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Abstract
The aim of this thesis is to study and compare a variety of machine learning algorithms that can be
used to predict the cost of a train ride on the German railway system according to attributes such as the
distance traveled on different types of trains. This prediction is to be implemented in an existing system
(MOTIS), which can be used to identify the lowest possible fare for any given journey. The comparison
will also include an existing method that is currently used to predict railway fares, and we were able
to produce models that perform better than the existing method. Furthermore, the thesis describes a
sampling method that was developed as a means of producing data samples of train journeys that come
close to train journeys booked by actual humans.

The thesis starts by providing a short introduction to the field of machine learning before progressing
to describe the techniques utilized in this thesis, which include simple linear regression, multivariate
adaptive regression splines, decision tree learners, support vector machines and neural networks. The
thesis then continues with the development of a sampling method and suggests a probability-based
sampling approach that favors routes that are planned to and from train stations that have a high number
of incoming and outgoing trains. Finally, different machine learning algorithms are evaluated and ranked
using 10-fold cross-validation. The outcomes reveal that a sophisticated tree ensemble learner (cubist)
yields the best results, followed by support vector machines. Multivariate adaptive regression splines also
pose a viable option and are especially noteworthy due to the simplicity of the model produced, which is
particularly interesting because simple models have a lower prediction time than more complex ones.
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Zusammenfassung
Ziel dieser Arbeit ist das Studieren und Vergleichen einer Vielzahl von Algorithmen aus dem Bereich des
maschinellen Lernens zur Vorhersage des Beförderungsentgelt im Schienenverkehr anhand von Attributen
wie der Distanz einer Zugfahrt in verschiedenen Zugkategorien. Die entwickelte Methode zur Vorhersage
soll in ein bestehendes System (MOTIS) integriert werden. Dieses System kann zur Identifizierung der
günstigsten Zugfahrt verwendet werden. Der Vergleich beinhaltet außerdem eine bestehende Methode,
die zur Vorhersage von Bahnpreisen benutzt wird. Uns war es möglich ein Modell hervorzubringen, das
besser als die bestehende Methode abschnitt. Außerdem wird ein Samplingverfahren zur Produktion von
Dateninstanzen von Zugfahrten vorgeschlagen, das realitätsnahe Zugverbindungen generiert.

Diese Arbeit beginnt mit einer kurzen Einführung in das Feld des maschinellen Lernens, bevor die
benutzten Algorithmen beschrieben werden. Zu diesen Algorithmen zählen lineare Regression, Entschei-
dungsbaumlerner, Multivariate Adaptive Regression Splines, Support Vector Maschinen und neurale
Netzwerke. Fortgesetzt wird diese Arbeit mit der Beschreibung einer wahrscheinlichkeitsbasierten Samp-
lingmethode, die Bahnhöfe mit einer großen Anzahl an ein- und ausgehenden Verbindungen bevorzugt.
Zum Abschluss werden verschiedene Methoden des maschinellen Lernens mittels zehnfacher Kreuzvalidie-
rung evaluiert. Die Ergebnisse zeigen, dass ein ausgereifter Ensemble-Entscheidungsbaumlerner (cubist)
die besten Resultate liefert, gefolgt von Support Vector Maschinen. Multivariate Adaptive Regression
Splines stellen außerdem eine praktikable Lösung dar und sind besonders aufgrund ihrer Einfachheit
interessant, da einfache Modelle eine geringere Vorhersagezeit als komplexere Modelle besitzen.
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1 Introduction
At present, the majority of timetable information systems that are provided from public transportation
services communicate information about travel time only and disregard other relevant criteria, specifically
the ticket cost. Studies that have addressed the potential to include supplementary information in addition
to travel time have been carried out by a number of researchers (Müller-Hannemann and Schnee 2005;
Müller-Hannemann and Schnee 2007), and a Multi-Objective Traffic Information System (MOTIS) has
been proposed. This system allows service providers to optimize for multiple criteria, including the ticket
cost. The MOTIS algorithm is based on a highly modified version of Dijkstra’s algorithm that allows
optimization for multiple criteria. It uses a price estimation for the distance already traveled as well as
a lower bound for the distance yet to be traveled. In order to optimize for the overall ticket cost, a fast
numeric prediction of the price is required.

The tariff systems employed by railway companies, specifically those of Deutsche Bahn1, are very
complex and the ticket cost is not necessarily proportional to the distance traveled. Many parameters
contribute to the actual final ticket cost including, but not limited to, the type of train used (i.e. express
trains or inter-city trains) and existing levels of competition from low-cost airlines. In 2008, Deutsche Bahn
granted Müller and Schnee access to the Black-Box Pricing Component (BPC) that they utilize to calculate
railway fares (excluding contingent-based tickets or special offers). Unfortunately, this component was
too slow to be used in the algorithm utilized by MOTIS. Hence, this thesis focuses on finding a method
that emulates the behavior of the BPC using machine learning techniques. This method will be compared
with another technique for fare prediction that is currently used by MOTIS and discussed in Chapter 2.
Ideally, the models we produce provide better fare predictions than the current method. Of course, in
addition to providing a reliable estimation of the ticket cost, the model created needs to be able to provide
predictions fast. It is important to note that all research and conclusions presented in this thesis focus on
the then-current BPC. Any modifications to the pricing structure of the German railway system that have
happened in the meantime are disregarded as a result of the lack of current data. Imaginable posterior
adaptation of the results of this thesis include the multiplication of the predicted price with a constant
factor that accounts for the inflation that has occurred between the year 2008 and today.

1.1 The German Railway System

This thesis relies heavily on vocabulary that is mostly used in the domain of the German railway system.
It is therefore imperative that a short introduction to the different passenger trains that are in operation
in Germany and the price structure thereof is provided. The majority of passenger trains in Germany are
operated by Deutsche Bahn, a private German joint-stock company (AG) that has the federal government
as its majority shareholder. The German railway system can be broken down into four different train
categories:

• InterCity-Express (ICE): long-distance and high-speed trains that connect major cities.

• InterCity (IC) and the EuroCity (EC): slower express trains that connect smaller (European) cities.

• InterRegio (IR) trains: regional trains that are now very scarce in Germany.

• RegionalBahn (RB) or RegionalExpress (RE): semi-fast trains that connect different regions.

1 http://www.bahn.de
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Each of the train categories is assigned a number using background knowledge described in Subsec-
tion 4.1.2. This effectively means that ICE, IC/EC, and regional trains form classes 0, 1 and 3 respectively.
InterRegio, Class 2 trains, can be neglected because of their scarceness in our data set. As mentioned,
according to the tariff system employed by Deutsche Bahn, the ticket price is not necessarily proportional
to the distance traveled. Instead, fare costs are based on so-called relational prices for each train category
and corridors. A corridor is the area between two points which a train must not leave, and determines
the price. For ICE trains, the ticket cost between any two points is based on the corridors through with
a train has to travel, but can be influenced by factors such as train comfort and journey duration. It is
assumed that the distance between any two tariff points in a corridor does play a crucial role in the price
calculation.

The case is quite different with InterCity and EuroCity trains. As we will see in Section 4.2, the ticket
cost for IC/EC trains linearly depends on the distance traveled. Once a certain cut-off distance has been
reached, a cost degression is applied. Do note that the IC/EC pricing scheme is rumored to have changed
recently such that it is modeled in a similar manner to that of the ICE trains. As a result of the lack of
current data samples, this change cannot be taken into account in this thesis.

1.2 Thesis Structure

We will discuss related work concerning fare cost prediction in Chapter 2, and after a short introduction
to machine learning in Chapter 3, this thesis will continue with the actual machine learning process. It is
important to note that this process is not a linear one. Learning from data involves many iterations, often
going back to the start and changing something fundamental (e.g. the sampling method). Figure 1.1
visualizes the machine learning work flow. This is also known as the Cross Industry Standard Process for
Data Mining (CRISP-DM) and is described by Shearer (2000).

It all starts with data. In our case, we generate data using MOTIS in Section 4.1. We then analyze and
try to understand the data in Section 4.2. After we have gained some knowledge of the structure and the
character of the data, we will prepare it in order for it to be fed to several machine learning algorithms.
This preparation mostly involves the removal of attributes that serve no purpose in our learning schemes.
In Chapter 6, we describe how our models were tuned, and in Chapter 7 the resulting trained models are
validated using 10-fold cross validation (a method which is explained in Subsection 3.3.2). There are
many back pointers in this process. For example, after the first sampling method was put in place, it was
deemed required to go back to work on the data generation method because the then-current method was
not realistic enough and needed improvements. Nonetheless, this thesis presents the process of machine
learning in a linear fashion, i.e. first sampling data, then analyzing it, and finally learning from it. Where
appropriate, we describe the results of previous iterations and why it was seen necessary to go back in the
learning process.

understand
data

generate
data

prepare
data

fit model

validate

evaluate

Figure 1.1.: The machine learning process. This process is not linear and often involves going back and
forth between the individual steps.

7



2 Related Work
As a means of predicting railway fares in the German railway system, Müller-Hannemann and Schnee
(2005) describe a ticket price estimation system that operates through multiplying the distance to be
traveled between two train stations by a constant factor which, in this case, is price per kilometre (€ 0.14
per kilometre). Additionally, their method includes the application of surcharges, which vary according
to the type of train involved (€12 for an ICE train or €7 for an IC or EC train). Because this method
is no longer available in MOTIS, it has been recreated in Section 5.3 for comparison. This estimation is
very rough, but models the regional train travel pricing structure used by Deutsche Bahn quite precisely.
However, when anything other than regional trains is involved, models for predicting railway fares are
not as precise.

Harnisch and Nuhn (2010) analyzed the structure of railway fares through a lab project at Technische
Universität Darmstadt. They treated the distance traveled on each train category as separate paradigms
and based their final estimation on the cumulative prediction of three distinct models. The first model they
produced predicted the ticket price for express trains (class 0) using a second-order polynomial regression
scheme. The second model estimated the price of the distance traveled on inter-city trains (class 1) and
also employed a second-order polynomial. For regional trains (class 3), the researchers adopted the
original method proposed by Müller-Hannemann and Schnee (2005), because they were unable to identify
a linear model for regression that offered any improvement on this model. The models for express and
inter-city trains already had a very high reproducible explanatory value, with the correlation coefficient
(R2) being 0.9469 for express trains, and 0.9906 for inter-city trains – if applied to journeys consisting of
the respective train class alone. Their report did not contain any evaluation of journeys involving different
train classes. In addition, they proposed a ticket price ceiling of € 122. We have successfully verified the
results presented in their report. The relationship between the distance traveled and the ticket price for
each train category is discussed in Subsection 4.2.2, the model itself is given in Subsection 7.1.6 and the
cross-validation results for this model compared to other models can also be obtained from Table 7.4

Etzioni et al. (2003) explored the possibility of predicting the prices of airline tickets using a data set
of 12000 price observations. Their pilot study was limited to round-trip ticket prices for Los Angeles to
Boston, and Seattle to Washington over a 41-day period. The data mining methods investigated in this
study included the rule learning algorithm Ripper (Cohen 1995), the popular reinforcement learning
approach Q-learning (Sutton and Barto 1998) and time series analysis (Diebold 2000; Granger 1980).
The algorithm that emerged from the study combined the models produced by the algorithms mentioned
previously and was able to save an overall of 4.4% on the ticket price when tested on a data set of 4,480
simulated journeys. The airfare data was collected directly from major travel web sites. However, although
this research is of interest, it involves a completely different domain and focused on the prediction and
time-series analysis of just two routes; as such, it varies from the scope of our research and is not aligned
with our goal to predict the ticket prices for all train journeys.
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3 Foundations of Machine Learning
Generally speaking, a machine learning problem consists of n ∈ N training samples of D-dimensional
feature vectors x = (x1, . . . , xD). Training samples are also called instances, and each dimension of the
D-dimensional instance is a feature or an attribute.

Definition 1 An attribute or a feature is an aspect of a system such as the price, distance traveled, or
number of transfers.

Definition 2 A predictor is an attribute that plays a role in the prediction of the target attribute.

Definition 3 An instance is an observed set of values of attributes, including the value to be predicted.

Definition 4 A data set D is a set of instances.

Consider a 3-dimensional space of 4 feature vectors where the first dimension is the attribute distance,
the second dimension is the attribute stop count, and the third dimension is the attribute price. The
training instances are as follows:

D = {x1,x2,x3,x4}

x1 = (100, 10,30)>, x2 = (50, 3,20)>, x3 = (140,9, 50)>, x4 = (200, 20,55)>

Where machine learning (aka predictive modelling) comes in handy is when we would like to predict one
or more target attributes using only predictors. Consider the scenario where you would like to predict the
attribute price when you only have a vector of predictors (130,15, ?)>. Here, the only known attributes
are distance and stopcount. Using the techniques of machine learning, you can now try to find a model
that predicts the price.

Machine learning algorithms can basically be separated into a few categories:

• Supervised learning, in which we try to predict a target value by learning a model from previous
training data. This category can be further divided into:

– Classification, where training instances belong to two or more classes (a set of categories or
nominal values such as car brands) and we are trying to classify new data by identifying to
which class it belongs to.

– Regression, where it is assumed that the training data is made up of one or more continuous
(numeric) feature that we are trying to predict. The case of predicting more than one continuous
feature is called multi-target regression.

• Unsupervised learning, where we are not trying to predict specific features and instead would like
to group similar instances together.

