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1 Introduction

In the mid-1950’s, the field of Artificial intelligence (AI) research was founded. AI is the area in computer science that
concerns study and design of machines that humans consider intelligent. Certainly it is hard to decide, when a machine
can be considered as intelligent, or if a computer really can be intelligent. Up to now, an artificial general intelligence
(strong AI) has not yet been developed, i.e. a machine that can successfully perform any intellectual task that a human
can. However, for certain problems, whose solutions require some kind of intelligence, computer programs have been
designed that perform equally well or even better than humans. For example, a chess computer that defeats human chess
champions shows in a way intelligent behavior for the particular domain of chess playing.

Artificial intelligence is an essential part of many today’s technologies and is used in a wide range of fields: Among
others, Artificial intelligence applications can be found in medical diagnosis, robot control, and stock trading. It plays an
important role in every day applications like email spam filtering or voice recognition. The field of Artificial intelligence
can be divided into various subfields concerning different subproblems. These problems include perception, reasoning,
knowledge representation, planning, learning, communication and haptic interaction with objects.

1.1 Machine Learning

An important branch of AI is machine learning that is concerned with the design of learning algorithms. Such
algorithms are capable of evolving intelligent behaviors based on experience. The objective of the learning algorithm
is to generalize from its experience.

One well known application of machine learning is spam filtering in emails. For a person it is easy to decide whether
a received email is a spam message or not. But since having to do so is annoying and wearying in the long run it is
tempting to let a computer learn classifying spam and hereby filter the spam messages out before the user gets to view
his incoming messages.

Such a filter has to be trained to work effectively. Particular words occur with certain probabilities in spam but not in
desired emails. To learn about these probabilities, the spam filter has to analyze collected samples of spam mail and valid
mail. For all words occurring in a training email, the spam filter will adjust the measured probability for that particular
word of appearing in spam. After training, the word probabilities are used to compute the probability that an email
with a particular set of words in it belongs to either category. The filter will mark the email as spam, if the total of
word probabilities exceeds a certain threshold. If the filter performs well on classifying spam, that is if it prevents spam
messages from being shown to the user in the majority of cases, it has learned how to classify spam.

1.1.1 Supervised Learning

A usual task in machine learning is supervised learning. In supervised learning a function is inferred from a set of
supervised (labeled) training data. Each example in the training data is a pair consisting of an input object - a vector of
properties - and an output value. The task is now to learn a function from this set of examples that gives a correct output
value for a new input object whose output value is unknown. Supervised learning is further divided into classification and
regression: In classification, the unknown objects should be categorized into separate categories (classes). A classification
task can for example be to predict, given a set of examined symptoms, whether a patient suffers a specific disease or not.
On the other hand, in regression, a real value should be predicted. For example, a regression task can be to predict how
high the temperature will be tomorrow. However, in this thesis the focus is on the task of classification.

A descriptive example for a classification task is to let an algorithm decide if it is the right weather to do sports or not,
according to some weather measures 1. The learning algorithm analyzes the given training data and produces a classifier
that will be used for classifying the unknown instances, i.e. predicting the unknown output value of that instance. That
training data consists of a set of instances, each instance divided into two parts; first a vector of observed characteristics
and second a label, also called class value. In the weather example, a possible vector of observed characteristics can be:

< Outlook = sunny, Humidit y = 50, Wind = FALSE, Temperature = hot >

In this case, the label of the specific training instance may either be Spor t = yes or Spor t = no. After processing all
training instances, the learning phase is complete. Now, the learned classifier is ready to predict classes for unknown
instances. Such unknown instances are also called query instances or training instances.

1 The example is based on (Mitchell, 1997) and will be used throughout this thesis.
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1.1.2 Rule Learning and Lazy Learning
The major part of this thesis adresses rule learning. For now, the concepts of rule learning and lazy learning will be

briefly summarized, but will be explained in further detail within the following sections (cf., section 2 and section 4). Rule
learning algorithms are a special type of learning algorithms. During the learning process such an algorithm formulates
rules. Rules have an if-then structure. For example, a possible representation of a single rule, specified to classify exactly
the above example is:

if (Outlook = sunny) ∧ (Humidit y = 50) ∧ (Wind = FALSE) ∧ (Temperature = hot) then (Spor t = yes)

Usually a single rule is not enough to classify the whole set of training instances. The classifier then has to learn a set of
rules to classify the whole set of training instances.

Learning algorithms distinguish between eager and lazy learning. In eager learning a classifier (in the case of rule
learning a set of rules) is learned for the whole training data and afterwards used for classification of unknown instances.
Whereas in lazy learning at first, nothing is learned from the training data: The classification is postponed until a specific
query instance has to be classified.

1.2 Objective of this thesis
This thesis will first give an overview about two particular not yet related subareas in machine learning, namely rule

learning and lazy learning. In both sections basic concepts and common algorithms will be introduced.

The main objective of this thesis though is, to present a solution that combines both approaches. A motivation to learn
rules a lazy way, is to obtain simple and comprehensible rules, each of them tailored to classify exactly one instance. In
contrast, learning sets of rules, as eager rule learning does, yields a set of rules in which only the first rule is without
context (i.e. independent of other rules). Especially in semantic web applications (cf., section 8) this kind of lazy learned
rules can be of interest.

The centerpiece of this thesis is a new algorithm that combines both approaches within one algorithm. First, the
algorithm is examined theoretically and then applied evaluated. An existing framework (Janssen and Fürnkranz, 2010a)
is used as base for its implementation and evaluation. Furthermore, the algorithm provides an interface for evaluation in
the Weka suite (Hall et al., 2009). For the proposed lazy rule learning algorithm possible improvements are examined.
A small set of configurations of the algorithm that emerged to be superior to other variants is then selected for further
evaluation. Finally, the algorithm is compared to other learning algorithms, in particular to lazy learning and rule learning
algorithms.
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2 Rule Learning
Rule learning is the fundamental concept of the algorithm presented later. For this reason, the terminology introduced

in the previous section will be explained in greater detail. In order to estimate a rule’s quality, the heuristic value (cf., 2.2)
has to be computed. Heuristics are important for the following class of separate-and-conquer rule learning algorithms
(cf., section 2.3) as well as for the new lazy rule learning algorithm (cf., section 4).

2.1 Terminology
In order to learn a rule or a set of rules, training data is needed. This training data consists of instances (also called

examples) whose classifications are known. An instance consists of attributes (or features) that have a particular value
assigned. The attribute may either be nominal or numeric. Possible values of a nominal attribute are a limited set of
distinct values. An example for a nominal attribute is the attribute Outlook, that may assign the values sunny , cloud y
or rainy . To a numeric attribute a real value is assigned. Such an attribute is for example the attribute Temperature
that may assign any real value that reasonably describes a temperature. In classification learning, one nominal attribute
of the instance is identified as class attribute. The possible values of this class attribute are the classes. While in the
training data the value of the class attribute is known, the class of a test instance (the instance to be classified by the
classifier, also called query instance) is unknown. For better understanding the procedure of rule learning, consider the
following example. Figure 1 shows four training examples on which a rule or a set of rules should be learned. Such a
small dataset would actually not allow to learn a useful classifier from, but for exemplifying the definitions and terms of
rule learning it is suited well.

@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature real

@attribute humidity real

@attribute windy {TRUE, FALSE}

@attribute sport {yes, no}

@data

sunny,85,85,FALSE,no

sunny,80,90,TRUE,no

sunny,72,95,FALSE,no

overcast,83,86,FALSE,yes

Figure 1: Four training examples, modified excerpt of the dataset weather.arff, in Attribute-Relation File Format (ARFF)
(Hall et al., 2009).

The first part of the file that contains the training data, defines the attributes and its domain values, i.e. the set
of possible values. For the nominal attribute outlook these are sunny, overcast and rainy. The attribute humidity is a
numeric attribute and may assign a real number. Attribute sport will be considered as the class attribute because it is
the last attribute defined in the list of attributes. The second part consists of four training examples. The values of each
instance appear in the same order as the attributes were defined in the head of the file and represent the particular
assignments of the attributes, whereas the last attribute consequently specifies the class of the instance. It may also
happen, that the value of a specific attribute is unknown for an instance. This instance then contains a missing value for
this attribute, denoted as "?" instead of a proper value. It depends on the learning algorithm, how missing values are
treated. If a value is required, the most likely value is assumed, in other algorithms the attribute with the missing value
can simply be ignored.

Classifiers can be represented as a set of rules. A classifier may consist of one or more rules. One single rule consists
of a rule head and a rule body. The rule head and rule body consist of conditions. A condition is an attribute with a value
assigned to it. The head of a rule always contains a single condition that is a class value assigned to the class attribute.
On the other hand, the rule’s body might contain an arbitrary number of conditions according to the attributes of the
dataset. Rules without any conditions in their body are called empty rules. Figure 4 shows a set of four rules that classifies
the whole training data correctly, while figure 2 shows that two rules are enough to classify all instances correctly. In
contrast, the rule in figure 3 would classify only two examples correctly but one wrongly as sport = no.

The head and body of a rule are separated by the string ":-" while the first part is the rule’s head and the second part
its body. Conditions in the body are separated by comma and the rule’s end is marked by a dot. If all conditions in the
body hold true the condition in the rule’s head must hold true as well.
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sport = yes :- outlook = overcast.

sport = no :- outlook = sunny.

Figure 2: Single rule classifying exactly one instance of the data in figure 1. All instances are covered and correctly
classified. Here both, the rule’s head and the rule’s body, each contain one condition.

sport = no :- windy = FALSE.

Figure 3: Single rule classifying two instances of the training data in figure 1 correctly. One instance is wrongly covered
by the rule and one wrongly stays uncovered.

Here it is assumed that the class attribute has only two values, yes and no. If a class only has two possible values, it is a
binary class. An example is then either a positive example (here Sport = yes) or negative example (here Sport = no). The
training data in figure 1 thus contains three negative and one positive example. A rule covers an example, if all conditions
of the rule’s body hold true. Examples that are not covered by a rule are called uncovered examples respectively.

For example, the rule in figure 3 covers three examples. However, the second example is not covered. Two of the
covered examples, namely the first and the third, are classified correctly. They are said to be true positives. Although the
last example is covered by the rule’s body too, it is wrongly classified as Sport = no. Such a wrongly covered example is
called a false positive. Accordingly, if the conditions of the rule’s body do not hold true for the example and the example
is classified correctly as negative, it is called a true negative. In contrast, the second training example is a false negative
because it is not covered by the rule i.e. not considered as Sport = yes, but its class value is actually the same like in the
condition of the rule’s head.

Consider a classifier that classifies the whole set of training data correctly, i.e. there is not any wrongly classified
instance in the training data, but when unknown instances are passed to the classifier, it performs rather poor and
frequently predicts the wrong class for the new instances. This may happen when the classifier is adapted too much to
the possibly noisy training data2 and is called overfitting of the classifier to the training data. An extreme example of
an overfitted classifier is the rule set in figure 4, where the rules are directly derived from the training set and only the
examples of the training with sport = no would be classified correctly but not any instance that does not occur in the
training data but have also assigned the class value no to the class attribute sport. Pruning (cf., section 5.7.2) is a way to
handle the problem of overfitted classifiers.

sport = no :- outlook = sunny, temperature = 85, humidity = 85, windy = FALSE.

sport = no :- outlook = sunny, temperature = 80, humidity = 90, windy = TRUE.

sport = no :- outlook = sunny, temperature = 72, humidity = 95, windy = FALSE.

sport = yes :- outlook = overcast, temperature = 83, humidity = 86, windy = FALSE.

