata . org / data / t r i p l i f y /node344613398? output=xml ">
2 <r d f s : l ab e l>RDF d e s c r i p t i o n of S c h l o s s k e l l e r</ r d f s : l ab e l>
3 <foa f :p r imaryTop i c>
4 <lgdm:Node rd f : abou t=" h t t p : // l inkedgeodata . org / t r i p l i f y /node344613398 ">
5 . . .
6 <lgdo:whee lcha i r r d f : d a t a t y p e=" h t t p : //www.w3. org /2001/XMLSchema#boolean ">f a l s e</ lgdo:whee lcha i r>
7 . . .
8 <lgdo:smoking>no</ lgdo:smoking>
9 . . .

10 <rdf : type r d f : r e s o u r c e=" h t t p : // l inkedgeodata . org / ontology /Amenity " />
11 . . .
12 <rdf : type r d f : r e s o u r c e=" h t t p : // l inkedgeodata . org / ontology / Nightc lub " />
13 <r d f s : l a be l>S c h l o s s k e l l e r</ r d f s : l ab e l>
14 . . .
15 <geo:long r d f : d a t a t y p e=" h t t p : //www.w3. org /2001/XMLSchema#double ">8.6548286e0</ geo:long>
16 . . .
17 <geo: la t r d f : d a t a t y p e=" h t t p : //www.w3. org /2001/XMLSchema#double ">49.8737123e0</ geo: la t>
18 </lgdm:Node>
19 </ foa f :p r imaryTop i c>
20 </ rdf :Descr ipt ion>

Listing 5: Excerpt of the description part of the RDF notation from “node344613398”.

As shown in Listing 5, the RDF description provides access to even more information, but since these are specific to
certain entities, we restricted ourselves to those properties available for every entity in LGD, which can be done easily
by modifying the SELECT statement in the query. Chapter 2.3 introduced the key concept of SPARQL itself. It basically
enables us to use SQL-like queries on the LGD dataset. Listing 6 presents an example query to find nearby LGDNodes
around a given distance from “Schlosskeller” in Darmstadt.

1 Select ?node ? l a b e l ? type ? d i rec tType ? l o c a t i o n (< b i f : st_distance> (? loca t ion , <b i f : st_point>
(8.6548286 ,49.8737123))) as ? d i s t ance) {

2 ?node a lgdo : Node .
3 ?node r d f s : l a b e l ? l a b e l .
4 ?node rd f : type ? type .
5 ?node lgdo : d i rec tType ? d i rec tType .
6 ?node geo : geometry ? l o c a t i o n .
7 F i l t e r (< b i f : s t _ in te r sec t s > (? loca t ion , <b i f : st_point> (8.6548286 ,49.8737123) , 0 .8)) . }

Listing 6: SPARQL query searching for buildings in a 0.8km radius around “Schlosskeller”.

Predefined methods, like st_intersects, st_distance or st_point, offer access to geometric properties of entities
and allow localized information retrieval. This can be used to further filter the results and reduce their number. In the
case of Listing 6, we used them to extract the distance to the found LGD entity as a return value (line 1) as well as
to filter out any entities further away than 0.8km (line 7). The remaining lines 2 to 6 correspond to a WHERE clause
in SQL. Here, we can assign RDF values to our return variables as well as exploit further WHERE clause capabilities
like restricting the query to only specific types in the LGD ontology (line 2). Note that “Node” is the most general type
allowing us to retrieve every entity.

Similar to SQL, SPARQL queries produce a ResultSet, which can be iterated to convert the results into our internal
structure, leaving us with a Map of nearby LGDNodes mapped to their real distance to the query location for every noise
datum. Listing 7 shows an excerpt of the result of the SPARQL query from Listing 6. As each LGD entity is likely to have
more than one type – including super types – we get more than one result line for an entity, e.g. line 2-4 for the “Coffea
Bar”.

1 " node " , " l a b e l " , " type " , " d i rec tType " , " l o c a t i o n " , " d i s t ance "
2 " . . . / node311283855 " , " Cof fea Bar " , " . . . / Node " , " . . . / Cafe " , " POINT(8.65438 49.8716) " ,0.2317940402474585
3 " . . . / node311283855 " , " Cof fea Bar " , " . . . / Amenity " , " . . . / Cafe " , " POINT(8.65438 49.8716) " ,0.2317940402474585
4 " . . . / node311283855 " , " Cof fea Bar " , " . . . / Cafe " , " . . . / Cafe " , " POINT(8.65438 49.8716) " ,0.2317940402474585

Listing 7: Excerpt of SPARQL result of Listing 6 in csv format. The complete namespace is omitted for better display.

23

However, we encountered a problem related to the huge amount of noise data, which – as the time of this writing –
exceeded 75000 entries. Using the online SPARQL endpoint to query all entries whenever we construct a new arff file
was not feasible. To counter this, we established a local database containing the LGDNodes we obtained using all noise
data instances as query locations and a maximum distance of 1000 meters. An additional table contains the mapping of
every single noise datum to its nearby LGDNodes.

This also provided us with a stable LGD database during the development process and ensured consistent results using
various parameters for querying, such as different query distances. As by now, the database used is based on SQLite3,
which may not yield the best performance considering the large amount of data. For this reason we provide an interface
(LGDAdapter), which defines methods to create and fill a local database and thereby enables the usage of other DBMS, if
a better performance may be required.

Furthermore, the LGDQueryAdapter itself, which holds responsible to query a given noise datum for nearby building
entities, can be customized by providing an alternative implementation. By doing so the whole pipeline can easily be
adjusted to other sources than LGD.

OSMQueryAdapter - Querying for nearby streets

As the SPARQL endpoint of LGD does not provide adequate access to OSM ways, we needed to extract this information
out of the OSM data itself. As mentioned in Chapter 4.1.2 on page 18, the data model of OSM consists of three different
entities: nodes, ways and relations. Using XML as data format, every entity can be enriched with the corresponding
tags and be referenced by its unique id. This is especially important to describe ways and relations, since they relate to
a number of nodes. Listing 8 shows an excerpt of an OSM file. Note how the node identifier is used in the way’s definition.

1 <node id="16541571 " ve r s ion=" 8 " timestamp="2010−03−30T21:35:34Z " uid=" 6669 " user=" Elwood " changeset="
4280528 " l a t=" 52.5346714 " lon=" 13.3024201 ">

2 <tag k=" highway " v=" motorway_junction " />
3 <tag k="name" v=" Jakob−Kaiser−P l a t z " />
4 <tag k=" r e f " v=" 3 " />
5 </node>
6

7

8 <way id="4388102 " ve r s ion=" 7 " timestamp="2009−09−22T13:07:19Z " uid=" 115651 " user=" Konrad Aust " changeset
=" 2568991 ">

9 <nd r e f="16541571 " />
10 <nd r e f=" 26750526 " />
11 //more node r e f e r e n ce s
12 <nd r e f=" 26750531 " />
13 <tag k=" highway " v=" motorway_link " />
14 <tag k=" lanes " v=" 2 " />
15 <tag k=" oneway " v=" yes " />
16 </way>

Listing 8: Excerpt of an OSM file showing “node16541571” (with corresponding tags) and its reference in the definition
of “way4388102”.

Instead of writing our own XML-Parser, we utilize one of the many tools to process OSM data files provided by the
community. Osmosis is able to convert the XML format into dump files, which can be loaded into a database. As a nice
extra, one can specify the construction of bounding boxes and linestring geometries for ways. By using the referenced
node ids and their GPS coordinates, the tool asserts the maximum spatial dimension of a way as its bounding box.

Furthermore Osmosis provides us with filter capabilities to narrow the resulting database down to ways which are
actual roads used by cars or trains in case it is a railway. Listing 9 shows the filter options for the database. Since the
OSM keys highway and railway cannot be processed simultaneously, we create two output stream and merge them at
the end (line 6). The first stream contains all highways corresponding to the given values (line 1) while the second
stream applies the same for all railways (line 2). Note that in line 2 and 5 respectively we remove all relations – as they
are not relevant in our case – but advise Osmosis to remember all nodes (“used-node”) as they are needed to compute
the corresponding linestring and bounding boxes of the ways afterwards.

Ultimately we only need the dump files for the ways and way_tags database tables. The latter provides us with all
tags specified by contributors and thereby reveals e.g. the street type or maximum speed allowed, while the first table
contains the mentioned linestring geometry and bounding box of each way.

24

1 −− t f accept−ways highway=motorway , trunk , primary , secondary , t e r t i a r y , l i v i n g _ s t r e e t , pedes t r ian , r e s i d e n t i a l
2 −− t f r e j e c t−r e l a t i o n s −−used−node outPipe .0=highway
3 . . .
4 −− t f accept−ways ra i lway=l i g h t _ r a i l , r a i l , subway , tram
5 −− t f r e j e c t−r e l a t i o n s −−used−node outPipe .0= ra i lway
6 −−merge inP ipe .0=highway inP ipe .1= ra i lway

Listing 9: Example of an Osmosis filter accepting only the given values for the tags highway and railway.

These two are spatial attributes, which require a DBMS capable of handling geometry columns and queries. Since
Osmosis provides dumbs for a postgreSQL43 database, we use the PostGIS44 extension to make full use of geometry
columns.