Figure 3.1 depicts a subset of the fields machine learning is concerned with. Do note that many of the
algorithms, such as decision trees and support vector machines, can be adapted in order to be usable for
both regression and classification problems (dual use). Given the nature of the problem at hand, this
thesis focuses on regression models that produced promising results.
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Machine Learning

Unsupervised LearningSupervised Learning

ClassificationRegression

Neural NetworksSVMsDecision TreesLinear Models

Figure 3.1.: An incomplete subset of the fields and algorithms of Machine Learning. The subfield of
regression is marked because the problem at hand is a regression problem.

3.1 Models for Prediction

We are going to loosely introduce some machine learning algorithms in this section. First, we will start
with a simple model: linear regression. Second, a short introduction to Multivariate Adaptive Regression
Splines (MARS) will be provided. Then, we will take a closer look at so-called decision trees. To complete
this section, we will present some more advanced modeling techniques, namely Support Vector Machines
(SVMs) and neural networks.

Having no prior knowledge of the performance of any machine learning algorithm applied to the
problem at hand, we tried to choose a selection of algorithms that are representative for the various
approaches to machine learning. Although it is possible to use classification methods together with
Discretization, a method that converts numeric attributes into nominal attributes by putting numeric
attributes into a number of bins (Fayyad and Irani 1993), we have focused on algorithms that have
support for regression built-in. The reason for the choice we have made is clear: time constraints. Adding
new algorithms to the list of methods to evaluate is simple, but actually training a model and performing
the evaluation takes time. For this reason, we tried to include standard schemes such as SVMs, neural
networks, and tree learners in addition to not-so-common algorithms that provided interesting results like
MARS.

3.2 Overfitting

In machine learning, overfitting is a very common problem. It can occur when an algorithm is trained
with a training set that contains some regularities that do not appear in new data we are trying to predict.
In other words, a method may adapt to features in the training set that have no causal relation to the
function approximation. When this situation occurs, the learner performs well when predicting the
training data, but fails to predict previously unseen data well.

There are several approaches to prevent overfitting, depending on the algorithm in use. For this reason,
we will briefly discuss ways to do so in the respective sections, specifically for decision tree learners and
the MARS algorithm.

3.2.1 Linear Regression

Linear regression comes to mind naturally when dealing with problems that have mostly numeric attributes.
Let {x0,x1, . . . ,xn−1,xn} be a set of n observations along with their target values xD (the last attribute in
each feature vector). Linear regression outputs a prediction for the target value using the function y

y(x,w) = w0+w1 x1+ . . .+wD−1 xD−1 (3.1)

10
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Figure 3.2.: Scatter plot with fitted regression line. The data points at the extremes suggest that the
relationship between the two variables may be non-linear.

in a D− 1-dimensional input space where x= (x1, . . . , xD−1)> is a vector of attribute values (excluding
the attribute to be predicted), and w is a vector of attribute weights learned from previous observations.
This regression is a linear function of the input variables x i. The coefficients or weights w0, . . . , wD are
calculated from training data. There are many ways to do so, but the most common one is called ordinary
least squares (OLS). The idea behind OLS is to minimize the sum of squared residuals (the difference
between the actual and the estimated value of an instance).

Given a data set that provides measurements of the girth (tree diameter), height and volume of timber
in 31 felled black cherry trees, we will now give an example of the application of linear regression.
Figure 3.2 shows a scatter plot and a regression line calculated using linear regression. The data points
on the extremes suggest that simple linear regression might not be a good fit for the problem at hand,
because the relationship between girth and volume is possibly nonlinear.

Fortunately, the model can be extended to allow linear combinations of non-linear functions of the
input variables

y(x,w) = w0+
M−1
∑

j=1

w jφ j(x) (3.2)

where φ j(x) are the basis functions and M − 1 the total number of parameters. Figure 3.3 demonstrates
linear regression with a 2nd order polynomial basis function φ j. Some authors prefer to call this
polynomial regression. The resulting curve is a better fit for the problem at hand.

For a thorough introduction to Linear Regression for Machine Learning please see Bishop (2006, chap.
3), or for a gentler introduction Witten, Frank, and Hall (2011).
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Figure 3.3.: Scatter plot with fitted polynomial regression line. Nonlinearities between the two variables
are modeled more appropriately using polynomial regression.

3.2.2 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) were first invented by Friedman (1991) and are an
extension of linear models as introduced in Subsection 3.2.1. The MARS algorithm automatically models
nonlinearities and the interaction between predictors. Like neural networks (see Subsection 3.2.5),
MARS uses surrogate features instead of original predictors. It uses hinge functions to take into account
nonlinearities. Hinge functions can be written as

h(x) :=max(0, x) =

(

x if x > 0

0 if x ≤ 0
(3.3)

where max(a, b) is a if a > b else b and x ∈ R. Do note that for x ≤ 0 h(x) is always 0. A model produced
by the MARS algorithm has the form

y(x) =
k
∑

i=1

wiφi(x) (3.4)

where wi are constant coefficients similar to the ones introduced for linear regression in Subsection 3.2.1,
and φi is the basis function which can take one of the following forms:

• a constant 1

• a hinge function h

• a product of two or more hinge functions.

A MARS model is built in two steps:

• The forward pass: MARS starts with a model that is just the mean of the value to be predicted. It
then keeps adding two basis functions h(c − x) and h(x − c) such that the residual sum of squares
is minimized. MARS stays in this phase until the improvement become too minor or until the
maximum number of terms is reached.

12



• The backward pass: MARS prunes the model to avoid overfitting (see Section 3.2), i.e. it reduces
the size of the model by decreasing the number of terms it contains. This is done by calculating
the cross-validation results after removing the terms one by one, where the term with the lowest
negative effect on the validation results wins.

Using the tree data set (as introduced in Subsection 3.2.1), MARS will build the model shown in Figure 3.4,
which is described by the following equation:

Volume= 28.3+ 6.5 · h(Girth− 13.7)− 3.4 · h(13.7−Girth) (3.5)

with Girth = 13.7 being the cutoff point produced by a pair of hinge functions. For more details on MARS,
please see Kuhn and Johnson (2013, sec. 7.2), and the original paper by Friedman (1991).
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Figure 3.4.: MARS algorithm applied to the tree problem. The knit at Girth = 13.7 is produced by the
hinge function h and automatically models nonlinearities.

3.2.3 Decision Trees

Decision trees are a popular way for both classification and regression. These trees use a tree-like graph
of decisions and their possible consequences. One of the first tree learners include the Classification and
Regression Tree (CART) algorithm by Breiman (1993), and Iterative Dichotomiser 3 (ID3) by Quinlan
(1986) which has roots in a concept developed by Hunt (1962). In this thesis, we will focus on the
Iterative Dichotomiser 3 (ID3) algorithm and its descendants, because they produced results that were
much more promising compared to the CART algorithm.

In order to explain the ID3 algorithm and its descendants, we will now introduce a sample data set from
Quinlan (1986), the weather data. The weather data is a toy data set that illustrates under what weather
conditions one is likely to play an unspecified game. Table 3.1 presents this data set in a tabular fashion.
All of the attributes are nominal in nature, i.e. the attribute Play can either be yes or no. Figure 3.5
depicts an exemplary decision tree constructed from the weather data. In this figure we can infer that
one is able to play a game if the Outlook is rainy and it is not windy. The ID3 algorithm as shown in
Listing 1 can be used to construct such a tree.
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Outlook Temperature Humidity Windy Play

1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes

10 rainy mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rainy mild high true no

Table 3.1.: The weather data set.

Outlook

rainy

windy
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no

false

yes

overcast

yes

sunny

humidity

normal
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high

no

Figure 3.5.: Exemplary Decision Tree constructed from the weather data.

Still, the question on what attribute to split on remains. The entropy E(D) is a measure of disorder or
impurity and describes the amount of uncertainty for an attribute in a data set. Let D be a set of instances,
let p⊕ be the fraction of positive training samples (play=yes) and p	 the fraction of negative training
samples (play=no). Then, the entropy is given by

E(D) :=−p⊕log2p⊕− p	log2p	 (3.6)

The entropy can be generalized from boolean-valued target functions such as our example weather
data to discrete-valued target functions. Let D be a set of instances, and let pi be the fraction of instances
in S with output value i. Then the entropy is given by

E(D) :=−
∑

i

pi log2 pi (3.7)

If we want to calculate the entropy for Outlook = sunny, we get

E(Outlook= sunny) =−
2

5
log2

2

5
−

3

5
log2

3

5
= 0.971 (3.8)
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ID3 ( Examples , Targe t_At t r i bu te , A t t r i b u t e s )
Create a root node fo r the t r e e
I f a l l examples are p o s i t i v e , Return the s ing l e−node t r e e Root , with l a b e l = +.
I f a l l examples are negat ive , Return the s ing l e−node t r e e Root , with l a b e l = −.
I f number of p r e d i c t i n g a t t r i b u t e s i s empty , then Return the s i n g l e node t r e e Root ,
with l a b e l = most common value of the t a r g e t a t t r i b u t e in the examples .
Otherwise Begin

A ← the a t t r i b u t e tha t bes t c l a s s i f i e s examples .
Dec i s ion Tree a t t r i b u t e f o r Root ← A .
For each p o s s i b l e value , v i , o f A ,

Add a new t r e e branch below Root , corresponding to the t e s t A= v i .
Let Examples (v i ) be the subse t of examples tha t have the value v i f o r A
I f Examples (v i ) i s empty

Then below t h i s new branch add a l e a f node with l a b e l = most common
t a r g e t value in the examples
E l se below t h i s new branch add the subt ree

ID3 ( Examples (v i ) , Ta rge t_At t r i bu te , A t t r i b u t e s − {A})
End
Return Root

Listing 1: Pseudo code for the ID3 algorithm from Mitchell (1997, p. 56)

because three positive outcomes can be distinguished from two negative outcomes when the Outlook is
sunny.

After having calculated the entropy for each attribute, we can now use this measure during the
application of the ID3 algorithm in order to decide which attribute to use for the split. As an alternative
measure, the Kullback-Leibler divergence (Kullback and Leibler 1951) which, in the context of machine
learning, is also known as Information Gain IG(A), can be used. This heuristic usually prefers an attribute
with high mutual information over other attributes and is defined as

IG(D, A) = E(D)−
∑

i

|Di|
|D|
· E(Di) (3.9)

The C4.5 algorithm is an extension of the ID3 algorithm and was also invented by Quinlan (1993a).
It can deal with missing attributes by evaluating the gain for an attribute by considering only instances
where that attribute is defined. In addition, the C4.5 algorithm can also deal with continuous attributes
by creating a threshold value that splits the data set into two sets whose attribute values are either above,
below, or equal to the threshold value. Another novel feature of C4.5 constitutes the pruning of a decision
tree. Pruning is done by replacing branches (subtrees) by a leaf node. The algorithm prunes a subtree if
the expected error rate in that subtree is greater than in the single leaf.

Still, in some real-world learning tasks, we are trying to predict a continuous numeric value (regression).
Discretization methods such as the MDL method proposed by Fayyad and Irani (1993) can be utilized to
convert numeric attributes to nominal attributes. The MDL method puts numeric values into bins, hence
producing a nominal class. However, in this thesis we chose to focus on tree learners that have support
for numeric attributes built-in.

The M5 system, also created by Quinlan (1992), has support for numeric predicted values built-in. This
system uses recursive partitioning to build a piecewise linear model, i.e. terminal leaves contain linear
regression models. These linear regression models are based on predictors used in previous splits. This is
explained in more detail by Quinlan (1992). Wang and Witten (1997) proposed a similar model that is
implemented in the Weka machine learning framework (Hall et al. 2009) as M5P.

C5.0 (Quinlan 2013b) and Cubist (Quinlan 2013a) resemble the latest incarnation of the extended ID3
algorithm, with the former being applicable to classification and the latter being applicable to regression
problems. Cubist models build on the concepts mentioned previously and add a couple of novel features.

15



Most notably, a cubist model can use a boosting-like scheme called committees where iterative model trees
(trees whose leaves contain linear expressions) are created in sequence. Using this technique, many trees
are constructed. The first tree is produced as usual. Any subsequent trees are however created such that
they are based on an adjusted version of the outcome in the training set. If the outcome is overpredicted
(e.g. the price for a train ticket is generally predicted too high), the target value of the training data fed to
the subsequent tree learner is adjusted downward. The final prediction is simply the arithmetic mean of
the predictions from each model tree. This effectively means that the prediction needs to be calculated for
each tree, which has negative effects on the overall prediction time of the cubist algorithm. Additionally,
the models constructed by the Cubist tree learner are deduced to simple if-then-else rules (Quinlan 1987;
Quinlan 2013a). Whenever a case satisfies all the conditions, the linear formula is used for predicting
the target value. Unlike other rule-based models, the average is taken for the final prediction in case
two or more rules apply. Another feature in Cubist is the application of the k-nearest neighbor algorithm
(Quinlan 1993b) to adjust the prediction from the model. First, a value is predicted as usual. Then cubist
finds the k most similar cases in the training set and averages these outcomes.

3.2.4 Support Vector Machines

A Support Vector Machine (SVM) is a learning concept that has become very popular in recent years.
Kernel-based methods such as SVMs use an implicit mapping from the input data into high dimensional
kernel space defined by a kernel function. All learning is then done in this feature space. The way of
mapping instances from a data set D into an inner product space V occurs without having to compute the
mapping explicitly due to the instances gaining meaningful structure. This is called the kernel trick and is
explained by Schölkopf and Smola (2001). The trick here is to use a learning algorithm that only requires
dot products between vectors in the product space.