Figure 4: Three rules classifying the training data in figure 1 correctly. The rule set only covers the four examples of the
training examples. New examples with sport = no that differ from the training examples would not be covered.

In the preceding example it was assumed that the class attribute is a binary one i.e. that it has only two possible class
values for the class attribute sport, namely yes and no. The task to decide between more than two class values is called
a multi-class problem. One solution is to learn a rule set in a certain order and to always use the first rule that fires for
an instance i.e. whose rule body applies to the instance. This is called decision list. Another solution is to treat each
class separately. The multi-class problem is then viewed as a series of binary (two-class) problems. In one-against-all
binarization each class is once considered to be positive while all other classes are considered to be negative. The rule
that performs best is used for classification. To decide which of two rules is better, a rule’s performance can be determined
by heuristic measures (see section 2.2).

2.2 Search Heuristics

A heuristic is a strategy using some available information to solve a problem that ignores whether the solution can be
proven to be correct, but which usually produces a good solution. A usual rule learning heuristic computes its heuristic
value from basic properties of the particular rule. Basic properties can be for example the number of positives covered

2 Noisy data are data that have been input erroneously, measured incorrectly or corrupted in some processing step.
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by a rule (true positives) or the number of negatives covered by a rule (false positives), the total number of positive or
negative examples or the number of conditions in a rule. The Laplace estimate for a rule r is

p+ 1

p+ n+ 2

where p are the positive examples covered by the rule and n are the negative examples. Particularly rules with a high
coverage of negative examples are penalized by this heuristic. If the rule does not cover any example the Laplace estimate
returns 0.5. In table 5 a short overview of all heuristics applicable in the algorithm’s implementation is given.

2.3 Separate-and-Conquer Rule Learning
A big group of rule learning algorithms are those that follow a separate-and-conquer strategy. In Fürnkranz (1999) a

variety of separate-and-conquer algorithms was summarized into a single framework and analyzed. A simple separate-
and-conquer algorithm first searches for a rule that covers many positive examples of the training data. Rules that
cover positive examples but also negative examples are refined until they do not cover any negative example. The
covered positive examples are then separated from the training examples and the remaining examples are conquered
by subsequently searching rules that cover many positive examples and then adding them to the rule set, until no
positive examples remain. In order to avoid overfitting, the requirements that no negative examples may be covered
(consistency) and all positive examples have to be covered (completeness) are relaxed by many separate-and-conquer
algorithms (Fürnkranz, 1999). The generic separate-and-conquer rule learning algorithm can be viewed in algorithm 1.

The algorithms are characterized by three dimensions. The first dimension is the language bias. It defines in which
hypothesis or representation language the conditions are represented. For example in the weather example above, the
conditions are represented by simple selectors that relate an attribute value to one of its domain values. But a separate-
and-conquer algorithm might also use more complex conditions. The representation language can be searched for
acceptable rules. The search bias identifies how the algorithm searches this hypothesis space. It may for example
employ a hill-climbing search, that considers a single rule and improves it until no further improvement is possible.
Another approach is to employ a beam search (cf., section 5.7.1) which in contrast to the hill-climbing search does not
only consider a single rule for improvement but keeps a (usually small) set of candidates for further improvement. Rules
can be either specialized (top-down) or generalized (bottom-up) or both. In the course of searching the best rules, the
rule’s quality can be measured by several heuristic evaluation functions (cf., section 2.2). The third dimension is the
overfitting avoidance bias. Some kind of preprocessing or postprocessing is used by several algorithms to generalize rules
or rule sets to avoid possible overfitting to the training examples. Preprocessing is performed before or during building
the classifier, postprocessing afterwards.

2.4 Pruning
A frequently used method of pre- and postprocessing is pruning. Pruning originates in decision tree learning and

refers to removing branches of a decision tree (cf., section 3). The intention of performing pruning is to remove those
branches that do not contribute to correct prediction or even counteract it. Pruned trees show a reduced complexity of
the final classifier as well as better predictive accuracy. Pruning can either be performed during the learning process to
deal with noise or erroneous instances in the training data. It is then called pre-pruning. The tree can also be pruned after
processing the training data, and is then called post-pruning. Both techniques are applicable for separate-and-conquer
rule learning, too (Fürnkranz, 1997).
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SEPARATEANDCONQUER (Examples)
Theor y = ;
while POSITIVE (Examples) 6= ;

Rule = FINDBESTRULE(Examples)
Covered = COVER(Rule, Examples)
if RULESTOPPINGCRITERION(Theory, Rule, Examples)

exit while
Examples = Examples \ Cov ered
Theor y = Theor y ∪ Rule

Theory = POSTPROCESS(theory)
return(Theory)

FINDBESTRULE(Examples)
InitRule = INITIALIZERULE(Examples)
InitVal = EVALUATERULE(Examples)
BestRule =< Ini tVal, Ini tRule >
Rule = {BestRule}
while Rules 6= ;

Candidates = SELECTCANDIDATES(Rules, Examples)
Rules = Rules \ Candidates
for Candidate ∈ Candidates

Refinements = REFINERULE(Candidate, Examples)
for Re f inement ∈ Re f inements

Evaluation = EVALUATERULE(Refinement, Examples)
unless STOPPINGCRITERION(Refinement, Evaluation, Examples)

NewRule =< Ev aluation, Re f inement >
Rules = INSERTIONSORT(NewRule, Rules)
if NewRule > BestRule

BestRule = NewRule
Rules = FILTERRULES(Rules, Examples)

return(BestRule)

Algorithm 1: Generic separate-and-conquer algorithm SEPERATEANDCONQUER (Fürnkranz, 1999). The main part of the
algorithm is the while loop that iterates over the training data until all positive examples are covered or the rule set
achieved a certain quality (RULESTOPPINGCRITERION). In each iteration a rule provided by FINDBESTRULE is added to the
rule set (theory) and the covered examples are removed from the set. In POSTPROCESS postprocessing like pruning is
performed. In FINDBESTRULE a list of sorted rules is kept. From this list in each iteration a subset is selected for refinement
(SELECTCANDIDATES). Each refinement is evaluated and inserted into the list. After this, a subset of the grown list of
candidate rules for the next iteration is obtained by applying FILTERRULES. The best rule, which is the refinement that
evaluated best, is returned by FINDBESTRULE.
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3 Decision Tree Learning
In this section the method of decision tree learning will be introduced. This is also fundamental for the later introduced

lazy decision trees (cf., 4.2) which relate to the eager decision trees described here. Furthermore, basic measures like
entropy and information gain will be explained.

Decision tree learning (Breiman et al., 1984; Quinlan, 1986, 1993) is a widely used method in machine learning and
is a kind of supervised learning. Figure 5 shows a decision tree according to the weather example in the preceding
section, however the whole dataset of 14 instances is considered here. The leaves of the tree represent class labels. Each
node corresponds to an attribute of the instances in the dataset and branches to the possible values of the attribute. If
the attribute is a numeric one, it needs to be discretized in some way. For example, in figure 5 the numeric attribute
Humidit y splits into two branches, but could also split into more. The query instance

< Outlook = ov ercast, Humidit y = 50, Wind = FALSE, Temperature = hot >

would be sorted to the second branch in the node Outlook and therefore be classified as positive, the tree predicts
Spor t = yes for this instance.

Figure 5: A decision tree that decides if to do sport or not according to weather observations. The two classes of Spor t
are yes and no. The example is adapted from (Mitchell, 1997). Nodes correspond to attributes and are white, leaf nodes
correspond to classes and are gray. The values in square brackets are the number of positive (Spor t = yes) and negative
(Spor t = no) instances of the dataset covered at the current node.

Decision trees represent a disjunction of conjunctions, the conjunctions are the paths from the root node to the leaf
nodes. The decision tree in figure 5 corresponds to the expression

(Outlook = sunny ∧Humidit y <= 70)∨ (Outlook = ov ercast)∨ (Outlook = rain∧Wind = FALSE)

Important examples for decision tree learning algorithms are ID3 (Quinlan, 1986) and its successor C4.5 (Quinlan,
1993). They search the space of possible decision trees by employing a greedy top-down search. Algorithm 2 shows the
ID3 algorithm.

3.1 ID3
The decision tree in figure 5 is just one possible decision tree in the space of all decision trees that can be derived from

the dataset. But different decision trees might perform differently. For example, a decision tree with longer paths and
many duplicate subtrees would perform worse on average. In order to obtain a preferably small and efficient decision
tree, it is necessary to choose the order of attributes along the pathes according to some measure of importance. This
is the core of ID3: At each node it evaluates each attribute and selects the best attribute for testing (algorithm 2, l.10).
How good an attribute is, is determined by the information gain measure. Before defining the information gain measure,
the definition of a related measure, the entropy, is needed.

3.1.1 Entropy
The entropy is a measure of the average information content and is usually measured in bits. A high entropy results in

more bits, a lower in less. Here, it characterizes the purity or impurity of an arbitrary set of examples.
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ID3 (Instances, ClassAttribute, Attributes)
Create a Root node for the tree
if all instances are positive

return the single-node tree Root, with label = +
if all instances are negative

return the single-node tree Root, with label = -
if number of predicting attributes = ;

return the single node tree Root, with label = most common value of the target attribute in the instances
else

A← attribute that best classifies instances
Decision Tree attribute for Root← A
for each possible value v i of A

Add a new tree branch below Root, corresponding to the test A= v i
E← EXAMPLES(A, v i)
if E = ;

below this new branch add a leaf node with label = most common target value in the instances
else

below this new branch add the subtree ID3 (E, ClassAttribute, Attributes
{A})
return Root

Algorithm 2: Decision tree algorithm ID3. Instances are the training examples, ClassAttribute is the attribute whose value
the tree should predict and Attributes are other attributes that may be tested by the decision tree. EXAMPLES(A, v i) is
the subset of instances that have the value v i for A. The best attribute is the one with the highest information gain. The
returned decision tree will classify all training examples correctly.

Definition 1 For a set of examples S, a class attribute with c classes and pi the proportion of S belonging to class i the
entropy is

Ent rop y(S) =
c
∑

i=1

−pi log2 pi (1)

According to definition 1 a high entropy occurs, if the classes in the dataset are equally distributed. For example, the
class attribute of the decision tree of figure 5 has two values. At node Wind there are two negative (classified as Sport =
no) and two positive (classified as Sport = yes) values covered. This results in

Ent rop y([+2,−2]) =−
2

4
· log2(

2

4
)−

2

4
· log2(

2

4
) = 1,

the highest possible entropy for a dataset with two classes. In contrast, the leaf nodes have an entropy of 0, the lowest
possible value for a binary class. Another example is the entropy of the root node Outlook, which covers 9 positive
examples and 5 negative examples and results in

Ent rop y([+9,−5]) =−
9

14
· log2(

9

14
)−

5

14
· log2(

5

14
) = 0.94.

When descending the tree from the root node to a leaf, entropy always decreases. So a low entropy is preferable; it
means that the classes are distributed differently.

3.1.2 Information Gain
Information gain measures the expected reduction in entropy, when splitting at a certain node. To decide which

attribute to use next for branching, the information gains of all remaining attributes are computed. The attribute that
scores the highest reduction of entropy in average is selected for the split.