As spatial queries are very compute intensive, it is important to reduce the number of results as early as possible
by using the bounding boxes as pre-queries. Consequently, if we search for nearby streets, we do not determine if the
linestring geometry intersects with the predefined area around our query location. First, we check the bounding boxes
for intersection, which can be done way faster. If there is no overlapping we can safely reject this way and move on to
the next one.

Figure 17 illustrates this fact. The blue rectangles represent the bounding box around three given noise data locations,
whereas the inner circles represent the “real” search radius specified. The red rectangle is the bounding box of the street
“Robert-Schneider-Straße”. Note that in the first case there is no intersection between the respective bounding boxes,
allowing us to reject the street for location one. This speeds up the querying phase, especially since the indexing of
geometric columns allows for efficient checks of bounding box intersections. However, for cases two and three the boxes
intersect, which arises the need to check if the actual geometries intersect. Location two’s circle does not intersect with
the street, which means the “Robert-Schneider-Straße” is not in its defined vicinity. The circle of location three intersects
with the street, indicating that it will be considered as a nearby street for this noise datum in the data processing phase.

Listing 10 shows an example query where we included a check for bounding box intersection to speed up the process.
In line 3 we check the bounding box of the street – ways.bbox – against a constructed bounding box – Box2D – around
the location of the given noise datum. Note that we us the initial query distance to calculate the vertices of the box. If this
evaluates to true, we check the actual geometry boundaries in line 4 by using ST_DWithin to ascertain if the linestring
geometry of the street lies within the vicinity of the noise datum’s location (the blue circle in Figure 17). Ultimately we
retrieve the id of the OSM way, each associated tag – the key-value pair – and the real distance of this street to the query
location (line 1).

1 SELECT ways . id , way_tags . k , way_tags . v , ST_Distance (ways . l i n e s t r i n g , ST_GeographyFromText (’ SRID=4326;POINT
(8.00863593515 49.9771504215) ’)) as r e a l D i s t a n c e

2 FROM ways LEFT JOIN way_tags ON ways . id=way_tags . way_id
3 WHERE ways . bbox && Box2D(ST_GeomFromText(’ SRID=4326;POLYGON((8.007238823820186

49.97625194890341 ,8.007238823820186 49.97804889409659 ,8.010033046479814
49.97625194890341 ,8.010033046479814 49.97804889409659 ,8.007238823820186 49.97625194890341)) ’))

4 AND ST_DWithin (ways . l i n e s t r i n g , ST_GeographyFromText (’ SRID=4326;POINT(8.00863593515
49.9771504215) ’) ,100 , f a l se) ;

Listing 10: Example of a postGIS query using a bounding box check.

The effect of these performance tweaks is quite noticeable. A simple query using only the ST_DWithin statement on
an OSM dataset of Germany (22645 ways) takes about 85 seconds to complete, the improved one performs over 1000
times faster finishing in approximately 60 ms. Without these enhancement querying OSM data for nearby streets would
not be feasible.

Now we can use spatial queries to determine nearby streets around a location within a given radius. Those provide
us with the street type – the value of the OSM tag highway or railway – as well as street attributes tagged by the
user. These vary quite a bit for different streets because not every contributor uses each available tag to describe street
attributes. Identifying possible attributes with high correlation to the noise level leaves these three: lanes45, maxspeed
and surface.

As a result we introduce a class Street containing a mapping of those attribute to their respective value plus its street
type and the distance to the query location. Combining multiple Streets allows to describe the surroundings of the
location. How this can be done will be shown in Chapter 4.2.3, where we will discuss several approaches.

43 http://www.postgresql.org/ [accessed on 15.05.13]
44 http://postgis.net/ [accessed on 15.05.13]
45 Number of lanes

25

1

2

3

Figure 17: Example of bounding boxes (bbox) usage. The red rectangle marks the bbox of the currently examined street,
while the blue rectangles and circles resemble the bbox and real vicinities (based on a radius) of three noise
measurement’s locations, respectively.

26

WeatherQueryAdapter - Getting weather information
Contrary to the sources explained before, extracting information about the weather from DWD was a bit more com-

plicated. Free daily data is only available per weather station, represented through two archive files. One contains data
for the current year, whereas the other one provides data for all previous years. To be able to query for weather data fast
enough, we decided to establish another local database storing information on all available weather stations as well as
their respective daily meteorological information.

The job of extracting the relevant data from those archive files is done by the DwdConnector. The class provides a
single method to update the local weather database by crawling the DWD website. This is done by downloading the
archive files for all relevant weather stations, extracting the meteorological values and saving them to the database. We
omitted those stations which provide no value to us – like “Zugspitze” or “Helgoland” – leaving 66 stations to work with.
The database itself consists of several tables: one holding a list of all suitable stations including their location and unique
id, whereas every other table corresponds to one weather station. These list all available meteorological measurements
for the respective station sorted by date.

Similar to other sources for which we provided a local database, fetching weather information is done via the
WeatherQueryAdapter, providing simple access to the database generated beforehand. To receive valid meteorologi-
cal data, a station must reside within the given query location and the provided maximum distance to this location. By
generating a bounding box around the location, we are able to determine which weather stations are possible candi-
dates. Later on we single out the nearest station and provide a WeatherData object, encapsulating several meteorologic
measurements like sunshine duration, amount of precipitation, temperatures, pressures, etc. recorded by this station.

During our work we also stumbled across other promising sources of weather data like OpenWeatherMap as mentioned
in Chapter 4.1.4 on page 20. Due to lack of time, this source did not make it into the final implementation, but could
be easily adapted. Similar to the previous mentioned sources, we supply the WeatherQueryAdapter as an interface to
accommodate other possible sources of weather information.

4.2.3 AbstractAttribute - How to model features

For Weka to be able to handle the crawled information from our data sources, we need to prepare the data in a prepro-
cessing step. Due to their nature, we need to treat every source differently to extract the necessary attributes suitable
for learning with Weka. This process is abstracted using the interface AbstractAttribute, which encapsulates the pre-
processing step for every used feature of our model. Figure 18 illustrate the design, also including all features and other
associated classes. By defining only the functionality to add itself to the arff file, every implementation can cope exactly
to the needs of each feature – extracted from our data sources – and knows how to handle the required preprocessing
steps. In the following we will provide an overview over all implemented features and their composition.

Figure 18: Class diagram of AbstractAttribute and associated classes.

27

SoundLevel
As part of the initial dataset from NoiseMap, the sound level itself is rather easy to process. Since we aim to provide

a model which predicts a specific loudness range for a given location, the need arises to convert the numeric noise level
to an appropriate categorical loudness scale. We will discuss several different approaches for doing so and evaluate their
usefulness and feasibility in Chapter 5.1.3.

The most straight-forward method arose from empirical knowledge already known through the work with NoiseMap.
Taking into account the technical limits of smartphone microphone sensors, the scale ranges from 40-80 dB, divided by
equal-width intervals of 10dB. Note that increasing the sound level by 10dB equals to approximately doubling the volume
as perceived by the human ear [38]. Adding two intervals for values lower than 40dB and greater than 80dB results in a
total of 6 intervals as shown in Figure 19.

0

5

10

15

20

25

30

35

< 40 40‐50 50‐60 60‐70 70‐80 > 80

of
 in
st
an
ce
s
in
 th

ou
sa
nd

s

sound level in dB

Figure 19: Sound level distribution for equal-width approach.

However, the distribution among those levels is somewhat disproportionate, leaving the range from 60 to 70 dB with
almost 44% compared to 4% in the range of 40dB to 50dB. To address this issue, we also evaluate an approach which
favors equal-frequency, leading to narrow ranges in the 60 to 80 dB region.

Time
As time is an important factor when it comes to estimating sound levels, the only uncertainty is its granularity. While

including seconds seemed to be far too detailed, using only the date as information leaves the important distinction
between night and day to be desired. Therefore we experimented with different hourly intervals and eventually settled
with one-hourly spans, thus dividing the day into 24 segments as shown in Figure 20. In our opinion, this granularity is
optimal to differentiate certain daily noise oscillations while not being to specific, which benefits the classifier.

Building types
One of the main features deals with the buildings surrounding a given location. To model the vicinity of a POI we

pursue two different methods. While both rely on the same data provided by LGD, their respective approaches for
converting the data to Weka attributes is different. As the given query radius around a POI greatly influences both
features, finding an optimal distance providing high accuracy while still delivering a good performance is vital and will
be discussed in Chapter 5.1.1.

TypesCount: The first approach focuses on the occurrence quantity of nearby building types. For example, a shopping
area with lots of cafes and stores greatly influences the noise level. We want to track every building and register their
type resulting in a mapping of building types to their number of appearances in the vicinity. If we do not find any facilities
of a certain type we set its count to zero.

This is done by collecting all LGDNodes in a predefined query range surrounding a POI and examining their types as
one LGDNode may have several types, ranging from general – like “Amenity” – to more specific ones. Later on we map
those to a series of attributes in the weka arff file as illustrated in Listing 11.

TypesDistance: The second approach is very similar to TypesCount. Instead of examining the quantity of occurrences
of one specific building type, we extract the nearest facility of it and use the distance from the found building to the POI
as data value.

28

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

of
 in
st
an
ce
s

hour of day

Figure 20: Distribution of all instances for Time with one-hourly spans.

1 @attr ibute BakeryC numeric
2 @attr ibute BankC numeric
3 @attr ibute BarC numeric

Listing 11: Excerpt of an arff file showing header entries of TypesCount.