Figure 3.6a demonstrates a binary classification problem. The three bold lines represent possible
separator candidates, and all of them clearly separate the black points from the white points. The question
here is if these three lines are equally good. The lowest of the three lines comes very close to the black
data points and may hence not be a good separator after all. SVMs address this issue by attempting to
minimize generalization loss, i.e. by choosing the separator line that is farthest away from the data points.
This separator is called the maximum margin separator and is shown in Figure 3.6b.

The question that arises here is what to do when the data is not linearly separable like in Figure 3.6b.
Fortunately, when data is mapped into a space of sufficiently high dimension, then it will almost always
be linearly separable (Russell and Norvig 2009, p. 746). Figure 3.7a depicts an input space where the
black dots are not linearly separable from the white dots. The decision boundary, a circle, is also shown.
Figure 3.7b shows this input space mapped into a higher-dimensinal space, where the data becomes
linearly separable.

Additional literature on SVMs can be found in Vapnik (1995), Burges (1998), Cristianini and Shawe-
Taylor (2000), Müller et al. (2001), and Bishop (2006, chap. 7). Originally, SVMs only supported
classification problems, but methods have been developed so that they are also applicable to regression
tasks (Smola and Schölkopf 2004).

3.2.5 Neural Networks

Another type of learning technique is called a Neural Network. This model is inspired by biological neural
networks and has its origins in mathematical representations of information processing in biological
systems (McCulloch and Pitts 1943; Rosenblatt 1962; Rumelhart, Hintont, and Williams 1986) and
consists of interconnected artificial neurons.

Figure 3.8 depicts a mathematical model of a neuron as invented by McCulloch and Pitts (1943). The
neuron fires when linear combinations of its inputs exceed a threshold. This linear combination is usually
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Figure 3.6.: Support Vector Machine classification as depicted by Russell and Norvig (2009, p. 745). In (a)
there are three candidate separator lines that separate the two classes of points. In (b) the
points are separated by the maximum margin separator which is at the midpoint of the area
constructed by the two dashed lines. The circled points are the points that are closest to the
separator and are called support vectors.
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Figure 3.7.: Support Vector Machine classification as depicted by Russell and Norvig (2009, p. 747) for
data that is not linearly separable. In (a) the true decision boundary between the positive
and negative examples is a circle (which is non-linear). In (b) the data is mapped into a
three-dimensional space. The circular boundary from (a) becomes linear.
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Figure 3.8.: A mathematical model for a neuron as depicted by Russell and Norvig (2009, p. 728). The
output activation for this unit is given by a j = g(

∑n
i=0 wi jai), where ai is the output activation

of the unit i and wi, j is the weight associated with the link from unit i to this unit.

transformed by a nonlinear function g. When connected together, these hidden units are called a neural
network, connected by socalled links. Each link has a weight wi, j, which determines the strength and sign
of the connection. For the algorithm studied in this thesis, the activation function g is a hard threshold, in
which case the unit is called a perceptron. In addition, the Multilayer Perceptron (MLP) is a feed-forward
network, which means it has connections only in one direction and forms a directed acyclic graph.

Please see Bishop (2006, chap. 5), Russell and Norvig (2009, p. 727 – 736), Bishop (1995), and Reed
and Marks (1998) for more details on the inner workings of neural networks.

3.3 Validation

After having trained models using the algorithms we have introduced in the last section, it is natural to
ask how these techniques compare. What we are actually interested in is how these methods will perform
on new data. Of course, we could just validate our model using the data it was trained with. But, that
would be a methodical error, because the model will not be used to predict the data it was trained with –
it will be used to predict data it has never seen before. This is especially important because we do not
want to put algorithms at advantage that overfit the training data (see Section 3.2). When testing only on
the training set, algorithms such as the k-nearest-neighbor algorithm (which encodes the training set) will
rank highly because they yield excellent results on the training set. However, they will possibly perform
very poor on new data due to overfitting.

Hence, we are interested in the performance of the algorithm when it is applied to data that was not
part of the training set. It is usually assumed that there are separate test sets available, but this is not
always the case. For this reason, we will now introduce some commonly-used methods for splitting an
original data set D into two disjoint sets Dtrain for training and Dvalidate for validation. The process of
validating a model using subsets of the original data is called resampling.

3.3.1 Train-Test Split

Given a data set D we split this into two disjoint sets Dtrain and Dvalidate used for training and validation,
respectively. The validation set is usually chosen to be smaller than the training set (e.g. 30% for the
validation set and 70% for the training set). While this might work in some situations, we could just be
unlucky and select a set that is not representative of the population it was sampled from.

The train-test method can be further improved by utilizing stratified random sampling. For numeric
target values, this probabilistic method splits the data set D into n strata, i.e. segments based on n
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percentiles. Then Di,train and Di,validate for i ∈ {1, . . . , n} is constructed in each segment using random
sampling. The final train and validation set is given by the union of the respective sets in each of the n
percentiles:

Dtrain =
n
⋃

i

Di,train (3.10)

Dvalidate =
n
⋃

i

Di,validate (3.11)

Another approach to stratified sampling can be utilized when the outcome of training samples highly
correlates to some categorical attribute. For example, given a data set that contains school performance,
we may want to split schools into rural, urban, and suburban and apply random sampling to each strata
individually.

3.3.2 Cross-Validation

Cross-Validation (CV) describes a more sophisticated validation method and is very popular for machine
learning. The original data set D is split into k ∈ N disjoint folds Di for i ∈ {1, . . . , k} of the same size.
Then, for each i, a learning algorithm is trained using D \Di, where \ denotes the set difference. The
instances not used for training are now in Di and are used for validation. The final error is usually chosen
to be the mean or median of the error metric used in each fold. This process is depicted in Figure 3.9.
This is also the validation method we have chosen in this thesis. Tenfold cross-validation has become the
standard method in machine learning, and extensive tests on numerous different datasets have shown that
10 is the right number of folds in order to get the best estimate of error (Witten, Frank, and Hall 2011, pp.
152 – 154). Kohavi (1995) also recommends tenfold cross-validation for model selection. Some authors
prefer to repeat this process using a different seed in order to yield different folds in each iteration. Hence
the name repeated cross-validation. There is also a special case of cross-validation called the leave-one-out
cross validation (LOOCV). As the name implies, this is equal to cross validation using k = |S|, where |S| is
the size of the original data set. While this method can be used for small data sets, it is not applicable to
larger data set such as ours due to performance reasons, i.e. it would require to train a model for each
instance in the data set.
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Figure 3.9.: Cross-Validation as depicted by Borovicka et al. (2012). The figure visualizes how the k folds
are constructed in order to be used for validation. In each turn, a sample of data is partitioned
into complementary subsets: the training set (white), and the test set (grey). These sets are
then used for training and validation, respectively. By taking the mean of the results produced
in each turn, an overall quality estimate can be provided.
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3.4 Evaluation

In order to choose the model that best fits the problem at hand, different evaluation metrics can be
utilized. Witten, Frank, and Hall (2011, p. 180) provide a very good overview of evaluation measures
for regression problems. In the following, p refers to the predicted values, and a refers to the actual
(observed) values.

The mean-squared error (MSE) is the most common error measure in machine learning settings, and is
defined as:

mse(p, a) :=
(p1− a1)2+ . . .+ (pn− an)2

n
(3.12)

In order to give the mean-squared error (MSE) the same dimension as the predicted value, the square
root can be taken, thus yielding the root mean-squared error (RMSE):

rmse(p, a) :=
p

mse(p, a) (3.13)

The mean-absolute error (MAE) works similarly:

mae(p, a) :=
|p1− a1|+ . . .+ |pn− an|

n
(3.14)

The relative-squared error (RSE) describes something quite different. It puts the squared-error into
relation to the error produced by just using the arithmetic average as prediction:

rse(p, a) :=
(p1− a1)2+ . . .+ (pn− an)2

(a1− a)2+ . . .+ (an− a)2
(3.15)

Analogously to the root mean-squared error (RMSE), the root relative-squared error (RRSE) just takes the
square root of the RSE:

rrse(p, a) :=
p

rse(p, a) (3.16)

The relative-absolute error (RAE) is just the normalized total absolute error.

mae(p, a) :=
|p1− a1|+ . . .+ |pn− an|
|a1− a|+ . . .+ |an− a|

(3.17)

Another measure often used to assess how good a model fits a problem is the correlation coefficient and is
described in Equation (B.6).

The RMSE is probably the most common error in machine learning. Compared to the MAE, it am-
plifies and severely punishes large errors, i.e. being off by 10 cents is more than twice as bad as being off
by 5 cents. Unlike the correlation coefficient (R2) the MAE and the RMSE are fairly easy to explain. Fur-
thermore, because the MAE is a linear measure its meaning is more intuitive. The correlation coefficient
measures the statistical correlation between the predicted and the actual values and is not necessarily
a good option when the MAE and RMSE are available, because the error produced is a much better
assessment as far as ranking different machine learning methods for the prediction of railway fares is
concerned. In this thesis we have opted to use all error metrics except the non-normalized metrics (MSE
and RSE). However, in Section 3.4, the MAE is used for the final ranking of the algorithms, because we
did not want to punish outliers.
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4 Data Preparation
Before training various machine learning algorithms, a data set is needed. For the problem at hand, no
existing data set was available. Since machine learning is an iterative process, we have taken more than
one iterations as far as sampling is concerned.

In the first iteration of the learning process, random connections where the source and destination
train station had an equal chance of being chosen over a time span of one month were sampled. This
resulted in connections that were very unlikely to be planned by actually humans (i.e. connections from a
station in the middle of nowhere to a station in the middle of nowhere). In the second iteration, we tried
to sample only a week worth of data, because our research has shown that the week number has little
influence on the ticket price. Still, the problem that this approach resulted in a data set that was out of
touch with reality remained. In the third and final iteration, we proposed a sampling method that prefers
train stations with a high number of incoming and outgoing connections. This method of sampling is
described in Section 4.1 and is the basis for the data set S1. This data set is supplemented the data set S2,
which was sampled using a recording of train journeys booked by actual humans.

4.1 Sampling

Generally speaking, sampling describes the act of taking a subset of instances from a given population. In
our case, we generate connections (train journeys from source to destination train stations) using MOTIS
and the BPC. Because sampling plays a crucial part in the machine learning process, we need to think
about what to sample. Fortunately, we are in a position to sample as much data as we like. But this does
not come without risks. It is quite easy to sample data that is a poor fit for the problem at hand. After
all, we need to sample railway connections that are at least close to train journeys humans would like to
endeavor in reality, because MOTIS exists for exactly that purpose. Thus, the optimal situation would be
to mimic a human that utilizes a system to plan train rides. Of course, this is harder than it sounds. As
stated in the Chapter 1, predictive modeling is not a linear process. This is especially true for sampling.

Our final solution to this problem assigns each tration station a normalized probability of being chosen
as source or destination train station in the sampling process. Because we are able to make use of
background knowledge that describes the importance of a train station in terms of incoming and outgoing
connections for each station, probability sampling can be used. These samples are selected in such a way
as to be representative of what would be chosen by actual humans, therefore providing credible results.

Each train station si, i ∈ {1, ..., n} is assigned the value wi of the application of a weight function

weight : N×N×N×N→ N (4.1)

weight(c0, c1, c2, crbre) := 6c0+ 5c1+ 4c2+ 1crbre (4.2)

where c0, c1, c2 and c3 describes the number of incoming and outgoing train connections for express
trains (class 0), inter-city trains (class 1), and inter-regio trains (class 2), respectively. The last argument
corresponds to the number of connections for regional trains (RB and RE). Do note the absence of class 3.
The number for this class does not contribute to the likelihood of being chosen because MOTIS currently
does not handle commuter railway systems like the German Tram. The factors associated with each c
were chosen such that connections for faster trains are more important than those from slower trains, i.e.
the factor 6 for ICE trains makes this type of train more important than a RB train with factor 1. After we
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Figure 4.1.: Density and rug plot of station probabilities for the probability-based sampling technique. The
plot shows two peaks, one at 0 and one just above 0, representing negligible and slightly
insignificant stations, respectively.

have calculated the weight wi for each station, the probability Pi can be inferred by the application of the
probability function

Pi : N→ [0, 1] (4.3)

Pi(w) :=
w

n
∑

i
wi

, with
n
∑

i=1

Pi = 1 (4.4)

where w denotes the weight of the station in question. The denominator corresponds to the sum of the
weights of all stations. Figure 4.1 visualizes the computed kernel density estimate, a non-parametric
way to estimate the probability density function of a random variable. Upon examination of this plot, it
becomes clear that there are two peaks: One is at 0 and correlates to stations with a weight of 0. We do
not want to plan routes from or to these stations because they serve only commuter trains (Trams) that
MOTIS does not handle. The second peak is just a little above 0. These are insignificant stations with a
very low number of regional trains. The rug plot at the bottom reveals that there are indeed a couple of
very important stations that should not be neglected when taking samples.

Table 4.1 ranks the 25 most important railway stations according probablity-based technique, sorted
by their weights and probabilities. This confirms that the resulting data will indeed include the usual
suspects, i.e. major central railway stations (Hbf). Analogously, Table 4.2 ranks 10 of the least important
stations with a probability above 0. The data set produced by this sampling method will henceforth be
named S1 in this thesis.