Definition 2 For a set of examples S and an attribute A with v values, the information gain is defined as

Gain(S, A) = Ent rop y(S)−
∑

v∈Vaues(A)

|Sv |
|S|
· Ent rop y(Sv ) (2)
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In definition 2, S is the set of examples covered after descending a branch from the parent node, which corresponds to
assigning a particular value to the attribute of the parent node. The set Sv is the set of covered examples after assigning
the value v to attribute A. For the root node in figure 5 the attribute Outlook was selected because it has the lowest
entropy. The highest information gain after branching to Outlook = sunny scores the attribute Humidit y . It results in

Gain(Ssunny , Humidit y) = Ent rop y([+2,−3])− (
2

5
· Ent rop y([+2,−0]) +

3

5
· Ent rop y([+0,−3]))

Gain(S, Humidit y) = 0.97−
2

5
· 0.0−

3

5
· 0.0= 0.97

3.2 C4.5
C4.5 is the enhanced variant of ID3. In contrast to ID3, it can also handle continuous attributes. The algorithm creates

a threshold and then splits the list into those whose attribute value are above the threshold and those that are less than
or equal to it. It is able to cope with missing attributes as well. They are not considered in gain and entropy calculations.
Moreover, it can handle attributes with differing costs. After the creation of a probably overfitted decision tree, the tree
is pruned. C4.5 goes back through the tree and tries to remove branches that do not help by replacing them with leaf
nodes. A decision tree can also be viewed as a set of rules. For each path from the root node to a leaf node a rule is
created and added to the rule set.
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4 Lazy Learning
This section describes the concept of lazy learning and introduces two different lazy learning algorithms. Separate-

and-conquer rule learning algorithms and decision tree learning algorithm have something in common: They are both
eager learning methods. That is at first they learn a classifier that is used after training to classify all new instances. In
contrast, lazy learning, or instance based learning, is a learning method that delays the building of the classifier until a
query is made to the system. So the hypothesis is built for each instance separately and on request. The training data is
kept in memory and is utilized by each query instance individually.

For computation lazy learning will require less time during training than eager methods, but more time for the
classification of a query instance. Contrary, eager learning methods use all available training examples to build a classifier
in advance that is later used for classification of all query instances.

The key advantage of lazy or instance based learning is that instead of once and for the whole training data, the
target function will be approximated locally for every query instance. This allows a different target function for each of
the query instances. Because of this lazy learning systems are able to simultaneously solve multiple problems and deal
successfully with changes in the instances used for training. Lazy learning systems can simply alter an instance, store a
new instance or throw an old instance away.

In contrast, the disadvantages of lazy learning include the large space requirement to store the entire training dataset
and lazy learning methods are usually slower to evaluate, although this often goes with a faster training phase. In the
following, two approaches of lazy learning will be viewed in more detail.

4.1 k-nearest Neighbor Algorithms
A very basic lazy learning method is the k-nearest neighbor algorithm (Cover and Hart, 1967; Aha and Kibler, 1991).

The k-nearest neighbor algorithm views instances as points in the n-dimensional space Rn according to n features. For
classifying an instance, the algorithm considers the classes of its k nearest neighbors. The most common class amongst
its neighbors is then selected to be the correct class for the instance. The distance between a training example and the
instance to be classified is usually measured by the Euclidean distance (definition 3).

Definition 3 For two instances x and y with the i th attribute’s value ai(x), the distance is defined as

d(x , y) =

s

n
∑

i=1

(ai(x)− ai(y))2 (3)

Because the focus of this thesis is on classification learning the k-nearest neighbor algorithm is only considered for
discrete valued target functions (figure 6 and algorithm 3). But it similarly works for continous valued target functions
in regression learning. While in classification learning the most frequent class of the k neighbors is selected, in regression
learning the values of the neighbors are averaged.

Figure 6: Example of k-nearest neighbor classification. The point in the center represents the test instance and should
be classified either as positive (+) or negative (−). If k = 1 it is assigned to the positive class because the closest training
example is a positive one. If k = 4 it is assigned to the negative class because there are 3 negative examples and one
positive example.
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KNN (Instance, T)
Let x1...xk be the k instances of T that are nearest to Instance
return

argmaxc∈C

∑k
i=1 wiδ(c, f (x i))

Algorithm 3: The classification algorithm of the k-nearest neighbor algorithm KNN. Instance is the test instance, T is the
set of training data, C is the set of class values, c a specific class value . Function f (x i) returns the class value of instance
x i , δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise. In the refined algorithm instead of setting the weight to wi = 1, the
weight of an instance’s contribution depends on its distance according to equation 4.

A refinement of the algorithm is to assign a weight to the neighbors according to their distance to the query instance.
The closer the neighboring instance is to the query instance, the more it influences the classification. In algorithm 3 the
weight is thus set to

wi =
1

d(Instance, x i)
(4)

4.2 Lazy Decision Trees

With the lazy decision tree algorithm Friedmann introduced another possibility of classifying instances in a lazy way
(Friedman, 1996). As described in section 3, common decision tree algorithms construct one decision tree from a set of
training data to be used for the whole set of instances to be classified. In contrast, the lazy decision tree algorithm builds
a separate decision tree for each instance that should be classified. Rather than a whole tree, there is just a single path
constructed; from the root to the labeled leaf node. Algorithm LAZYDT shows the generic lazy decision tree algorithm.
It expects a yet unclassified instance and a set of training examples. When the recursion ends, the algorithm returns a
classification for the instance. It is important which test is selected for the split at each internal node. For this reason, the
node the instance would branch to, that maximally decreases the entropy, is selected as test. More precisely, information
gain like in eager decision trees is used but with normalized class probabilities. The normalization is necessary to avoid
negative information gains or zero information gain for yet important splits, that otherwise could occur. This is due to
the use of tests at nodes that are based on the test instance rather than on class distributions (cf., Friedman (1996)).

LAZYDT (Instance, T)
if all instance in T have the same class c

return class c
else if all instances in T have the same attribute values

return majority class in T
else

select a test X and let x be the value of the test on the instance I
assign the set of instances with X = x to T
LAZYDT (Instance, T)

Algorithm 4: The generic lazy decision tree algorithm LAZYDT

The motivation for using a lazy decision tree is to take advantage of the additional information given by a single
instance and to clear some problems that occur in decision tree algorithms. Those problems include replication (duplicate
subtrees) and fragmentation, i.e. partitioning of the data into smaller fragments (Pagallo and Haussler, 1990). The
problem of fragmentation is shown in figure 7. Instances with attribute Temperature are fragmented. The subsequent
tests on Temperature have lower signigicance because they are based on fewer instances.

Because in regular decision trees the best split on average is chosen at each node there might be a disadvantageous
branch for a particular test instance. However, a lazy decision tree will select a better test with respect to the particular
instance. The avoidance of splitting on unnecessary attributes may thereby produce a more accurate classifier and
shorter paths. Next, the problem of replication will be exemplified. In fact, in the decision tree example above the
tree is fragmented but may not contain any duplicate subtrees. Though the decision tree of the disjunctive concept
(A∧ B) ∨ (C ∧ D) will contain a duplicate subtree. This can be either (A∧ B) or (C ∧ D) as shown in figure 8. In a lazy
decision tree there is just one path and thus no duplicate subtrees.

14



Figure 7: Fragmentation problem in eager decision tree. For an instance that has missing values for Outlook and Wind
the tests at these nodes are irrelevant and lead to lower significance of the test on Temperature.

Figure 8: Duplicate subtrees for (A∧ B)∨ (C ∧ D) are highlighted grey. In (a) the subtree for (C ∧ D) duplicates, in (b) the
one for (A∧ B) does.

Another problem that is resolved by the usage of lazy decision trees is the way of handling missing attributes. While
the usual decision tree algorithms provide complicated mechanisms to deal with missing attributes in instances, lazy
decision trees just never branch on a missing value in the instance.

Compared to the decision tree algorithm C4.5 (Quinlan, 1993), Friedman (1996) measured a similar performance
for the lazy decision tree algorithm - neither of the two algorithms could outperform the other on all datasets. Some
improvement in performance was achieved by applying boosting3 to the algorithm (Fern and Brodley, 2003). Another
variant of the algorithm, the lazy option tree algorithm, uses a bagging4 approach (Margineantu and Dietterich, 2001).

Like eager decision tree algorithms the lazy decision tree algorithm might also be used to derive rules from the tree.
This approach may be another way of learning rules a lazy way but further analysis goes beyond the scope of this thesis
and is thus just briefly described. One rule for each instance to be classified could be obtained if the path to the leaf
node was transformed to a rule body consisting of the attribute-value pairs along the path while the class of the leaf node
might be used as rule head. Let for example the instance

〈Outlook = rain, Wind y = t rue, Humidit y = 60, Temperature =?〉

be classified classied as Spor t = No by the lazy decision algorithm. Depending on then training examples a possible lazy
decision tree (that is actually a path from the root to the leaf) could be:

Humidit y = 60−→Wind y = t rue

3 Boosting algorithms combine a set of weak classifiers to a single strong classifier.
4 In bagging algorithms several datasets are generated from the training data and then a classifier is learned on each of them. Afterwards the

classifiers are combined by averaging to a possibly better classifier.
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The missing attribute Temperature is ignored by the algorithm. Since the tests at the nodes are derived from the test
instance, the path might also be shorter. In the example the test on Outlook was not necessary. The decision tree
constructed by the example instance would consequently compose the rule

Spor t = No :- Humidit y = 60, Wind y = t rue

Unfortunately there was no implementation of the lazy decision tree algorithm publicly available and thus experiments
in this thesis do not consider employment of this algorithm.
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5 Lazy Rule Learning

Yet an algorithm for explicitly learning rules in a lazy way has not been published. While lazy decision trees could
be used for this task (see section 4.2, Lazy Decision Trees) the lazy decision tree algorithm is not explicitly designed
to produce one rule per instance to be classified. For this reason a new algorithm for rule learning is proposed in this
section. The main hypothesis is, that by improving the heuristic value of rules that consist of conditions provided by a
query instance, a rule that classifies the test instance correctly will emerge.

5.1 Algorithm LAZYRULE

The basic algorithm is rather straightforward and easy comprehensible. It starts with one outer loop that iterates over
all classes available in the dataset (algorithm LAZYRULE). Thus the algorithm performs a one-against-all binarization. For
each class value the procedure REFINERULE is called with an empty rule as parameter. Each call will then return a rule
whose head is the class attribute to the current class value. That means there is one rule for each class value. From
this set the one with the highest heuristic value will be returned as rule to classify the instance. In some cases it may
happen that for two or more classes exactly the same heuristic value is returned. From such rules the one that covers
more instances in the whole training data is chosen, i.e. the majority class is preferred. In figure 9 a list of rules learned
this way is shown. Each rule corresponds to a query instance and was learned on all instances of the dataset except the
instance to be classified.

LAZYRULE (Instance, Examples)
InitialRule = ;
BestRule = InitialRule
for Class ∈ Classes

Conditions← POSSIBLECONDITIONS(Instance)
NewRule = REFINERULE (Instance, Conditions, InitialRule, Class)
if NewRule > BestRule

BestRule = NewRule
return BestRule

Algorithm 5: LAZYRULE (Instance, Examples)

The procedure REFINERULE (algorithm 6) constitutes the centerpiece of the algorithm5. After the procedure is called,
the at first empty rule is improved by adding the condition that improves the rule most.

Adding conditions is repeated until either no further improvement is noticed or no conditions to add are left. A rule
is assumed to have improved if its heuristic value with respect to the current class value became higher after adding
a condition. The set of possible conditions encompasses all conditions that can be derived from the instance to be
classified. Conditions are constructed from the attribute-value pairs of the instance (POSSIBLECONDITIONS, algorithm 7).
If the instance has a missing value for an attribute, no condition will be added for this attribute.