This does however still require searching for every LGDNode within range of the POI. Therefore, limiting the maximum
query distance may yield an increase in performance if the accuracy does not decrease.

Worth mentioning here is the fact, that our search for the nearest facility of a specific building type could be in vain. In
this case, we could replace the data values with Weka’s missing value -– most classifiers can cope with this – or replace it
with a value that describes this situation more accurate. Since we started our generation with a fixed maximal distance
for the query, we can use this value instead, stating that there is no facility of this type that is nearer than our query
distance. To evaluate which method is superior, we will have a look at both of them in Chapter 5.1.1.

Weather
As the name implies this class is responsible for all attributes related to the weather at the POI. In Chapter 4.2.2 we

outlined some meteorological measurements we acquired. The complete list includes the following: the sunshine dura-
tion and solidity ratio, relative humidity, vapor and barometric pressure, different temperature values such as average,
ground, minimal and maximal temperature, average and peak wind velocity as well as precipitation amount and type
and if applicable the snow depth. All these values are released under a quality factor, which states if the measurements
were recorded automatically or if the recordings were supervised.

Since we do not know how to describe weather in a context that may be suitable for making a connection to the
surrounding noise level, we decided to include all measurements and let the classifier itself choose the one with the
highest gain.

Due to the straight-forward mapping of weather values to their attributes, adding them to the arff file is not difficult.
The only inconvenience related to weather data is the fact that the chosen station may not hold any data for the queried
date. In this case, we need to replace it with Weka’s missing value.

NearbyStreets
Drawing their information from the OSM database, NearbyStreets provides a description of nearby streets in the

vicinity of a POI. At first, finding a good mapping of the feature to single attributes was a rather big challenge, since
there seemed to be no simple way to map the information of OSM to a format conforming to the arff file. Especially since
querying different POI would naturally result in varying quantities of nearby streets. For example, in rural areas only one
street may be present while in urban areas there might be much more. Most classifiers do not allow a dynamic approach
to describe as many streets as there are in the vicinity. This is due to the fact that they rely on a fixed number of attributes
during training and expect the same ones present when classifying unknown instances.

29

But if we would limit ourselves to a fixed number of nearby streets, we would lose information in case there are more
roads nearby, especially in urban environments with their excessive amount of streets. Given the circumstances, we
needed a format which would additionally describe the whole area we queried with a limited number of attributes.

To cope with this problem, we create attributes averaging information about all nearby streets. These contain the total
count of streets, using the query distance as maximum range, as well as average measurements for maximum speed,
number of lanes, and the streets’ surfaces, which are all factors greatly influencing the noise level. For maximum speed
and number of lanes, using the mean value is straight-forward, however for the streets’ surfaces we used the surface who
appeared the most among all streets. If we do not possess any information on these measurements, e.g. if they are not
tagged within the OSM data, we replace them with Weka’s missing value.

Additionally to this summary of nearby streets, we describe a fixed number of roads in detail, including their type,
surface, maximum allowed speed and number of lanes as well as the distance of each street to the POI. If there are less
streets nearby, we introduce a special street type called “Nothing”. Of course we also adjust the surface (“nothing”),
maximum speed (0.0), number of lanes (0) and the distance, which defaults to our query distance. By doing so, the used
classifier is able to distinguish between the facts, whether there are no further nearby streets or roads with unknown
values for maximum speed and number of lanes.

Listing 12 presents the final approach to model NearbyStreets in an arff file. Line 1 to 10 represent the detailed
description of the two nearest streets while line 11 to 14 provide the attributes for the average values. Note that “...” is
used as a place holder for street and surface types to enable a better display.

1 @attr ibute S t ree t0_ type {Motorway , Trunk , . . . , Railway , . . . , Nothing }
2 @attr ibute S t ree t0_Sur face { asphal t , . . . , nothing , paved , paving_stones , pebblestone , unpaved}
3 @attr ibute Street0_MaxSpeed numeric
4 @attr ibute Street0_NumberOfLanes numeric
5 @attr ibute S t ree t0_D i s tance numeric
6 @attr ibute S t ree t1_ type {Motorway , Trunk , . . . , Railway , . . . , Nothing }
7 @attr ibute S t ree t1_Sur face { asphal t , . . . , nothing , paved , paving_stones , pebblestone , unpaved}
8 @attr ibute Street1_MaxSpeed numeric
9 @attr ibute Street1_NumberOfLanes numeric

10 @attr ibute S t ree t1_D i s tance numeric
11 @attr ibute NearbyStreets_count numeric
12 @attr ibute NearbyStreets_maxCountedSurface { asphal t , . . . , nothing , paved , paving_stones , pebblestone , unpaved}
13 @attr ibute NearbyStreets_averageMaxSpeed numeric
14 @attr ibute NearbyStreets_averageNumberOfLanes numeric

Listing 12: Excerpt of an arff file showing header entries for NearbyStreets.

SensorId
Further exploiting our initial data from NoiseMap introduces another aspect which directly influences the sound level.

Given the fact that NoiseMap collects data from many different smartphones, this somehow introduces “noisy” data since
the phones rely on different sensors. To counter this problem, NoiseMap uses calibration. Introducing SensorId as an
attribute helps classifiers to identify “noisy” data, which may have been generated by a badly calibrated device.

CalendarWeek
Prior to adding weather data, we thought of a simple approach to capture the weather in a larger granularity by

introducing the calendar week of the year as an attribute. However, after adding proper weather data one might think
that CalendarWeek is obsolete, but only if you restrict your point of view on the weather itself. Considering certain
events, which take place at a fixed time or week in the year, CalendarWeek may hold clues explaining abnormalities
in the registered sound level, e.g. a sudden rise in volume due to a huge street festival, like the “Schloßgrabenfest” in
Darmstadt. If that theory holds true will be discussed in Chapter 5.1.1.

4.2.4 DataBuilders - Generating a custom arff file

The first two sections of this chapter provided an overview over adapters used to query data sources as well as how we
model the crawled data into attributes suitable for machine learning.

However, we need to make sure to use the right query adapter for the right feature. To ease this process, we introduce
a variety of DataBuilders. These encapsulate the procedure of selecting query adapters based on given features. Each
DataBuilder can be decorated with another DataBuilder resulting in consecutive querying of the appropriate sources
during runtime.

The composition is done by the POIBuilderFactory, which relates a list of enumeration constants (AbstractAttributes
see Fig. 18 on page 27) representing our features to their respective DataBuilder. This allows for a good abstraction
over the querying and refinement process of the various data sources. Figure 21 shows associated classes, including all

30

AuxiliaryBuilders and the initial POIBuilder, which is used to generate a list of POIs out of the given list of noise
data. Note that the queryData method is responsible for firstly querying the appropriate source by using a query adapter,
and secondly for modifying the entries of the POI instance accordingly.

Figure 21: Class diagram of DataBuilder and associated classes.

The transition from our internal dataset – the list of POIs – to the appropriate Weka classes is done by the
InstancesGenerator. It combines the process of querying all DataBuilders and then generates Weka compatible in-
stances by mapping the retrieved data. Since this approach requires querying all data at first and be present in memory,
it is not suitable for huge amounts of noise data as well as large query distances.

To address this issue, we introduce the InstancesChunkGenerator which keeps the memory overhead to a minimum,
but lacking in performance. The key idea is to process the data in smaller chunks. Due to the fact that we need to have a
complete overview over all instances to assign the used Weka attributes, we need to scan the whole dataset for two times.
As an example, recall our internal TypesCount feature. It encapsulates every building type we found into several Weka
attributes, one for each type. This means that the number of needed attributes dynamically rises if we increase either
the number of noise data or the maximum query range, as we are prone to find more unique types. A pre-scan of the
complete dataset resolves this issue by determining which attributes need to be added. After this, we can assign values
by processing the dataset a second time.

The final output file is generated by the ArffFileWriter. It takes a set of instances from the InstancesGenerator
and converts them into an arff file, which can be loaded into Weka itself for classification. As the handling of the
InstancesChunkGenerator is somewhat different, the ArffFileWriter takes the responsibility of communicating with
the generator itself to request the appropriate data chunks when needed.

31

5 Evaluation

Successful data mining does not only include choosing the “right” classifier for a given problem. There are additional as-
pects which need to be considered. On the one hand, most classifiers allow fine grained adjustment of various parameters
like pruning or splitting factor in decision tree learning or adjusting the value of k in a k-nearest-neighbor classifier [44].

At the other hand, data transformation cannot be overlooked if we want to optimize our results. This includes attribute
selection, data cleaning or sampling. While the latter two aim to reduce noise in the dataset itself, feature selection
produces a subset of attributes by removing redundant, clearly irrelevant or even contradictory ones. This may speed up
performance as well as increase accuracy. [44]

In the following chapter, we will have a detailed look at feature selection and refinement as part of our evaluation
mentioned in Chapter 4. We believe that this method will yield better results than a parameter refinement, as a thorough
evaluation of the latter would not be feasible given the huge dataset and the limited amount of time.

We start with optimizing single features on their own in Section 5.1.1 and follow up with an evaluation of several
feature compositions. In the next sections (5.1.3 and 5.1.4), we will discuss the influence of different sound level
distributions as well as different classification algorithms. Section 5.2 will sum up our results as well as provide a
conclusion.