In addition to this probability-based technique, another form of background knowledge was integrated
in a later stage. This background knowledge, which was provided by Deutsche Bahn, consists of a live
recording of bookings done by humans in one single day. The data set built upon this information is
named S2 in this thesis. As a result, the final data set S3 = S1 ∪ S2 consists of 7000 connections sampled
using the probability-based technique, and 7000 connections sampled using a live recording of bookings
done by actual humans. The resulting data set contains many connections from one major train station
to another, in addition to some not-so-common routes, and this is indeed a very realistic scenario. The
departure time and date were chosen at random within one single day for the construction of the data
sets S1 and S2.
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Rank Name Weight Probability

1 Hannover Hbf 5691 0.010885
2 Köln Hbf 4890 0.009353
3 Frankfurt(Main)Hbf 4670 0.008932
4 Düsseldorf Hbf 4424 0.008462
5 Hamburg Hbf 4207 0.008047
6 Duisburg Hbf 4114 0.007869
7 Mannheim Hbf 3811 0.007289
8 Berlin-Spandau 3740 0.007153
9 Dortmund Hbf 3607 0.006899

10 Nürnberg Hbf 3605 0.006895
11 F-Flughafen Fernbf. 3509 0.006712
12 Würzburg Hbf 3463 0.006624
13 Göttingen 3424 0.006549
14 Kassel-Wilhelmshöhe 3392 0.006488
15 Fulda 3358 0.006423
16 Hamburg Dammtor 3248 0.006212
17 Essen Hbf 3055 0.005843
18 Hamm(Westf) 2847 0.005445
19 Bochum Hbf 2794 0.005344
20 Hamburg-Harburg 2780 0.005317
21 Augsburg Hbf 2579 0.004933
22 Stuttgart Hbf 2492 0.004766
23 Mainz Hbf 2458 0.004701
24 Bielefeld Hbf 2444 0.004675
25 München Hbf 2361 0.004516

Table 4.1.: Weight and probability of the 25 most important stations for the probability-based sam-
pling technique. The probability corresponds to the probability of being chosen as source or
destination train station during sampling.

Rank Name Weight Probability

5422 Freudenstadt Schulen 1 0.000002
5422 Rheinzabern Römerst 1 0.000002
5422 Rheinzabern Rappeng 1 0.000002
5422 Bilfingen 1 0.000002
5422 Hamburg Diebsteich 1 0.000002
5422 Zwingenberg(Baden) 1 0.000002
5422 Ersingen 1 0.000002
5422 Wüsting 1 0.000002
5422 Bremen-Mahndorf 1 0.000002
5422 Marienberg(Sachs) 1 0.000002

Table 4.2.: Weight and probability of 10 of the least important stations for the probability-based sampling
technique.
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4.1.1 Black Box Communication

The Multi-Objective Traffic Information System (MOTIS) can be communicated with using simple network
sockets and XML requests. In order to determine the fare cost for a train journey from a source train
station to a destination train station, an XML query must be sent to MOTIS.

An exemplary price query is depicted in Listing 2. In this query, the time in which the first train in a
connection departs is requested to be between 10am (line 3) and noon (line 4) and specified in ISO 8601
format 1. The source (line 8) and destination (line 12) stations are specified in the PathDescription tree
using unique ID numbers.

Listing 3 shows a trimmed down version of the response given by MOTIS with irrelevant fragments
such as debugging data or error codes removed. The response contains exactly one connection, and lists a
number of intermediate stops between the source and destination train stations. MOTIS usually provides
a number of alternative connections, all of which are recorded and put into the data set in our sampling
approach.

1 <Query>
2 <Interval definitionFor="departure">
3 <Begin dateTime="2013-04-23T10:00"/>
4 <End dateTime="2013-04-23T12:00"/>
5 </Interval>
6 <PathDescription>
7 <Via number="0"/>
8 <Station EvaNo="8000068"/>
9 <Section categories="0">

10 <AttributeList/>
11 </Section>
12 <Station EvaNo="8000152"/>
13 </PathDescription>
14 <Customer BahnCard="none"/>
15 <AdditionalOptionList/>
16 </Query>

Listing 2: Example XML Request to be sent to MOTIS. In this query, we request all connections from
Darmstadt Hbf (8000068) to Hannover Hbf (8000152) between 10:00 and 12:00.

4.1.2 Attribute Identification and Computation

In this subsection, we will identify the attributes that can be extracted directly from the response depicted
in Listing 3. As many useful features as possible are extracted or computed – even if they are unusable by
machine learning algorithms. This is especially useful for debugging purposes (i.e. source and destination
train station names for a particular connection). Some of these attributes are removed in Section 4.2 prior
to feeding different machine learning algorithms. The following features can be extracted directly from a
response:

• The departure date and time (line 5) is stored in ISO 8601 format and allows to infer information
such as the weekday and time of the day on the fly.

• The journey duration (line 1) in minutes describes the time spent traveling between the source and
destination station.

1 ISO 8601:2004, Information interchange – Representation of dates and times
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1 <Connection connectionId="2" Duration="167" InitialWaitingTime="0" Transfers="1"
2 Date="23.04.2013" SleepTime="0" PQOps="0" PQSize="0" NumOfQueryPQOps="0">
3 <StopList>
4 <Stop evaNo="8000068" name="Darmstadt Hbf">
5 <Departure dateTime="2013-04-23T11:30" platform="7"/>
6 </Stop>
7 <Stop evaNo="8003523" name="Langen(Hess)">
8 <Arrival dateTime="2013-04-23T11:38" platform="1" minStanding="1"/>
9 <Departure dateTime="2013-04-23T11:39" platform="1"/>

10 </Stop>
11 <Stop evaNo="8000105" name="Frankfurt(Main)Hbf">
12 <Arrival dateTime="2013-04-23T11:48" platform="12"/>
13 <Departure dateTime="2013-04-23T11:58" platform="8"/>
14 <InterchangeInfo needed="8" buffer="2" waiting="0" security="68"/>
15 </Stop>
16 <Stop evaNo="8003200" name="Kassel-Wilhelmshöhe">
17 <Arrival dateTime="2013-04-23T13:20" platform="3" minStanding="2"/>
18 <Departure dateTime="2013-04-23T13:22" platform="3"/>
19 </Stop>
20 <Stop evaNo="8000128" name="Göttingen">
21 <Arrival dateTime="2013-04-23T13:41" platform="9" minStanding="2"/>
22 <Departure dateTime="2013-04-23T13:43" platform="9"/>
23 </Stop>
24 <Stop evaNo="8000152" name="Hannover Hbf">
25 <Arrival dateTime="2013-04-23T14:17" platform="7"/>
26 </Stop>
27 </StopList>
28 <JourneyInfo>
29 <Transport name="RB 15352" categoryID="12" categoryName="RB" number="15352"
30 from="0" to="2" distance="30.1678"/>
31 <Transport name="ICE 76" categoryID="1" categoryName="ICE" number="76"
32 from="2" to="5" distance="156.084"/>
33 </JourneyInfo>
34 <Price PAErrorCode="0" cost="7900" estimate="7546"/>
35 </Connection>

Listing 3: Example XML Response produced by MOTIS in response to the query listed in Listing 2. The
response can contain multiple connections between the requested train stations, but is reduced
to only one connection here.

• The transfer count (line 1) describes how many times a train change is required.

• The price in cents (line 34) is the attribute to be learned.

• The estimated price in cents (line 34) is current price prediction. Please consult Chapter 2 for
details.

• The first stop in the Stop tree (line 4) describes the ID of the source train station.

• Similarly, the last stop in the Stop tree (line 24) describes the ID of the destination train station.

Additionally, the following attributes can be computed from a black box response:

• The number of stops; calculated according to the number of Stop children.

• The value of the distance attribute for each of the Transport children (line 30 and 32) describe
the distance traveled in the respective train category. Using background knowledge, categoryID is
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mapped to a category class. For example, in Listing 3 categoryID 12 is mapped to category class 3
and categoryID 1 is mapped to category class 0. Table 4.4 provides a mapping from category IDs
to classes and, for some IDs, the corresponding train type in parentheses. The distance traveled for
each category class is then summed up. Thus the attributes dist_0 to dist_8 describe the cumulative
distance traveled in the respective class. It is assumed that trains belonging to the same category
class have a similar effect on the final price of the journey.

Using background knowledge (i.e. the name and coordinates of a station), the following attributes can
also be inferred.

• The name of the source train station. This serves only debugging purposes.

• Analogously, the name of the destination train station. This also serves only debugging purposes.

• The linear distance between the source and destination train station. Given coordinates in the
geographic coordinate system (longitude and latitude), the great-circle distance is calculated as
follows: Let (φs,λs) and (φd ,λd) be the source and destination train station’s latitude and longitude,
respectively. The formula known as the haversine formula (Robusto 1957) is used to calculate the
great-circle distance:

∆bσ = 2 arcsin

 
r

sin2

�

∆φ
2

�

+ cosφs cosφ f sin2

�

∆λ
2

�

!

(4.5)

The distance is then converted to kilometres, hence making it comparable to the values of the
distance attributes.

This is the standard way of computing distances on the surface of earth, and this attribute was
initially calculated because the distance attributes provided by MOTIS were incorrect. When we
added this attribute to our data set, the models learned produced much better results. When the
problem in MOTIS was fixed by its authors, we decided to keep this attribute because the removal
led to slightly worse results. This behavior is discussed in Chapter 7 for some algorithms.

Table 4.3 summarizes all of the attributes presented above in the order they appear in the database. Do
note that not all attributes are used for the prediction of railway fares.

4.1.3 Missing Class Values

The sampling method introduced in Section 4.1 does produce very rare cases of missing class values.
For example, MOTIS fails to provide the correct price for a connection under certain circumstances, i.e.
a connection that consists solely of commuter trains operated by third party train operators. For the
problem at hand, we have chosen to drop instances that contain missing class values altogether. Instances
without prices serve no purpose for either training or validation, and is the only viable option here. As far
as missing values are concerned, no special treatment is necessary because they simply do not occur.
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Name Description

estimate the current estimate
duration total journey duration
transfers number of transfers
stops number of stops
dt the date and time of the departure from the source station
source_eva the id number of the source station
source_name the name of the source station
dest_eva the id number of the destination station
dest_name the name of the destination station
dist_0 sum of distances traveled on train class 0
...

...
dist_8 sum of distances traveled on train class 8
dist sum of dist_0 to dist_8
lindist great-circle distance between source and dest station
estimate journey price estimate in cents
price journey price in cents

Table 4.3.: Summary of all identified or computed attributes.

Class Category IDs

0 1 (ICE), 2, 29, 30, 51, 52, 58, 63, 64
1 3 (EC), 4 (IC), 5, 8, 46, 49, 61, 62
2 6 (D), 7, 9 (IR), 18, 26, 27, 28, 31, 32, 40, 43, 56, 59
3 10, 11, 12 (RB), 13 (RE), 14, 16, 21, 24, 42, 44, 45, 47, 48, 53, 54, 55, 57
4 15, 19, 20, 23 (Bus), 25, 33, 34, 35, 39, 50
5 22, 36, 60, 65
6 17, 37, 38, 41, 66

Table 4.4.: Mapping from category ID to category class.

4.2 Data Analysis

Before comparing and ranking different machine learning algorithms, it is always a good idea to get to
know your data. Descriptive statistics can be used to quantitatively describe the main features of the data
generated in Section 4.1. Table 4.5 provides an overview of commonly used statistical measures applied
to the numeric attributes of the generated data set. min and max represent the minimum and maximum
values in the data set, respectively. The mean (formula B.1), median (formula B.2) and standard deviation
sd (B.4) are common metrics in statistics. The formulae of all these metrics can be found in the appendix.

The second column in this table (n) corresponds to the number of valid values for each attribute. The
fact that it is 14000 for each attribute means that there are no invalid values in our data set (e.g. missing
values). In the first iteration in our learning process, the median for the linear distance lindist was
well below the accumulated sum dist. This is of course impossible given that the linear distance is the
shortest distance between two points, but it does emphasize the importance of a simple analysis. It turned
out to be an error in the calculation done by MOTIS and was promptly fixed, henceforth causing our
predictive models to yield much better results.

27



Aside from that, particularly striking is the fact that the standard deviation (s) of dist_4 to dist_8 is
equal to 0. This suggests that the values of all instances for these attributes are 0. We will see in the next
section that these attributes can be removed altogether.

n min max mean median sd

duration 14000 3 1316 316 288 182
transfers 14000 0 7 2 2 1

stops 14000 2 88 20 18 12
dist_0 14000 0 995 174 77 213
dist_1 14000 0 1318 112 0 173
dist_2 14000 0 822 3 0 36
dist_3 14000 0 731 115 86 111
dist_4 14000 0 0 0 0 0
dist_5 14000 0 0 0 0 0
dist_6 14000 0 0 0 0 0
dist_7 14000 0 0 0 0 0
dist_8 14000 0 0 0 0 0

dist 14000 0 1641 405 387 217
lindist 14000 2 830 275 261 145

estimate 14000 39 15880 7019 7089 3364
price 14000 130 13460 6892 7000 3240

Table 4.5.: Descriptive Statistics of the continuous attributes in our data set.

