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1 Introduction

1.1 Motivation

The computer technology at first consisted only of some single mainframe systems at some
research institutes and universities. Since that time the computer systems have developed to
everyday things being at our homes or working places. Thereby the amount of computer sys-
tems coming distributed over people changed from one computer in dozens of men to several
computer devices per man. During these the computer systems have become necessary to our
daily life or working processes. Furthermore in the past ten to twenty years this development
let the amount of data in the world nearly explode. The amount of data that was produced in
only one day is so tremendous, that if someone wants to work with it, the data has to be filtered
immediately during the process of collecting it. To achieve this for each data instance has to be
predicted if it is relevant or irrelevant. This is necessary because the capability of storing the
data does not compete to its production rate. In long term the amount also grows beneath the
capability of a human to work with it on its own. As a sample from daily live the spam filter of
an email server can be seen. The enormous amount of spam which is automatically sent each
day is even bigger than the capability to read it and the email clients would be full every time.
Without spam filters people would spend a lot of their time sorting out undesired mails. The fil-
tering in generally works without a user noticing it. The sensor data arises in fabric production
or data about sold products in a supermarket are other examples of such cases of massive data
production. Looking at the last one there is the possibility to infer from receipts of customers
their shopping behavior and their preferred product combinations. Thereby it would be possible
to change the structure of supermarkets to optimize the shopping behavior in an economical
way for its owner.
This points out the question, how the information or the classification of such data could be
emerged. In terms of the first example this means the decision if some specific email is a spam
mail or not. This task is not easily done and the different real world settings need different types
of learning processes to solve these classification problems. For example there is the so called
supervised learning. The problem of classification in general is to determine for a set of data X,
consisting of data instances x = x1, ..., xn with x i being a measured value in some kind of spe-
cific measurement category, called feature, and x i representing the value in some measurement
category ai, if a specific instance x is part of the desired class of instances or not. In supervised
learning additionally there is knowledge about the desired classification of the instances of a
specific data subset, which is used by the different prediction models, in the later called clas-
sifiers, to predict the assignments of the classes for the instances not being in the data subset
with already known class assignments, to set up a mechanism to infer which ranges of the mea-
surement categories could be used to predict the classification of still unknown data instances.
Roughly spoken, which values are interesting for the classification. Afterwards these learned
rules were used to classify the data during the working process. An additional dimension of
different problems is how the already classified data instances are used to train the classifiers.
In batch learning the classifier is inferred from the whole data subset with classified instances
at once before he is used to classify the yet unclassified instances. There are several other lear-
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ning problems like online learning. Therein the classifier is initially build using only one already
classified instance and then is updated with the other data instances one after another. During
this thesis only supervised batch learning problems are considered.
Beneath these learning problems there are several different classification problems. These des-
cribe the way of classification. The classes to determine cannot only be binary but also be more
complex like a discrete value range or a grade of belonging to a class. For example the classifica-
tion problem is to find out a value in a scale of natural numbers from 0 to 5 with 0 representing
the irrelevance to a class and 5 representing the full relevance. The values in-between represent
a more or less probable dependency to the class. Compared to the binary classification the other
problems allow the existence of partial dependency or the classification of several classes at the
same time. As an example for the last one an instance representing a car could be classified as
’big’ and ’red’. The first sort of problem uses graded classification and is named ordinal classifi-
cation. The second one is called multilabel classification and allows several class assignments at
once. They will be concreted in the next chapter.
This thesis is about the graded multilabel classification. It consists like the multilabel classifica-
tion of the classification of several individual labels for one data instance x with the possibility
of each class, here called label, on having a specific grade of dependency to this label. This pro-
blem was described for the first time in [3]. This thesis will take a second look at the problem
and tries to show alternative attempts of solving it, which will be compared with the solving
strategies in [3] in terms of the quality of classification. Therefore their experiment set-up was
reconstructed for testing my own solving strategies using pairwise classification and the results
will be compared later on in this thesis.
The solving attempts to the graded multilabel classification presented by this thesis are gene-
ralizations of the calibrated label ranking. This classification approach to the multilabel classi-
fication tries to estimate the labels to be classified by learning binary classifiers doing pairwise
comparisons of the labels. This means for each pair of labels one or more classifiers are lear-
ned to predict which one of the two labels is more likely to be relevant. The information which
other labels are aware is not treated by this classifiers. In the different classification problems
such pairwise classifiers showed very good results. Especially the calibrated label ranking as one
individual pairwise classification approach was very successfully in the multilabel classification
setting. This makes the pairwise approach and especially the approach of the calibrated label
ranking very promising to the setting of the graded multilabel classification. The main motivati-
on of this thesis is to examine the suitability of the pairwise approach to the graded multilabel
classification. How the calibrated label ranking can be generalized to be used in the setting of
the graded multilabel classification and how the pairwise approaches compete to the in [3] pro-
posed solving approaches are the central questions answered by this thesis.
Why is it interesting to formulate different kinds of classification problems, the graded multi-
label classification problem in particular, and to find solving strategies for them. In my opinion
this question is well answered in [3] which argues by the means of the way data are collected.
A graded dependency is far more easy to predict for a human being than an ungraded one. Also
the data itself becomes a more detailed grade of information in the way of the declaration of the
classification problem itself. Sometimes there is the need to classify several different classes for
one data instance, where the correlation and interdependencies of the different classes have to
be considered of. In these combined cases the problem has to be graded multilabel classification
problem to represent both aspects at the same time.
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So collecting data for graded multilabel classification and ways to classify it automatically seems
self-evidentially advantageous in times of growing mechanization.

1.2 Goals

The goal of this thesis is to find generalizations of the calibrated label ranking to the graded
multilabel classification problem and to evaluate the quality of their predictions. Thereby the
suitability of pairwise classifiers in the space of the graded multilabel classification problem
should be explored. To solve this the found approaches should be compared with the approa-
ches, which are already available to solve the graded multilabel classification problem.

1.3 Structure

This thesis first provides to the reader the theoretical foundations to understand the graded
multilabel classification (see chapter 2). Afterwards the already available approaches to solve
the graded multilabel classification are discussed in detail (see chapter 3). Then the main part
of the thesis follows when discussing several new approaches to solve the graded multilabel
classification problem all generalizing the calibrated label ranking (see chapter 4). At next the
quality of prediction of the different approaches is evaluated and compared by an experimental
evaluation (see chapter 5). At least the paper is concluded by a summary of its content and the
prospects to future research (see chapter 6).

1.2 Goals 7





2 Classification problems

The following chapter should enable the reader to understand the theoretical basis of the la-
ter discussed solving strategies of the graded multilabel classification problem. To achieve this
different classification problems will be discussed and then finally generalized to the graded
multilabel classification problem starting with a binary classification problem. Therefore the bi-
nary decision of the binary classification problem will be generalized to an ordinal scale of class
relevance. Afterwards it will be discussed an orthogonal generalization of the binary problem
towards several binary classes, named labels. For each of them it has to be considered which
ones have to be classified at the same time. The next discussed problem is label ranking. This
formulates the problem of finding an order of preferences of several labels for each instance
instead of predicting a subset of all possible labels. The discussion of the label ranking is nee-
ded to introduce the calibrated label ranking which is generalized by the solving approaches to
graded multilabel classification proposed by this thesis. The graded multilabel classification is
the last discussed classification problem. It is a combination of the multilabel and the ordinal
classification and is the central discussed problem.
For simplification all classification problems in this chapter are discussed in terms of being a
supervised batch learning problem. This assumption is well suited for the comparison of the dif-
ferent problems because the complexity of the learning process of different learning problems is
independent of the type of classification problem. The base assumption of the supervised lear-
ning is that for some subset Xknown of the possible data X the right classification of each data
example x ∈ Xknown is known at the time of training the classifier. A subset of Xknown is used
to learn the classifier. This subset is called the training set of the classifier. In batch learning
problems the classifier is trained by looking at all instances in the training set at once. Contra-
ry in online learning problems the classifier is initially trained on one instance and afterwards
updated by looking at one instance after another.

2.1 Binary classification

The binary classification problem is the simplest thinkable form of a classification problem. For
some data set X with instances

x=
�

x1 . . . xn
�

and x ∈ X

it has to be decided, if these instances x belong to some class λ or not. x1, . . . , xn thereby are
the values for the features

A= {a1, . . . , an}

of the data set X. So the classifier is equal to some model

H : X→M,x 7→
�

1 if x belongs to λ
0 otherwise , withM= {0,1}.

The assignment of ‘1’ means the instance belongs to class λ. For this kind of problem many
different solving approaches, with several allowing a very good classification, exist, if possible
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due to the inner appearance of the data set. The rule learners are a good example for one of the
different approaches of classifiers. They are a group of classifiers, which aims to build a model
for prediction by some set of rules derived from the feature values in the training set. This is
done by trying to predict a correlation between the value of a feature or a combination of the
values of several features and the class. For example the rules can have the form

If the value of x for feature ai is higher than some value t,
then predict it belongs to class λ.

With the rule set consisting only of this rule the classification model would be

H : X→M,x 7→
�

1 if x i > t
0 otherwise .

The specific interdependence between the rules in the rule set and their structure depends on
the specific algorithm. They could be pure mathematical or symbolic building a decision tree
like the C45-algorithm [12].

2.2 Ordered classification

If the above described binary classification problem is extended by a grade of belonging to the
class λ, the ordinal classification problem is created. The target value space M of the classifier
H is changed from a binary range

M= {0, 1}

to a discrete and ordered finite space

M= {m1, . . . , mn}

with the inner structure

m1 ≺ m2 ≺ . . .≺ mn.

The values for example can be some subspace of the natural numbers

M= {0,1, . . . , 5},

with ‘0’ having the same meaning as in the binary case and ‘5’ corresponding to ‘1’ from before.
All values in between represent some kind of more or less partial classification of λ like ‘belongs
probably to it’ or ‘rather not’. An example in the real world could be a review score of the
customers in an online shop with products gaining up to 5 points. These data can be collected
with features like price or supplier. Note that the semantics of the individual grades in the
above example are only one possible interpretation. The lowest grade does not have to have the
meaning of the class being not aware and the same holds for the highest grade.
Because this kind of decision to predict a specific grade m ∈ M is definitely more complex
than a binary one, it is for example more difficult to find an appropriate rule set. The rule set
in general would be much bigger. In tests it was shown that the reduction to several binary
classification problems can solve the problem in a more efficient way as the direct approach. By
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this the complexity of the whole problem is reduced to the combined complexity of the binary
problems. In [6] was shown that this is less complex to solve than solving the ordinal problem
itself. But it has to be ensured that the additional information about the data gained by the
grade is not lost through the act of reduction. Therefore the way of reducing and recombination
has to be considered carefully. To take this into account it is tried to build binary classification
problems in a way that for each pair of two grades

�

mi, m j

�

∈M with i < j has to be predicted
to which one of the two the instance belongs to. Through voting of the classifiers the grade
with the highest number of votes is predicted. For instance if five classifier predict the instance
belongs to grade m1 and two predict grade m2, it is self-evident more likely that the instance
belongs to m1. This sort of procedure is discussed in detail by [6].
In [10] was shown that the decision between two grades seems to be more error prone, if
during the reduction to a binary problem instances of higher grades than the higher one of
the two compared ones are treated as instances of this grade and analog for the lower grade.
The grades in-between can not be associated with one of the two grades because like in [6]
written the scale of the grades is not numerical. So there is no kind of closeness of the grades
in-between to the surrounding ones. In [6] the error proneness is assumed to be caused by the
possible more complex decision boundaries in the feature space when the order in grades does
not respond in the feature space. For additional information to this enhancement of the training
sets of the pairwise classifiers see [2].