5.1 Feature selection and optimization

Experiments in literature show that adding random binary attributes to a dataset which was then learned by a decision
tree learner decreased its prediction accuracy by 5 to 10% [44]. In theory this should not happen, since the classifier
should always choose the attribute with maximum gain. Although this holds true at first, as we proceed further down a
decision tree, the amount of data on which the classifier bases its decision reduces, allowing random attribute values to
come into play. [44]

The example shows that feature selection can improve accuracy. As it is not feasible for us to use a feature selection
algorithm based on a search through the attribute space itself due to the fact that our dataset contains a huge amount
of instances and attributes, we decided to manually evaluate the benefits of the features presented in Chapter 4.2.3 on
page 27 on their own as well as in composition with each other.

First, we look at each feature in isolation to get a first indication for its general usefulness. The next step combines
several features and evaluates their cumulative accuracy. We use the knowledge originating from the first two steps to
construct an optimal combination of features to maximize the accuracy when predicting noise levels.

Each evaluation is performed in Weka using a 10 fold cross validation and J48 as a classifier. A more detailed reason
why we chose J48 is presented in Subsection 5.1.4 where we also look at the influence of several other classifiers.

5.1.1 Single features

This section focuses on evaluating each feature in isolation. In particular, we compare different approaches we introduced
in Chapter 4.2.3 to model the presented features as well as finding an optimal query distance for those that require one.
By doing so, we can ascertain an optimal representation of each feature, which benefits the following evaluation steps.
As the SoundLevel is our class attribute and thereby a special case, we will evaluate different distributions in a following
section. For now we will use the equal-width approach – presented in Chapter 4.2.3 – for the evaluation of other features.

As a baseline we use a model that only has access to Time as well as the class value SoundLevel, which we want to
predict. Therefore Time is the only attribute which can be used by the classifier to determine a noise level. The class
attribute provides information on whether the prediction was correct or incorrect. For every contemplated feature we
provide accuracy results for the baseline plus the feature itself, meaning every evaluation already includes the baseline.

SensorId and CalendarWeek
Both features include no parameter to adjust their results. Therefore the evaluation of these is quite simple involving

only one run each. Figure 22 shows how well the two features are predicting a noise level in comparison to the baseline.
As both features provide additional knowledge their accuracy is naturally higher. However, as we mentioned in Chapter

4.2.3 on page 30, NoiseMap provides us with calibrated sound values. This means that there should be no significant
difference when looking at noise values from different sensors. Although a gap of approximately 15% may indicate
otherwise, this can also be caused by contributors living in a noisy environment which makes their sound measurements
prone to be higher than normal.

If we look at CalendarWeek, the gain is not as high as with SensorId. Nevertheless it does benefit the achievable
accuracy. There are numerous possible reasons why this is the case. We already addressed two possible factors in Chapter
4.2.3 on page 30, namely coarse weather information and weekly events. Yet we have no real evidence supporting these
theories, as that would include examining the instances one by one for such events, which is just not feasible given the
amount of data.

32

48,9

59,8

64,9

40,0

45,0

50,0

55,0

60,0

65,0

70,0

75,0

Sound & Time CalendarWeek SensorId

Ac
cu
ra
cy
 in

 %

Figure 22: Accuracy of the baseline, CalendarWeek and SensorId.

Weather
Clearly outmatching the previously examined features, Weather does boost prediction accuracy up to 70.4%. Due to

the fact that we prefer to use the nearest possible weather station for data, we only need to evaluate the minimal range
at which we get weather information for every noise data. Further incrementing is counterproductive as the result does
not change – the nearest station would still be closest – but computational costs would increase. Figure 23 illustrates
this evaluation process, as we begin to increase the query distance successively. Note that after 60km there is no further
increase in accuracy.

40

45

50

55

60

65

70

75

0 20 40 60 80 100 120

Ac
cu
ra
cy
 o
f W

ea
th
er
 in

 %

query distance in km

Figure 23: Accuracy of Weather for increasing the query distance.

NearbyStreets
As we explained in Chapter 4.2.3 on page 29, there are several ways to describe the vicinity of a POI when it comes to

nearby roads. In this section we compare possible approaches we touched beforehand.
Since there are various unknown parameters – equaling the amount of different approaches – we need to adjust one

of those during an evaluation run, while fixating all the others. An exploration of all possible combinations would be too
time consuming, which is why we decided to try an iterative approach by optimizing one parameter at a time and use
the acquired knowledge henceforward.

33

First of all, we evaluate the query distance which achieves the highest prediction accuracy. We start this off by
describing the closest two streets explicitly plus the group of attributes we used to model the overall vicinity of a POI.
As a reminder, this group includes the total count of nearby roads as well as averages for maximum speed and number
of lanes followed by naming the surface which appeared most. From this point on, we will call it the averages group.
Figure 24 illustrates how the accuracy develops when increasing the query distance.

0

2

4

6

8

10

12

40

45

50

55

60

65

70

75

0 200 400 600 800 1000

query distance in meters

m
ill
io
ns
 o
f s
tr
ee
ts

Ac
cu
ra
cy
 o
f N

ea
rb
yS
tr
ee
ts
 in

 %

Acc. of NearbyStreets
of streets

Figure 24: Accuracy of NearbyStreets for increasing the query distance against the processed number of streets.

For small distances the increase is significant, while slowing down at approximately the 200m mark. If we recall our
attribute composition, this could be due to the fact that only the group of averages benefits from further raising the
query distance, as the closest two streets stay the same. Although we can educe from the diagram that incrementing the
distance past 1000m would result in an even higher prediction accuracy, this would drastically increase the quantity of
streets processed and thereby also rising the memory overhead during query time, leading to a bad ratio of improvement
to memory overhead. As this was not feasible with the given equipment, we limited ourselves to a maximum range of
1000m.

Using an optimal query distance of 1km, we can now further evaluate other parameters such as the number of streets
we describe in detail. Not knowing how this may be influenced by the query distance itself, we provide results for three
different query distances to be able to spot possible irregularities. Figure 25 illustrates the accuracy for using zero to five
closest streets described in detail. Keep in mind that zero nearby roads equals to only having the group of averages.

55

60

65

70

75

100 500 1000

Ac
cu
ra
cy
 o
f N

ea
rb
yS
tr
ee
ts
 in

 %

query distance in meter

0 1 2 3 4
of detailed streets

Figure 25: Accuracy of NearbyStreets for three query distances with varying number of fully described nearby streets.

34

Explicitly describing a number of closest streets drastically increases the prediction accuracy throughout all displayed
distances. However, the count itself has very little influence on the result. Though using two streets takes the lead for
the previously evaluated optimal distance of 1000m, adding three or only one streets yield the best results for 100m and
500m respectively. As the gap is negligible, we favor detailed specification for the two closest roads resulting in an overall
maximal achievable accuracy of ca. 73%.

Now that we have acquired a coarse grained parameter setting, we can proceed with further tuning. Recall the case
if we want to describe the two closest streets but we only have one street nearby. In our initial approach – discussed in
Chapter 4.2.3 on page 29 – we add a “Nothing” street. Alternatively, we could have used Weka’s missing value. Diagram
26 shows the two alternatives in direct comparison utilizing the two closest streets and three distinctive query distances.

55

60

65

70

75

100 500 1000

Ac
cu
ra
cy
 o
f N

ea
rb
yS
tr
ee
ts
 in

 %

query distance in meters

Missing Value
substituted by "Nothing"

Figure 26: Comparison of using “Nothing” street against missing value for three query distances.

Since we can acquire more than two nearby streets for most POIs, the gap between the two approaches is rather slim
with “Nothing” having a slight edge. As we mainly use the nearest two streets, we did not evaluate other street counts.
However, we expect the gap to increase with increasing number of nearby streets described. This is due to the fact that
“Nothing” actually is a more valuable information for the classifier, as it is one defined value compared to a missing value,
which can be an arbitrary one out of the given possibilities.

As mentioned early in this chapter, we went for an iterative approach to determine optimal parameters, which e.g.
resulted in assuming that the group of averages would improve the estimation accuracy. To address this issue, we made
another evaluation comparing our optimal approach, consisting of the two closest streets and the group of averages, with
an approach relying solely on the two nearest roads. This comparison is shown in Figure 27.

Using only the two closest streets does not provide further information when increasing the query distance, stagnating
at approximately 65%. Describing the whole vicinity with a group of attributes on the other hand significantly boosts the
resulting accuracy when increasing the query distance. This confirms the initial theory outlined in Chapter 4.2.3 on page
29 to be useful.

TypesCount
Another more straight-forward feature is TypesCount. Since there is not much to refine how to convert this feature

into Weka attributes, we can focus on finding the optimal query distance. Figure 28 shows the accuracy trend from a
minimum query distance of 20m to a maximum of 1000m as well as the processed number of LGDNodes as an indicator
for computational and memory load.

Compared to NearbyStreets the incline is more linear starting at approximately 50% for 20m and reaching a maxi-
mum of 72.2% for 1000m. The more linear fashion – compared to NearbyStreets – could indicate a greater potential
for improvement past the 1000m mark. Likewise, our equipment as well as the LGD server itself imposed this limitation
upon us. Nevertheless, the steady increase up until the maximum mark is actually quite remarkable. Putting it another
way, this means that even buildings at a 1km distance may influence the noise level at a given location.

One possible cause for this phenomenon could be the influence of “Fingerprinting”. This kind of technique is frequently
used to identify a person’s location by using nearby WLAN access points [45]. If we map this approach to our dataset
we can create a fingerprint of a noise data instance by mapping building types and their occurrence. Slightly moving the
location would then result in only a minor adjustment of the fingerprint and therefore estimating a similar noise level.