In addition to simple descriptive statistics, we will now take a look at the character of the data in
question, particularly at the price attribute. Figure 4.2 shows a kernel density plot (a non-parametric way
to estimate the probability density function of a random variable) in red superimposed on a histogram.
The plot suggests that there is some kind of maximum price after a certain criterion (e.g. a maximum
distance or cut-off price) has been met. Interestingly, there are exceptions to this rule, because the
histogram contains a tiny bar at the right hand side. Upon inspection of this behavior, it becomes clear that
this exception is due to connections which include trains of privately held train companies. For example, A
journey from Ulm to Süderdeich includes riding a train owned by NBE (Nordbahn Eisenbahngesellschaft
mbH). In addition, the price attribute in the data set S3 has 744 unique values. This indicates that the
problem at hand is truly a regression problem – as opposed to a classification problems with only a
handful of classes.

4.2.1 Zero and Near-Zero Variance Predictors

As we have seen in the previous section, our data generation mechanism creates predictors that have a
single unique value only. These predictors are called zero-variance predictors. Similarly, there may be
predictors that have values that occur with very low frequency. There is a pretty good chance that these
near-zero-variance predictors become zero-variance predictors when our data set is split into sub-samples
for cross-validation (see Subsection 3.3.2 for an introduction to validation methods). With the problem at
hand, we do not want these predictors to be fed to machine learning algorithm, because they cannot be
used to differentiate instances. In order to identify and then remove these attributes from our data set,
the following two metrics are calculated (Kuhn 2013, p. 62):

• Frequency Ratio: The frequency of the most prevalent value over the second most frequent value.
Well-behaved predictors have a frequency ratio near 1, while highly-unbalanced predictors have
large ratios.
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Figure 4.2.: A kernel density plot (red) superimposed on a histogram. The density estimate suggests the
existence of a maximum price at around€ 120.

• Percent Unique: The number of unique values divided by the number of instances times 100.

In order to be classified a zero-variance predictor, the value for a predictor must be the same across all
instances. To be flagged a near-zero-variance predictor, the frequency ratio and the unique percentage
must be above freqCut and below uniqueCut, respectively.

In this thesis, we have used freqCut := 20 and uniqueCut := 5. We have chosen these values because we
did not want to lose either dist_0 or dist_1, which have a frequency ratio just above 20. This method was
merely used to identify attributes that have potential for removal, and the parameters were specified such
that dist_2 and dist_4 to dist_8 are removed. In the former case, there are hardly any trains of category 2
present, and in the latter case, there are no trains present. Table 4.6 demonstrates this technique as it is
applied to our database. Predictors that are TRUE for either case are removed automatically.

4.2.2 Attribute Correlation

Another interesting aspect of our data is the analysis of how different attributes correlate to each other.
For this purpose, the Pearson product-momentum correlation coefficient r is utilized. This coefficient is
a measure that assesses the degree of linear relationship between two variables, and yields a value in
[−1, 1], where |r| = 1 implies a perfect linear relationship between two variables and r = 0 no linear
relationship. A positive value suggests a positive relationship, whereas a negative value denotes a negative
relationship. For details on how to calculate this measure see formula B.6.

Figure 4.3 contains the correlation coefficients for all numeric attributes for our data set in the upper
half. In the lower half, these coefficients are visualized using colored ellipse-shaped glyphs for each entry.
The level of smoothing corresponds to the level of correlation, as does the color. Blue and red mean a
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Frequency Ratio Percent Unique Zero Variance Near-Zero Variance

transfers 1.05 0.07 FALSE FALSE
stops 1.05 0.64 FALSE FALSE

dt 1.11 27.49 FALSE FALSE
dist_0 76.42 21.98 FALSE FALSE
dist_1 150.46 20.37 FALSE FALSE
dist_2 1000.08 0.42 FALSE TRUE
dist_3 75.05 65.72 FALSE FALSE
dist_4 0.00 0.01 TRUE TRUE
dist_5 0.00 0.01 TRUE TRUE
dist_6 0.00 0.01 TRUE TRUE
dist_7 0.00 0.01 TRUE TRUE
dist_8 0.00 0.01 TRUE TRUE

dist 1.14 91.83 FALSE FALSE
lindist 1.00 34.92 FALSE FALSE

estimate 1.23 59.74 FALSE FALSE
price 4.07 4.33 FALSE FALSE

Table 4.6.: Zero And Near-Zero Variance Predictors. The attributes distance 4 to 8 are zero variance
predictors because none of our samples contain connections which include trains of these
categories (MOTIS does not support these). Distance 2 is a near-zero variance predictor due to
trains being very scarce in this category nowadays. It is hence safe to remove these predictors
before applying machine learning algorithms.

positive and negative correlation, respectively. Darker colors correspond to a higher relationship and are
closer to |c|= 1.

Using these two items, there are indeed some traits that are worth exploring. The high correlation
(0.90) between dist and price means that the higher the actual distance traveled, the higher the price.
This could of course be deemed obvious, but this conclusion depends highly on background knowledge.
Not so obvious traits include the positive relationship between price and dist_0 as well as price and
dist_3. These relationships suggest that it is more expensive to travel on category class 0 than it is on
category class 3 (for details on train categories see Table 4.4).

Figure 4.4 shows four scatter plots that draw the distance traveled on the horizontal axis and the ticket
price on the vertical axis using the data set S3. The plots are smoothed using a kernel density estimate,
and darker regions correspond to a greater number of data points. The first scatter plot contains all
connections, i.e. connections that are composed of trains of different types. The other three plots contain
only connections that consist solely of one type of train category, i.e. ICE, IC/EC, and regional trains.
Harnisch and Nuhn (2010) have already explored the possibility to split up the data into subgroups, each
containing only connections for one train category. Especially interesting is the fact that for IC/EC-only
connections, a polynomial regression scheme is likely to fit the data quite reliably with only a small
number of outliers. Outliers in the IC/EC plot include connections from Wuppertal Hbf to Berlin Südkreuz,
and from Weimar to Mannheim. The reason for their existence is unclear. The case is quite similar with
connections that consist solely of regional trains (RegionalBahn and RegionalExpress). However, the
reason for the existence of outliers is quite clear here. The outliers are due to the involvement of third
party train operators such as AKN Eisenbahn, or the Usedomer Bäderbahn (UBB), a train operator that
serves the Baltic Sea island Usedom. This also explains the fact that outliers appear mostly above a
potential polynomial function, because the involvement of a third party train operator increases the total
ticket price. As far as ICE connections are concerned, a simple regression scheme is very likely to produce
subpar results, because the scatter plot cannot be described by a simple function.
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Figure 4.3.: Correlation coefficients for all continuous attributes. The upper half contains the coefficients,
where |c| = 1 implies that a linear equation describes the relationship perfectly. The lower
half contains a visualization of these coefficients.

4.3 Example Data

In order to get an adequate feeling of the actual data, we will now look at a subset of the data in question.
Table 4.7 shows a random subsample of the data we have generated and examined in the last section.
Some of these attributes, such as the source and destination name, serve only debugging purposes. The
dt attribute will be transformed to represent only the day of the week and the hour of the day. The
attribute estimate is the estimate generated by the current prediction method (see Chapter 2), and will
be removed from the data set prior to the application of learning algorithms. As expected, important train
stations such as central train stations (Hauptbahnhof) are overrepresented in this random subsample.
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Figure 4.4.: Scatter plots that show the relationship between the distance and ticket price. The plots are
smoothed using a kernel density estimate.
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5 Implementation Details
This chapter deals with the implementation of the experiments we have conducted in this thesis. In
Section 5.1, we will discuss the different formats as far as data storing is concerned, and in Section 5.2
we will describe the R programming language and environment that was used in the machine larning
process. In Section 5.3 we will talk about how the current and old fare predictions (see Chapter 2) were
integrated.

5.1 Database

There are many choices when it comes to storing data. A popular format is the attribute-relation file format
(ARFF) described by Witten, Frank, and Hall (2011). This format is used extensively in the Weka data
mining framework (Hall et al. 2009). However, in this thesis, we opted to use a simple comma-separated
values format with minimal quoting, i.e. only quoting objects which contain special characters such as the
delimiter (,) or quote character ("). The ARFF format is essentially equal to simple CSV, plus data type
declarations (e.g. numeric or nominal). Since we have used the R programming language, making an
attribute nominal is just a matter of applying the as.factor function, or for the other way around, the
as.numeric function.

5.2 The R Programming Language

The R programming language (R Core Team 2012) is a programming language and an interactive
environment for statistical computing, graphics, and through the use of third party packages from the
Comprehensive R Archive Network1 (CRAN), for machine learning. Many excellent packages have been
used for this thesis. First one foremost, the caret package (Kuhn 2008; Kuhn 2013) unifies many machine
learning algorithms into one common framework. This package builds the bridge between Cubist (Kuhn,
Weston, et al. 2013) for cubist regression, kernlab (Karatzoglou et al. 2004) for Support Vector Machines,
RSNNS (Bergmeir and Benítez 2012) for an artificial neural networks, the Multilayer Perceptron (MLP),
and RWeka (Hornik, Buchta, and Zeileis 2009) for M5.

To use R interactively, the R command has to be issued. Listing 4 depicts an exemplary R session where
input lines are prefixed with “R>”, and all other lines resemble output produced by R. First, a small
data set is loaded into the environment (line 3). Then, the attribute names and instance count is printed
using the names and nrows commands, respectively. Using the technique described in Subsection 4.2.1,
(Near)-Zero Variance attributes are removed from the data set, resulting in a new data set named data2
(line 14). Additional attributes that should not be fed to machine learning algorithms are removed in
line 20. In line 26, the validation method is set to cross-validation. Finally, the train function of the
caret package is called, yielding a tuned cubic model for regression. Do note that the first argument to
train is an R formula and means that the attribute price is predicted using all the other attributes in the
supplied data frame. The caret package supports many parameters, including a user-defined matrix for
the selection of tuning parameters (see Chapter 6).

1 http://cran.r-project.org/

34



1 R> library(caret)

2 R>

3 R> data <- read.csv("data/small.csv")

4 R>

5 R> names(data)

6 [1] "duration" "transfers" "stops" "dt" "source_eva"

7 [6] "source_name" "dest_eva" "dest_name" "dist_0" "dist_1"

8 [11] "dist_2" "dist_3" "dist_4" "dist_5" "dist_6"

9 [16] "dist_7" "dist_8" "dist" "lindist" "estimate"

10 [21] "price"

11 R> nrow(data)

12 [1] 202

13 R>

14 R> data2 <- data[, -nearZeroVar(data, freqCut=20, uniqueCut=5)]

15 R> names(data2)

16 [1] "duration" "transfers" "stops" "dt" "source_eva"

17 [6] "source_name" "dest_eva" "dest_name" "dist_0" "dist_1"

18 [11] "dist_3" "dist" "lindist" "estimate" "price"

19 R>

20 R> data3 <- data2[!names(data2) %in% c("source_eva", "source_name", "dest_eva", "dest_name")]

21 R> names(data3)

22 [1] "duration" "transfers" "stops" "dt" "dist_0" "dist_1"

23 [7] "dist_3" "dist" "lindist" "estimate" "price"

24 R>

25 R> set.seed(42) # for reproducibility

26 R> ctrl <- trainControl(method = "cv")

27 R> fit <- train(price ~ ., data = data3, method = "cubist", trControl = ctrl)

28 R> fit

29 202 samples

30 10 predictors

31

32 No pre-processing

33 Resampling: Cross-Validation (10 fold)

34

35 Summary of sample sizes: 182, 183, 181, 182, 181, 181, ...

36

37 Resampling results across tuning parameters:

38

39 committees neighbors RMSE Rsquared RMSE SD Rsquared SD

40 1 0 691 0.94 129 0.0264

41 1 5 615 0.951 136 0.0241

42 1 9 630 0.949 132 0.0248

43 10 0 619 0.952 105 0.0133

44 10 5 495 0.969 81.3 0.00829

45 10 9 526 0.965 81.5 0.00929

46 20 0 639 0.949 153 0.0196

47 20 5 521 0.965 136 0.0153

48 20 9 547 0.962 137 0.0161

49

50 RMSE was used to select the optimal model using the smallest value.

51 The final values used for the model were committees = 10 and neighbors = 5.

Listing 4: Example R session.

35



5.3 Integration of the Current and Old Estimations

One goal of this thesis is to find a method that does better than the current estimation method described
in Chapter 2. It is therefore vital to postulate that the original estimation was indeed integrated into
the evaluation process in a fair manner. In the following, we differentiate between the old method
(Müller-Hannemann and Schnee 2005) and the current method (Harnisch and Nuhn 2010), both of which
are described in Chapter 2.

The current estimator was treated no differently than any other model. In fact, it was integrated into
the train function of the caret package so that it even runs through the same cross-validation process
like any other predictive model. This is important to note because the other option as far as integration
is concerned is to calculate several error metrics on the data set manually (the predicted price for the
current method is part of the data set), and this could mean that we end up with incorrent results for this
method when the data set or the validation method changes in case we forget to update the results for
the current method accordingly.

Listing 5 indicates how the current estimation was integrated into the machine learning workflow. Line
1 and 2 describe methods that “predict” an attribute by just returning the value of another attribute of
the input data. Line 3 supports the claim that the estimation is treated like any other method by using
the same control parameters (e.g. parameters that set the validation method to 10-fold cross-validation).
Lines 4 through 7 show that the attribute named estimate is used as prediction. This attribute is of
course not fed to any other learning methods.