2.3 Multilabel classification

The multilabel classification [13] is another sort of generalization of the binary classification.
But the extension used in the multilabel classification is some kind of orthogonal to the one in
the ordered classification. Like already written above the classification problem is extended by
not only predicting a single class but a subset of all possible binary classes. These classes are
named labels. So for an instance x ∈ X has to be found a set of labels

Px ⊆L

out of the set of all possible LabelsL = λ1, . . . ,λn. The classifier solving this problem is changed
to the form

H : X→P (L ) ,x 7→ Px,

with Px being the subset of classified, called labeled, labels λi and P (L ) being the power set
of L . For each instance x ∈ X be Lx (λ) a function indicating, if label λ ∈ L is labeled for this
instance or not.

Lx : L → {0,1},λ 7→
�

1 ,if λ ∈ Px
0 otherwise

Let Lx be the complementary function to Lx. In practice the set of predicted labels P̂x may differ
from the set of really relevant labels Px.
Like proposed in [3] there are several different strategies to solving the multilabel classiciation
problem which use different interpretations of the problem itself. The most proposing approa-
ches use the reduction to binary classification problems. But the several approaches use different
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ways to achieve it. The first here discussed one sees each element of P (L ) as single classificati-
on problem. For each of them a binary classifier is learned to predict its equality to the searched
Px. The drawback of this approach is its complexity. The number of binary classifiers needed
grows with O

�

min
�

2|L |, n
��

with n being the size of the training set. This approach is cal-
led label powerset, will not be deepened and is only mentioned for completeness. The second
strategy is the so-called binary relevance. Thereby the original problem is reduced to n = |L |
binary classification problems. For each individual label λi ∈ L is learned one binary classifier
to predict, if the label belongs to some data instance. Cheng, Dembczyński & Hüllermeier [3]
points out that obviously this approach ignores the correlation and interdependencies between
the labels which leads to a drawback in the quality of the classification. The third approach tries
to predict the preference order of the labels and finds a threshold to separate the higher prefer-
red from the lower preferred ones. Because of the high interest of this approach to the topic of
this thesis it is discussed in more details later in the chapter.
An example for the multilabel classification can be a sociological study. Therein the test persons
have to answer some questionnaire to sort the persons to several social groups. These soci-
al groups can overlap. So a person could belong to more than one group. The set L of labels
would be the set of possible social groups the test person have to be assigned to. An 18-years old
boy, who is doing a lot of different sorts of sport, may be classified as ‘teenager’ and ‘passionate
to sports’.

2.4 Label ranking

Contrary to the multilabel classification problem in the label ranking problem [8] is not tried
to find a subset Px ⊆ L but a ranking of the elements of in L . In other words a ranking
λ(1) ≺x . . . ≺x λ

(n) with n = |L |, λ(1) being the less preferred label for instance x ∈ X and
λ(n) being the most preferred one is predicted. The ranking represents the probability of a label
belonging to an instance x in relation to the other labels by its position in the ranking. The
ranking can obviously be different for each single instance x ∈ X. The probability also is no
discrete value but only a preference in relation to the other labels and can be directly inferred
by its position in the ranking.
The order is gained through learning a scoring function

f : X×L → R,

with R being the set of real numbers. Important is that the result of f (·,x) grows monotone,
or the better a strongly monotone, from λ(1) to λ(1) for an explicit instance x. If the value of f
grows accordingly to the probability of the label belonging to an instance, f induces obviously
a ranking of the elements in L . In case of f being only monotone the ranking cannot be consi-
dered definite because the value of two labels could be equal. The positions of these labels then
are interchangeable. This can be necessary to represent the data correct but is out of a ranking
point of view not so well suited. The ranking for values

f
�

x,λ(1)
�

< f
�

x,λ(2)
�

< . . .< f
�

x,λ(i)
�

= f
�

x,λ( j)
�

< . . . f
�

x,λ(n−1)
�

< f
�

x,λ(n)
�

would be

λ(1) ≺x λ
(2) ≺x . . .≺x λ

(i) =x λ
( j) ≺x . . .≺x λ

(n−1) ≺x λ
(n).
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With a strongly monotone growing f the inferred ranking is definite.

f
�

x,λ(1)
�

< f
�

x,λ(2)
�

< . . .< f
�

x,λ(i)
�

< f
�

x,λ( j)
�

< . . . f
�

x,λ(n−1)
�

< f
�

x,λ(n)
�

would be

λ(1) ≺x λ
(2) ≺x . . .≺x λ

(i) ≺x λ
( j) ≺x . . .≺x λ

(n−1) ≺x λ
(n).

An example of this problem can be the prediction of the winning probabilities of an action of
an artificial intelligence playing poker at a special point in a game. The scoring function of the
artificial intelligence thereby models the winning probability of the different possible actions to
achieve a ranking of these.

2.5 Calibrated label ranking

The calibrated label ranking is the above mentioned third approach to solve the multilabel
classification problem. In calibrated label ranking the original multilabel classification problem
is reinterpreted as a label ranking problem. The problem is changed from

c : X→P (L )

to find a ranking of L with

f : XxL → R,

and some threshold

t ∈ R

to partition the gained ranking into two parts. The sets of labels of the two parts of the ranking
are the relevant Labels Px and the set of not relevant ones Nx. So in calibrated label ranking the
two sets have the form

Px = {λ| f (λ)> t}

and

Nx =L \ Px.

So Lx is concreted to

Lx (λ) =
�

1 if f (λ)> t
0 otherwise

Obviously the difficulty of this approach is the search of an appropriate threshold t to reduce
the difference between the set of predicted labels P̂x and the correct labels Px. Through expe-
riments was shown that the approach of calibrated label ranking proposed in [7] produces the
best results for pairwise classification. This approach tries to predict the ranking by learning
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pairwise comparisons between the labels. That means for each pair of labels
�

λi,λ j

�

∈ L ×L
with i 6= j is learned a binary classifier H(λi ,λ j) to predict which is more probable.

H(λi ,λ j) : X→ {0, 1},x 7→
�

1 if λi ∈ Px ∧λ j /∈ Px
0 if λi /∈ Px ∧λ j ∈ Px

It is trained with the instances x ∈ Xt rain labeled either with λi or λ j but not if both are labeled.
So only the two cases handled in the projection function can occur. To infer the ranking the
scoring function is

f
�

x,λi
�

=
L
∑

λ j
λi 6=λ j

H(λi ,λ j).

So the score is gained through summing up the votes of the individual binary classifiers which
is called voting.
Obviously the prediction of the classifier H(λi ,λ j) is completely complementary to the prediction
of the classifier H(λ j ,λi). So the complementary classifier has not to be learned and its prediction
can be inferred.
To achieve a better understanding, which classifiers are learned during the training phase, in
figure 2.1a the pairwise classifiers H(λ j ,λi) are shown as arcs. In this figure the prediction of
the classifiers for an explicit instance x during the classification step is shown. The prediction is
represented by the corresponding arc pointing from the preferred label to the unpreferred one.
To determine the threshold t to partition the scores of the scoring function f , an additional
virtual label v is inserted to the set of labels L . The new set of labels used for prediction is

Lv =L ∪ {v }

During the phase of learning the classifiers H(λi ,λ j) for each classifier H(λi ,v) for each instance
x v is assumed labeled, if λi is absent and vice versa. So v is assumed higher ranked than
the labels in Nx but lower ranked than the ones in Px (see Figure 2.1b). So the set of learned
preferences is changed from holding preferences from P̂ to N̂ to holding additional ones from
P̂ to v and from v to N̂ (see Figure 2.1c). The resulting ranking consists of the virtual label
separating the labels in N̂ from the ones in P̂ (see Figure 2.1d). So the threshold t is the score
of the virtual label v

t = f (x, v ) .

The calibrated label ranking is by this thesis generalized to the graded multilabel classification
problem.
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(a) The pairwise comparisons between the labels of
a multilabel classification problem

(b) The additional pairwise comparisons due to the
virtual label added by the calibrated label ran-
king to the multilabel classification problem

(c) All pairwise comparisons done in the calibrated
label ranking

(d) The predicted ranking of the labels of a multilabel classification problem

Figure 2.1: An example of the prediction of calibrated label ranking

2.6 Graded multilabel classification

The graded multilabel classification problem is the last discussed and central classification pro-
blem in this thesis. This problem was introduced for the first time by Cheng, Dembczyński &
Hüllermeier [3], which is until now the only publication to this topic.
Graded multilabel classification is a combination of the multilabel classification with the orde-
red classification. This means each label λ in the set of relevant labels Px of instance x ∈ X
is not longer only relevant or not, but can have a discrete grade of relevance like in ordered
classification. For simplification these grades of the different labels are mentioned to be similar
for each label. For all labels λ ∈ L beM= {m1, m2, . . . , mn} the finite set of ordered grades.
The classification function of the graded multilabel classification problem is

H : X×L →M, (x,λ) 7→ m.
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The function Lx is generalized from

Lx : L → {0,1} ,λ 7→
�

1 if λ ∈ Px
0 otherwise

to

Lx : L →M,λ 7→
¦

mi

�

�λ ∈ Pmi
x

©

with Pmi
x being the set of labels with grade mi. So the set of relevant labels Px from multilabel

classification is generalized to the set

Px =
¦

Pm1
x , Pm2

x , . . . , Pmn
x

©

.

The set of gradesM= {m1, m2, . . . , mn} has the inner structure

m1 ≺ m2 ≺ . . .≺ mn

like in ordered classification. This order of M leads to the effect, that, if a label is labeled with
grade mi, it is assumed also be labeled with all lower grades m j with j < i. The grade m1 des-
cribes the absence of a label and mn its full presence. All labels m2, m3, . . . , mn−1 are grades of
particular presence between m1 and mn. In contrary to [3] the setting m1 = 0 and mn = 1 is not
assumed to prevent from the false impression that the inner structure of M is some numerical
scale. Because like in the ordered classification the ‘distance’ between two successive grades
is not determined. Note that this is one of two possible ways to interpret the ordinal structure.
The other possibility is to only assume one specific grade to be classified. For example some data
instance x is classified with

��

λ, m2
�	

then in the first interpretation it is also assumed labeled
with m1 but in the second interpretation it is only labeled with grade mi Because [3] used the
first interpretation and this work tries to find approaches which can be compared to the ones in
[3], this work uses also the first interpretation.
[3] proposed as biggest advantage of the graded multilabel classification problem the possibili-
ty of finer granular data acquisition than in the normal multilabel classification setting. These
granularity in graded preference of a label is assumed as more comfortable to a person whi-
le judging. Through this the grade of information of the predicted classifications of a graded
multilabel classifier is higher than the one of a binary multilabel classifier because of its hig-
her detailed results. But this higher detail is only available with the expense of the problems
complexity. For instance the dimension of the target space T grows from |Tbinar y | = 2|L | to
|Tgraded |= |M||L |.
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3 Solving approaches to graded multilabel classification from literature

The last chapter discussed several different classification problems. This chapter introduces the
existing solving strategies for the graded multilabel classification problem from [3]. Firstly the
vertical and horizontal reduction of the graded multilabel classification problem are discussed.
These meta-techniques to reduce the complexity of the problem are used by both approaches
of [3]. Then a look at the combination of both techniques is taken, which is the first solving
approach. Afterwards the second solving approach, named IBLR-ML, is discussed.