REFINERULE (Instance, Conditions, Rule, Class)
if Conditions 6= ;

BestRule = Rule
BestCondtion = BESTCONDITION (Rule, Conditions)
Refinement = Rule ∪ BestCondtion
Evaluation = EVALUATERULE (Refinement)
NewRule = <Evaluation, Refinement>
if NewRule > BestRule

BestRule = NewRule
REFINERULE (Instance, Conditions \ BestCondition, NewRule, Class)

return BestRule

Algorithm 6: REFINERULE (Instance, Conditions, Rule, Class)

5 The method REFINERULE not to be confused with the one in the generic separate-and-conquer algorithm (algorithm 1). Here it returns a single
rule instead of a set of rules
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POSSIBLECONDITIONS (Instance)
Conditions← ;
for Attribute ∈ Attributes

Value = ATTRIBUTEVALUE (Attribute, Instance)
if Value 6= ;

Conditions = Conditions ∪ {(Attribute = Value)}
return Conditions

Algorithm 7: POSSIBLECONDITIONS (Instance)

play = yes :- windy = FALSE, humidity >= 70, humidity < 88.

play = yes :- humidity < 90.5, humidity >= 85.5.

play = yes :- outlook = overcast.

play = yes :- temperature >= 66.5, temperature < 70.5.

play = yes :- temperature >= 66.5, temperature < 70.5.

play = yes :- humidity >= 65, humidity < 82.5.

play = yes :- outlook = overcast.

play = yes :- temperature < 77.5, temperature >= 71.5.

play = yes :- temperature < 70.5, temperature >= 66.5.

play = yes :- humidity >= 70, humidity < 82.5, windy = FALSE.

play = yes :- humidity < 82.5, humidity >= 70.

play = yes :- outlook = overcast.

play = yes :- outlook = overcast.

play = yes :- temperature < 71.5, temperature >= 66.5.

Figure 9: A set of rules learned for the weather dataset with numeric and missing values. Each rule corresponds to a query
instance. Here the Laplace heuristic was employed.

The set of instances can be decreased after adding a condition to the rule. All training examples that are not covered
by the rule may then be omitted in the following iterations of REFINERULE. Thus only the set of covered examples is
considered in the next iteration where the rule is refined. In contrast to separate-and-conquer rule learning algorithms,
LAZYRULE does not try to cover all positive instances of the training dataset, but rather tries to cover the examples
according to the chosen heuristic by a rule constructed of conditions derived from the test instance. A separate-and-
conquer algorithm tries to cover examples by learning a set of rules, while the lazy rule learning algorithm only refines
a single rule. The algorithm shown here can just handle nominal attributes. Later the algorithm is extended to handle
numeric attributes as well (see section 5.2, Numerical Attributes).

In the current algorithm a hill climbing search is employed. Within each REFINERULE call merely the one condition that
performs best will be added to the rule. Perhaps a combination of several conditions would lead to a higher heuristic value
than one single condition. Depending on the heuristic this might be an improvement for the algorithm. A modification
of the algorithm that incorporates a beam search will be described later on (see section 5.7.1, Beam Search).

5.2 Numerical Attributes
Nominal attributes extracted from the instance to be classified are handled straightforward by the algorithm. The

attribute-value pair of the instance is already a condition that can be used.

Somewhat more complicated is the construction of a condition when the current attribute value of the instance is a
numeric one. For example, consider a dataset, where one attribute determines the size of a person. Let the value of a
numeric attribute in an instance be Size = 161.5. Adding this attribute-value pair as a condition to the classifier would
not make much sense since the condition probably will cover no instance in the training data (it would cover the test
instance, but usually the test instance is not included in the training data). So how does the algorithm treat those numeric
attributes? When processing a numeric attribute two conditions will be inferred. These two conditions determine the
lower and the upper bound of the interval in which the class value of the instance is assumed. These conditions will be
called interval conditions in the following.

The method REFINERULE is called for each class of the dataset. To find the bounds from which the conditions will
be derived, the algorithm has to find the closest examples of the training set around whose class values differ from the
one that was assumed for the instance to be classified. First, the instances are put into an ordered list according to the
attribute. For the lower bound, the next lower example in the training examples, that has a different class value has to
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be found. Thus, the closest instance, that has a different class value, is searched by going down the list, starting from
the test instance’s value. The assumed class switch is then calculated by averaging the two values and thus used for the
interval condition. Adding two associated conditions instead of only one resulted in a higher accuracy.

For the example with Size = 161.5, the closest lower instance from the training data with a different class could have
Size = 143.4 while the lowest example within the interval of same class values that the example is assumed to be in,
could have Size = 148.7. Hence the lower bound would result in (143.4+148.7)

2
= 146.05 which leads to the condition

Size ≥ 146.05 for the lower bound. Similarly, the condition for the upper bound is obtained by looking for the next
higher example that differs in its class value and averaging both attribute values.

Since the algorithm iterates over all possible class values it will generate an interval conditions for each of the class
values.
In the following example the instance is to be classified according to a dataset that comprises the class values child ,
adolescent and adul t. The algorithm will iterate over those three class values and with it generate interval conditions
for each of them. Figure 10 depicts the interval for the case when the value adolescent is assumed, i.e. REFINERULE was
called for the class value adolescent. In figure 11 the interval is much smaller if presumed the class adul t. In this interval
only the instance that is to be classified will be contained but no instance of the training set. The resulting conditions
of this interval will cover no example of the training set and will certainly not be chosen to improve the rule. In this
example the class child would also result in zero coverage. Examples for conditions derived from numerical attributes
are shown figure 9.

Figure 10: The instance to classify shows Size = 161.5 and is assumed to be classified as adolescent. Accordingly the class
changes result in Size = 146.05 and Size = 169.4. This leads to the interval conditions Size ≥ 146.05 and Size ≤ 169.4.

Figure 11: The instance to classify again shows Size = 161.5 but is assumed to be classified as adul t. Accordingly the
class changes this time result in Size = 159.1 and Size = 163.0 and leads to the interval conditions Size ≥ 159.1 and
Size ≤ 163.0. This interval would cover no instance of the training dataset.

5.3 Search Heuristics

As previously mentioned, the algorithm’s rule evaluation is based on search heuristics. Search heuristics used for
lazy classification thus ought to find the correct class for the query instance in the majority of cases. The value of the
particular search heuristic determines whether the condition should be added to a rule or if refinement should halt
(method REFINERULE). The search heuristic can easily be changed for LAZYRULE. As the algorithm is built on the SECO-
framework (Janssen and Fürnkranz, 2010a) it provides all heuristics that can be found in the framework too. A list of
heuristics available for the algorithm is shown in table 5.

In contrast to heuristics for decision tree learning, which evaluate the average quality of a number of disjoint sets
defined by each value of the tested attribute, heuristics in rule learning only evaluate the set of examples covered by the
particular rule (Fürnkranz, 1999).
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In preceding leave-one-out cross-validation (cf., 7.2.2) the Laplace heuristic performed notably better than other
heuristics for several datasets. Since the reason for this grave differences was not really obvious at first the algorithm was
designed to support a variety of heuristics in order to find possible other candidates and to check the assumption that
there exists one or few superior heuristics, i.e. heuristics that perform significantly better than others for the algorithm.
In the later evaluation process the algorithm will be examined with different heuristics applied.

5.4 Bottom-Up Approach
It seemed somewhat more intuitive and natural to learn a rule from an instance in a bottom-up way. The idea was to

start from a rule whose body is constructed from all attributes and values of the instance to be classified instead of starting
with an empty rule like in the LAZYRULE algorithm above. Hence the bottom-up algorithm starts with a maximally specific
rule which most likely would not cover any instance from the training instances (since it is derived from the training
instance). Algorithm INITIALIZERULE shows the initialization of this rule.

The rule is then repeatedly generalized with the GENERALIZE method until it covers at least one positive example (see
algorithm LAZYRULE-BOTTOMUP). Similar to REFINERULE in the top-down algorithm GENERALIZE returns a rule. But instead
of adding a condition the rule without the condition whose removing most improved the heuristic value of the rule is
returned here. Furthermore GENERALIZE is not recursive but is called as long as there is no positive coverage yet or the
rule’s body became empty.

LAZYRULE-BOTTOMUP (Example, Instances)
Positive← ;
BestRule = INITIALIZERULE (Example)
for Class ∈ Classes

while Positive = ;
NewRule = GENERALIZE (Rule, Instances)
Positive = COVERED (Rule)

if NewRule > BestRule
BestRule = NewRule

return BestRule

Algorithm 8: LAZYRULE-BOTTOMUP (Example, Instances)

INITIALIZERULE (Example)
Rule = ;
for Attribute ∈ Attributes

Value = ATTRIBUTEVALUE (Attribute, Example)
if Value 6= ;

Rule = Rule ∪ {(Attribute = Value)}
return Rule

Algorithm 9: INITIALIZERULE (Example)

Another idea was to generalize in all directions, based on the initial rule. This results in a tree whose nodes split on
all remaining conditions, as long as no positive coverage is achieved, which is a leaf in the tree. Then the class attribute
with the highest true positive coverage as rule head was chosen. From this ruleset the rule with the highest heuristic
value was then returned as best rule to classify the instance.

The bottom-up approaches resulted in a higher average rule length and performed worse compared to algorithm
LAZYRULE in leave-one-out cross-validation. They were therefore not regarded in further evaluation. Moreover greedy
generalization, which actually is used in these bottom-up concepts, is impossible if the instance to be classified differs in
more than one attribute value from its nearest neighbor (Fürnkranz, 2002).

5.5 Search Space
The presented lazy rule learning algorithm tries to find the combination of conditions inferred from the instance to be

classified that scores the highest heuristic value with respect to the currently assumed class. It does so by subsequently
adding a condition to the body of the rule that improves the rule’s heuristic value until there is no improvement anymore.
By merely looking for the next improving condition and not concerning combinations of candidate conditions it thus
performs a hill climbing search. Usually, it will not use all the conditions provided by the query instance.
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In each iteration of REFINERULE after adding an improving condition the set of remaining conditions will be decreased
by 1. Let n be the number of conditions derived from the query instance and u the number of already used conditions.
In the worst case, which means adding the whole set of conditions (which in fact will not happen if the dataset does not
contain duplicates), the algorithm will check

Combinations(n) =
n
∑

u=1

n− u=
n (n+ 1)

2
=

n
∑

u=1

u (5)

different condition-combinations (i.e. rule bodies) in order to find out that with adding the last one it obtained the
best rule. However, the whole search space is much bigger. The amount of possible rule-bodies that may be derived
from the test instance is constructed as follows: Start with an empty rule. Then next rule is constructed by adding an
arbitrary condition. For each remaining condition, perform the following. Add all the combinations of it with each yet
constructed rule-body (including the empty one) to the search space. Thus the amount doubles with each addition of
an attribute. The number of all possible combinations of conditions is 2n. In this way constructed rule-bodies will be
without duplicates. Since different permutations of conditions combined to a rule’s body yield the same heuristic value
just one permutation needs to be considered. For c classes there are c · 2n different rules.

For datasets with 20 attributes that makes
∑20

u=1 20 − u = 210 rules to evaluate for each class in the worst case
compared to 220 = 1048576 rules if each of the possible conditions is checked for one class.