35

55

60

65

70

75

100 500 1000

Ac
cu
ra
cy
 o
f N

ea
rb
yS
tr
ee
ts
 in

 %

queryDistance in meters

without the group of averages
with the group of averages

Figure 27: Accuracy of NearbyStreets with and without the group of averages for three query distances.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

40

45

50

55

60

65

70

75

0 200 400 600 800 1000 1200

m
ill
io
ns
 o
f L
G
DN

od
es

Ac
cu
ra
cy
 o
f T
yp
es
Co

un
t i
n
%

query distance in meters

Acc. of TypesCount

of LGDNodes

Figure 28: Accuracy of TypesCount for increasing the query distance against the number of processed LGDNodes.

36

Remember that the classifier itself does not know the geographical coordinates of a location. On the other hand a big
difference between fingerprints would indicate a different sound level as well as big distance between the two locations.

Although this may explain the accuracy trend, there is no evidence to back it up. There could very well be a real
influence of certain building types towards the noise level, e.g. airports with their wide range of noise pollution.

TypesDistance
The evaluation for TypesDistance is quite similar to TypesCount as both use the same data source, but just interpret

the data differently. Additionally to finding an optimal query distance, we want to evaluate if replacing the attribute
value with the query distance itself – in case we do not find a facility of the current type – yields better results than using
Weka’s missing value. Both accuracy gradients are illustrated in Figure 29 as well as the processed number of LGDNodes.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

40

45

50

55

60

65

70

75

0 200 400 600 800 1000 1200

m
ill
io
ns
 o
f L
G
DN

od
es

Ac
cu
ra
cy
 o
f T
yp
es
Di
st
an
ce
 in

 %

query distance in meters

TD_maxQueryDistance
TD_missingValue
nodes

Figure 29: Accuracy of TypesDistance (missing value and max query distance) for increasing the query radius against the
number of processed LGDNodes.

The first thing which meets the eye is the fact that replacing missing distance values with the query radius is far
superior compared to utilizing Weka’s missing value. The latter almost stagnates at approximately 50%, while the first
one shows a nearly linear increase from 50% to 72.2% at 20m and 1000m respectively. As explained in the section about
TypesCount, this may be influenced by several causes. The fact that both type features bare very similar appearances
concerning their respective diagrams will be discussed in Chapter 5.1.2, as this is part of the evaluation covering different
feature compositions.

Summary
As a conclusion, Figure 30 shows an overview of all features and their maximum achievable prediction accuracy. Lead-

ing the chart are the two building type features TypesCount (TC) and TypesDistance (TD) as well as NearbyStreets
(Str) with approximately 72% prediction accuracy, followed by Weather (W) with ca. 70% and SensorId (Id) with 65%.
The last place goes to CalendarWeek (CW) achieving only 60% accuracy. The first column represents the baseline using
only SoundLevel and Time (S&T) with almost 50%.

While this provides a first impression of the benefits of each feature, the next chapter will focus on different com-
position of those features, evaluating which combination yields the highest accuracy. We also have a look at possible
redundant features which may decrease performance and accuracy.

37

48,9

72,2 72,2

59,8

64,9

72,8
70,4

40

45

50

55

60

65

70

75

S&T TC TD CW Id Str W

Ac
cu
ra
cy
 in

 %

Figure 30: Maximum achievable accuracy of each feature compared to the baseline.

5.1.2 Feature compositions

The previous chapter explained the benefits of every feature in isolation, while this chapter will focus on uniting features
to generate a higher overall prediction accuracy. During our search for noise factors, it was not possible to estimate the
correlation between these. To illustrate this, consider a simplified version of the features Weather and TypesDistance. If
we look at them in isolation, a rainy day may indicate a lower noise level, since outdoor activities are not that attractive
anymore. On the other hand, at a location prone to have a low noise level, the real level could actually be higher, since
the rain itself produces a good amount of noise. Having only weather information makes it very hard to differentiate
between these two cases. Adding TypesDistance on the other hand could tell us, whether we are inside a park or in the
city center.

Coming back to our example with the rainy day, we can now assume a lower noise level for the park, since this location
is mostly noisy on sunny days, as it gets used for outdoor activities. In the city center most noise comes from the traffic.
A wet street could thereby further increase the noise level. In this case, we would assume an increased accuracy when
combing both features as they support each other. However, this may not always be the case. Redundant or contradictory
features can decrease the prediction performance.

Our main concern is thereby to find out if features conflict with each other. Additionally, we want to remove redundant
features, as this would increase the efficiency of our approach.

Since we created six different features, apart from SoundLevel and Time, this would require quite a few evaluation
runs. Therefore we cannot evaluate every possible combination. The following diagrams show the accuracy results when
consecutively adding the features from left to right.

Figure 31 starts of with the two LGD features – TypesCount and TypesDistance – followed by adding Weather,
CalendarWeek, SensorId and lastly NearbyStreets. Surprisingly, adding TypesDistance does increase accuracy only
by a mere 0.25%. As mentioned before, redundant attributes do not provide further information usable for classification.
Comparing the format of the LGD features, we can deduce that both actually describe the same information although the
representation is slightly different.

To illustrate this fact, consider the following example. In a location with no facility of a specific building type around,
TypesCount would provide a value of 0, whereas TypesDistance would value to 1000. This means that asking if CafeC
== 0 is equivalent to CafeD == 1000. However, this alone is not sufficient to ascertain a redundancy between the two
features. They need to additionally provide the “same” values if there are buildings nearby. Even though they do not
provide identical ones, those values are inverse proportional, meaning that they increase for TypesCount and decrease
for TypesDistance if facilities of building types are found. Even more, for a high value in TypesCount the corresponding
one in TypesDistance is prone to be rather small, since it is more likely that a facility of this type will be very close.

Omitting one of the two LGD features can increase performance when creating a decision tree and also during classi-
fication. However, it does not speed up the initial query phase, since both features rely on the same data. If classification
performance is a key factor, omitting one of those features speeds up classification while not loosing much accuracy. But
since predicting the class value for a test instance is rather fast on decision trees anyway, having a slightly higher accuracy
may in fact be more favorable.

38

48,9

72,2 72,4

80,0 80,1 80,3 80,9

40

45

50

55

60

65

70

75

80

85

S&T TC TD W CW Id Str

Ac
cu
ra
cy
 in

 %

Figure 31: Accuracy of the given cumulative combination of features.

Another interesting fact is that using only TypesCount, TypesDistance and Weather we are able to achieve approx-
imately 80% accuracy. Further features only increase this result by a margin. This, however, is to be expected. If we
start of by predicting the majority class of our six different noise levels, we can achieve circa 43% accuracy. Adding little
knowledge in form of additional data as well as using an elaborated classifier drastically boosts the results, as our state
changes from not knowing anything to knowing a little. Since we already have a huge knowledge with the three features
combined, adding further knowledge does not result in such a huge impact. Although an increase of only one percent
point may not sound that much, it is much harder to achieve at already 80% accuracy than at 50%.

Based on this, we cannot ascertain a correlation between features past adding Weather. To address this issue, we run
additional evaluations where we change the order of adding features.

In the second run, features that achieved less accuracy on their own get added first. Starting with CalendarWeek and
Weather, followed by SensorId and NearbyStreets, we add the LGD features at the end this time.

48,9

59,8

70,5
72,1

79,9 80,8 80,9

40

45

50

55

60

65

70

75

80

85

S&T CW W Id Str TC TD

Ac
cu
ra
cy
 in

 %

Figure 32: Accuracy of the given cumulative combination of features.

In Chapter 4.2.3 on page 30, we discussed similarities between CalendarWeek and Weather, as we introduced the
first as a form of a coarse grained weather forecast. Looking at Figure 32, we can deduce that the detailed weather
information is far more valuable. Although Weather significantly increases accuracy, based on Figure 32 alone we cannot
conclude that CalendarWeek is redundant, if we also add Weather as a feature. However, if we compare the accuracy

39

results achieved by Weather alone and in combination with CalendarWeek, we achieve 70.4% and 70.5% respectively.
Based on this observation, we may omit CalendarWeek as a feature if we want to build a small yet accurate model. As
it is only a small feature, which does not require querying an extra data source, removing it is only feasible if we really
want to have the smallest possible model.

After adding NearbyStreets, we reach an accuracy of approximately 80%. As explained before, drawing conclusions
from accuracy gain at this stage is not feasible. This can also be clearly seen by the fact that adding one of the best
features Typescount only increases it by one percent point.

Our final run presented in this chapter includes NearbyStreets as first feature, followed by CalendarWeek, SensorId
and Weather, finishing with TypesCount and TypesDistance.

48,9

72,8

78,7 79,9 80,8 80,9

40

45

50

55

60

65

70

75

80

85

S&T Str CW & Id W TC TD

Ac
cu
ra
cy
 in

 %

Figure 33: Accuracy of the given cumulative combination of features.

Since NearbyStreets provides a high information gain on its own, adding CalendarWeek and SensorId – the two
weakest features – increases accuracy by only a small amount as shown in Figure 33. At this point we almost reach
the optimal accuracy, which means that adding Weather and the LGD features only provide small increase. This shows
that choosing the right features to construct a small model, that yields the highest possible accuracy, is important, since
adding weak features, that get outmatched by stronger ones, is not suitable.