3.1 Vertical reduction

Caused by the high complexity of the graded multilabel classification problem the reduction to
less complex classification problems is reasonable to reduce error rate and computation time.
One approach to achieve this is the in [3] proposed vertical reduction. Here the graded multila-
bel classification is reduced analog to the binary relevance in multilabel classification. In greater
detail in binary relevance for each label λ1, . . . ,λn of the multilabel classification problem is
learned one binary classifier to predict the labels relevance. So the multilabel classification pro-
blem is reduced to n individual binary classification problem. In terms of the vertical reduction
the graded multilabel classification problem is reduced to n ordered classification problems.

H : X×L →M is transformed to [H]λ1
, . . . , [H]λn

with

[H]λi
: X→M for i = 1, . . . , n.

The notation [·]rp denotes the function belongs to the reduced problem rp and exists only in
it. The training sets of the individual ordinal classifiers [H]λi

consist of all instances from the
training set of the graded multilabel classification problem H but their classification is reduced
to the grade m ∈M of the label λi in the original classification. Like in the binary relevance the
information about correlation and interdependencies between the individual labels is lost and
can not be used to optimize the process of classification.

3.2 Horizontal reduction

Similar to a reduction to ordered classification problems the graded multilabel classification
can be reduced to several binary multilabel classification problems. This was proposed in [3]
as horizontal reduction. Inspired by the fuzzy set theory [15] the target space of the classifier
H is divided along each grade mi ∈ M into levels. In other words for each grade mi ∈ M is
learned one classifier to predict, if a label should be classified or not. The classification function
is replaced by

H : XxL →M is transformed to [H]m0
, . . . , [H]mn
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with

[H]mi
: X→P (L ) for i = 1, . . . , n.

Analog to the vertical reduction the individual multilabel classifiers are trained with the whole
set of training data. In difference to the vertical reduction in the horizontal reduction the clas-
sification of the individual training data instances is reduced to the information if the grade of
a distinct label is higher than the grade depending to the level or not. If the grade is higher or
equal than the level grade the instance is treated as a positive example and as a negative one
otherwise. Like mentioned in [3] the classifiers [H]mi

are not independent of each other. If some
label is relevant to some grade mi, it is also relevant to all grades m j ≺ mi. In other words the
for each prediction of the multilabel classifiers must hold

�

P̂x
�

m j
⊆
�

P̂x
�

mi
if j < i.

So the size of the sets grows monotone with increasing grade. This obviously leads to the non-
trivial problem of assuring this monotony during the aggregation of the predictions of the n =
|M| different classifiers to the overall prediction of the classifier ensemble. In general this can
not be done. To solve this problem [3] proposed to choose for each label the highest predicted
grade. In my opinion this strategy is prone for classification errors. If some classifier [H]mi
classifies a label λ as false positive, in other words λ ∈

�

P̂x
�

mi
but λ /∈

�

Px
�

mi
, and all other

classifiers predict correct, the label would be predicted to have grade mi. So one single classifier
can produce a wrong prediction for the complete ensemble of classifiers. The intensity of the
error in terms of the order of grades only corresponds to the grade of the wrong classifying
classifier itself. For example, if a classifier, which predicts, if a label is relevant with grade m5,
predicts this label to be relevant with grade m5, even if the correct grade will be m1 and all
other classifiers do a correct prediction, this would be the prediction of the whole ensemble
with an error of four grades distance. In contrary if mi ≺ mcor rect and [H]mi

would predict the
label to not be relevant with grade mi this error would be ignored. So the approach of [3] is
vulnerable to predict too high grades and making high errors. But also being robust to predict
too low grades.

3.3 Complete reduction

The combination of both above mentioned reduction approaches is the first solving approach
discussed in [3]. In the further text I will call it complete reduction because it reduces the graded
multilabel problem to a set of binary classification problems consisting of one binary classifier
for each possible output combination of label and grade. [3] showed that there are methods
for both vertical and horizontal reduction which can be seen as analog to the other reduction
technique and can be applied to the resulting ordered or multilabel classification problems. For
the first sort of problem this is the approach of [5] and for the second one it is the binary
reduction, which is already discussed in the section about the multilabel classification in the last
chapter.
If both reductions are applied to the graded multilabel classification problem, it is gained a set
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of |MxL| binary classification problems. One for each grade-to-label combination (λi, m j) ∈
MxL . The single classifiers are

[H](λi ,m j) : X→ {0, 1}

The prediction of the classifier [H](λi ,m j) assumes that for an instance x the label λi is relevant
with a grade mk ≥ m j or with other words

Lx
�

λi
�

≥ m j.

[3] proposed that the order of applying the horizontal and vertical reduction is interchangeable
as long as the above mentioned monotonicity condition holds, because it only differs in the type
of aggregating the binary classifiers. Any differences between the two ways of aggregation is
due to violations of this condition.

3.4 IBLR-ML

The second approach to solve the graded multilabel classification proposed by [3] uses the
horizontal reduction to achieve a set of k = |L | independent multilabel classification problems.
These problems are individually solved by the IBLR-ML method. This method was first published
in [4]. It combines the logistic regression with instance-based learning to take advantage of
the interdependencies and correlation between the different labels of a multilabel classification
problem. The prediction of the method is based on the assumed posterior probability π(i)0 of an
label λi being relevant for some instance x0. The classifier for this setting is

[H]m j

�

x0
�

=
�

λi ∈ L |π
(i)
0 >

1

2

�

.

The posterior probabilities π(i)0 are derived from the logistic regression equation

log

 

π
(i)
0

1−π(i)0

!

=ω(i)0 +
|L |
∑

j=1

γ
(i)
j ·ω

(i)
+ j

�

x0
�

with

ω
(i)
+ j

�

x0
�

=
∑

x∈Nk(x0)
κ
�

x0,x
�

· y j (x) ,

κ
�

x0,x
�

being an kernel function like the in [3] used KNN-kernel

κ
�

x0,x
�

=
�

1 if x ∈ Nk
�

x0
�

0 otherwise ,

Nk
�

x0
�

being the set of k nearest neighbours of x0,

y j (x) =
�

1 if λ j ∈ Px
−1 otherwise

and γ(i)j being an coefficient representing the correlation between label λi and λ j.
[3] suggested another setup to solve the graded multilabel classification. It uses the vertical re-
duction instead of the horizontal one and exchanges the binary logistic regression by an ordinal
logistic regression.
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3.5 Comparison of Reduction techniques

For a better understanding how the different reduction techniques reduce the graded multilabel
classification problem in the following an example of how an instance x is used to learn the
individual classifiers from the reduced problems.
Assume the following graded multilabel classification problem

M =
�

m0, m1, m2, m3
	

L = {a, b, c, d} .

and an instance x with the given real classification

Lx =
��

a, m0
�

,
�

b, m1
�

,
�

c, m2
�

,
�

d, m3
�	

.

In the figures 3.1a), 3.1b) and 3.1c) the classification of the instance is shown. The x-axes
shows the label range and the y-axes the grade range. The colored area shows that a label
is relevant with a certain grade. The dotted lines separate the areas used by the individual
classifiers to predict the correct classification. The reduction of the vertical reduction is shown
in figure 3.1a). There a single classifier has only information about the grade of one label. In
figure 3.1b) the classifiers of the horizontal reduction are shown. The individual classifiers have
only knowledge which labels have some distinct grade and which ones not. The classifiers of the
complete reduction can be seen in Figure 3.1c). Obviously there are more classifiers needed than
in the horizontal or vertical reduction. The instance is used as positive instance for classification
if the inner of the dotted rectangle in the figure is (partially) filled with color.
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(a) The reduction of an instances classification in
vertical reduction

(b) The reduction of an instances classification in
the horizontal reduction

(c) The reduction of an instances classification in
the complete reduction

Figure 3.1: An example of the reduction of the classification of an instance in vertical, horizontal
and complete reduction

3.5 Comparison of Reduction techniques 21





4 Graded multilabel classification by pairwise comparisons

In the last chapter the solving approaches to the graded multilabel classification of [3] were
discussed. This chapter will propose two new approaches to it generalizing the calibrated label
ranking to the graded multilabel classification. This is the central topic of this thesis. At first the
calibrated label ranking is discussed in more detail. Afterwards the concrete implementation
is printed as pseudo code. Then the three approaches to the graded multilabel classification
are created step by step by generalizing from the calibrated label ranking to the graded case.
During this extension the several steps are discussed and reasoned. Afterwards the concrete
implementations of the approaches to graded multilabel classification are shown as pseudo
code. Lastly the complexity of each approach is discussed.

4.1 Calibrated label ranking for multilabel classification

Like mentioned above the calibrated label ranking tries to predict a ranking of the labels from
the set of labels L of a multilabel classification problem. Afterwards a threshold t is searched
to separate this ranking. To make this possible the approach of [6] induces a virtual label v
into L . By also ranking virtual label its position in the final ranking represents the separating
threshold. Like stated above this label is preferred less than the relevant labels but more than the
not relevant ones. To achieve a ranking ‘learning by pairwise comparison’ ([6]) is used, which
is a totally different binarization strategy as the one used in the reduction techniques from [3].
Like mentioned when introduced the calibrated label ranking, to achieve the ranking the labels
are pairwise compared. In more detail for each pair of labels

�

λi,λ j

�

∈ L ×L is learned a
binary classifier

[H](λi ,λ j) : X→ {0, 1},x 7→
�

1 if λi ∈ Px ∧λ j /∈ Px
0 if λi /∈ Px ∧λ j ∈ Px

to predict if the label λi is more preferred than the label λ j for an instance x ∈ X. Note that like
mentioned above the classifiers are only learned with instances of one of the two cases handled
in the projection function p. Finding a appropriate scoring function f is no trivial task because
some relations may not be part of the training set. [6] proposed a solution. The scoring function
f is achieved by summing up the results of the different classifiers [H](λi ,λ j)

f
�

x,λi
�

=
∑

i 6= j

[H](λi ,λ j)

Or in other words the score is gained by full unweighted 0/1-voting. This score is equal to the
number of labels λ j which are less preferred than λi. [6] showed, that this solution is good
in practice and also proposed a theoretic reasoning to it. To induce the virtual label v into the
ranking it has also to be compared to each label λ ∈ L . So the virtual label has to be induced
into the label set before the classifiers [H](λi ,λ j) are learned

Lv =L ∪ {v }
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By this the virtual label is pairwise compared to each label through binary classifiers.
The upcoming question is how to transform the original problem to the reduced problem. The
instances x ∈ X can be reused but the set Px denoting the set of relevant labels has to be
projected in some kind to the set {0,1}. Because for the comparison of the labels λi and λ j the
instances with λi,λ j ∈ Px or λi,λ j /∈ Px have no additional information to separate the labels,
these instances have not to be mentioned for training the classifier [H](λi ,λ j). So the data set
used to train the classifier can be reduced to

�

Xt rain
�

(λi ,λ j) =
§

x ∈ Xt rain

�

�

�

�

λi ∈ Px ∧λ j /∈ Px

�

∨
�

λi /∈ Px ∧λ j ∈ Px

�

ª

.

Through this the binary classifiers only use instances with information about the decision. So the
complexity of training each classifier is reduced and thereby the overall complexity in terms of
training time of the approach is also minimized. Additional the quality of each binary classifier
is improved because simpler decision boundaries in the feature space have to be found.
The missing detail to find an appropriate projection is that the virtual label v is not labeled for
any instance x ∈ Xt rain. So the set Px has to be enriched by the virtual label to some set Px∪{v }
to train the classifiers [H](λ,v ). To rank the virtual label between the relevant and not relevant
ones, Px only is enriched in absence of λ. So the enriched sets for the classifiers are

Px,v =
�

Px if λ ∈ Px
Px ∪ {v } otherwise .