1 curModelFunc <- function(data, parameter, levels, last, ...) list(fit=parameter$.colname)
2 curPredFunc <- function(object, newdata) newdata[[levels(object$fit)[1]]]
3 ctrlCur <- ctrl

4 ctrlCur$custom <- list(model=curModelFunc, prediction=curPredFunc, probability=NULL,
5 sortFunc=function(x) x, parameters=data.frame(.colname=c("estimate")))
6 trainers$current <- function(form, ...)
7 train(form, method="custom", trControl=ctrlCur, ...)

Listing 5: Integration of the current estimation. The default column name of the attribute to use as
prediction is set to estimate in our data set (line 5).

The old estimator is treated quite similarly. However, because MOTIS cannot provide estimates from
two estimators at the same time, the old estimation is calculated on-the-fly instead of being extracted
from the response given by MOTIS. Listing 6 shows a port of the original C++ code to the R programming
language in order to be used with the caret package.

1 oldModelFunc <- function(data, parameter, levels, last, ...)
2 list(fit=parameter$.factor)

3

4 oldPredFunc <- function(object, newdata) {
5 adply(newdata, 1, function(x) {
6 res <- x$dist * object$fit

7 if (x$dist_0 > 0) res = res + 1200
8 else if (x$dist_1 > 0) res = res + 700
9 res

10 })$V1}

Listing 6: Integration of the old estimation. The factor to be multiplied with the distance (line 2) is set
to 14 cents. A surcharge is added to the final ticket price according to the highest train class
involved (lines 7 and 8).

36



6 Tuning
Most machine learning techniques support the configuration of one or more tuning parameters. For
example, cubist trees (Subsection 3.2.3) require the parameters committees and neighbors to be
specified. Because the performance of a machine learning technique greatly depends on the selection of
appropriate parameters, this chapter is devoted to tuning these parameters.

In order to find the best possible parameter combination, each algorithm is trained and validated using
a tuning grid. A tuning grid is constructed by taking the Cartesian product of the tuning parameter sets.
For example, let the two tuning parameter sets for cubist be N := {1,2, 3,4} for the parameter neighbors
and C := {1,2, 3} for the parameter committee, then the tuning grid is constructed as

G := N × C = {(n, c)|n ∈ N ∧ c ∈ C} (6.1)

where G is the tuning grid set to be used. The complete tuning grid for the example above is displayed in
a tabular manner in Table 6.1. For each element g ∈ G, a model is trained and validated using 10-fold
cross validation (see Subsection 3.3.2). The best g is then chosen according to the lowest MAE. The MAE
was chosen because we did not want to punish large errors. An explanation of this circumstance can be
found in Section 3.4.

Neighbors Committees

1 1
2 1
3 1
4 1
1 2
2 2
3 2
4 2
1 3
2 3
3 3
4 3

Table 6.1.: Exemplary expanded tuning parameter grid with the tuning parameters committee and neigh-
bors. Four values for the neighbors parameter and three values for the committees parameter
are expanded to a total of 12 parameter pairs.

It is important to note that the lowest MAE does not necessarily correspond to the model that should
be used as final model. Depending on the use case, it may be more appropriate to choose an algorithm
with tuning parameters that yield a slightly worse result in order to decrease the complexity and thus the
prediction time of the model. This is especially true for the cubist algorithm, the result of which we will
discuss in the next chapter.

37



7 Evaluation
This chapter deals with the performance evaluation for the different learning algorithms studied within
this thesis. The performance is determined using 10-fold cross-validation (see Subsection 3.3.2) with
equal folds for all algorithms, accomplished by setting a constant seed.

We will first study the performance for each algorithm individually using the data set S3, which forms
the union of the data sets S1 (generated using the probability-based sampling technique described in
Section 4.1) and S2 (built using a live recording of humans booking train journeys). The best parameters
for each algorithm are selected such that the MAE (see Section 3.4) is minimized when the algorithm is
trained using a tuning grid. We have chosen the MAE as metric to minimize because we did not want
to punish outliers (see Chapter 6). The data set S3 now contains a total of 14,000 instances. Originally,
this data set contained 50,000 instances. However, it was necessary to reduce the size of this data set to
14,000 instances in order to reduce the training time for SVMs. We would like to have have worked with a
larger data set, but were unable to do so due to time constraints. Next, we will examine and compare how
the different techniques behave when they are applied to our three data sets individually in Section 7.2.
Finally, we determine whether the evaluated methods overpredict or underpredict the actual price in
Section 7.3, and continue to measure the prediction time for each model in Section 7.4.

7.1 Method Comparison

In this section, we will evaluate and interpret the results for the machine learning methods utilized in this
thesis individually. A description for each algorithm can be found in Section 3.1. All experiments here are
based on the data set S3.

7.1.1 Decision Trees

Figure 7.1 shows the effect of the tuning parameters on the evaluation results for the cubist algorithm.
The detailed results can be found in Table A.1. The parameter committees refers to the number of
decision trees to create, and the neighbors parameter refers to k in the k-nearest-neighbor algorithm.
The maximum permissible values for these parameters are 100 for neighbors and 9 for committees in
Quinlan’s implementation of cubist.

For committees ≥ 30, cubist produces models with equal cross-validation results. This suggests a
fix point. The best model was created using the parameters committees ≥ 30 and neighbors = 9.
The application of the k-nearest-neighbor algorithm as part of the cubist algorithm turned out to be
a reasonable step, with an improvement of 40 cents between neighbors = 1 (the nearest-neighbors
algorithm is not applied) and neighbors = 9. Cubist finds the neighbors− 1 most similar cases in the
training set and averages these k points (Quinlan 1993b). We would like to have tested the cubist
algorithm with the parameter neighbors> 9, but were unable to do so due to the limitations by Quinlan’s
implementation of cubist.

Listing 7 shows the first two rules in the first committee. Each rule consists of one or more if clauses
and a linear model as potential outcome. In order to determine the final prediction of a committee, the
arithmetic mean is calculated based on all rules whose conditions evaluate to true. Cubist deduces a
total of 2746 of these rules across 30 committees for committees= 30. Unfortunately, single rules are not
interpretable, even if dealing with one committee only.
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Figure 7.1.: Visualization of the evaluation results for the cubist algorithm. The error does no longer
decrease after the parameter neighbors reaches 30.

7.1.2 Linear Regression

Linear regression, as described in Subsection 3.2.1, produces the following model described by Equa-
tion (7.1):

price=
+ 1475.34

+ 0.97 · duration

+ 282.18 · transfers

− 6.62 · stops

+ 2.45 · dist_0

− 0.71 · dist_1

− 5.14 · dist_3

+ 7.78 · dist

+ 5.98 · lindist

+ 20.24 · dt_weekday

+ 3.08 · dt_hour

(7.1)

Unlike other learning schemes such as MARS, linear regression uses all the predictors that were present
in the data set at the time of training. When removing the parameters dt_weekday and dt_hour from the
data set S3, the cross-validation results for linear regression do not change at all and stay constant with a
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1 Model 1:

2

3 Rule 1/1: [568 cases, mean 1292.3, range 360 to 2960, est err 75.7]

4

5 if

6 duration <= 106

7 dist_0 <= 1.67477

8 dist_1 <= 9.4963

9 dist_3 > 21.0408

10 then

11 outcome = 146 + 266.6 dist_1 + 128.8 dist_0 + 4.7 dist + 8.1 dist_3

12 + 1.3 duration + 1.2 lindist - 3 stops

13

14 Rule 1/2: [41 cases, mean 1861.5, range 130 to 6800, est err 294.0]

15

16 if

17 dist_0 <= 1.67477

18 dist_1 <= 9.4963

19 dist_3 <= 21.0408

20 then

21 outcome = 3.6 + 70.9 dist_0 + 26 lindist + 16.7 dist_1 - 16.9 dist_3

22 + 78 stops - 2.7 dist

Listing 7: The first two rules in the first model created by the cubist algorithm. Single rules in a large
ensemble method are not interpretable and are only shown for reference.

MAE of 810 cents. The same cannot be said for the attributes stops and transfers. When removing the
attribute stops, the MAE increases by only 1 cent, and when removing the attribute transfers, the MAE
increases by 23 cents.

Equation (7.1) represents the model learned from non-normalized data. Equation (7.2) on the other
hand describes the model created when learning from normalized data. Normalization is a common data
transformation, and scaling refers to dividing each value of a predictor variable by its standard deviation.
Scaling coerce the values to have a common standard deviation of 1, and makes the resulting model
more interpretable. Large coefficients in the linear model correspond to important predictors. Hence,
in Equation (7.2) dist_0 (the distnace traveled on ICE trains) is the most important predictor with a
coefficient of 5221.32, followed by dist (the total distance traveled) with a coefficient of 1684.54. The
attributes stops, dt_weekday, and dt_hour are of very little importance in this model.

price=
+ 6892.04

+ 176.38 · duration

+ 374.98 · transfers

− 79.69 · stops

+ 5221.32 · dist_0

− 123.62 · dist_1

− 569.122 · dist_3

+ 1684.54 · dist

+ 867.76 · lindist

+ 39.73 · dt_weekday

+ 18.27 · dt_hour

(7.2)
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The linear model can be improved greatly by choosing a polynomial basis function in addition to
differentiating between the various train classes. The current estimator implemented in MOTIS, as
described in Chapter 2, does exactly this and is evaluated in Subsection 7.1.6.

7.1.3 Multivariate Adaptive Regression Splines

For the MARS algorithm (see Subsection 3.2.2), the effects of the tuning parameters degree and terms
on the evaluation results can be seen in Figure 7.2, and the detailed results are given in Table A.2. In
this table, the correlation coefficient is not listed in some cells due to a division by zero that occurs for
nprune= 1, in which case the MARS algorithm uses the mean as prediction.

The nprune parameter specifies the maximum number of permissible terms in the final pruned model,
and the degree determines the maximum degree of interaction between the predictors, and can either be
1 or 2 for our implementation of MARS. In other words, when setting degree to 1, a basis function in the
MARS model cannot be the product of two hinge functions. The degree parameter has very little impact
on the final results and is therefore negligible.

For nprune ≥ 15, all results stay constant with a MAE of 593. This is due to the number of terms
produced by MARS being fewer than or equal to the maximum number of permissible terms, as specified
by the nprune parameter. This suggests that the pruning of terms as part of the MARS algorithm does not
decrease the overall error for our data set.
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Figure 7.2.: Visualization of the evaluation results for the MARS algorithm using the mean-absolute error.
The nprune parameter has little impact on the final results.

The MARS algorithm creates a model that consists of 15 terms, and 7 of these are of degree 2. This model
is described by Equation (7.3):
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price=
+ 9507.948

+ 0.978 · h(dist− 636.22)
− 1.513 · h(636.22− dist)
+ 1.085 · h(dist0− 182.81)
− 7.376 · h(182.81− dist0)
+ 0.003 · h(182.81− dist0) · h(dist1− 155.667)
− 0.01 · h(182.81− dist0) · h(155.667− dist1)
− 8.163 · h(lindist− 558.684)
− 7.045 · h(558.684− lindist)
+ 0.037 · h(dist− 340.687) · h(558.684− lindist)
− 0.017 · h(340.687− dist) · h(558.684− lindist)
− 0.046 · h(dist3− 279.84) · h(636.22− dist)
+ 0.007 · h(279.84− dist3) · h(636.22− dist)
− 0.596 · h(3− transfers) · h(558.684− lindist)
+ 10.503 · h(lindist− 378.519)

(7.3)

Unfortunately, this model is not as interpretable as previously thought, specifically since all the distance
predictors are highly dependent on each other (i.e. the distance for ICE trains cannot be increased without
increasing the overall distance as well). Interestingly, the MAE increases from 593 to 602 (using the
data set S3) when removing the lindist predictor (the linear distance between source and destination
train station), and the number of terms decreases from 15 to 14. Another interesting aspect of the model
is the fact that the predictors duration and stops are not used at all. These two predictors are likely
candidates as far as removal of attributes is concerned.

7.1.4 Neural Networks

The Multilayer Perceptron (MLP), a feedforward artificial neural network, did not deliver very good
results. Table 7.1 shows the expanded tuning grid for the MLP, where size specifies how many nodes to
have in the hidden layer, and decay is a parameter that is used to reduce overfitting. The best results
were obtained using size = 17 and decay = 0.001233. The final model produced by the MLP delivers
inferior cross-validation results than the baseline predictor in terms of the MAE. This suggests that this
algorithm is not a very good choice for the problem at hand.

7.1.5 Support Vector Machines

Support Vector Machines, as described in Subsection 3.2.4, produce quite promising results. Figure 7.3
visualizes the effect of the tuning parameters C and degree on the cross-validation results in terms of the
MAE. The detailed results can be found in Table A.4. The parameter degree corresponds to the degree
of the polynomial kernel, and the parameter C (Cost) controls the trade off between allowing training
errors and forcing rigid margins. When increasing the value of C , the cost of misclassification of points
increases and the model becomes more accurate. However, this also means that it may not generalize well,
thus producing worse results in the end. The best results were obtained using the parameters C = 0.5
and degree= 4. The final model (constructed using the data set S3 with |S3|= 14000) consists of 7083
support vectors.
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Size Decay MAE RMSE RRSE RAE Rsq

1 0.000000 5732 6420 1.982 2.078 0.003
3 0.100000 4390 5089 1.572 1.594 0.012
5 0.053367 4299 5018 1.550 1.561 0.006
7 0.028480 3412 4024 1.241 1.237 0.008
9 0.015199 3850 4475 1.382 1.398 0.008

11 0.008111 3155 3773 1.165 1.145 0.006
13 0.004329 3757 4392 1.354 1.362 0.004
15 0.002310 3426 4035 1.245 1.241 0.004
17 0.001233 2807 3314 1.023 1.018 0.003
19 0.000658 3644 4396 1.358 1.323 0.006
21 0.000351 3728 4424 1.361 1.348
23 0.000187 3367 3986 1.232 1.219 0.003
25 0.000100 3765 4596 1.433 1.380

Table 7.1.: Evaluation results for a Multilayer Perceptron. The best result for each metric is printed in bold.