Due to this big gap between regarded rule-bodies in the basic algorithm and possible rule-bodies, it seemed interesting
to find out, if there was a significant improvement when considering more instances in the search. Hence, another variant
of the algorithm, that employs a beam search, is introduced in section 5.7.1. The evaluation part of this thesis allows a
closer look on effects of changing the set of condition-combinations considered by the algorithm.

5.6 Complexity
The outer loop iterates over all class attributes c. For datasets without missing values in the worst case the iterations

of the REFINERULE method add up to (a+1) a
2

for a attributes (see equation 5). In the case of missing attributes instead of
all a attributes only the number of attributes that have a value assigned in the instance to be classified are considered.
An upper bound for both is O(c · a2) rule evaluations per query instance.

Until now, only the classification of a single query instance was considered. Classifying the whole dataset containing i
instances needs maximally

O(c · a2 · d) (6)

rule evaluations.

In the first call of REFINERULE, the whole set of training instances is used for evaluation. In the next iterations, the
condition that is added to the rule6, decreases the amount of training instances to consider in the subsequent iterations
rapidly. However, for each class initially the whole set is used.

Lazy learning algorithms afford a fast classification for a test instance. Because of this it is desirable to improve the
algorithm’s runtime. One way to do so is to limit the number of considered attributes using a preselection as described in
section 5.7.2. However, since the algorithm usually produces short rules (see table 6), the rule refining halts long before
processing all possible conditions. Although the training dataset shrinks rapidly after the first REFINERULE call, further
optimization might be achieved by instead of using the whole training set for rule evaluation to just consider a subset for
training as described in section 5.7.3 and section 5.7.4.

5.7 Possible Improvements

In the following, two magnitudes that may be improved for the algorithm will be discussed. Firstly, a possible
improvement of accuracy will be suggested.

When the basic algorithm compares the currently best rule with the currently best rule added one condition it definitely
constructs a better rule if the extra condition is an improvement. But is this single best rule always the best choice? One
can imagine a condition is added after which no further improvement is possible, i.e. that all remaining conditions
could not improve the rule anymore. It might happen while this condition is improving the rule indeed, there exists
a combination of two conditions which each on its own would not gain a higher heuristic value than the added single
condition. But in combination they would achieve a higher heuristic value. The choice of adding this pair of conditions
would thus be a better one than adding the single rule. In light of these considerations another approach to improve
accuracy was reviewed, namely a beam search.

6 For a numeric attribute actually two conditions are added.
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While a higher accuracy is certainly desirable, a serious drawback of the current algorithm is its high computation time
for classifying a single instance when the datset has many classes or attributes and contains many training instances. This
is especially because for each class in the first call of REFINERULE the initially empty rule is evaluated on the entire set
of given training instances. Additionally, the initial rule refined by one of the derived conditions to the rule’s body has
to be evaluated on the entire set of training instances. Since one wants to consider all classes for classification, only
the amount of instances or the number of attributes remain to be considered for improving the execution time. For this
reason, one approach that preselects attributes before calling REFINERULE is reviewed for the algorithm. On the other
hand, the set of instances actually used for classification by LAZYRULE can be reduced. While in separate-and-conquer
rule learning a classifier is learned on the whole training data once, in lazy learning the classification happens for each
test instance separately. If the whole set of available training instances is used for each test instance, the execution time
of the algorithm depends also on the size of the training data and can be reduced by using less instances for training. In
the end of this section, two possibilities of how to obtain a smaller training set are described.

5.7.1 Beam Search
Beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited

set of nodes and is an optimization of best-first search7 that reduces its memory requirements. How this beam search
works for algorithm LAZYRULE is explained in the following. One can imagine improving a rule in the basic algorithm by
REFINERULE like descending along a single branch in a search tree of all possible rules from the root (the empty rule) to a
leaf node (a node at which no further improvement by adding a condition is possible). A hill climbing search, as used in
the basic algorithm, often just finds a local maximum. In contrast, considering a beam of the b most promising branches
will consider b leaf nodes. In the beam search approach the most promising rules are kept in a memory which can hold b
rules. These rules are kept in memory in descending order. The following steps are iterated until for each rule in memory
there is no better rule found or all remaining conditions were added.

First, iterate over all b rules in the memory. In each iteration, generate candidate rules, e.g. all rules that are obtained
by adding each of the yet unused conditions. Compare each candidate rule with the rules in the memory. If the current
candidate rule evaluates better than one of the rules in the memory, insert the candidate rule in the right place and
remove the last rule from the memory.

This approach requires some more operations for handling the memory but altogether it lies within the dimension of
b times the maximum time required to decrease to a leaf node. This is because a branch in the memory can only be
replaced by another branch that is obtained by a branch that already was in the memory before.

For several datasets this approach resulted in a notable improvement. For example with a beam size of 2 it resulted in
more than 5% improvement for the dataset cleveland-heart-disease.arff and about 8% for a beam size of 4 in leave-one-
out cross-validation (cf., 7.2.2). However, increasing the beam size further did not result in noteworthy better results.
Combined with some preprocessing (cf., section 5.7.2) to compensate the higher computation costs, this approach might
be an improvement for some datasets.

5.7.2 Preprocessing and Postprocessing
It is desirable to improve the algorithm’s performance by some kind of pre- or postprocessing. The presented lazy

rule learning algorithm is neither a decision tree learning algorithm nor can it be assigned to the separate-and-conquer
rule learning algorithms (Fürnkranz, 1999) and therefore is not qualified for pruning. However, other kinds of pre- or
postprocessing could be of note here.

Removing conditions from a rule that ought to classify the query instance in postprocessing will not have any effect on
the correctness of the classification but will increase execution time. When removing conditions from a rule’s body the
positive coverage will increase. But the classification for the query instance will at all times stay the same since the rule
to classify may only consist of the conditions taken from the query instance and the rule’s head stays unchanged.

Somewhat more promising is to apply a kind of preprocessing to the algorithm. In (Pereira et al., 2011a) a method of
data preprocessing for lazy classification is proposed. Lazy attribute selection performs a preselection of attributes which
the particular lazy learning algorithm should consider for classification. The instance’s attributes are ordered by their
entropies (see definition 1, p. 10) from which the r best are selected for further processing. This method was applied
to the k-Nearest-Neighbor algorithm (cf., section 4.1). Depending on the parameter r for determining the number of
attributes to consider, lazy attribute selection was able to improve the accuracy of the classification significantly for
several datasets. Additionally, a metric to estimate when a specific dataset can benefit from the lazy attribute selection

7 Best-first search is a search algorithm that explores a graph by expanding the most promising node chosen according to a heuristic evaluation
function.
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was proposed in (Pereira et al., 2011a) and applied in (Pereira et al., 2011b). This way of preprocessing is also applicable
to the proposed lazy rule learning algorithm and might achieve an improvement in performance and accuracy. However,
within the scope of this thesis a further examination was not possible and this approach was not considered for the
algorithm.

5.7.3 Stratified Subsets
The preceding section suggested a possibility to improve the algorithm’s execution time by reducing the amount of

attributes to consider. Another way to achieve a faster algorithm is to reduce the amount of training instances actually
considered for training. If desired that the reduced set of training data is similar to the original training data, the class
distribution of the original training data can be maintained, when a stratified subset of the training data can be used (cf.,
7.2.1).

5.7.4 Nearest Neighbor Subsets
If one wants to reduce the amount of training instances given to LAZYRULE, another solution emerges. Instead of

keeping the dataset’s characteristics by using a stratified subset, it makes sense to already filter out useless instances,
i.e. instances, that most likely will not contribute to a correct classification of the test instance. In other words, it seems
promising to apply the lazy rule learning algorithm to a set of instances that are similar to the test instance. Of these
nearest neighbors (cf., 4.1) either a fixed number of k nearest neighbors (see section 4.1) or fraction may be used. But
when using a particular percentage of the training data the execution time of the algorithm still depends strongly on the
size of the dataset. When using the k nearest neighbors though, the rule is learned on a set of fixed size and the dataset’s
instance count does not affect the computation time so much. Later it will turn out that the lazy rule learning algorithm
combined with a nearest-neighbor algorithm performs best (cf., 7.5.3).

23



6 Implementation
According to the pseudo-code shown in section 4 the algorithm was implemented in Java. It is built on the the SECO-

framework (Janssen and Fürnkranz, 2010a). The algorithm basically supports two types of usage: First, within the
framework to employ a leave-one-out cross-validation (see figure 12 and figure 13). Second, it may be used within the
Weka suite (Hall et al., 2009) in order to utilize Weka’s evaluation functionality.

6.1 SECO-Framework
The SECO-framework (derived from SEparate and COnquer) is a framework for rule learning developed by the

Knowledge Engineering Group at the TU Darmstadt. The framework’s core is a general separate-and-conquer algorithm
whose components are configurable. By using building blocks to specify each component it builds up a configuration for
a rule learner. The requirement for an algorithm to be added to the framework is that it employs a separate-and-conquer
strategy and uses a top-down or bottom-up approach. It already provides a variety of separate-and-conquer algorithms.

Although the lazy rule learning algorithm is implemented within the SECO-framework and takes advantage of several
components of this rule learning framework it should not be viewed as a part of it. Unlike the algorithms contained in the
SECO-framework the lazy rule learning algorithm cannot be fitted into a separate-and-conquer algorithm. The included
evaluation functionality is tied to eager learning algorithms. For this reason, LAZYRULE can not be compared to the
framework’s algorithms directly. However, when a more general interface will be supplied in the future by the evaluation
component of the framework, the proposed lazy learning algorithm can easily implement it and thus be compared to
the various separate-and-conquer algorithms. Anyhow leave-one-out cross-validation (cf., 7.2.2) is yet possible to be
performed directly inside the framework. An example for validation results after running the algorithm in the framework
can be viewed in figure 12 and figure 13.

class = Iris-virginica :- petallength < 6.2, petallength >= 5.1. [34|1] Val: 0.946

class = Iris-virginica :- petalwidth >= 1.8, petalwidth < 2.15. [27|1] Val: 0.933

class = Iris-virginica :- petalwidth < 2.2, petalwidth >= 1.8. [30|1] Val: 0.939

class = Iris-setosa :- petallength >= 1, petallength < 2.45. [49|0] Val: 0.98

class = Iris-setosa :- petallength < 2.45, petallength >= 1. [49|0] Val: 0.98

class = Iris-setosa :- petalwidth >= 0.1, petalwidth < 0.8. [49|0] Val: 0.98

class = Iris-versicolor :- petalwidth < 1.4, petalwidth >= 0.8. [34|1] Val: 0.946

class = Iris-versicolor :- petallength < 4.5, petallength >= 2.45. [35|1] Val: 0.947

Figure 12: Excerpt of the output of the 150 learned rules by the algorithm employing leave-one-out cross-validation for
the dataset iris.arff using the Laplace estimate. The values in square brackets are the number of true and false positives
followed by the rule’s heuristic value.

Number of Rules: 150

Number of Conditions: 424

Number of empty Rule Bodies: 0

Number of Multiple Rules Fired: 3

Referred Attributes: 212

Percent of Empty Rule Bodies: 0%

Percent of Multiple Rules Fired: 2%

Average rule length: 2.83

Time required for building model: 0.61 sec

Correctly classified: 143/150 95.33%

Figure 13: Output for the algorithm after employing leave-one-out cross-validation for the dataset iris.arff using the
Laplace estimate. The number of rules corresponds to the size of the dataset.

6.2 Weka Interface
Weka (Waikato Environment for Knowledge Analysis) is a popular software suite for machine learning (Hall et al.,

2009). It is written in Java and developed at the University of Waikato, New Zealand. It supports several standard data
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mining tasks and contains a variety of learning algorithms. Weka allows to easily evaluate learning algorithms. The
algorithm implements an interfacte for Weka. Figure 14 shows how the algorithm appears in the Weka GUI.