So the above mentioned projection from the set of relevant labels Px to the binary range is some
function

�

p
�

(λi ,λ j) : P
�

Lv

�

→ {0, 1}, Px,v 7→
�

1 if λi ∈ Px,v ∧λ j /∈ Px,v
0 if λi /∈ Px,v ∧λ j ∈ Px,v

.

Note that all instances with no difference to Px,v towards the pairwise comparison have to be
filtered out before the instances are projected. This is no problem towards the quality of the
prediction of the classifiers because there is no additional information to distinguish between
the awareness of the two labels. If P was the set of all Px and [P](λi ,λ j) the set of all Px ∈ P
would be transformed by

�

p
�

(λi ,λ j).
If an instance x ∈ X has to be classified by the ensemble H of binary classifiers, each individual
classifier makes its independent prediction. Afterwards the score is gained by summing up the
individual binary predictions and the score of the virtual label is used as threshold

t = f (x, v ) .

Finally the labels

P̂x = {λ ∈ L | f (x,λ)> t}

are predicted as relevant.

4.1.1 Implementation of calibrated label ranking

Like stated in [6] the calibrated label ranking can be divided into two different phases. The
first is the training phase, wherein the reduction to the binary problems and the training of the
corresponding binary classifiers is done. This phase is exemplary implemented in pseudo-code
in algorithm 4.1.1. The second phase is the classification of an unknown instance x ∈ X. The
phase is implemented in algorithm 4.1.2.
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Algorithm 4.1.1 Training_CLR
Input: L ,Xt rain, P
Output: H

1. Lv ←L ∪{v }
2. H ← {}
3. for i← 1 to

�

�Lv

�

�− 1 do
4. λi ←Lv [i]
5. for i← i+ 1 to

�

�Lv

�

� do
6. λ j ←Lv

�

j
�

// learn pairwise comparison of λi,λ j
7. [X](λi ,λ j)← {}
8. [P](λi ,λ j)← {}
9. for all x ∈ Xt rain do // filter training instances and learn a pairwise classifier

10. Px← P [x]
11. if

�

λi = v ∧λ j /∈ Px

�

or
�

λ j = v ∧λi /∈ Px

�

then // if one label is a virtual
label and the other label is not aware, then assume the virtual label being
aware

12. Px,v ← Px ∪ {v }
13. else
14. Px,v ← Px
15. end if
16. if λi ∈ Px,v ∧ λ j /∈ Px,v or λi /∈ Px,v ∧ λ j ∈ Px,v then // filter out instances not

distinguishing between λi and λ j
17. [x](λi ,λ j)← x

18. [X](λi ,λ j) ← [X](λi ,λ j) ∪
n

[x](λi ,λ j)
o

// extend training set of pairwise
classifier with instance x

19.
�

Px
�

(λi ,λ j)←
�

p
�

(λi ,λ j)
�

Px,v

�

// detect which label is more preferred in
this instance

20. [P](λi ,λ j)← [P](λi ,λ j) ∪
�

Px
�

(λi ,λ j) // label instance
21. end if
22. end for
23. if [X](λi ,λ j) 6= {} then // filter out classifiers with an empty training set
24. train [H](λi ,λ j) on [X](λi ,λ j) , [P](λi ,λ j) // train a pairwise classifier

25. H ← H ∪
n

[H](λi ,λ j)
o

26. end if
27. end for
28. end for
29. return H
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Algorithm 4.1.2 Classification_CLR
Input: x,L , H
Output: P̂x, N̂x

1. f ← []
2. for all [H](λi ,λ j) ∈ H do // sum up the votes of the classifiers
3. if [H](λi ,λ j) (x) = 1 then

4. f
�

λ j

�

← f
�

λ j

�

+ 1
5. else
6. f

�

λi
�

← f
�

λi
�

+ 1
7. end if
8. end for
9. P̂x, N̂x← {}

10. for all λ ∈ L do // look which labels are predicted
11. if f [λ] ≤ f [v ] then // compare position in ranking with the position of the virtual

label
12. N̂x← N̂x ∪ {λ} // the virtual label is predicted not to be relevant
13. else
14. P̂x← P̂x ∪ {λ} // the virtual label is predicted to be relevant
15. end if
16. end for
17. return P̂x, N̂x

4.1.2 Complexity of calibrated label ranking

In [6] the complexity of the training phase is stated as being in O (d · l · n) with d being the
average number of labels in Px, l being the number of labels in L and n being the number of
examples x ∈ Xt rain.
Obviously the complexity of the classification is O

�

l2
�

. [6] proposed to use the QWeighted
algorithm [11] to reduce the complexity in general to O

�

d · l · log l
�

per instance to classify.

4.2 The direct approach to generalize calibrated label ranking

How can the above mentioned approach be generalized to solve the graded multilabel classi-
fication problem? Like described in [3] the classical multilabel classification problem can be
mentioned to be some special simplified case of the graded multilabel classification problem
with |M|= 2 and one threshold is needed to separate these two grades in the ranking produced
by the calibrated label ranking. With that in mind obviously there are n− 1 thresholds needed
to separate n = |M | different grades in a ranking. So the most obvious approach seems to be
learning some ranking of the labels like before but instead of enriching the set of labels L by
only one virtual label v it has to be found some rule to place one virtual label for each pair of
following grades mi and mi+1 correct into the order. So there are pairwise classifiers learned
for each pair from L ×L like before. Obviously the projection function

�

p
�

(λi ,λ j) has to be
changed to take the grades of the labels into account. This is easily done by generalizing the
binary decision

�

λi ∈ Px ∧λ j /∈ Px

�

∨
�

λi /∈ Px ∧λ j ∈ Px

�

to the comparison of the individual
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grades
�

Lx
�

λi
�

≺ Lx

�

λ j

��

∨
�

Lx

�

λ j

�

≺ Lx
�

λi
�

�

. So the relations learned by the classifiers
are stating that one label is more relevant than the other. In difference to before this is not only
done for one pair of grades but all possible pairs of grades at once.
Next thing to get a ranking of the labels is finding an appropriate scoring function f . Because
the projection into the binary problems is that simple and the behavior of the classifiers is not
changed, the same scoring function as in the calibrated label ranking

f
�

x,λi
�

=
∑

λ j
λi 6=λ j

[H](λi ,λ j)

can be used.
At least a way to induce the virtual labels into the ranking has to be found. The simplest way is
to enrich the set of labels L analog to the calibrated label ranking with the whole set of virtual
labels

V =
�

v0, . . . , vn
	

with n= |M|

before the binary classifiers are learned. So the set of labels which elements are compared
pairwise is

LV =L ∪ V .

Similar to the calibrated label ranking there are no instances x ∈ X which are labeled with any
virtual label. So the projection function has to be changed to have regard to the graded virtual
labels. To hold the monotony constraint the virtual label partitioning higher grades always have
to be preferred above the virtual labels partitioning lower grades. So their order can directly
inferred by their index. Also a virtual label v separating two labels λ and λ′ with λ being
relevant with grade mi, λ

′ being relevant with grade m j and mi ≺ m j, v has to be preferred
more than λi but less than λ j. So the projection function to project the graded classification of
the instance into the binary range has the form

�

p
�

(λi ,λ j) : L′x 7→
¨

1 if L′x
�

λ j

�

≺v L′x
�

λi
�

0 if L′x
�

λi
�

≺v L′x
�

λ j

�

with

L′x : λ 7→
�

Lx (λ) if λ /∈ V
λ otherwise

and ≺v being an order of the grades separated by the virtual labels v i ∈ V so that holds

m0 ≺v v0 ≺v m1 ≺v v1 ≺v m2 ≺v . . .≺v vn−1 ≺v mn

with n= |M| and

m0 ≺ m1 ≺ m2 ≺ . . .≺ mn.

If L is the set of all Lx for all x ∈ Xt rain. Note that the classifiers H(v ,v ′) with v 6= v ′ comparing to
virtual labels do not have to be trained because due to the fact that the projection all instances
are labeled as being relevant with the higher graded virtual label. So these classifiers can be
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replaced by some constant vote towards the higher virtual label.
So like in calibrated label ranking, additionally to the pairwise comparisons between the normal
labels λ ∈ L (see figure 4.1a) the normal labels have to be compared pairwise with each virtual
label (see figure 4.1b). In figure 4.1c the complete set of pairwise comparisons can be seen. Note
that compared with the calibrated label ranking the amount of pairwise comparisons grows for
each additional virtual label. So the complexity of the solving approach also depends on the
number of grades.
To achieve a prediction the ranking induced by the scoring function is separated into the sets
P̂mi

x . This is shown for an example in figure 4.1d.
The problem of this approach is that for a comparison of some labels λi,λ j the size of the
difference in terms of their grades in some instance x does not harm their grade of information
to a binary classifier [H](λi ,λ j). This is caused by the projection into the binary space done

by the projection function
�

p
�

(λi ,λ j). So instances with a high difference between the grades
of the two labels would be as meaningful to the classifier as instances with a low difference.
Due to this the correlation between the labels is reduced to some binary relationship λi ≺x λ j.
Roughly spoken the expressiveness of the individual classifiers and thereby the expressiveness of
the whole approach is reduced in terms of the reduced correlation between the labels. But the
major interest in formulating the graded multilabel classification problem was the additional
information gained through the grades and the graded correlation. In addition this approach
is more prone for problems caused by noise during the acquisition of the data. For example if
two instances x1,x2 ∈ Xt rain for two labels λi,λ j in fact have the same grade and through some
kind of failure during the acquisition of X for instance x2, λi is labeled with a higher grade,
the decision boundary of the classifier [H](λi ,λ j) may be changed compared to the real decision
boundary. Because the binary classifiers cannot determine how big the difference in grade is, the
wrong labeled instance has a maximal influence to the predictions of this classifier. Because the
grade of a label holds the information about the relevance of the label, an approach to solve the
graded multilabel classification problem should have some robustness to bigger errors in terms
of the grade. But this simple approach does not have this robustness. Besides the ’small’ number
of classifiers produces only a small range in the target set of the scoring function to induce the
virtual labels into. For example the setting of a distinct graded multilabel problem has a very
big set of grades but a very small number of labels. So the direct solving approach has to induce
a high number of virtual labels in some very small ranged ranking, which promises to cause a
high failure rate.

4.2.1 Implementation of the solving approach

Like the calibrated label ranking the direct approach can be partitioned into two phases. The
training phase is implemented using pseudo-code in algorithm 4.2.1 and the classification phase
in algorithm 4.2.2.