As a conclusion, the evaluation of different feature compositions provided us with a way to identify weaker features
on a more solid basis, since it takes feature compositions into account. We evaluated that using all features results in the
highest prediction accuracy (80.9%), but leads to a rather large model, which slows down the performance.

In case a small model is more beneficial, we learned that removing partly redundant features can drastically reduce
model size, while only sacrificing little accuracy. This particularly holds true for the two LGD features, as they consist of
many Weka attributes and thereby are especially responsible for a huge model. As shown in Figure 33 on page 40 using
NearbyStreets, CalendarWeek, SensorId and Weather already results in a prediction accuracy of almost 80%, while
producing a rather small model.

But there may also be other factors which influence such a decision, e.g. the availability of data sources for a certain
area. If we do not have access to weather data, we cannot use the feature. Since we only have weather information for
Germany, this feature would be unusable for foreign countries.

As we did not evaluate the individual Weka attributes of each feature – simply because of the huge training set – we
cannot ascertain redundant or contradictory attributes within particular features.

5.1.3 Different sound level distributions

Apart from different approaches in modeling our features, we will also have a look at varying distributions for our class
attribute as presented in Chapter 4.2.3. In particular, we have a look at how the distribution affects prediction accuracy
and can be modified to our advantage by evaluating two equal-width as well as two equal-frequency distributions. Figure
34 shows the former approach by using equal-width intervals ranging from 40dB to 80dB, whereas we used six distinctive
intervals in Diagram 34a compared to ten in Figure 34b. Note how this distribution favors the range between 60dB and
70dB resulting in a rather high accuracy if we would only predict the largest class.

40

0

5

10

15

20

25

30

35

< 40 40‐50 50‐60 60‐70 70‐80 > 80

of
 in
st
an
ce
s
in
 th

ou
sa
nd

s

sound level in dB

(a) Six different sound levels.

0

5

10

15

20

25

30

35

<40 40‐45 45‐50 50‐55 55‐60 60‐65 65‐70 70‐75 75‐80 >80

of
 in
st
an
ce
s
in
 th

ou
sa
nd

s

sound level in dB

(b) Ten different sound levels.

Figure 34: Sound level distributions for equal-width approach.

To counter this issue, we also evaluated equal-frequency distributions with six and ten sound levels respectively. The
former one can be seen in Figure 35 where the interval borders are marked with red bars. Figure 36 shows the same
approach but with ten intervals instead of six. Both clearly illustrate the large sample count in the 60dB to 70dB region,
as the distance between each border becomes very small. Although we have accomplished our aim of an uniform
distribution, it is now more difficult to distinguish between intervals, as their range is considerably smaller in regions
with a high sample count, which may lead to a decrease in prediction accuracy.

| | | | | | |
50 60 70 80

Figure 35: Equal-frequency approach with six intervals.

| | | | | | | | | | |
50 60 70 80

Figure 36: Equal-frequency approach with ten intervals.

To identify the optimal distribution of sound levels, we constructed models for each approach using all our features
with their optimal parameters and J48 as classifier. As a baseline we predict the majority class (ZeroR classifier) of each
distribution indicating an a priori prediction accuracy. Our results are presented in Diagram 37 indicating a clear win in
terms of accuracy for equal-width with six intervals. Looking at the baseline results (Figure 37b) compared to the one of
J48 (Figure 37a), we notice a high potential for accuracy improvement for the equal-frequency method. However, this
is to be expected, as each sound level holds exactly the same amount of samples, resulting in an indirect proportionality
between the number of classes and ZeroR’s prediction accuracy. Although this trend can be seen for the equal-width
approach as well, it is less distinctive.

In general using only six sound levels yields a ten percentage points higher accuracy for both approaches when using
J48. However, this may seem deceiving. On the one hand, we increase our prediction accuracy, but on the other hand
we also increase the range of all sound levels. For example, if we use only one noise level, our prediction accuracy would
be 100%, but we would not have gained anything by doing so. Considering this, we cannot ascertain a clear victorious
method for distributing the noise levels, as this highly depends on the needs of the application. Using equal-width, we can
predict a noise level within a 10dB range with over 80% accuracy or alternatively within a 5dB range with approximately
70%, which may be more beneficial for some use cases.

Although equal-frequency is always inferior to the equal-width approach in terms of accuracy, it may yield great
benefits for applications demanding very fine-grained interval steps in the region around 70dB. To put it another way,
we achieve highest accuracy in regions with high sample count – resulting in small interval ranges – while sacrificing
it in sparse areas (around 40dB). This provides a more dynamical approach towards sound level distribution, while
equal-width is more static.

41

80,9

70,1

72,5

62,5

60

65

70

75

80

85

6 10

Ac
cu
ra
cy
 in

 %

of sound levels

equal‐width
equal‐frequency

(a) Accuracy results for J48.

42,9

24,4

16,7

10,0

0

10

20

30

40

50

6 10

Ac
cu
ra
cy
 in

 %

of sound levels

equal‐width
equal‐frequency

(b) Accuracy results for baseline (ZeroR).

Figure 37: Accuracy of different distributions. Be aware of the different axis scales.

As outlined before, the ideal distribution strongly depends on the applications demands and should be adjusted accord-
ingly to provide best results. In Chapter 6 we discuss an interactive heatmap approach making use of the equal-frequency
scheme to emphasize noise changes.

5.1.4 Different classifiers

Something we have not touched yet is the influence of the chosen classifier on the resulting accuracy. Since our dataset
includes numeric and categorical attributes as well as missing values, we need an elaborate classifier which can cope
with these “real-world” problems. We covered the world of machine learning and different classifier in Chapter 2.2 on
page 5.

In this section, we will focus on efficiency and practicality of the classifier during the creation and classification phase.
Classifiers we can omit from the start are instance-based approaches. They may be fast with regard to the creation phase,
as no model needs to be established at all, but they severely lack when it comes to classification speed. Since our dataset
contains 75000 instances, running a nearest-neighbor approach is not feasible. This is also a KO criterion for ensemble
methods, as they involve several classification stages resulting in low performance.

Remaining types would include decision tree learners, rule set learner and support vector machines beside many more.
We also evaluated one “meta” classifier using ordinal classification and J48 as base. Since evaluating every existing clas-
sifier is not feasible, we used the mentioned ones as a first selection. As a ranking system, we use the time needed for
classifying a test fold (7588 instances) as well as creating a model based on a training fold (68296 instances). Further-
more, we look at the size of the resulting model. Note that all measurements found in Table 2 are median values over all
folds of a 10 fold cross validation.

For creating the internal model structure, J48 is far superior compared to JRip, Ordinal and libSVM. The latter one
even takes several days to compute, due to its complex mathematical nature. In this category, JRip with 14.5 hours places
behind Ordinal with 7.1 hours, while J48 finishes in less than one hour.

However, since generating the model can be done beforehand, the classification steps needs to be efficient in order
to produce fast results. Although there exist various optimization for classifying instances using support vectors, libSVM
clearly under-performs, as it takes more than 9 hours to test approximately 7600 instances. J48 and JRip only need 23
and 32 seconds respectively for the same amount of instances, while the ordinal classifiers takes the lead with 19 seconds.

With those three as the only feasible classifiers left, we have a look at the size of their models. In this scenario, JRip
clearly takes the win with only 128 rules compared to 5308 leaves of the decision tree learner J48. Surprisingly, Ordinal’s
tree only has 1132 leaves despite using J48 as a base classifier, while also working with an extra class label. This may
explain its long creation time, as the tree is apparently highly pruned.

Ultimately, it comes down to the accuracy the classifiers can achieve, which is shown in Figure 38 and presents a clear
win for both J48 and the ordinal classifier. Although the latter uses additional information extracted from the partially
ordered sound levels, the overall prediction accuracy is slightly worse. Considering the fact that the resulting tree is
almost five times smaller, this is yet a very good result.

A bit surprising is the bad result for the SVM classifier, only achieving approximately 57% accuracy. The huge amount
of support vectors (62171) indicates that our particular dataset is not really suitable for this kind of learning scheme.

42

Time for Size (train fold)
training (train fold) classification (test fold)

J48 0.8 h 23 sec 5308 leaves
Ordinal 7.1 h 19 sec 1132 leaves
JRip 14.5 h 32 sec 128 rules
libSVM 70.4 h 9 h 62171 support vectors

Table 2: Median values (over all respective train or test folds) of measurements for different classifiers.

80,9 80,4

73,2

57,7

50

55

60

65

70

75

80

85

J48 Ordinal JRip libSVM

Ac
cu
ra
cy
 in

 %

Figure 38: Accuracy of given classifiers on optimal feature composition.

This is also a factor we need to consider when we have a look at JRip’s result. Recall that we use an optimal composition
of our features, which is the same for all classifiers, but was evaluated using J48 only, introducing a bias towards it. If we
evaluated our features using JRip, the results may differ. However, as outlined before, the far superior model creation
time of J48 makes it more practical during feature evaluation.

5.2 Evaluation summary

After carefully examining different feature composition and sound level distributions as well as various classifiers, we can
conclude that each approach has its own benefits and disadvantages. Consequently, the chosen features and classifiers
are highly depended on the application’s demands.

For example, as outlined before, some features may not be available for specific scenarios, hence they cannot be used,
which leads to reduced accuracy. However, we also showed that one does not need all features to achieve a high accuracy
and thereby may also willingly sacrifices a feature in order to produce a smaller model.