Figure 14: A search heuristic, the mode of LAZYRULE, the subset of instances to consider for training and the the size of
the beam, if the mode is beam search, can be chosen by the user in the Weka GUI. Learned rules can be written to files.

The user can select one of the heuristics listed in table 5 and select a mode of the algorithm, i.e. whether it should
perform the standard hill climbing search (the default mode), perform a beam search or search in the whole set of rules
that can be generated from the query instance. Though the latter is not recommended for larger datasets. If the user
selects Beam as mode, the size of the beam can be chosen. Furthermore, the amount of instances that actually should be
used for training when classifying an instance can be determined. Possible choices here are either the k nearest instances,
a percentage of the nearest instances, k random instances (a stratified subset of size k, see section 7.2.1) or a percentage
of random instances of the whole dataset.

6.3 Implementation of LAZYRULE

Most of the data structures needed for the implementation are provided by the SECO-framework. Only the
special treatment of numerical attributes by the algorithm required an additional data structure. The available type
NumericCondition alone was not sufficient. As described in section 5.2 a numeric value assigned to an attribute in the
test instance results in two numeric conditions. In order to deal with this special kind of associated conditions the type
NumericCondition was extended to the type IntervalCondition which has an additional field for the related condition.
Different variants of the algorithm are all located in the package variants.

For the beam search approach new types Branch and BestBranches were created. They handle the memory for the
b best branches. The algorithm and additional data structures are located in a separate package lazyrule within the
framework. The Weka interface is located in weka.classifiers.lazyrule. Two measures were added, the Entropy measure
and the Gini index. A class for leave-one-out cross-validation and executable configurations were added. The selection
of k nearest neighbors is delegated to the class weka.core.neighboursearch.LinearNNSearch. For that the Weka interface
is available in the Weka GUI, the interface is located in weka.classifiers.lazyrule.
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7 Evaluation
For the evaluation of the lazy rule learning algorithm the evaluation functionality of the Weka suite (Hall et al., 2009)

was used. To compare different variants of the algorithm to each other and to compare it with other learning algorithms,
each classifier’s accuracy is estimated. The accuracy of a classifier is the probability, to correctly classify a randomly
selected instance (Kohavi, 1995).

In this section, first the used datasets will be introduced and then the applied methods for evaluation will be
explained. These methods constitute how to determine the accuracy of a classifier and how to compare it to others.
Then configurations that possibly result in an improvement will be evaluated. Finally, after performing the evaluation,
the obtained results will be reviewed.

7.1 Data Sets
Depending on the experiment, subsets of the datasets in table 1 were used. These datasets include a variety of different

data. They differ in the number of instances, attributes and classes as well as in their occurrence of nominal and numeric
attributes. It was tried to consider as many datasets as possible in each experiment. However, large datasets can require
a remarkable amount of recources for the lazy rule learning algorithm and for this reason a trade-off had to be found in
some cases. Which datasets were considered in the particular experiment will be marked by the letters A, B, C, D.

7.2 Cross-Validation
In the validation process it is important that the test data is not used in any way to create the classifier (Witten and

Frank, 2005). A common statistical technique in machine learning is cross-validation. In cross-validation, one splits the
data into a fixed number of partitions, the folds. All folds except one are used to train the classifier. After training, the
left out fold is used for testing. This procedure is repeated for each fold to guarantee that each fold has been used once
for testing. The results obtained from testing are then averaged by the number of folds. Thus the classifier’s accuracy is
the average percentage of correctly classified instances.

In this thesis two particular techniques for accuracy estimation, namely leave-one-out cross-validation and stratified
cross-validation, were used.

7.2.1 Stratified Cross-Validation
When dividing the data into folds by employing cross-validation it might happen that the proportions of each classes

vary in training and testing data. By coincidence it could have happened that all examples with a certain class were
assigned to the testing data but none to the training data. A classifier learned on this training data will most likely
not perform well on the testing data. For this reason the folds are stratified - the random sampling is done in a way
that guarantees that the class distributions in training and test sets are approximately the same as in the whole dataset
(Kohavi, 1995).

Employing stratified tenfold cross-validation is a usual way of predicting the accuracy of a learning algorithm and is
therefore used in this thesis as well. Since each of the ten folds has to be in turn as testing set, the learning procedure
is repeated 10 times. The partitioning into exactly 10 parts is based on extensive tests on numerous different datasets
using different learning techniques (Witten and Frank, 2005). For obtaining a reliable accuracy estimate it is necessary
to repeat the tenfold cross-validation because different experiments with the same classifier might produce different
results due to the effect of random partitioning. Typically the tenfold cross-validation is repeated ten times and averaged
afterwards. In total the learning algorithm will be called 100 times on datasets that are nine-tenths the size of the whole
dataset.

7.2.2 Leave-One-Out Cross-Validation
One kind of cross-validation is leave-one-out cross-validation which is n-fold cross-validation, where n is the number

of instances in the dataset. Hence the dataset is divided into n folds, each of size 1. Each instance in sequence is omitted
while the classifier is trained on all the remaining instances. Then the omitted instance is classified by the learned
classifier. The percentage of correctly classified instances is the final accuracy estimate.

An advantages of this method is, that it uses the greatest possible amount of data for training in each case. This
presumably increases the chance that the classifier is accurate (Witten and Frank, 2005). Another important point is,
that this method is deterministic because no random sampling takes place. In contrast to for example ten-fold cross-
validation, there is no need to repeat it ten times. The result would always be the same. Since leave-one-out cross
validation needs to run just once to obtain an accuracy estimate it was used when looking for improvements to rapidly
judge some variant of the algorithm in order to decide about possible further review. Leave-one-out cross-validation is
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Table 1: Datasets used for evaluation. Source: http://archive.ics.uci.edu/ml/index.html. The last columns show
which datasets were used in which experiments. The letters A, B, C, D refer to portions of the datasets that are used in
different experiments.

Name Filename Instances Attributes Classes A B C D
anneal anneal.arff 798 38 6 x x x x
anneal.ORIG anneal.ORIG.arff 798 38 6 x x x x
audiology audiology.arff 226 70 24 x x x x
autos autos.arff 205 26 7 x x x x
balance-scale balance-scale.arff 625 5 3 x x x x
breast-cancer breast-cancer.arff 286 10 2 x x x x
wisconsin-breast-cancer breast-w.arff 699 10 2 x x x x
horse-colic colic.arff 368 23 2 x x x x
horse-colic.ORIG colic.ORIG.arff 368 28 2 x x x x
credit-rating credit-a.arff 690 16 2 x x x x
german_credit credit-g.arff 1000 21 2 x x x x
pima_diabetes diabetes.arff 768 9 2 x x x x
Glass glass.arff 214 10 7 x x x x
cleveland-14-heart-disease heart-c.arff 303 14 5 x x x x
hungarian-14-heart-disease heart-h.arff 294 14 5 x x x x
heart-statlog heart-statlog.arff 270 14 2 x x x x
hepatitis hepatitis.arff 155 20 2 x x x x
hypothyroid hypothyroid.arff 3772 30 4 x x x x
ionosphere ionosphere.arff 351 35 2 x x x x
iris iris.arff 150 5 3 x x x x
kr-vs-kp kr-vs-kp.arff 3196 37 3 x x x
labor labor.arff 57 17 2 x x x x
letter letter.arff 20000 17 26 x
lymphography lymph.arff 148 19 4 x x x x
mushroom mushroom.arff 8124 23 2 x
primary-tumor primary-tumor.arff 339 18 22 x x x x
segment segment.arff 2310 20 7 x x x x
sick sick.arff 3772 30 2 x x x x
sonar sonar.arff 208 61 2 x x x x
soybean soybean.arff 683 36 19 x x x x
splice splice.arff 3190 62 3 x x
vehicle vehicle.arff 846 19 4 x x x x
vote vote.arff 435 17 2 x x x x
vowel vowel.arff 990 14 11 x x x x
waveform waveform-5000.arff 5000 41 3 x
zoo.arff autos 101 18 7 x x x x

feasible just for smaller datasets and usually leads to high computational costs, because the entire learning procedure
must be executed n times (Witten and Frank, 2005). In case of the lazy rule learning algorithm, however, due to its lazy
approach, leave-one-out cross-validation performs faster than ten times performing a tenfold cross-validation. In some
cases leave-one-out cross-validation was used for evaluating classifiers. But unless otherwise stated, stratified ten-fold
cross-validation, repeated ten times with different partitionings, was used.

7.3 Comparing Classifiers

For judging a classifier’s performance compared to other classifiers, a corrected sampled paired t-test provided by
the Weka suite is used. It is based on the observation that the variance of the cross-validation estimator is often
underestimated which leads to the wrong conclusion that the new algorithm is significantly better although it is actually
not (Nadeau and Bengio, 2003). Consequently the corrected t-test does not generate as many significant differences as
the standard t-test. In particular, the tests proposed by Nadeau and Bengio (2003) do not reject the null hypothesis too
often when the hypothesis is true, but they frequently reject the null hypothesis when the hypothesis is false.

27

http://archive.ics.uci.edu/ml/index.html


7.3.1 Paired Student’s t -Test
The null hypothesis is that the second of the two classifiers is not significantly better than the first and the confidence

interval is p = 0.05. This means that the null hypothesis is rejected only when confidence that one classifier performs
significantly better is more than 95%.

7.4 Different Heuristics
Before the algorithm was reviewed with possible improvements, the algorithm was evaluated with several heuristics.

It showed that there are significant differences in accuracy depending on the particular heuristic.

In the SECO-framework heuristics are used to maximize the accuracy of a set of rules learned from a training set. But
that does not necessarily imply that these heuristics would work in the same way for learning a single rule from the
training set for classifying a single instance. In separate-and-conquer rule learning the heuristics try to maximize the
positive coverage for a rule on a dataset. However, in the proposed lazy rule learning algorithm the main requirement
for a learned rule is that it classifies the test instance correctly. If the whole training data is used for learning a single
rule from the conditions derived from the test instance, the algorithm will tend to maximize the coverage of the whole
training data by finding some rule that can be constructed from the available conditions. The algorithm thus might strive
to construct rules that cover the majority class if procurable.

It was assumed, that there is a small set of heuristics that work best with the basic algorithm. To find out, which they
are and which characteristics they have that make them superior to others, the algorithm was evaluated with almost all
heuristics available in the SECO-framework. Because the basic variant of the algorithm needs much computation time, the
biggest datasets were omitted in evaluation. Table 2 shows a ranking of the heuristics with respect to significantly better
or significantly worse performance. A classifier wins against another one if it performs significantly better and loses if it
performs significantly worse. The ranking is determined by subtracting the losses from the wins. In table 6 the complete
results of the evaluation are shown. A description of the heuristics can be found in table 5.

Table 2: Ranking of LAZYRULE with different heuristics. The columns show how the algorithm performed depending on the
applied heuristic against all other heuristics. Wins are the number of cases when the particular algorithm was significantly
better than another. Classifiers are ranked according to their win-loss difference. Losses when it performed significantly
worse. The ranking is based on the tested datasets in table 6. Datasets B.