4.2.2 Complexity of the solving approach

Obviously the complexity of the training phase of this approach is related to the complexity of
the training complexity of the calibrated label ranking. The only difference in complexity is the
enhancement of the label set with the set of virtual labels. So the complexity is O

�

d · lv · n
�

with
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Algorithm 4.2.1 Training_Direct
Input: L ,M,Xt rain, L
Output: H

1. n← |M| − 2
2. Lv ←L ∪{v0, . . . , vn} // extend label set with virtual labels
3. H ← {}
4. for i← 1 to

�

�Lv

�

�− 1 do
5. λi ←Lv [i]
6. for j← i+ 1 to

�

�Lv

�

� do
7. λ j ←Lv

�

j
�

// learn pairwise comparison of λi,λ j
8. [X](λi ,λ j)← {}
9. [P](λi ,λ j)← {}

10. for all x ∈ Xt rain do // filter training instances and learn a pairwise classifier
11. Lx← L [x]
12. L′x← []
13. for all λ ∈ Lv do // build L′v as extension of L to treat virtual labels
14. if λ ∈ V then
15. L′x [λ]← λ
16. else
17. L′x [λ]← Lx [λ]
18. end if
19. end for
20. if L′x

�

λi
�

6= L′x
�

λ j

�

then // filter out instances not distinguishing between λi
and λ j

21. [x](λi ,λ j)← x

22. [X](λi ,λ j) ← [X](λi ,λ j) ∪
n

[x](λi ,λ j)
o

// extend training set of pairwise
classifier with instance x

23.
�

Px
�

(λi ,λ j) ←
�

p
�

(λi ,λ j)
�

L′x
�

// detect which label is more preferred in
this instance

24. [P](λi ,λ j) (x)←
�

Px
�

(λi ,λ j)// label instance
25. end if
26. end for
27. if [X](λi ,λ j) 6= {} then // filter out classifiers with an empty training set
28. train [H](λi ,λ j) on [X](λi ,λ j) , [P](λi ,λ j) // train a pairwise classifier

29. H ← H ∪
n

[H](λi ,λ j)
o

30. end if
31. end for
32. end for
33. return H
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Algorithm 4.2.2 Classification_Direct
Input: x,L , H
Output: P̂x

1. f ← []
2. for all [H](λi ,λ j) ∈ H do // sum up the votes of the classifiers
3. if [H](λi ,λ j) (x) = 1 then

4. f
�

λ j

�

← f
�

λ j

�

+ 1
5. else
6. f

�

λi
�

← f
�

λi
�

+ 1
7. end if
8. end for
9. L̂x = []

10. for all λ ∈ L do // initialize prediction with lowest grade for all labels assumed
11. L̂x [λ]← m0
12. end for
13. for i = 0 to |V | − 1 do // compare scores of the labels with the scores of all virtual labels
14. v ← V [i]
15. for all λ ∈ L do
16. if f [λ]> f [v ] then // if the score of the label is higher than the one of the virtual

label, the labels grade is predicted being higher than the virtual label
17. L̂x [λ]← mi+1
18. end if
19. end for
20. end for
21. return L̂x
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lv = l + |V| being the, due to the enrichment of L , increased number of pairwise classifiers. In
greater detail to compare the normal labels O(e · l) pairwise classifiers have to be trained with e
being the mean number of labels with the same grade per instance. Additionally the classifiers to
compare the normal labels have to be trained. These are always learned. So their number is O(v ·
l) with v = |V|. Like stated above no classifiers have to be learned to compare the virtual labels.
So no more classifiers have to be added. Because for each classifier has to be decided which
instances are used to train the classifier the classification complexity is O (e · l · n+ v · l · n) =
O ((e+ v ) · l · n) which is some smaller upper boundary to O

�

d · lv · n
�

with d = lv .
The complexity of the classification step grows similar to the training step to O

�

l2
v

�

.
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4.3 Generalizing the calibrated label ranking using horizontal reduction and
dependent level cuts

Because the direct generalization approach seems to have some drawbacks, a different genera-
lization of the calibrated label ranking is introduced in the following. To take the correlation
of the grades into account the single binary classifiers not only have to produce some general
preference which label is more preferred but also have to take into accord the grades of the
compared labels. Or roughly spoken that some pair of labels λi,λ j the label λi is more relevant
by looking at a distinct grade m.
One approach to do this is using the horizontal reduction to produce n = |M | − 1 multilabel
classification problems. Then solve these individual problems by calibrated label ranking and
aggregate the rankings. This was already mentioned by [3] as not trivial because the individual
rankings may differ. So the position of a label may be different in the different rankings. In the
worst case the order of the virtual labels in the global ranking could be wrong which would be a
violation of the monotonicity condition. [3] proposed the sum up the score functions

�

f
�

mk−1|mk

of the horizontal level cuts mk−1

�

�mk to gain a global scoring function

f : (x,λ) 7→
|M|−1
∑

k=1

�

f
�

mk−1|mk
(x,λ) .

But this setting would not fit well in the case of virtual labels because they are only part of the
ranking of their individual label cuts. So the global score of a virtual label v i is equal to the score
of the level cut

f
�

x, v i) =
�

f (x, v i
��

mi|mi+1
.

The global scores of the virtual labels also cannot be gained through using the scores of the
’lower’ virtual labels as substitute when summing up

f : X, V → R,
�

x, v j

�

7→
|M|−1
∑

k

V
∑

vi
i≤ j

�

f
�

x, v i
��

mk−1|mk

But this does not solve the problem. The score of the calibration label of some level cut mk−1

�

�mk
for an instance x is smaller than the score of all labels being relevant with a higher grade because
the comparing classifier has to vote for the relevant label. If the votes of the lower virtual labels
are summed up with the votes of the higher virtual labels to get a score for them this distance
in votes is accumulated each level cut. So a virtual label representing a higher level cut is less
scored by the scoring function than a normal label which has to be placed lower in the global
ranking than the virtual label.
The solution to this problem is to reinterpret the meaning of the individual level cuts. Instead
of learning classifiers to predict if some label has a distinct grade or not, the classifiers predict
the level cut between two following grades. More precisely which of the two compared labels
has a higher probability to be relevant with a distinct grade or a higher one. So there are also
learned pairwise classifiers for n = |M| − 1 different level cuts, but there is one projection
function

�

p
�mi

(λi ,λ j)
per level cut. This function is generalized from the projection function of the
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calibrated label ranking to separate the labels according to the individual level cut.
Because the scores of the virtual labels with a lower grade cannot easily be summed up to gain
the score of a virtual label with higher grade, the label set has to be enriched similar to the
direct generalization approach. So the label set for learning the pairwise classifiers is like in the
direct approach

LV =L ∪ V .

In difference to the direct approach the virtual labels are not all treated as calibration labels
but normal labels with higher or lower grade out of the point of view of an pairwise classifier
separating a level cut. Only the virtual label representing this level cut is projected like in the
direct generalization. For the level cut mk−1

�

�mk the calibration label would be the virtual label
vk−1. This is done because the classifier only predicts which of the compared labels is more
relevant with a higher grade than the virtual label representing this level cut. So all other virtual
labels do not harm the classifiers of this level cut except they are one of the compared labels.
But then they can be used as labels with a higher or lower grade than the virtual label of this
level cut in terms of the order ≺v .
This way the virtual labels representing the other level cuts are scored by the classifiers of this
level cut. So the projection for the level cut from mk−1

�

�mk would be

�

p
�mk−1|mk

(λi ,λ j) : L′x 7→



























1 if λi = vk−1 ∧ L′x
�

λ j

�

≺v mk

1 if λ j = vk−1 ∧mk−1 ≺v L′x
�

λi
�

1 if λi,λ j 6= vk−1 ∧mk−1 ≺v L′x
�

λi
�

∧ L′x
�

λ j

�

≺v mk

0 if λ j = vk−1 ∧ L′x
�

λi
�

≺v mk

0 if λi = vk−1 ∧mk−1 ≺v L′x
�

λ j

�

0 if λi,λ j 6= vk−1 ∧mk−1 ≺v L′x
�

λ j

�

∧ L′x
�

λi
�

≺v mk

.

For a better understanding of the above formula the cases will now be discussed in detail. Note
that the first three cases differ from the other three cases only in interchanging the labels λi
and λ j. So only three cases have to be discussed. First of all the first three cases denote that
λi is labeled with a higher grade than λ j and the other three cases denote the complementary.
The first case is that λi is the calibration label and λ j is labeled with a lower grade for x than
the calibration label. The second case is that λ j is the calibration label. and λi is labeled higher
than the calibration label. So the first two cases are handling comparisons of a label with the
calibration label of the level cut. Remember only one of the virtual labels is the calibration
label of a level cut. The third case handles the comparison of two labels without one being the
calibration label. It is that case that λi has a higher grade than the calibration label and λ j has
a lower grade than the calibration label. This way the individual horizontal level cuts are not
independent but depend on the virtual labels, which are not the calibration label of this level
cut. Finally a score function to get a global ranking is needed. [3] stated that the aggregation
of the scores of the individual level cuts cannot be easily done, because neither the individual
rankings of the level cuts cannot be assumed identical nor the scales of the scoring functions
have to be comparable. But in this special setting this can be assumed to be possible under the
assumption of the pairwise classifiers working correctly. So the rankings of the level cuts are
identical and each score function produces some score for all labels in LV the score functions
have the same range of values from min

�

f
�

mk−1|mk
= 0 to max

�

f
�

mk−1|mk
= |LV | − 1. So the

values cannot be simply used to gain the global ranking. But using the circumstance that the

34 4 Graded multilabel classification by pairwise comparisons



rankings are identical, the values can obviously summed up to gain the global ranking.
This can easily be shown by the following example. If the virtual label v0 separates the labels
with grade m0 from the ones with a higher label, its score in the corresponding level cut is the
sum of the labels with grade m0. Because of the assumption that all classifiers work correctly
the classifiers H(λ,v ) with λ 6= v0 and Lx (λ) = m0 vote for the virtual label v0. Also the classifiers
H(λ,λ′) with λ,λ′ 6= v0, Lx (λ) = m0 and Lx

�

λ′
�

≥ m0 will vote for λ′. Additionally each classifier
of this level cut which compares with the virtual label v0 with a label λ′ with a higher grade
prefers the other label. So the score of the virtual label is higher than the score of the labels with
grade m0 but lower than the score of a label with a higher grade than m0

f (x,λ)< f
�

x, v0
�

< f
�

x,λ′
�

with ∀λ ∈ L Lx (λ) = m0,∀λ′ ∈ L Lx
�

λ′
�

≥ m1.

The votes of the classifiers comparing the labels with the grade m0 can be determined irrelevant
because the number of votes a single label can get is smaller than the number of votes the virtual
label gets. Looking at the next level cut from grade m1 to m2 neither the labels with grade m0
nor the ones with grade m1 or the virtual label v0 get a vote of a classifier of this level cut
comparing them with a higher grade normal or virtual label. So the virtual label v1 gets a higher
score than these labels. By summing up the scores of the two level cuts the labels with grade m1
can be isolated because their score is higher than the one of the virtual label v0 but lower than
the one of the virtual label v1. So the ranking seems to be separated in a well suited manner.
The identical ordered rankings of the different level cuts can be assumed because for the set of

instances
�

Xpos

�mk−1|mk

(λi,λ j)
from Xt rain with

�

p
�mk−1|mk

(λi ,λ j) = 1 used to train the classifiers [H]
mk−1|mk

(λi ,λ j)
of the level cut mk−1

�

�mk , due to the form of the projection function, always holds

�

Xpos

�mk−1|mk

(λi,λ j)
⊆
�

Xpos

�ml−1|ml+1

(λi,λ j)
with k < l.

So the assumption of the correct working binary classifiers assures an identical ordering over
the different level cuts.