Figure 7.4 on the other hand visualizes the effect of the tuning parameters on the validation results
when using a SVM with a radial kernel, and the detailed tuning results can be obtained from Table A.3.
The best results for this SVM were obtained using C = 4 or C = 8. Interestingly, this kernel produces
better results than the polynomial kernel. The SVM with a radial kernel has 7018 support vectors, and
the sigma parameter is obtained automatically by the SVM implementation used in this thesis.

We would like to have removed some attributes in order reduce the number of support vectors, but
were unable to do so due to time constraints and the amount of time required for the training of Support
Vector Machines. We expect the number of support vectors to drop when removing attributes such as
stops and duration, and this should indeed be explored when choosing a SVM as replacement for the
current method.

7.1.6 The Current Method

The current method is described in Chapter 2 and is given by the equation

price=

+min(12200,max(700,23.917 · dist− 0.0122 · dist2
0+ 622.29))

+min(11700,max(600,18.433 · dist− 0.0073 · dist2
1+ 334.79))

+ 14 · dist3

(7.4)

where max(a, b) is a if a > b else b and min(a, b) is a if a < b else b. The distances dist0, dist1, and dist3
correspond to the distance traveled in ICE, IC/EC, and regional trains, respectively. Noteworthy is the fact
that it is one of the simplest and most interpretable model we have evaluated in this thesis. It provides
fairly good results, and treats the distance traveled in each train category separately.

7.1.7 The Old Method

The old method is also described in Chapter 2 and is given by

price=







14 · dist+ 1200 if dist0 > 0

14 · dist+ 700 if dist0 = 0 and dist1 > 0

14 · dist otherwise

(7.5)
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Figure 7.3.: Visualization of the evaluation results for a SVM with a polynomial kernel using the MAE. The
best results were obtained using C = 0.5 and degree= 4.
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Figure 7.4.: Visualization of the evaluation results for a SVM with a radial kernel using the MAE. Setting
C = 4 or C = 8 yields the best results for this SVM.
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This simple model produces fair results. Unlike the current method we have evaluated in Subsec-
tion 7.1.6, it treats all distances the same. It does however add a surcharge depending on the highest
train class involved.

7.2 Method Comparison

Table 7.2 ranks the machine learning algorithm applied to the data set S1. Table 7.3 and Table 7.4 rank
the same algorithms applied to the data sets S2 and S3, respectively. The rank corresponds to the MAE,
and the algorithm with the lowest MAE is ranked first. We have chosen this metric for selecting the best
model because we did not want to punish large outliers (see Section 3.4). The baseline entry corresponds
to a predictor that predicts the arithmetic mean. Each table contains several error metrics in each column,
including the mean-absolute error (MAE), the root mean-squared error (RMSE), the root relative-squared
error (RRSE), the relative-absolute error (RAE), and R squared (Rsq). All of these metrics are discussed
in Section 3.4.

Interestingly, the ranking order is identical for each data set when taking the MAE into account. This is
even true when selecting the RMSE as rank-determining metric. It should be noted that since the MAE
was chosen as metric to minimize in the tuning step of the machine learning process, the MAE should also
be used to assess and compare the final models with each other. However, for the algorithms studied,
minimizing the MAE yields a tuning parameter set that is also the best choice when taking the RMSE
metrics into account. When selecting the correlation coefficient as rank-determining metric, the ranking
order is quite different. The correlation coefficient measures the statistical correlation between the actual
value and does not measure the error produced when predicting the ticket cost. Hence, preference should
be given to the MAE as far as the ranking of techniques is concerned.

In any case, the fact that the MAE-determined ranking order is equal suggests that the probability-based
sampling method used to create S1 comes close to the actual behavior of humans when booking train
journeys (S2) and confirms the sampling approach we have taken in Section 4.1. The RRSE and the
RAE are relative to what would have been if a simple predictor, the baseline, had been used. These two
metrics are redundant in the result tables because these tables include an entry for the baseline, but are
nevertheless a good indicator on how a specific algorithm compares to the baseline. For the baseline,
the mean predictor was chosen. This predictor outputs the mean of the price attribute in the data as
prediction, and is a common choice in the field of machine learning.

We will now look compare the results of the algorithm studied. Cubist models yield the best result, with
a MAE of 456 when applied to the combined data set (Table 7.4). M5 from Weka should thoeretically be
equal to cubist without the application of the kNN algorithm and committes, and produces slightly worse
results than cubist. This behavior is expected since cubist is an enhanced version of M5. Support Vector
Machines, a very popular method for predictive modelling, provide good results, and due to a lower
MAE preference should be given to a machine with a radial kernel. The MARS algorithm is a little better
than the current method according to the MAE. Interestingly, when taking the RMSE into account, the
situation is not so clear. According to the RMSE and Table 7.4, the current method does produce results
superior to those produced by MARS. This suggests that MARS produces slightly more outliers than the
current method (see Section 3.4 for an explanation of the differences of these metrics). The old method
and linear regression provide only fair results. The multilayer perceptron, a feedforward artificial neural
network, does slightly worse than the baseline method, and should not be considered for the replacement
of the current method.
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Rank MAE RMSE RRSE RAE Rsq

Cubist Trees 1 531 758 0.251 0.210 0.937
M5 2 546 787 0.257 0.212 0.934

SVM (Radial) 3 567 813 0.265 0.220 0.930
SVM (Poly) 4 576 835 0.273 0.224 0.926

MARS 5 619 847 0.277 0.241 0.923
Current Method 6 644 843 0.275 0.250 0.935

Linear Regression 7 852 1120 0.365 0.332 0.867
Old Method 8 877 1310 0.427 0.341 0.844

Baseline (Mean) 9 2530 3020 1.000 1.000
Neural Net (MLP) 10 2580 3070 1.000 0.999

Table 7.2.: Cross-Validation results for the algorithms applied to the data set S1. This data set contains in-
stances generated using the probability-based sampling method that weights stations according
to the number of incoming and outgoing connections.

Rank MAE RMSE RRSE RAE Rsq

Cubist Trees 1 421 642 0.190 0.144 0.964
M5 2 455 696 0.212 0.162 0.955

SVM (Radial) 3 494 737 0.225 0.175 0.950
SVM (Poly) 4 507 773 0.236 0.180 0.944

MARS 5 541 776 0.237 0.192 0.944
Current Method 6 551 748 0.228 0.196 0.951

Linear Regression 7 751 1040 0.317 0.267 0.900
Old Method 8 758 1190 0.364 0.269 0.885

Baseline (Mean) 9 2910 3370 1.000 1.000
Neural Net (MLP) 10 3000 3570 1.090 1.060 0.008

Table 7.3.: Cross-Validation results for the algorithms applied to the data set S2. This data set contains
instances from a real-life capture of bookings done by humans in one day.

Rank MAE RMSE RRSE RAE Rsq

Cubist Trees 1 456 673 0.206 0.163 0.958
M5 2 487 723 0.223 0.177 0.950

SVM (Radial) 3 518 760 0.235 0.188 0.945
SVM (Poly) 4 531 781 0.241 0.193 0.942

MARS 5 593 826 0.255 0.215 0.935
Current Method 6 597 797 0.246 0.217 0.945

Linear Regression 7 810 1090 0.335 0.294 0.888
Old Method 8 817 1250 0.387 0.297 0.870

Baseline (Mean) 9 2790 3270 1.000 1.000
Neural Net (MLP) 10 2810 3310 1.020 1.020 0.003

Table 7.4.: Cross-Validation results for the algorithms applied to the data set S3 = S1 ∪ S2. This data set
forms the union of the previous two data sets.
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7.3 Residual Analysis

The residual is the difference between the actual price of a train ticket and the predicted price. In order
to determine whether the learning methods studied over or underpredict the actual price, we will now
analyze the residuals produced by the prediction of instances in the data set S3.

Figure 7.5 and Figure 7.6 show scatter plots of the residuals for most of the methods studied in this
thesis. These plots are a smoothed color density representation of a scatter plot, obtained through a kernel
density estimate. Dark colored regions represent a higher point density than light colored regions. All
data points below the red line are overpredicted, while all points above the red line are underpredicted.
When a point lies on the red line itself, it is predicted exactly.

Cubist predicts the price quite reliably up until € 40. For prices higher than € 40, cubist produces more
outliers and shows a slight tendency to underpredict the actual values. Linear regression on the other
hand has a clear tendency to overpredict less expensive train tickets and a slight tendency to underpredict
medium to high-priced tickets. High-priced tickets seem to be equally over and underpredicted by linear
regression. The MARS algorithm does not have a clear tendency to either over or underpredict the
observations. However, for high-priced tickets, it does have a tendency to underpredict the values, and
also produces quite a few outliers in the medium-prized segment. The current method is quite interesting
and seems to almost exclusively underpredict the actual prices up until € 30. For prices higher than € 30,
the current method has a tendency to overpredict the actual price, with some outliers on that end. The old
method has a clear tendendy to underpredict the ticket price, except for high-prized tickets, where this
method over and underpredicts equally. Support Vector Machines produce some underpredicted outliers
for medium to high-priced tickets. The SVM with a radial kernel features a high point density around the
red line, suggesting a stable prediction with a low number of large residuals.

7.4 Time Evaluation

The search for an algorithm that provides a prediction fast is an important goal for this thesis. For this
reason, we will now measure the prediction time for each of the algorithms studied using a completely
new data set consisting of 3,000 instances sampled using the probability-based sampling method described
in Section 4.1. We have used a new data set because we did not want to put algorithms at advantage that
work faster on previously seen data. While the training time is not an important factor in this thesis, it is
still quite interesting to see what time was required to train the final model. It is important to note that
in the following, training time corresponds to the time spent training the final model, i.e. a model with
one set of parameters. In order to figure out the best parameter combination, several models have to be
trained, and this circumstance may increase the total training substantially.

All of our tests were conducted in one single run and the CPU time was measured. Unlike the wallclock
time, the CPU time is the amount of time the CPU was used for processing instructions from a single
process (program). This specifically means that when the CPU context switches (stores and restores the
state of a process) to another process, the measured time of the process in question will not be increased.
All of our tests were conducted on dedicated machines that have only a minimum amount of processes
running. Nevertheless, the prediction experiments were repeated 10 times, and the numbers in Table 7.5
constitute the averaged numbers across these experiments.

Table 7.5 lists the algorithms studied and the associated time spent for training and the prediction
of 3,000 instances. It comes as no surprise that linear regression is one of the fastest models as far as
training and classification time is concerned. The current method (see Subsection 7.1.6) is missing from
the table because it was neither trained nor is there any informative value since the prediction is obtained
using MOTIS. However, because the current method consists of three separate linear regression schemes,
the training and classification time should be very close to the timings of simple linear regression. The
prediction time for the old method (see Subsection 7.1.7) should even be below the time needed by linear
regression, because it is based on a single attribute only. The prediction time for MARS is relatively low
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Figure 7.5.: Smoothed versions of scatter plots of the residuals. All points below the red lines are overpre-
dicted, while all points above the red lines are underpredicted. Darker regions represent a
higher density of points.
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Figure 7.6.: Smoothed versions of scatter plots of the residuals. All points below the red lines are overpre-
dicted, while all points above the red lines are underpredicted. Darker regions represent a
higher density of points.
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Training Time Prediction Time

Linear Regression 0.15 0.07
M5 3.56 0.13

MARS 2.41 0.46
Cubist Trees 76.30 3.07

SVM (Radial) 179.75 5.22
SVM (Poly) 147.43 10.66

Neural Net (MLP) 21.73 13.70

Table 7.5.: Training and classification CPU time in seconds. The training time in seconds corresponds to
the time spent training the final model, while the prediction time describes the time spent for
the prediction of 3,000 previously unseen data instances.

compared to the other more complex models studied. Cubist trees, despite being deduced to 2746 rules in
30 committees, need only 3.07 seconds for the prediction of 3,000 instances. The M5 algorithm from Weka
(Hall et al. 2009), which should be as fast as the cubist algorithm without committees and the application
of the kNN algorithm, is also quite fast. However, the cubist algorithm is relatively faster, given that it
predicts the ticket price using 30 trees instead of just one. It is important to note that the prediction time
for cubist can be decreased greatly by choosing a smaller value for the committees parameter. The SVM
with a radial kernel is almost twice as fast as the one with a polynomial kernel as far as prediction time is
concerned, and the MLP requires the most time for the prediction of our test set.