Small models can also be achieved by using different classifiers, as shown in the previous chapter. Although those
may lack in performance and accuracy, they are more suitable for application or platforms, where memory is sparse. A
good example of this would include the ordinal classifier we tested. Despite taking almost nine times longer to create
a decision tree, the model itself is approximately five times smaller, while achieving virtually the same prediction accuracy.

As a conclusion, we will have another look at the approach which placed first in terms of accuracy, using all features
with an equal-width approach and J48 as classifier. Table 3 shows common evaluation measurements of this composition.
Considering the fact that we rely on user-generated data, which may contain compromised and contradictory measure-
ments, an accuracy of almost 81% is a very good result. To the best of our knowledge, there exist no system, which can
predict noise levels with an accuracy that high and is based on real-world data at once.

While we already mentioned accuracy as a guideline on how well a classifier is performing, recall or precision may
be more suitable for some applications. For example, if it is more important to distinguish, whether an instance has one
specific class label rather than belonging to one of the other classes.

The harmonic mean between recall and precision is represented by the F-Measure, while the mean absolute error is
an indication on how many classification errors occurred. However, as we do not distinguish between severe and minor
– predicting an adjacent class – errors, we will have an additional look at the confusion matrix shown in Table 4.

43

Accuracy 80.9%
Precision 80.8%
Recall 80.9%
F-Measure 80.8%
Mean abs. error 0.077

Table 3: Classification results using all features with J48.

classified as (in dB)
<40 40-50 50-60 60-70 70-80 >80

is (in dB)

<40 82.4 11.1 2.7 2.6 1.0 0.2
40-50 16.2 52.0 21.8 5.3 2.5 2.2
50-60 1.7 6.6 65.0 23.8 1.7 1.3
60-70 0.3 0.5 5.5 85.3 8.2 0.3
70-80 0.2 0.5 0.7 13.8 82.6 2.2
>80 0.2 1.0 0.7 1.7 11.6 84.7

Table 4: Confusion Matrix relative per class in % using all features with J48.

The confusion matrix shows that most instances are predicted correct with respect to their class label (the sound level).
If the sound level was predicted wrong, an adjacent level was estimated in most case, minimizing severe prediction errors,
such as labeling an instance as < 40dB, whereas the real value is in between 60-70dB. Only 0.3% were predicted wrong
for this specific case, but 85.3% of all instance having a sound level between 60dB and 70dB were predicted correctly.

This shows that our model rarely makes severe prediction errors and tends to predict adjacent noise levels in case of a
wrong classification. This robustness helps applications as they can rely on a more consistent result.

44

6 Applications

We have already mentioned some possible application scenarios in which LOCAL and especially the generated models
can be of great benefit. Our initial motivation was to construct cheap yet accurate noise maps by using omnipresent
smartphone sensors (see Chapter 1). So far we managed to gather various secondary features to successfully improve
the accuracy of our approach. This resulted in a model – our knowledge – predicting sound levels on a categorical scale
using information about the vicinity where the noise measurement was taken.

Using this model, we can now estimate noise levels for places we have not yet measured as long as the assumptions
made by our model hold true. As predicting a noise level is also influenced by climatic terms – if we use the Weather
feature – the model could fail to predict correct levels if we were to test it in a region differing strongly from the clime
in Germany. This also applies to cultural differences, which may influence nearby building types or streets. Considering
this, extending the usage of generated models past Europe is not recommended.

MINI
In Chapter 5.1.3, we discussed possible advantages of an equal-frequency approach when distributing the sound levels

despite lacking in prediction accuracy. As opposed to the more static equal-width method, the former is more dynamic
allowing to emphasize changes in noise levels, which are injected by altering the feature values, like time or number of
nearby buildings.

Making use of this characteristic, the application MINI46 combines noise maps with interactivity. It allows the user to
change the time of the day and add buildings as well as remove them in real-time. Although still in development, MINI
already shows interesting results, allowing to modify an existing area with regard to its noise level. This can provide
insight into possible solutions against noise pollution. For example, removing certain buildings or changing the street
surface in a particular area may decrease the noise level in the vicinity. Figure 39 presents an early version of MINI.

Figure 39: Early version of MINI showing a noise map for Montpellier. The blue pins resemble LGD entities found nearby.
Using the icons on the right bar, the user can additionally place buildings on the map.

One way to visualize a noise map is to use a heatmap overlay. Each sound level corresponds to a color values, where
green resembles quiet areas contrary to red areas, where the noise level would be higher. The gradient could also be
adjusted dynamically to meet the application’s needs. To construct such an overlay, we47 mapped a grid onto the area we

46 Mashup for Identifying Noisy Infrastructure: http://mini.ke.tu-darmstadt.de/MINI/ [accessed on 15.05.13]
47 the MINI team: Axel Schulz, Jakob Karolus, Felix Mayer, Frederik Janssen, Heiko Paulheim, Immanuel Schweizer

45

want to display. As MINI is our contribution to the AI Mashup Challenge 201348 held in Montpellier, we used the French
city for the prototype. To be able to respond in real-time, we constructed a database beforehand containing all necessary
information about buildings and streets for each point of the grid. By doing so, we can load an initial noise map in mere
seconds and modify it according to the user’s input by manipulating the cached feature values.

48 http://aimashup.org/aimashup13/doku.php [accessed on 15.05.13]

46

7 Conclusion and future work

In this thesis, we present a method to use participatory sensing and machine learning techniques as a mean to create
cheap yet accurate noise maps of an area. We utilize auxiliary data sources, like nearby buildings or streets, to improve
our knowledge of the vicinity. This helps us to make an elaborate decision about the noise level. After various optimiza-
tions, we are able to predict a sound level within a 10dB range for a given location with almost 81% accuracy. This shows
that our approach is an adequate alternative for constructing noise maps as shown in MINI (see chapter 6). At the time of
this writing, there exist only two noise mapping systems trying to reconstruct or predict noise levels for sparsely covered
areas. As outlined in Chapter 3.1, Ear-Phone [34, 33] uses compressive sensing to reconstruct audio data and thus does
not provide any conclusive solution for areas with no noise measurements. The work of Kaiser et al. [22] provides a first
impression of the concept of using machine learning in conjunction with noise mapping. However, their approach does
not include an evaluation on real-world data, in comparison to our work.

We also had a look at different feature composition as well as sound level distributions (see Chapters 5.1.2 and 5.1.3)
and showed that each has its own benefits. Although smaller models lack in accuracy, they may be more feasible for some
applications.

As we expect other data sources to make their debut in LOCAL, we designed a highly modular and extensible pipeline
to cover the specific needs of many application scenarios. Thereby, we enable other developers to adapt or add data
sources, as well as modifying feature modeling. Furthermore, users are able to construct a model with their very own
feature composition if the need arises to omit one of the previously presented features.

As mentioned in the previous passage, we designed LOCAL to be highly customizable. Yet, due to limited time, we
were only able to provide eight features using four different data sources. A major extension point would hence be the
addition of entirely new data sources as well as optimize existing ones. This could include the weather source, as it is
limited to Germany. For extending our approach to a world-wide basis, there certainly exists the need of a source which
covers a broader area and provides a more elaborated API. Additionally, the OSM adapter could be modified by adding
a daily live-sync compared to the static adapter at the moment. Such extensions would improve the data quality itself,
which results in a better description of the POI. The same aspects also apply for all presented features, as there may be
better ways to describe them, e.g. extending the query distance for nearby buildings, based on further evaluation or due
to new data sources.

Fine-tuning of classifier parameters can also be considered for future work. As we omitted this due to lack of time,
a through evaluation in this area could yield an increase in overall accuracy for all constructed models. Beside refining
parameters of classifiers, the usage of other classification schemes could benefit the application as well. We only evaluated
common algorithms, whereas other classifiers might be more suitable for this kind of task.

We already noted the possibility of a live-sync adapter for auxiliary data sources. This can also be realized for our
initial source, as Noisemap continuously delivers new data, which could be used as training samples. This would ensure
up-to-date noise measurements which are consistent with their surroundings.

In addition, the calculated sound levels from a live-sync model could be used for a heatmap implementation in an
Android app or Noisemap itself. This would provide real-time noise prediction on the smartphone and can be used for
the likes of augmented reality, e.g. warning the user when he enters a noisy region and suggesting alternative routes.

47

References

[1] Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata – adding a spatial dimension to the web of
data. The Semantic WebISWC 2009, 2009.

[2] M. Balmer, K. Meister, M. Rieser, K. Nagel, and Kay W. Axhausen. Agent-based simulation of travel demand:
structure and computational performance of matsim-t. Arbeitsbericht Verkehrs- und Raumplanung 504, 2008.

[3] Mark Bilandzic, Michael Banholzer, Deyan Peev, Vesko Georgiev, Florence Balagtas-Fernandez, and Alexander
De Luca. Laermometer: a mobile noise mapping application. In Proceedings of the 5th Nordic conference on
Human-computer interaction, 2008.

[4] Max Braun, Ansgar Scherp, and Steffen Staab. Collaborative creation of semantic points of interest as linked data
on the mobile phone. In Semantic Web Challenge, ISWC 2009, 2009.

[5] Jeffrey A. Burke, D. Estrin, Mark Hansen, Andrew Parker, Nithya Ramanathan, Sasank Reddy, and Mani B. Srivas-
tava. Participatory sensing. In World Sensor Web Workshop at SenSys 2006. ACM, 2006.