4.3.1 Discussion

Unfortunately there are effects aware that prevent this theoretical theory from being full app-
licable. On the one hand the binary classifiers do not always work correct. On the other hand
there are also some other problems to this theoretical foundation of this way to gain the global
score.
By looking at the data the virtual labels are not relevant to any instance in the data set. So all
virtual labels, which are lower in the order of V than the calibration label of a distinct level
cut, are always preferred less than the compared labels. This is aware even if the label has a
lower grade than the virtual label, because the classifier to compare these two labels only gets
to see instances with the normal label having a higher grade than the virtual label. Each other
instances are stated irrelevant because the grade of both the normal and the virtual label are
beneath the calibration label of the level cut. As a result of this the predicted score of the normal
labels is tendential too high. So the predicted grade is probably also too high.
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A second effect on the predicted ranking is that looking at a distinct level cut and a binary clas-
sifier comparing a virtual label higher in the order ≺v than the calibration label and a normal
label, this classifier will always prefer the virtual label above the normal because of the same
reason as the lower virtual labels were preferred less. The only instances with a difference in
grade toward the level cut between the two labels are ones with the normal label having a lower
grade than the virtual label. So the normal labels are scored lower than needed and so a too
low grade may be predicted.
The consequence of the two effects is that the approach tends to predict grades too near to the
middle of the range of grades when a grade from the edges of the range has to be predicted.
Also the two effects more and more cancel out each other the more the real grade of a label is
near two the middle of the range of grades. So in conclusion the predicted grades are tendential
from the middle of the range of M. This effect also grows with the size of M. Obviously the
effects only take place, if there are instances aware in the training set, which produce these
effects. Otherwise the depending classifiers are discarded.
To assure a better understanding of the two negative effects an example is given. Assume the
setting x ∈ Xt rain and x shows up during the classification phase and has to be classified by
the approach. So the instance should be classified correctly by the classifier. The setting of the
problem is

M =
�

m0, m1, m2, m3
	

L = {a, b, c, d}
V =

�

v0, v1, v2
	

Lx =
��

a, m0
�

,
�

b, m1
�

,
�

c, m2
�

,
�

d, m3
�	

.

For a better understanding the real classification Lx of x is visualized in Figure 4.2.

Figure 4.2: An example of the real classification Lx of an instance x ∈ X. The grades are printed
on the y-axes and the labels on the y-axes. The virtual labels partitioning the grades
are shown as dashed lines.
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The classifiers of the level cut m0

�

�m1 would vote in the following manner

[H]
m0|m1
(a,λ) with λ ∈ L \ {a} → vote for λ

[H]
m0|m1

(λ,λ′) with λ,λ′ ∈ L \ {a} ∧λ 6= λ′ → vote either for λ or λ′, but the distinct vote is

unpredictable, because there is no difference in
grade towards the level cut aware

[H]
m0|m1
(λ,v ) with λ ∈ L \ {a} ∧ v ∈ V \

�

v0
	

→ vote for v , because the second effect takes
place

[H]
m0|m1

(a,v0)
→ votes for v0

[H]
m0|m1

(v0,λ) with λ ∈ L \ {a} → vote for λ

[H]
m0|m1

(v0,v) with v ∈ V \
�

v0
	

→ vote for v

So the resulting scores of the level cut are

�

f
�m0|m1 =

�

(a, 0) , (b, 2 (+2)) , (c, 2 (+2)) , (d, 2 (+2)) ,
�

v0, 1
�

,
�

v1, 2 (+3)
�

,
�

v2, 2 (+3)
�	

where (+i) means that the votes could be extended either by one of the two negative effects
or a classifier with doing an unpredictable vote. Note that the unpredictable votes above are
counted at both labels each.
Looking at the next level cut m1

�

�m2 its classifiers would make the following votes

[H]
m1|m2

(λ,λ′) with λ ∈ {a, b} ∧λ′ ∈ {c, d} → vote for λ′

[H]
m1|m2

(λ,λ′) with λ,λ′ ∈ L \ {a, b} ∧λ 6= λ′ → vote either for λ or λ′, but the distinct vote is

unpredictable, because there is no difference in
grade towards the level cut aware

[H]
m1|m2

(λ,λ′) with λ,λ′ ∈ L \ {c, d} ∧λ 6= λ′ → vote either for λ or λ′, but the distinct vote is

unpredictable, because there is no difference in
grade towards the level cut aware

[H]
m1|m2

(λ,v0)
with λ ∈ {a, b} → vote for λ, because the first effect takes place

[H]
m1|m2

(λ,v0)
with λ ∈ {c, d} → vote for λ

[H]
m1|m2

(λ,v1)
with λ ∈ {a, b} → votes for v1

[H]
m1|m2

(λ,v1)
with λ ∈ {c, d} → votes for λ

[H]
m1|m12
(λ,v ) with λ ∈ {a, b} ∧ v ∈ V → vote for v

[H]
m1|m12
(λ,v ) with λ ∈ {c, d} ∧ v ∈ V → vote for v , because the second effect takes

place

[H]
m1|m2

(v ,v2)
with v ∈ V \

�

v2
	

→ vote for v2

[H]
m1|m2

(v0,v1)
→ vote for v1
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The scores of this level cut are
�

f
�m1|m2 =

�

(a, 0 (+2)) , (b, 0 (+2)) , (c, 4 (+1)) , (d, 4 (+1)) ,
�

v0, 0
�

,
�

v1, 3
�

,
�

v2, 4 (+2)
�	

.

With the scores from the level cut m2

�

�m3

�

f
�m2|m3 =

�

(a, 0 (+4)) , (b, 0 (+4)) , (c, 0 (+4)) , (d, 6) ,
�

v0, 0
�

,
�

v1, 0
�

,
�

v2, 5
�	

the global scores of the labels are

f =
�

(a, 0 (+6)) , (b, 2 (+8)) , (c, 6 (+7)) , (d, 12 (+3)) ,
�

v0, 1
�

,
�

v1, 5 (+3)
�

,
�

v2, 11 (+5)
�	

.

If the unpredictable votes are assumed to be normally distributed over the depending labels, the
following scores are mean scores of the labels

fmean =
�

(a, 0 (+4.5)) , (b, 2 (+5.5)) , (c, 6 (+4.5)) , (d, 12 (+1.5)) ,
�

v0, 1
�

,
�

v1, 5 (+3)
�

,
�

v2, 11 (+5)
�	 .

So the predicted ranking is

v0 ≺x a ≺x b ≺x v1 ≺x c ≺x d ≺x v2

and the prediction of the classifier is

L̂x =
��

a, m1
�

,
�

b, m1
�

,
�

c, m2
�

,
�

d, m2
�	

Note that the order of the normal labels is predicted correctly, but the position of the virtual
labels is not estimated correctly. So the failure caused by the two effects is a failure prone cali-
bration of the virtual labels with a tendency to grow the distance between these in the predicted
ranking. Obviously the positions of two neighboring normal labels can be interchanged, if the
unpredictable votes tend to one of the labels.
Interestingly one way to reduce the effects on the score of the higher ordered virtual labels is

to change to discard all classifiers [H]
mk−1|mk

(vi ,vk−1)
with i < k − 1. This arbitrary seeming change

was found by accident and showed quite good results in practice. The predicted grades of the
normal labels converged to the real grades and so the overall error done was minimized, leaving
the problem of the normal labels with a low real grade being predicted with a too high grade.
But this will be discussed later when the experimental results are discussed.
The consequences to the global score with normally distributed unpredictable votes done by this
filtering of the classifiers would be

fmean =
�

(a, 0 (+4.5)) , (b, 2 (+5.5)) , (c, 6 (+4.5)) , (d, 12 (+1.5)) ,
�

v0, 1
�

,
�

v1, 4 (+3)
�

,
�

v2, 9 (+5)
�	 .

So the changed ranking is

v0 ≺x a ≺x v1 ≺x b ≺x c ≺x d ≺x v2.

Note that the missclassification of the labels b and d relies only on 0.5 votes done by an unpre-
dictable vote. So their missclassification is dependent on the decision of these classifiers.
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4.3.2 Implementation of the solving approach

The implementation of the training phase of this approach can be found in algorithm 4.3.1.

Note that the filtering of the classifiers [H]
mk−1|mk

(vi ,vk−1)
with i < k−1 mentioned above is integrated

in the condition in line 12 of the reduction method algorithm 4.3.2.
Interestingly the changes to the direct approach do not harm the classification phase and so the
implementation is algorithm 4.2.2.

Algorithm 4.3.1 Training_DHR
Input: L ,M,Xt rain, L
Output: H

1. n← |M| − 2
2. V = {v0, . . . , vn}
3. Lv ←L ∪ V // extend label set with virtual labels
4. H ← {}
5. for k← 1 to n+ 1 do // learn pairwise classifiers for each level cut
6. mk−1←M [k− 1]
7. mk←M [k]
8. v ← V [k]
9. for i← 1 to

�

�Lv

�

�− 1 do
10. λi ←Lv [i]
11. for j← i to

�

�Lv

�

� do // lean pairwise comparison of λi,λ j
12. λ j ←Lv

�

j
�

13. for all x ∈ Xt rain do // filter training instances and learn a pairwise classifier

14. [X]mk−1|mk

(λi ,λ j)
, [P]

mk−1|mk

(λi ,λ j)
←Reduction_DHR

�

x,λi,λ j, mk−1, mk, v , L
�

15. end for
16. if [X]mk−1|mk

(λi ,λ j)
6= {} then // filter out classifiers with an empty training set

17. train [H]
mk−1|mk

(λi ,λ j)
on [X]mk−1|mk

(λi ,λ j)
, [P]

mk−1|mk

(λi ,λ j)
// train a pairwise classifier

18. H ← H ∪
§

[H]
mk−1|mk

(λi ,λ j)

ª

19. end if
20. end for
21. end for
22. end for
23. return H

4.3.3 Complexity of the solving approach

The complexity of the training of this approach is obviously higher than the one of the direct
approach because |V | different horizontal reductions have to be done. So the complexity of
training the complete ensemble of classifiers raises to O

�

l2
v · n · |V |

�

.
The additional classifiers have to be taken into account when computing the complexity of the
classification phase. So the complexity is O

�

l2
v · |V |

2
�

.
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Algorithm 4.3.2 Reduction_DHR

Input: x,λi,λ j, mk−1, mk, v , L

Output: [X]mk−1|mk

(λi ,λ j)
, [P]

mk−1|mk

(λi ,λ j)

1. [X]mk−1|mk

(λi ,λ j)
← {}

2. [P]
mk−1|mk

(λi ,λ j)
← {}

3. Lx← L [x]
4. L′x← []
5. for all λ ∈ Lv do // build L′v as extension of L to treat virtual labels
6. if λ ∈ V then
7. L′x [λ]← λ
8. else
9. L′x [λ]← Lx [λ]

10. end if
11. end for
12. if

�

L′x
�

λi
�

≺v v ∧ v ≺v L′x
�

λ j

��

∨
�

L′x
�

λ j

�

≺v v ∧ v ≺v L′x
�

λi
�

�

∨
�

λi = v ∧ v ≺v L′x
�

λ j

��

∨
�

λ j = v ∧ v ≺v L′x
�

λi
�

�

then // filter out instances not
distinguishing between λi and λ j and apply the tweak to filter out the classifiers comparing
the calibration label with lower virtual labels by filtering out all instances for them

13. [x]
mk−1|mk

(λi ,λ j)
← x

14. [X]mk−1|mk

(λi ,λ j)
← [X]mk−1|mk

(λi ,λ j)
∪
§

[x]
mk−1|mk

(λi ,λ j)

ª

// extend training set of pairwise classifier

with instance x
15.