Heuristic Wins−Losses Wins Losses
Laplace 197 208 11
Linear Regression 114 153 39
F -Measure 32 120 88
Linear Cost 28 129 101
m-Estimate 25 113 88
Kloesgen-Measure 21 119 98
Correlation -16 94 110
Foil Gain -18 97 115
Relative Linear Cost -31 109 140
Weighted Accuracy -57 80 137
Precision -126 71 197
Accuracy -169 50 219

It shows that the basic algorithm performs significantly better on many datasets when employing the Laplace
estimate. It often outperformed the other configurations by far. The configuration using the Laplace estimate performed
significantly worse than other configurations on just four different datasets (11 losses in table 2). Table 3 gives more
information about the learned rules using different heuristics obtained by evaluating rules learned on several datasets.

28



Table 3: Properties of rules that were found by LAZYRULE with different heuristics applied. The evaluation was performed
on various datasets with 16347 instances altogether. Ordered by the percentage of correct classifications. Correct is the
number of correct classified instances, Conditions is the number of conditions in all rules, Empty is the number of rules
that have an empty rule body, Length is the average rule length. Evaluated on datasets A.

Heuristic Correct Conditions Empty Length Empty (%) Correct (%)
Laplace 12665 45770 2 2.80 0.01 77.48
Linear Regression 12039 43408 1 2.66 0.01 73.65
F -Measure 12036 32243 2387 1.97 14.60 73.63
m-Estimate 11735 45641 6 2.79 0.04 71.79
Linear Cost 11536 23487 6646 1.44 40.66 70.57
Foil Gain 11485 24882 1 1.52 0.01 70.26
Kloesgen Measure 11381 46314 1 2.83 0.01 69.62
Weight. Accuracy 10957 43606 1 2.67 0.01 67.03
Precision 10898 50966 1 3.12 0.01 66.67
Correlation 10260 48365 1 2.96 0.01 62.76
Rel. Linear Cost 9966 55631 9 3.40 0.06 60.97
Accuracy 5336 67436 570 4.13 3.49 32.64

For the Laplace heurisitc rules had an average length of 2.8 conditions per rule. It produced almost no rules that are
empty, i.e. that have no conditions in its rule body. Like all other heuristics the Laplace heuristic rates those rules higher
that cover more positive examples and less negative examples. Indeed it also guarantees that a rule which covers more
(negatives and positives) examples scores higher than a rule with the same ratio of negative and positive examples, but
in total less coverage. However, more than other heuristics, the Laplace heuristic tends to overfit the training data and
thus also places stronger emphasis on consistency over coverage (Janssen and Fürnkranz, 2010b). This fact may explain
the predominance of the Laplace estimate: In contrast to eager rule learning, coverage is less important for LAZYRULE

- the contructed rule shall primarily classify a single instance, the test instance and not a set of training instances.It is
concluded that the Laplace heuristic is the most suitable heuristic for the algorithm if the whole set of training data is
used for each classification. Thus the Laplace heuristic was used in the further evaluation process.

7.5 Possible Refinements
It is assumed that there are several possibilities to improve accuracy and efficiency of the basic algorithm. In section 5.7

different approaches that possibly improve the algorithm are described. In this section different configurations of the
algorithm are reviewed. Before comparing the algorithm to other learning algorithms, refined variants of the basic
algorithm that attempted to improve its performance will be evaluated.

7.5.1 Different Beam Sizes
In order to improve the algorithm’s accuracy a beam search approach was employed (see section 5.7.1). Since setting

the beam size b results in a b-times longer runtime of the algorithm, the beam approach was just conducted for values
≤ 4. Table 7 shows the results. For b = 2 the accuracy is significantly better in five datasets. A beam size of b = 3 does
not result in any significant improvement and a beam size of b = 4 results in just one more dataset with significantly
better accuracy. The beam search with b = 2 seems to be a good compromise between runtime and improvement. It was
therefore decided, to consider the beam search with a beam size of b = 2 for an improved variant of the algorithm.

Since there is no significant degradation in accuracy but rather a significant improvement in a few cases, it can be
concluded, that by searching for rules with the highest Laplace estimate frequently finds a correct rule.

7.5.2 Beam Search and Stratified Subsets
Employing beam search results in increased execution time. As for some datasets using a beam search improved

accuracy, the higher computation costs caused by it may be compensated. This was tried by using a stratified subset of
the provided training data in each classification. In table 8 the amount of instances that composes the stratified subset is a
fixed number. But the sizes of the datasets differ highly so that it is a better choice to construct the subset by a percentage
of the available training data rather than by a fixed number. A beam search with b = 2 approximately doubles the
execution time. On the other hand, using less data would decrease the time used for rule evaluation (cf., section 5.6).
In order to keep the computation time in a similar magnitude, using a fraction of the training data shall not negatively
affect the accuracy for any dataset. The results are shown in table 9. However, this configuration did not result in an
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improvement. For example, using 60% of the training data with a beam of size b = 2 instead of improving the accuracy
for some datasets it significantly reduced it for two datasets. It was therefore abandoned.

7.5.3 Nearest Neighbor Subsets

Figure 15: CPU time for testing LAZYRULE and LAZYRULENN

Since using stratified subsets of the whole training data did not result in a real improvement, another idea was realized.
To achieve the goal of a reduced execution time by using less training data for learning rules on, one can already take
advantage of lazy learning in this step. By ignoring instances that would not contribute to a good rule anyway the
probability to learn a rule that classifies the test instance correctly is much higher. In this section the nearest k-neighbor
algorithm (cf., section 4.1) and the basic lazy rule learning algorithm (cf., section 4) were combined to one improved
lazy rule learning algorithm, called LAZYRULENN in the following. First, it was analyzed how different values for k affect
accuracy and if accuracy would be better if a subset is used that include a percentage of the nearest neighbors rather
than a fixed value for k (see table 10). According to the obtained results it was concluded that small values for k result
in the highest accuracy. It was also tested if now, with the new precondition, different heuristics would perform better
and if a beam search would further improve the accuracy. However, the LAZYRULENN using the Laplace estimate still
outperformed the other configurations and the beam approach did not result in an improvement anymore. In figure 15
the execution times for LAZYRULE, the lazy rule learner in its basic version (using the whole set of training instances),
LAZYRULENN using ten instances for training and LAZYRULENN using the nearest 10% of the instances are visualized. Due
to enormous evaluation the largest datasets were omitted. But the tendency is obvious: While for LAZYRULEthe execution
time climbs to an unacceptable level it stays manageable for LAZYRULENN.

Table 4: Longer rules for ≥. Evaluated on datasets A.

LAZYRULE LAZYRULENN, >, k = 5 LAZYRULENN, ≥, k = 5
Accuracy (%) 75.41 82.86 82.86
Average Rule Length 2.88 0.89 19.56
Empty Rules (%) 0.01 54.41 1.78
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The configuration using k-nearest neighbors for learning rules will be used for the comparison to other learning
algorithms in the next section. However, when learning rules on k-nearest neighbors, the algorithm produces many
empty rules, depending on the dataset (see table 16). If one wants the algorithm to not produce empty rules, it could be
modified in this way: Instead of starting with an empty rule, start with the rule that contains the best condition. Another
possibility to obtain less empty rules and generally longer rules is to accept rules as improvement that score the same
heuristic value as their predecessor rule but contain one condition more. To achieve this, the test in line 9 of REFINERULE

is replaced by NewRule ≥ BestRule. The results in table 4 show that the accuracy does not change significantly but the
rules are considerably longer and more rarely empty.

7.6 LAZYRULE compared to other Learning Algorithms

In this section the lazy rule learning algorithm LAZYRULENN is compared to other learning algorithms. These include a
decision tree algorithm, a separate-and-conquer rule learning algorithm and different configurations for a weighted and
unweighted k-nearest neighbor algorithm.

The decision tree algorithm is the Weka implementation of the C4.5 algorithm (cf., section 3), called J48. It is
used in its standard configuration8. JRip is Weka’s implementation of RIPPER (Cohen, 1995) standing for Repeated
Incremental Pruning to Produce Error Reduction) and represents a the separate-and-conquer rule learning algorithm (cf.,
section 2.3). It is also used in its standard configuration9. For the k-nearest neighbor algorithm (cf., section 4.1) the Weka
implementation was used with the values 1, 2, 3, 5, 10, 15, 25 for k, for each k unweighted and weighted according to
equation 4 (cf., section 4.1). The detailed results can be found in the appendix (cf., tables 12, 13, 14).

Figure 16: Results of significance test. The number for the lazy algorithms correspond to the number of used instances.
Algorithms are grouped if their accuracy does not differ significantly for α = 0.01. Only algorithm NNw-5 and LR-5 are
significantly better than NN-25. Evaluated on datasets D.

8 J48’s standard configuration is: no binary splits, collapse tree, confidence factor used for pruning 0.25, minimum 2 instances per leaf, no
reduced-error pruning, subtree raising for pruning, pruned and MDL correction (cf., Quinlan (1993)).

9 JRip’s standard configuration is: check for error rate ≤ 1
2

is included in stopping criterion, 3 folds, minimum weight = 2, 2 optimization runs,
seed = 1, pruning.
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For comparing all the algorithms and their configurations described above, another evaluation method was employed:
Significant differences in accuracy between the algorithms are determined by a Friedmann Test with a post-hoc Nemenyi
Test (Demšar, 2006). First, the fractional ranks10 are calculated for each dataset. The average ranks are then used to
calculate the statistic by Iman and Davenport (cf., Demšar (2006)) that is used by the Friedmann Test to determine
if the classifiers differ significantly in accuracy. The null hypothesis of the Friedmann Test is that the classifiers are
not significantly different. When the null hypothesis is rejected, the classifiers are significantly different and the post-
hoc Nemenyi Test is performed. For the post-hoc Nemenyi Test the critical difference is computed. Two classifiers are
considered to have a significantly different accuracy if their average ranks’ difference is at least the critical distance.

7.6.1 Conclusion
In figure 16 the result of the significance test over all algorithms is shown. For the significance level 0.01 there are

only significant differences between LAZYRULENN with k = 5 and the unweighted k-nearest neighbor algorithm with
k = 25 and between the weighted k-nearest neighbor algorithm with k = 5 and the unweighted k-nearest neighbor
algorithm with k = 25. So algorithm LAZYRULENN is neither significantly better nor significantly worse than the
considered algorithms. A particular type of dataset - characterized by number of attributes, classes, instances - where the
algorithm is worse or better than others could not be determined.

10 Items that compare equal receive the same ranking number, which is the mean of what they would have under ordinal rankings.
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8 An Application of LAZYRULE

Explain-a-LOD (Paulheim, to appear) is a tool for using Linked Open Data11 (LOD) for interpreting statistics. It is often
difficult to interpret a given statistic, i.e. to explain it. For example, given a statistics file containing two attributes, a
country’s name and its corruption index, it is interesting to know why the corruption is higher in some countries than
in others. When a statistics file is loaded into Explain-a-LOD, the tool automatically retrieves data from the Linked
Open Data cloud and generates possible explanations: The data set is enriched by utilizing the additional data12 so that
it contains more attributes. Then, a correlation analysis is performed and rule learning is used for discovering more
complex patterns. The results are presented to the user (figure 17).

Figure 17: Explain-a-LOD (Paulheim, to appear), showing possible explanations for a statistics file

For the tool’s functionality that uses rule learning, the application of LAZYRULENN might be useful. It is planned to
utilize the rules generated by the lazy rule learning algorithm. For the purpose of the tool it is advantageous that the
algorithm rapidly learns many context-less rules - in contrast to eager rule learners that indeed learn the first rule of the
rule set independently, however the following rules all relate to their preceding rules. The set of rules obtained from the
algorithm needs further processing: From that set of rules that were each learned for a single instance, similar rules, i.e.,
rules that have the same attributes, should be considered together to compare their accuracies on the whole dataset. The
rule with highest accuracy might be a useful rule to contribute to the explanation of the statistics file.