In order to optimize for the ticket price, MOTIS requires about 50,000 predictions to be made when
booking a train ticket. For this reason, only the first three models (Linear Regression, MARS, and M5)
are recommendable as far as integration into MOTIS is concerned. With more computing power at hand,
SVMs pose an option as well. It should be noted though, that cubist tree are also advisable when fewer
committees are learned. For the prediction of 50,000 ticket prices, MARS needs about 7.7 seconds on a
consumer notebook and the M5 tree learner about 2.2 seconds. The current method is still the fastest
method, and given that it is a model with just 3 variables, it should take about 1 second for the prediction
of 50,000 instances.
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8 Conclusion
Within this thesis, we have studied and evaluated several machine learning algorithms that can be used
to predict railway fares, and have compared them to two existing methods, one of which is currently
being used in MOTIS. The best results were obtained using an ensemble method: the decision tree learner
cubist. For the best selection of parameters, this method creates an ensemble of 30 committees (trees)
that are then deduced to 2746 rules. Support Vector Machines (SVMs) have also delivered an effective
result and the study indicated that preference should be given to a SVM with a radial kernel due to
the lower prediction time and error. In the event a technique involving SVMs is chosen to replace the
current method, the removal of predictors should be considered in order to decrease the number of
support vectors. Multivariate Adaptive Regression Splines (MARS) models provided good results, and
were especially interesting because of the simplicity of the model produced and the negligible prediction
time. The method currently employed by MOTIS, which was developed by Harnisch and Nuhn (2010),
also provides good results; however, it tends to almost exclusively underpredict low-priced tickets. The
current method is also by far the fastest of the techniques studied in this thesis.

No clear indication can be given as to which method represents the most suitable learning algorithm
with which to replace the current method. The prediction time is acceptable for most of the methods
studied and, as such, while cubist trees are a likely candidate, both SVM and MARS models also pose a
viable option. However, when choosing a SVM, considerable more computing power is needed. As far as
integration into MOTIS is concerned, all of these options are practically realizable. The cubist tree learner
is now licensed under the General Public License, and C source code intended to read and interpret the
learned models is provided1 “as is.” Several mature implementations of a SVM are in existence, including
libSVM2 and SVMlight3. A model produced by MARS can be programmed directly into MOTIS.

The use of a combination of some of the techniques that were examined in this study is also feasible,
possibly considering the analysis of the residuals explored in Section 7.3. However, it should be noted that
such an amalgamation of algorithms may increase the overall prediction time when multiple models are
used for the prediction of railway fares. The residual analysis could also be used to improve the the fare
prediction for the current method, specifically for less expensive tickets, but we expect the improvement
to be minor.

By modelling the problem at hand in a different fashion, it may also be possible to learn the actual
corridors (the area between two points which a train travels through and must not leave) that determine
the final ticket price. However, no such attempts were undertaken in this study.

In addition to studying different machine learning algorithms, a sampling method that favors routes
planned from and to major railway stations, determined by the total number of incoming and outgoing
connections, has been proposed. The ranking of the algorithms studied when applied to this data set
was identical to the ranking acquired when applying the techniques to a data set that consisted of a live
recording that was performed by actual humans. This confirms our method of sampling from the BPC,
because the character of the data in these two data sets does not seem to differ substantially, and our
priority is to identify the method that works best for the problem at hand.

All work in this thesis is based on the then-current Black-Box Pricing Component (BPC) from 2008, and
train ticket prices for IC trains in the German railway system are rumored to now follow the same fare
structure as ICE trains, i.e. they are no longer simply based on the distance traveled. For this reason, all
models created using an obsolete data set are not applicable to the prediction of current railway fares. If

1 http://www.rulequest.com/download.html
2 http://www.csie.ntu.edu.tw/c̃jlin/libsvm/
3 http://svmlight.joachims.org/
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at all possible, future work should also focus on the acquisition of a current data set, possibly using web
scraping techniques. An up-to-date data set is essential when trying to minimize the current fare cost.
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A Detailed Evaluation Results

Committees Neighbors MAE RMSE RRSE RAE Rsq

1 1 538 844 0.258 0.193 0.934
1 3 503 769 0.235 0.180 0.945
1 5 493 754 0.231 0.177 0.947
1 7 488 747 0.228 0.175 0.948
1 9 485 743 0.227 0.174 0.948
5 1 506 780 0.239 0.182 0.943
5 3 475 709 0.217 0.170 0.953
5 5 468 694 0.212 0.168 0.955
5 7 464 687 0.210 0.166 0.956
5 9 462 684 0.209 0.166 0.956

10 1 502 774 0.237 0.180 0.944
10 3 471 702 0.215 0.169 0.954
10 5 464 687 0.210 0.167 0.956
10 7 461 681 0.208 0.165 0.957
10 9 458 677 0.207 0.164 0.957
20 1 500 773 0.237 0.179 0.944
20 3 469 701 0.214 0.168 0.954
20 5 462 685 0.210 0.166 0.956
20 7 459 679 0.208 0.164 0.957
20 9 457 675 0.207 0.164 0.957
30 1 499 772 0.236 0.179 0.945
30 3 469 699 0.214 0.168 0.954
30 5 461 684 0.209 0.165 0.956
30 7 458 677 0.207 0.164 0.957
30 9 456 674 0.206 0.164 0.958
50 1 498 771 0.236 0.179 0.945
50 3 468 698 0.214 0.168 0.954
50 5 461 683 0.209 0.165 0.956
50 7 458 677 0.207 0.164 0.957
50 9 456 673 0.206 0.163 0.958
70 1 498 771 0.236 0.179 0.945
70 3 468 698 0.214 0.168 0.954
70 5 461 683 0.209 0.165 0.956
70 7 458 677 0.207 0.164 0.957
70 9 456 673 0.206 0.164 0.958

100 1 498 771 0.236 0.179 0.945
100 3 468 698 0.214 0.168 0.954
100 5 461 683 0.209 0.165 0.956
100 7 458 677 0.207 0.164 0.957
100 9 456 673 0.206 0.164 0.958

Table A.1.: Evaluation results for the cubist algorithm. The best result for each metric is printed in bold.
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Degree Nprune MAE RMSE RRSE RAE Rsq

1 1 2757 3240 1.000 1.000
1 3 753 1008 0.311 0.273 0.903
1 7 642 874 0.270 0.233 0.927
1 10 627 856 0.264 0.228 0.930
1 15 627 855 0.264 0.227 0.930
1 20 627 855 0.264 0.227 0.930
1 30 627 855 0.264 0.227 0.930
1 60 627 855 0.264 0.227 0.930
1 100 627 855 0.264 0.227 0.930
2 1 2757 3240 1.000 1.000
2 3 877 1141 0.352 0.318 0.876
2 7 635 859 0.265 0.231 0.930
2 10 605 836 0.258 0.220 0.933
2 15 593 826 0.255 0.215 0.935
2 20 593 826 0.255 0.215 0.935
2 30 593 826 0.255 0.215 0.935
2 60 593 826 0.255 0.215 0.935
2 100 593 826 0.255 0.215 0.935

Table A.2.: Evaluation results for the MARS algorithm. The best result for each metric is printed in bold.
Two cells are empty due to division by zero.

C Sigma MAE RMSE RRSE RAE Rsq

0.25 0.13 549 802 0.248 0.199 0.939
0.50 0.13 536 787 0.243 0.194 0.942
1.00 0.13 527 775 0.239 0.191 0.943
2.00 0.13 521 766 0.236 0.189 0.944
4.00 0.13 518 761 0.235 0.188 0.945
8.00 0.13 518 760 0.235 0.188 0.945

16.00 0.13 524 767 0.237 0.190 0.944
32.00 0.13 533 780 0.241 0.193 0.942
64.00 0.13 547 802 0.248 0.198 0.939

128.00 0.13 565 831 0.257 0.205 0.935
256.00 0.13 588 872 0.269 0.213 0.928
512.00 0.13 619 928 0.287 0.225 0.919

1024.00 0.13 664 1013 0.313 0.241 0.905

Table A.3.: Evaluation results for a Support Vector Machine with a radial kernel. The best result for each
metric is printed in bold.
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C Degree MAE RMSE RRSE RAE Rsq

0.25 1 770 1118 0.345 0.279 0.886
0.25 2 564 830 0.256 0.205 0.935
0.25 3 543 801 0.247 0.197 0.939
0.25 4 532 783 0.242 0.193 0.942
0.25 5 534 812 0.250 0.194 0.938
0.50 1 769 1119 0.345 0.279 0.886
0.50 2 563 829 0.256 0.204 0.935
0.50 3 541 798 0.246 0.196 0.940
0.50 4 531 781 0.241 0.193 0.942
0.50 5 537 815 0.252 0.195 0.937
1.00 1 769 1119 0.345 0.279 0.886
1.00 2 563 828 0.256 0.204 0.935
1.00 3 540 797 0.246 0.196 0.940
1.00 4 531 783 0.242 0.193 0.942
1.00 5 543 833 0.257 0.197 0.934
2.00 1 769 1119 0.345 0.279 0.886
2.00 2 563 828 0.256 0.204 0.935
2.00 3 539 796 0.246 0.196 0.940
2.00 4 532 786 0.243 0.193 0.941
2.00 5 553 912 0.281 0.200 0.920
4.00 1 769 1119 0.346 0.279 0.886
4.00 2 563 828 0.255 0.204 0.935
4.00 3 539 796 0.246 0.196 0.940
4.00 4 534 794 0.245 0.194 0.940
4.00 5 565 1040 0.320 0.205 0.893
8.00 1 769 1119 0.346 0.279 0.886
8.00 2 563 828 0.255 0.204 0.935
8.00 3 539 796 0.246 0.196 0.940
8.00 4 537 803 0.248 0.195 0.939
8.00 5 590 1327 0.408 0.214 0.850

16.00 1 769 1119 0.346 0.279 0.886
16.00 2 562 828 0.255 0.204 0.935
16.00 3 539 797 0.246 0.196 0.940
16.00 4 541 816 0.252 0.196 0.937
16.00 5 609 1340 0.412 0.221 0.844
32.00 1 769 1119 0.346 0.279 0.886
32.00 2 562 827 0.255 0.204 0.935
32.00 3 540 798 0.246 0.196 0.940
32.00 4 545 835 0.258 0.198 0.934
32.00 5 626 1251 0.386 0.227 0.859
64.00 1 769 1119 0.346 0.279 0.886
64.00 2 562 827 0.255 0.204 0.935
64.00 3 541 799 0.247 0.196 0.940
64.00 4 553 851 0.263 0.201 0.932
64.00 5 680 1550 0.477 0.246 0.807

128.00 1 769 1119 0.346 0.279 0.886
128.00 2 563 828 0.256 0.204 0.935
128.00 3 542 803 0.248 0.196 0.939
128.00 4 573 894 0.276 0.208 0.924
128.00 5 748 1561 0.481 0.271 0.803
256.00 1 770 1120 0.346 0.279 0.885
256.00 2 563 829 0.256 0.204 0.935
256.00 3 554 817 0.252 0.201 0.937
256.00 4 636 985 0.304 0.231 0.911
256.00 5 940 2318 0.714 0.341 0.707

Table A.4.: Evaluation results for a Support Vector Machine with a polynomial kernel. The best result for
each metric is printed in bold.
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B Descriptive Statistics Formulae
Let x = {x1, . . . , xn} be a discrete set of n numbers.

The arithmetic mean (average) is given by

x̄ =
1

n

n
∑

i=1

x i (B.1)

Reorder x i so that x1 < x2 < . . .< xn. The statistical median is given by

x̃ =







x� n
2

� if n is odd

x� n+1
2

� if n is even
(B.2)

The corrected (n− 1) sample variance is given by

s2 =
1

n− 1

n
∑

i=1

(x i − x̄)2 (B.3)

The corrected (n− 1) sample standard deviation is given by

s =

s

1

n− 1

n
∑

i=1

(x i − x̄)2 (B.4)

Let x = {x1, . . . , xn} and y = {y1, . . . , yn} be sets of two attributes for an observation.

The sample covariance is given by

sx y =
1

n− 1

n
∑

i=1

(x i − x̄)(yi − ȳ) (B.5)

The Pearson product-moment correlation coefficient (PPMCC) is given by

rx y =
sx y

sxsy
(B.6)
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C Glossary
BPC Black-Box Pricing Component. 6, 21, 51, 57

CART Classification and Regression Tree. 13, 57

CV Cross-Validation. 19, 57

EC EuroCity. 6–8, 27, 30, 43, 57

IC InterCity. 6–8, 27, 30, 43, 51, 57

ICE InterCity-Express. 6, 7, 21, 27, 30, 43, 51, 57

ID3 Iterative Dichotomiser 3. 13, 15, 57

IR InterRegio. 6, 27, 57

MAE mean-absolute error. 20, 37, 38, 40–42, 44, 45, 57, 61

MARS Multivariate Adaptive Regression Splines. 10, 12, 13, 39, 41, 45, 47, 50, 51, 57

MLP Multilayer Perceptron. 18, 34, 42, 50, 57

MOTIS Multi-Objective Traffic Information System. 2, 3, 6–8, 21, 22, 24, 26, 27, 36, 41, 50, 51, 57

MSE mean-squared error. 20, 57

NNET Neural Network. 57

RAE relative-absolute error. 20, 45, 57

RB RegionalBahn. 6, 21, 27, 57

RE RegionalExpress. 6, 21, 27, 57

RMSE root mean-squared error. 20, 45, 57

RRSE root relative-squared error. 20, 45, 57

RSE relative-squared error. 20, 57

Rsq R squared. 45, 57

SVM Support Vector Machine. 10, 16, 38, 43, 47, 50, 51, 57
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