�

Px
�mk−1|mk

(λi ,λ j)
←
�

p
�mk−1|mk

(λi ,λ j)
�

L′x
�

// detect which label is more preferred in this instance

16. [P]
mk−1|mk

(λi ,λ j)
(x)←

�

Px
�mk−1|mk

(λi ,λ j)
// label instance

17. end if
18. return [X]mk−1|mk

(λi ,λ j)
, [P]

mk−1|mk

(λi ,λ j)
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4.4 An approach using horizontal reduction and independent level cuts

The problem of the last approach was that the enhancement of the label set used for the different
horizontal problems had some drawback on the combined global ranking of the labels. The most
obvious way to solve this is to use complete independent horizontal problems and combine the
predictions afterwards. So for each level cut mi|mi+1 is learned some independent calibrated
label ranking. To achieve this the grade assignment to the labels has to be projected to the
individual multilabel classification problems. Thereby a different projection function has to be
used for each level cut ml−1

�

�ml+1 . The binary decision, if some label is relevant or not, therefore
has to be equal to the statement, that a label has a lower grade than a distinct grad or a higher
one. Obviously this threshold is the virtual label used as calibration label in the calibrated label
ranking problem the original problem was reduced to. So the projection functions have the form

[H]ml−1|ml+1
: Lx 7→

¦

λ ∈ L
�

�mk−1 ≺ Lx (λ)
©

.

Because, like stated above, the scores of the individual level cuts cannot easily be recombined,
some aggregation function has to be found to gain a graded classification. Out of the problems
proposed when discussing the last solving approach to the graded multilabel classification the
summation of the scores is not preferable. So like in the approaches of [3] the highest of a
level cut depending classifier predicted grade is used as global prediction with the above stated
drawbacks. In this special settings they should not be as intense as in the approaches from
[3], because the wrong prediction of a single classifier can only produce a minimal increment or
decrement to the score of a label in one of the horizontal problems. Even if the false classification
is done in the highest level cut, it only turns into a wrong result, if the score of the label is
equal to the score of the virtual label. But in calibrated label ranking this is not possible, if
only one classifier does a wrong classification. So at least two binary classifiers have to make
a missclassification. As consequence the calibrated label ranking seems to be more robust to
missclassification than the binary relevance and the IBLR-ML approach.

4.4.1 Implementation of the solving approach

Because this approach devides the overall problem into serveral calibrated label ranking pro-
blems, the training phase implementation in algorithm 4.4.1 uses the training phase implemen-
tation algorithm 4.1.1 of the calibrated label ranking.
Also the implementation of the classification phase of this approach algorithm 4.4.2 relies on
the implementation of the classifying phase algorithm 4.1.2 of the calibrated label ranking.

4.4.2 Complexity of the solving approach

Because this solving approach does not enhance the label set with the whole set of virtual labels
but only one virtual label each, the overall training complexity of this approach is |V | times the
complexity of a calibrated label ranking. In other words it is O

�

l2 · n · |V |
�

.

The complexity of the classification step grows in the same way to O
�

l2 · |V |
�

.
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Algorithm 4.4.1 Reduction_IHR
Input: L ,Xt rain,M, L
Output: H

1. H ← {}
2. for i ← 1 to |M| − 1 do // learn independent calibrated label ranking problems for each

level cut
3. mi ←M [i]
4. mi+1←M [i+ 1]
5. P ← {}
6. for all x ∈ Xt rain do
7. Lx← L [x]
8. Px←

�

p
�

mi|mi+1

�

Lx
�

// detect which labels are preferred with a grade higher than
the level cut

9. P (x)← Px // label instances
10. end for
11. [H]mi|mi+1

← Training_CLR
�

L ,Xt rain, P
�

// train multiple pairwise classifiers using
calibrated label ranking

12. H ← H ∪
n

[H]mi|mi+1

o

13. end for
14. return H

Algorithm 4.4.2 Classify_IHR
Input: x,H,L
Output: L̂x

1. P ← {}
2. for all [H]mi|mi+1

∈ H do

3.
�

L̂x
�

mi|mi+1
← Classification_CLR

�

x,L , [H]mi|mi+1

�

// use predictions of the calibra-
ted label ranking

4. end for
5. L̂x← []
6. for all λ ∈ L do
7. L̂x [λ]← max

�

L̂x
�

mi|mi+1
[λ] // use the highest voted grade as prediction of the clas-

sifier ensemble for grade λ
8. end for
9. return L̂x
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5 Evaluation

After the different approaches to the graded multilabel classification problem are stated in the
last chapters the quality of the predicition of the different classification problems is the topic
of this chapter. First several losses are proposed to gain some measurements to the different
classifiers. Afterwards the experiment to compare the classifying approaches and its result is
discussed.

5.1 Losses

To evaluate the quality of a distinct classification approach it is necessary to use appropriate
measurements determining the classification errors. This measurements are called loss functi-
ons. For the graded multilabel classification problem [3] generalized several of the losses of the
multilabel classification. Because I used these measures in the evaluation of my classification
approaches, I will discuss the measures and the kind of information they propose in short. In
supervised learning the dataset of instances x ∈ Xknown with known classification is separated
into two subsets. The first already above mentioned one is the training set which is used to train
the classifier. The second one is the test set. For each instance x ∈ Xtest the classifier has to
predict a classification. Afterwards the losses are calculated for each prediction. The losses of
each individual instance are averaged to determine the mean loss of the classifier on the test
set. For simplicity the loss functions in this chapter are shown for one single instance x ∈ Xtest

5.1.1 Hamming loss

The hamming loss measures how much labels λ ∈ L are predicted wrong. This means how
many false positive and false negative predictions were done. For some instance x ∈ X of a
multilabel classification problem this means

EH
�

H (x) , Lx
�

=
1

|L |
�

�H
�

x∆Lx
�

�

�

with ∆ being the symmetric difference between two sets.
In the graded multilabel classification this loss can be generalized measuring the loss in terms of
horizontal or vertical cuts of the label space. [3] showed that both functions are equal to each
other. So for simplification the hamming loss is stated the vertical hamming loss

E?H
�

H (x, ·) , Lx
�

=

∑|L |
i=1 AE

�

H
�

x,λi
�

, Lx
�

λi
��

(|M | − 1) · |L |

with

AE :M×M→ N,
�

mi, m j

�

7→ |i− j|.

So the hamming loss in graded multilabel classification denotes the mean deviation of the pre-
dicted label grades to the real ones.
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5.1.2 Subset zero-one loss

As a second loss [3] proposed a more strict function. The subset zero-one loss measures the
percentage of labels with the wrong grade predicted. In contrary to the hamming loss this loss
function does not determine how big the difference in grade between predicted and real grade
is. Only the existence of a difference is measured

E?0/1
�

H (x, ·) , Lx
�

=
1

|L |

|L |
∑

i=1

�

0 H
�

x,λi
�

= Lx
�

λi
�

1 H
�

x,λi
�

6= Lx
�

λi
� .

5.1.3 C-index

The C-index is the generalization of the rank loss. The rank loss measures the pairwise classi-
fication error of the pairs

�

λ,λ′
�

∈ Px × Nx. In particular the classification error of a ranking
established by some scoring function f is measured. This scoring function can be the scoring
function of the calibrated label ranking. The error grows for pairs of label with one or more
labels being predicted in the wrong order, because a not relevant label should always have a
lower score than a relevant one using a with growing relevance of a label monotone growing
scoring function. The rank loss for multilabel classification is

ER
�

f , Lx
�

=

∑

(λ,λ′)∈Px×Nx
S
�

f (x,λ) , f
�

x,λ′
��

�

�Px× Nx

�

�

with

S : R×R→ {.
1

2
,1},

�

x , y
�

7→







0 if x < y
1
2

if x = y
1 otherwise

.

To fit the graded case [3] extended this error to measure the pairwise ranking error between a
pair of labels out of two different sets

Pmi
x =

�

λ ∈ L |Lx (λ) = mi ∧mi ∈M
	

of labels with the same grade. So the C-index measures the wrong order of labels with different
grade in the ranking predicted with the scoring function

E?R
�

f , Lx
�

=

∑

i< j

∑

(λ,λ′)∈P
mi
x ×P

mj
x

S
�

f (x,λ) , f
�

x,λ′
��

∑

i< j

�

�Pmi
x × Pmi

x

�

�

.

If the classification approach does not use a ranking or scoring function, [3] proposed to use the
predicted grade of a label as its score. This produces an appropriate ranking above the labels and
is used by me when calculating the C-index of the binary relevance approach and the approach
using complete independent level cuts in the evaluation of the solving approaches.
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5.1.4 One error rank loss

The last loss function stated by [3] is the generalization of the one error. This loss measures if
the top ranked label of a ranking is relevant or not.

E1E
�

f , Lx
�

=
�

0 if
�

argmaxλ∈L f (x,λ)
�

∈ Px
1 otherwise

In case of the calibrated label ranking this is an interesting loss function to measure the general
suitability of the ranking used to predict multilabel classification problem.
In [3] this loss is generalized to measure if the highest ranked label has the highest possible
grade.

E?1E

�

f , Lx
�

= AE
�

maxm∈Mm, Lx

�

arg max
λ∈L

f (x,λ)
��

The drawback of this function is, if in an instance out of the test set has no label with a relevance
of the highest possible grade, the one error cannot be zero, even if the classification of the
instance is completely correct. In terms of the multilabel classification this case is an instance
with no relevant label. This instance would never be assumed correct classified by the one
error. This special case is in general not very common in a data set of a multilabel classification
problem, but in the data set of a graded multilabel classification problem an instance without
a label with maximal grad seems more common. To solve this problem I propose a changed
version of the one error comparing the real grade of the highest ranked label with the highest
grade of all labels of an instance.

E?1E

�

f , Lx
�

= AE
�

max Lx
�

λ′
�

, Lx

�

arg max
λ∈L

f (x,λ)
��

5.1.5 Calibration loss

When Examining generalizations of the calibrated label ranking a loss function measuring the
correct positions of the virtual labels in the predicted ranking becomes necessary because the
calibrated label ranking itself has some tendency to underestimate the score of the virtual label
in relation to the other labels. So when comparing different sorts of generalizations of the cali-
brated label ranking the information given by this loss seems crucial.
This concrete loss function measures the quality of the partitioning of predicted global ranking.
Therefore the ranking is repartitioned by the real grade partitioning of the instance. In other
words the number of labels with a distinct grade is counted and the same number of labels in
the ranking is assumed to have this distinct grade. Afterwards the hamming loss of this new
’prediction’ E?H

�

H ′ (x, ) , Lx
�

is calculated. The remaining error is due to ordering failures of the
labels done by the scoring function but no errors due to the wrong positioning of the virtual
labels is left. So by comparing this new hamming loss with the one calculated based on the ori-
ginal prediction measures E?H

�

H (x, ) , Lx
�

the error done by wrong positioning the virtual labels
in the ranking are calculated.

EC =
�

�E?H
�

H ′ (x, ) , Lx
�

− E?H
�

H (x, ) , Lx
�

�

�
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5.2 Experiment

In the following the experiment is done to compare the different solving approaches is discussed.
To achieve a good comparison to the results from [3] their experiment was reimplemented
by me. The BeLa-E data set used to perform the original experiment was provided to me by
Professor Hüllermeier. At first the generation of different classification problems from the data
set is discussed. Afterwards the concrete implementation setting of the different classifiers is
explained. At least the results of the loss functions from above are presented and discussed.