[6] World Wide Web Consortium. Resource description framework. http://www.w3.org/RDF/. [Online, accessed
02-May-2013].

[7] World Wide Web Consortium. Semantic web. http://www.w3.org/standards/semanticweb/. [Online, accessed
05-May-2013].

[8] World Wide Web Consortium. Sparql query language for rdf. http://www.w3.org/TR/rdf-sparql-query/. [On-
line, accessed 02-May-2013].

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[10] Ellie D’Hondt and Matthias Stevens. Community memories for sustainable urban living, 2009. BrusSense business
plan, granted as a Prospective Research in Brussels IWOIB post-doctoral project.

[11] David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52, 2006.

[12] Yasser EL-Manzalawy and Vasant Honavar. WLSVM: Integrating libsvm into weka environment, 2005. Software
available at http://www.cs.iastate.edu/~yasser/wlsvm.

[13] H. Fletcher and W. A. Munson. Loudness of a complex tone, its definition, measurement and calculation. The
Journal of the Acoustical Society of America, 5(1), 1933.

[14] Eibe Frank and Mark Hall. A simple approach to ordinal classification. In 12th European Conference on Machine
Learning, pages 145–156. Springer, 2001.

[15] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. Knowledge discovery in databases: An
overview. AI Magazine, 13(3), 1992.

[16] Marcus Goetz and Alexander Zipf. Openstreetmap in 3d – detailed insights on the current situation in germany. In
Proceedings of the AGILE 2012 International Conference on Geographic Information Science, 2012.

[17] Michael F. Goodchild. Citizens as Sensors: the World of Volunteered Geography. Geojournal, 69:211–221, 2007.

[18] Julian Hagenauer and Marco Helbich. Mining urban land-use patterns from volunteered geographic information
by means of genetic algorithms and artificial neural networks. International Journal of Geographical Information
Science, 26:1–20, 2011.

[19] Mordechai Haklay. How good is volunteered geographical information? A comparative study of OpenStreetMap
and Ordnance Survey datasets. Environment and Planning B: Planning and Design, 37, 2010.

[20] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl., 11(1), 2009.

[21] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods in machine learning. Annals of
Statistics, 36(3), 2008.

48

http://www.w3.org/RDF/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/TR/rdf-sparql-query/
http://www.cs.iastate.edu/~yasser/wlsvm

[22] Christian Kaiser and Alexei Pozdnoukhov. Enabling real-time city sensing with kernel stream oracles and mapre-
duce, 2011. The First Workshop on Pervasive Urban Applications.

[23] Eiman Kanjo. Noisespy: A real-time mobile phone platform for urban noise monitoring and mapping. Journal of
Mobile Networks and Applications, 15(4), 2010.

[24] Nicolas Maisonneuve, Matthias Stevens, Maria E. Niessen, Peter Hanappe, and Luc Steels. Citizen noise pollution
monitoring. In Proceedings of the 10th Annual International Conference on Digital Government Research: Social Net-
works: Making Connections between Citizens, Data and Government. Digital Government Society of North America,
2009.

[25] Nicolas Maisonneuve, Matthias Stevens, and Bartek Ochab. Participatory noise pollution monitoring using mobile
phones. Information Polity - Government 2.0: Making Connections between citizens, 15(1,2), 2010.

[26] Irene Garcia Martí, Luis E. Rodríguez, Mauricia Benedito, Sergi Trilles, Arturo Beltrán, Laura Díaz, and Joaquín
Huerta. Mobile application for noise pollution monitoring through gamification techniques. In ICEC, Lecture Notes
in Computer Science. Springer Berlin/Heidelberg, 2012.

[27] Pascal Neis, Dennis Zielstra, and Alexander Zipf. The street network evolution of crowdsourced maps: Open-
streetmap in germany 2007–2011. Future Internet, 4(1):1–21, 2011.

[28] German Federal Ministry of Justice. Verkehrslärmschutzverordnung vom 12. juni 1990 (bgbl. i s. 1036),
die durch artikel 3 des gesetzes vom 19. september 2006 (bgbl. i s. 2146) geändert worden ist. Bundes-
Immissionsschutzverordnung, 2006.

[29] German Federal Ministry of Justice. Vierunddreißigste verordnung zur durchführung des bundes-
immissionsschutzgesetzes (verordnung über die lärmkartierung) vom 6. märz 2006 (bgbl. i s. 516). Bundes-
Immissionsschutzverordnung, 2006.

[30] OpenStreetMap. Osm statistics. http://www.openstreetmap.org/stats/data_stats.html, 2013. [Online, ac-
cessed 10-March-2013].

[31] The European Parliament. Directive 2002/49/ec of the european parliament and of the council of 25 june 2002
relating to the assessment and management of environmental noise. Official Journal of the European Communities,
L189:12–25, 2002.

[32] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[33] Rajib Kumar Rana, Chun Tung Chou, Salil S. Kanhere, Nirupama Bulusu, and Wen Hu. Ear-phone-assessment of
noise pollution with mobile phones. In ACM SenSys, pages 395–396, 2009.

[34] Rajib Kumar Rana, Chun Tung Chou, Salil S. Kanhere, Nirupama Bulusu, and Wen Hu. Ear-phone: an end-to-end
participatory urban noise mapping system. In ACM/IEEE IPSN, 2010.

[35] Axel Schulz, Jakob Karolus, Heiko Paulheim, Max Mühlhäuser, and Immanuel Schweizer. Accurate pollutant mod-
eling and mapping: Applying machine learning to participatory sensing and urban topology data. In 11th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2013. In Submission.

[36] Immanuel Schweizer, Roman Bärtl, Axel Schulz, Florian Probst, and Max Mühlhäuser. Noisemap - real-time partic-
ipatory noise maps. In Second International Workshop on Sensing Applications on Mobile Phones, 2011.

[37] Immanuel Schweizer, Christian Meurisch, Julien Gedeon, Roman Bärtl, and Max Mühlhäuser. Noisemap: multi-tier
incentive mechanisms for participative urban sensing. In Proceedings of the Third International Workshop on Sensing
Applications on Mobile Phones. ACM, 2012.

[38] Eberhard Sengpiel. Table of sound pressure levels. http://www.sengpielaudio.com/

TableOfSoundPressureLevels.htm. [Online, accessed 10-April-2013].

[39] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. Linkedgeodata : A core for a web of spatial open
data. Semantic Web Journal, 2012.

[40] European Union. Future noise policy. com (96) 540 final. European Commission Green Paper, 1996.

49

http://www.openstreetmap.org/stats/data_stats.html
http://www.sengpielaudio.com/TableOfSoundPressureLevels.htm
http://www.sengpielaudio.com/TableOfSoundPressureLevels.htm

[41] W3Schools. Rdf tutorial. http://www.w3schools.com/rdf/default.asp. [Online, accessed 02-May-2013].

[42] Die Welt. Online-atlas openstreetmap hat über eine million mitglieder. http:

//www.welt.de/newsticker/dpa_nt/infoline_nt/computer_nt/article112802104/

Online-Atlas-OpenStreetMap-hat-ueber-eine-Million-Mitglieder.html, 2013. [Online, accessed 04-
April-2013].

[43] Deutscher Wetterdienst. About dwd. http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=

true&_pageLabel=_dwdwww_wir_ueberuns_kurzportraet&activePage=&_nfls=false. [Online, accessed 04-
April-2013].

[44] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, 3 edition, 2011.

[45] Moustafa Youssef and Ashok Agrawala. The horus wlan location determination system. In Proceedings of the 3rd
international conference on Mobile systems, applications, and services, MobiSys ’05. ACM, 2005.

[46] Dennis Zielstra and Alexander Zipf. A comparative study of proprietary geodata and volunteered geographic infor-
mation for germany. In 13th AGILE International Conference on Geographic Information Science. ACM, 2010.

50

http://www.w3schools.com/rdf/default.asp
http://www.welt.de/newsticker/dpa_nt/infoline_nt/computer_nt/article112802104/Online-Atlas-OpenStreetMap-hat-ueber-eine-Million-Mitglieder.html
http://www.welt.de/newsticker/dpa_nt/infoline_nt/computer_nt/article112802104/Online-Atlas-OpenStreetMap-hat-ueber-eine-Million-Mitglieder.html
http://www.welt.de/newsticker/dpa_nt/infoline_nt/computer_nt/article112802104/Online-Atlas-OpenStreetMap-hat-ueber-eine-Million-Mitglieder.html
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=_dwdwww_wir_ueberuns_kurzportraet&activePage=&_nfls=false
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=_dwdwww_wir_ueberuns_kurzportraet&activePage=&_nfls=false

	Introduction
	Basics
	Participatory sensing
	Machine Learning and Data Mining
	RDF and SPARQL

	Related work
	Participatory sensing and noise mapping
	LinkedGeoData and its application scenarios
	Data quality of OpenStreetMap and usage scenarios

	Architecture
	Data sources
	NoiseMap
	OpenStreetMap
	LinkedGeoData
	``Deutscher Wetterdienst''

	Implementation
	Query and data processing pipeline
	Querying of data sources
	AbstractAttribute - How to model features
	DataBuilders - Generating a custom arff file

	Evaluation
	Feature selection and optimization
	Single features
	Feature compositions
	Different sound level distributions
	Different classifiers

	Evaluation summary

	Applications
	Conclusion and future work