5.2.1 Data generation

Because there were no data sets of graded multilabel classification known to [3] when imple-
menting their solving approaches, they used a data set from the social psychology called BeLa-E
from [1]. This data set consists of 1930 instances each representing a graduate student. Each in-
stance has 50 attributes. The first attribute is the age and the second one the sex of the student.
The remaining 48 attributes modeling the importance of a distinct property of their future jobs.
Each of these remaining attributes has a grade from ‘1’(unimportant) to ‘5’(very important). The
data was collected by interviewing the students.
From this data I generated 50 data sets. From the 48 similar graded attributes were a subset of
n attributes as labels randomly chosen. The remaining 50− n attributes were used as features
of the instances. This is done like in [3] for n= 5 and n= 10 labels.
In difference to their setup no binary data for a multiabel classification was generated becau-
se the focus of the experiment was changed from showing the benefit of formulating graded
multilabel classification problem to comparing different solving strategies.

5.2.2 Implementation setup

The different solving approaches, except the IBLR-ML, were implemented by me as part of
the LPCforSOS framework1 (see [14]) of the Knowledge Engineering Group of the Technical
University of Darmstadt2, which is an extension of the Weka framework3 [9]. As binary base
classifier the J48 classifier of the Weka framework is used, which is an implementation of the
C45-algorithm [12]. The complete reduction approach was reimplemented by me using hori-
zontal reduction and binary relevance like done in [3]. When calculating the rank losses for
the complete reduction approach and the approach using independent level cuts the predicted
grade is used as score. On each of the generated data sets each classifier is trained using 10-fold
cross validation. Afterwards the results of all 50 data sets with the same number of labels are
averaged. In general it is no good practice to average over the results of different data sets, but
in this case the individual data sets are generated from the same original data set and like stated
by [3] they should be evenly distributed.

1 http://www.lpcforsos.sf.net
2 http://www.ke.tu-darmstadt.de
3 http://www.cs.waikato.ac.nz/ml/weka
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5.2.3 Results

The averaged results of the different solving approaches to the graded multilabel classification
on the generated BeLaE data set problem are shown in table 5.1. The upper half shows the
results of the test sets with |L | = 5 labels and the lower half the results from problems with
|L | = 10. For each sort of problems all loss functions discussed above were calculated and the
mean value and the standard deviation of each is shown in the table. The values are presented
as percentage values and rounded after two decimal places. In the columns the results of the
different approaches are listed beginning by the direct approach to generate the calibrated label
ranking (see section 4.2, followed by the complete reduction (see section 3.3, the generalization
approach using dependent level cuts (see section 4.3 and the one using independent level cuts
(see section 4.4. The rank of the approaches to the individual losses is printed in brackets after
the mean values and the best result is made bold. Note that like mentioned above in section
5.1.5 the calibration loss can not be calculated for the generalization approach using indepen-
dent level cuts and the complete reduction.
Comparing the different classifying approaches the complete reduction has the worst results in
the losses calculated for it. This seems to be obvious remembering that the interdependencies
and the correlation between the different labels and grades are ignored by this approach. So the
quality of its prediction relies only on the probability of the base classifier to isolate the different
label-grade combinations in the target space of the graded multilabel classification problem.
This correlates to the results from [3], where the complete reduction also showed worse results
than the horizontal reduction with using the IBLR-ML classifier.
The direct generalization approach however seems to have no big problems in finding the cor-
rect ranking of the labels λ ∈ L when looking at the remaining hamming loss and the small
C-index, but the combination of the high ratio of the calibration loss to the Hamming loss and
the high subset zero one loss show that the relative high hamming loss done by the approach
is caused by its inability to find the correct positions of the virtual labels in the ranking. An
explanation to this effect could be its binarization of the grade difference between two labels
when learning the pairwise classifiers leading to the problem of not being able to differentiate
between the virtual labels during prediction.
The most unforeseen results are the one of the generalizing approach using dependent level cuts
mentioning the two negative effects to the calibration of the virtual labels. The fact that it has a
small C-index corresponds to the theoretical assumption that the negative effects does not harm
the ranking of the normal labels. The relative small hamming and subset zero one loss show
that the filtering of the classifiers seems to compensate the negative effects on the positioning of
the virtual labels. This assumption is also supported by the smallest one error of all approaches.
So like mentioned during the discussion of the approach at least the upper half of the ranking
seems to be correct calibrated. Interestingly the calibration loss to hamming loss ratio is more
than halved by the doubling of the number of labels to classify. Remembering the idea of the
negative effects grow with the size of number of labels to classify, this is not obvious. So either
the filtering is the more able to compensate the effects with growing number of labels or it over-
compensates the effects and it exists a size of L upon which the compensation is higher than
the effect itself and the quality of the classification of the approach gets worse.
At least the results of the generalization approach using independent level cuts should be dis-
cussed. Like expected the hamming loss and the subset zero one loss of this approach are the
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best of all compared approaches. This seems to be reasonable, because the individual rankings
of the level cuts are not harmed by any negative effects like in the approach with dependent
level cuts, but the difference in grade between two grades is modeled by the approach due to
the horizontal reduction. The higher one error and c-index compared to the other pairwise clas-
sifying approaches at first sight seems to be somewhat suspicious. But remembering the choice
of the predicted grade relies on the prediction of the highest predicted grade of the several level
cut problems. So the classifier might have a tendency to overestimate the grade of the labels
and the one error is some kind of sensitive to such a behavior. The higher C-index may be is
resulted in the same effects.
As conclusion to this stands the impression, the more the additional information gained through
the combination of the grades and labels is integrated into the approaches the better is the
quality of the prediction of a classifier is in the setting of the classifier. With other words the
differentiation of the distances between two labels during the training of the classifiers resulted
in minimizing the hamming and the subset zero one loss and the integration of the differences
in the reaggregation of the reduced classification problems helped to minimize the rank losses
C-index, subset zero-one loss and calibration loss. This seems to support the results from [3],
which stated that the reduction of a graded multilabel problem to conventional multilabel pro-
blem before the classifier leads to worse results than the training and classification in the graded
space and then reduce the predictions into the conventional multilabel problems space.
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6 Conclusions

In the following chapter first the content of this theses is recapped and summarized. Afterwards
the future prospects of the approaches proposed in this thesis and their relevance to further
research is discussed.

6.1 Summary

During this thesis the basic foundations of the graded multilabel classification were recapped.
Thereby different classification problems like the binary, the ordinal, the multilabel classification
were discussed. The multilabel classification was compared with the problem of label ranking to
introduce the calibrated label ranking, an approach to solve a multilabel classification problem
using a reinterpretation as label ranking problem. At least the graded multilabel classifiaction
was introduced and discussed.
Afterwards the already available solving approaches from literature were recapped and discus-
sed. These are the horizontal reduction which cuts the original graded multilabel classification
problem into several multilabel classification problems to solve the overall problem, the vertical
reduction which reduces the original problem to several ordinal classification problems to solve
the overall problem and the complete reduction which uses the ideas from both horizontal and
vertical reduction to reduce the problem to binary binary classification problems. All three ap-
proaches solve the reduced problems and aggregate the results to find a solution to the original
problem. Also to concrete implementations of these techniques were discussed. The IBLR-ML
which uses the horizontal reduction and solves each with the IBLR-ML algorithm and an imple-
mentation of the complete reduction using horizontal reduction and binary reduction to achieve
a vertical reduction of the horizontal subproblems.
Next the already aware approaches were compared with the three new, by this thesis introduced
approaches using pairwise classifiers. These classifiers and their individual advantages and dra-
wbacks were discussed in detail. First the calibrated label ranking was discussed in more detail
to allow a generalization of it to the graded multilabel classification because all three discussed
solving approaches introduced in this thesis are generalizations of the calibrated label ranking.
Afterwards the direct approach was introduced which reduces the grade difference between
two labels of some data instance to a binary relation and tries to learn pairwise classifiers to
predict which one is probable be aware with a higher grade. Additionally a set of virtual labels
is introduced to separate the labels with different grades. Next the approach using dependent
level cuts is discussed. This approach tries to learn pairwise classifiers for each individual level
cut and by this tries to use the hole grade distance information to find a better calibration of
the virtual labels in the ranking of the labels. The pairwise classifiers are learned for all label
comparisons with regard to the individual level cut this means if the label has a higher grade
than the virtual label representing a level cut or not. During the discussion of this approach
two negative effects to its accuracy were shown. Additionally an strategy to reduce the negative
effects was presented which showed good results in the evaluation of the approaches. Lastly
the approach using independent level cuts was presented. This approach tries to solve one ca-
librated label ranking problem per level cut and aggregate the results similar to the horizontal
reduction. Concluding the new approaches and one of the already available approaches were
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tested on a data set and the results were presented and discussed. Therefore several losses for
the graded multilabel classification were discussed and a new loss measuring the calibration of
the virtual labels was introduced. To compare the approaches the experiments using the BeLaE
data set from [3] were rebuild and as baseline the BR-10NN was reimplemented. The result
of the experiments were shown and discussed. Thereby the general suitability of the pairwise
approach to the graded multilabel classification was observed. The results also showed that the
more the grade information and the correlation between the labels is used to predict the better
the results of an approach are. For the case of a reduction to other classification problems the
way of aggregating the individual results was shown as being crucial to gain good predictions.

6.2 Future prospects

Like mentioned in the motivation of this thesis, finding good solutions to the graded multilabel
classification is necessary. The new approaches presented by this thesis and their results seem
to promise the general suitability of pairwise approaches in the context of the graded multilabel
classification and the varying of the results of the different approaches support the assumption
that the results of the pairwise approaches even can be better. So a further research in different
other approaches of pairwise classifiers is promising. The most promising research field here
in my opinion is the search of other possible approaches to aggregate the predictions of the
individual horizontal problems recapping the consequences of the two different way used until
now. But also the comparison with the second already available approach with the approaches
presented by this work seems to be worth mentioned to facilitate the evaluation of the pairwise
approach in the setting of the graded multilabel classification.
One non-satisfying fact was that the experimental comparison of the different approaches had
to rely on their results on classification problems generated from only one data set. This, like
already mentioned in the introduction of this thesis, relies on the fact, that at the moment no
other graded multilabel classification data set is known to me. But especially the advances cau-
sed by the filtering during the approach using dependent horizontal cuts may only rely on some
special circumstances like the inner structure of the data set. So in my opinion the foundation
of all further research to this topic should be the acquisition of additional and appropriate data
sets to enable consolidated findings. In order to this problem I collected raw data for some new
data set. This will consist of the redactional ratings of movies made by a German TV-guide. Each
movie is awarded with zero to three points in the categories ’humor’, ’intellectual value’, ’action’,
’excitement’ and ’eroticism’. But unfortunately I was not able to finish the data set in time to use
it for evaluating the approaches in this introduced by this thesis. I hope to be able to present the
results of the approaches on this data set in some future publication.

52 6 Conclusions



List of Figures

2.1 An example of the prediction of calibrated label ranking . . . . . . . . . . . . . . . . 15

3.1 An example of the reduction of the classification of an instance in vertical, hori-
zontal and complete reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 An example of the prediction of the direct approach to generalize the calibrated
label ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 An example instance in graded multilabel classification . . . . . . . . . . . . . . . . . 36

53





List of Tables

5.1 Table of the experiments results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

55





List of Algorithms

4.1.1Training_CLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2Classification_CLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1Training_Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2Classification_Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1Training_DHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2Reduction_DHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1Reduction_IHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2Classify_IHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

57





Bibliography

[1] Andrea E. Abele-Brehm and Mahena Stief. Die Prognose des Berufserfolgs von Hoch-
schulabsolventinnen und -absolventen. Zeitschrift für Arbeits- und Organisationspsycholo-
gie, 48(1):4–16, 2004.

[2] Jaime S. Cardoso and Joaquim F. Pinto da Costa. Learning to classify ordinal data: The
data replication method. J. Mach. Learn. Res., 8:1393–1429, December 2007.
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