11 Linked data describes a method of publishing structured data so that it can be interlinked and become more useful. Linked Open Data (LOD)
is a large collection of semantically annotated datasets.

12 This is accomplished by the feature generation toolkit FeGeLOD (Paulheim and Fürnkranz, 2011).
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9 Summary and Conclusion
Up to now, many rule learning algorithm have been proposed. However, all of them have one crucial property in

common: They are all eager learning algorithms. For this reason, in this thesis the concept of lazy learning was applied
to rule learning. The result is a lazy rule learning algorithm, referred to as LAZYRULE, that learns a single rule for a query
instance. Basically, it derives conditions from the query instance and constructs a rule from them. Since the algorithm in
its basic version performed worse than many other learning algorithm, an enhancement is presented, too. By employing
a k-nearest neighbor search before searching for rules, the basic algorithm’s accuracy could be improved significantly.
Additionally, by downsizing the training data this way, the computation time strongly decreased.

The improved algorithm LAZYRULENN, employing the Laplace estimate, was then compared to other, widely-used
learning algorithms, including a rule learning algorithm as well as k-nearest neighbor algorithms. Evaluating these
algorithm on various datasets showed that the lazy rule learning algorithm neither performed significantly worse nor
significantly better.

This algorithm distinguishes from other learning algorithm by the fact that it learns many, context-less rules.
Depending on the configuration, these rules may vary in their lengths. Although each rule is learned to classify only
one instance, after further processing the resulting rules might be useful for other applications.

Within this thesis, several possible improvements were reviewed. Yet the algorithm is a very basic one and offers
different opportunities to improve it further. One promising possible improvement that was just briefly described within
this thesis, is preselecting attributes, especially decreasing the learning time for datasets with many attributes.
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10 Appendix

Table 5: Search heuristics for rule evaluation used by the algorithm. The measure p is for the number of true positives
i.e. number of positives covered by a rule, the measure n for the number of negatives covered by the rule. P is the
total number of positive examples and N the total number of negative examples. The measures p′ and n′ correspond to
the preceding rule (before refinement). Formulas have been taken from (Fürnkranz, 1999) and (Janssen and Fürnkranz,
2010a).

Heuristic Formula Measures Weka parameter

Laplace Estimate
p+1

p+n+2
p, n default

Precision
p

p+n
p, n prec

Accuracy
p+(N−n)

P+N
' p− n P, N, p, n acc

Weighted Accuracy
p
P
− n

N
P, N, p, n wra

Correlation
p N−n Pp

P N(p+n) (P−p+N−n)
P, N, p, n corr

F -Measure
(1+β2)·(Precision· pP )

(β2·Precision+ p
P )

P, N, p, n fm

Kloesgen-Measure ( p+n
P+N
)ω · ( p

p+n
) P, N, p, n km

m-Estimate
p+m· p

P+N
p+n+m

P, N, p, n mest

Generalized m-Estimate
p+m·c

p+n+m
P, N, p, n mest

Linear Cost c · p− (1− c) · n P, N, p, n lc

Relative Linear Cost cr ·
p
P
− (1− cr) ·

n
N

P, N, p, n rlc

Foil Gain p · (log2(
p

p+n
))− log2(

p′

p′+n′
) p, n, p′, n′ foil

Entropy − p
p+n
· log2(

p
p+n
)− n

p+n
· log2(

n
p+n
) p, n, entr

Gini Index 1− ( p
p+n
)2− ( n

p+n
)2 p, n gini
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Table 7: Different values for b when employing beam search to the basic algorithm. The comlumns show the results for
keeping the 1, 2, 3 and 4 most promising branches in memory. The results are compared to the basic algorithm (first
column). Evaluated on datasets A.

Beamsize
Dataset b = 1 2 3 4
iris 94.27 94.33 94.33 94.33
vote 94.05 94.30 94.32 94.37
sick 93.88 93.88 93.87 93.87
hypothyroid 92.86 92.84 92.84 92.84
ionosphere 91.74 91.74 91.80 91.80
wisconsin-breast-cancer 91.47 91.86 91.76 91.76
anneal 90.83 92.56 ∗ 93.05 ∗ 93.05 ∗
anneal.ORIG 89.33 89.59 89.76 89.81
balance-scale 85.44 84.71 84.82 84.82
credit-rating 85.03 85.39 85.64 85.83
labor 83.53 82.80 82.63 82.83
horse-colic 81.87 83.75 83.74 83.80
hungarian-14-heart-disease 80.44 79.44 79.65 80.06
soybean 80.44 82.18 81.99 81.87
hepatitis 79.89 79.82 79.82 79.88
zoo 77.50 78.18 78.09 78.09
lymphography 76.29 78.19 79.13 79.81
cleveland-14-heart-disease 75.42 79.58 80.27 80.47 ∗
segment 73.85 74.34 ∗ 74.63 ∗ 74.81 ∗
breast-cancer 72.15 71.87 71.72 71.62
horse-colic.ORIG 71.90 72.57 72.55 72.58
german-credit 70.84 70.73 70.88 70.92
heart-statlog 70.67 75.52 ∗ 76.41 ∗ 76.74 ∗
pima-diabetes 69.92 70.42 70.39 70.39
autos 66.85 67.84 66.95 67.15
sonar 65.50 65.50 65.50 65.50
Glass 63.39 64.23 64.55 64.56
vehicle 52.41 55.92 ∗ 57.96 ∗ 59.13 ∗
audiology 48.46 59.70 ∗ 60.19 ∗ 58.72 ∗
primary-tumor 41.30 42.45 42.54 42.54
vowel 29.43 29.40 29.39 29.42
Average 75.51 76.63 76.81 76.88

∗ statistically significant improvement, α= 0.05
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Table 8: The algorithm with a stratified random subset of instances used for training. The stratified subsets contain 100,
200, 500 and 1000 instances. The results are compared to the basic algorithm (first column). Evaluated on datasets C.

Number of instances
all 100 100 200 200 500 500 1000 1000

Dataset b = 1 b = 1 b = 2 b = 1 b = 2 b = 1 b = 2 b = 1 b = 2
kr-vs-kp 95.69 80.82 • 87.31 • 85.30 • 90.92 • 90.71 • 94.17 • 93.69 • 95.70
iris 94.27 94.27 94.33 94.27 94.33 94.27 94.33 94.27 94.33
vote 94.05 93.08 93.68 94.05 94.23 94.05 94.23 94.02 94.35
sick 93.88 93.88 93.88 93.88 93.88 93.88 93.89 93.88 93.88
hypothyroid 92.86 92.29 • 92.29 • 92.29 • 92.29 • 92.29 • 92.30 • 92.38 • 92.39 •
ionosphere 91.74 86.78 • 86.64 • 91.74 91.74 91.74 91.74 91.74 91.74
wisconsin-breast-cancer 91.47 88.68 89.16 90.52 90.99 91.47 91.85 91.47 91.85
anneal 90.83 78.89 • 79.95 • 83.29 • 85.44 • 90.83 92.58 ◦ 90.83 92.62 ◦
anneal.ORIG 89.33 81.18 • 81.22 • 84.52 • 84.45 • 89.33 89.59 89.33 89.60
balance-scale 85.44 78.05 • 78.37 • 83.57 83.33 85.44 84.69 • 85.44 84.71
credit-rating 85.03 80.09 • 81.16 • 82.48 83.39 85.03 85.32 85.04 85.35
labor 83.70 83.53 82.80 83.70 82.80 83.53 82.80 83.70 82.80
horse-colic 81.90 78.15 80.08 81.90 83.72 81.82 83.61 81.90 83.72
soybean 80.48 50.12 • 53.40 • 63.28 • 67.36 • 80.48 82.16 80.42 82.08
hungarian-14-heart-disease 80.38 78.86 77.10 80.31 79.38 80.34 79.21 80.27 79.38
hepatitis 79.89 79.89 79.82 79.89 79.82 79.89 79.82 79.89 79.82
zoo 77.50 77.50 78.09 77.50 78.18 77.50 78.09 77.50 78.09
lymphography 76.22 76.02 78.40 76.16 78.86 76.36 78.40 76.29 78.28
cleveland-14-heart-disease 75.55 74.16 77.99 75.49 79.62 75.59 79.75 75.52 79.68
segment 73.87 65.49 • 65.45 • 67.14 • 67.14 • 68.96 • 69.03 • 71.30 • 71.44 •
splice 72.91 65.58 • 66.67 • 68.30 • 73.65 71.64 83.28 ◦ 72.52 87.75 ◦
breast-cancer 72.18 71.20 71.34 72.15 71.87 72.11 71.87 72.11 71.87
horse-colic.ORIG 72.06 73.10 72.81 72.03 72.49 72.09 72.60 71.90 72.60
german-credit 70.90 70.08 69.97 70.17 70.11 70.81 70.66 70.88 70.65
heart-statlog 70.52 73.52 77.19 70.59 75.44 ◦ 70.56 75.44 ◦ 70.56 75.59 ◦
pima-diabetes 70.00 70.26 70.20 69.09 69.06 69.92 70.41 69.96 70.39
autos 66.71 66.80 67.84 66.75 67.79 66.72 67.59 66.86 67.40
sonar 65.50 65.50 65.50 65.50 65.50 65.50 65.50 65.50 65.50
Glass 63.58 63.53 64.18 63.58 64.32 63.62 64.37 63.44 64.37
vehicle 52.55 45.20 • 46.33 • 49.48 51.48 52.55 55.92 ◦ 52.34 56.00 ◦
audiology 48.42 44.99 51.74 48.47 59.44 ◦ 48.51 59.89 ◦ 48.56 59.88 ◦
primary-tumor 41.30 39.15 39.06 41.44 42.39 41.24 42.68 41.47 42.39
vowel 29.42 27.30 27.25 28.54 28.56 29.41 29.42 29.43 29.39
Average 76.06 72.36 73.37 74.16 75.57 75.70 77.19 75.89 77.44
◦ statistically significant improvement, • statistically significant degradation , corrected paired Student’s t-Test, α= 0.05
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Table 10: LAZYRULE using ubsets of nearest neighbors for k = 1, k = 5, k = 10 and subsets containing 1%, 5% and 10% of
the nearest neighbors for training. The results are compared to the basic algorithm (first column). Evaluated on datasets
A.

Dataset all k = 1 k = 5 k = 10 p = 1% p = 5% p = 10%
iris 94.27 95.53 95.40 94.80 95.53 95.87 94.73
vote 94.05 92.65 93.38 93.47 93.17 93.01 92.57
sick 93.88 95.97 ◦ 96.28 ◦ 96.31 ◦ 96.73 ◦ 96.11 ◦ 94.62 ◦
hypothyroid 92.86 91.44 • 93.43 ◦ 93.53 ◦ 93.52 ◦ 93.54 ◦ 93.89 ◦
ionosphere 91.91 87.10 • 85.36 • 84.73 • 86.02 • 85.30 • 82.62 •
wisconsin-breast-cancer 91.47 95.28 ◦ 96.81 ◦ 96.55 ◦ 96.40 ◦ 96.01 ◦ 95.62 ◦
anneal 90.75 99.13 ◦ 98.24 ◦ 98.52 ◦ 98.15 ◦ 97.31 ◦ 96.55 ◦
anneal.ORIG 89.21 95.49 ◦ 94.42 ◦ 94.56 ◦ 94.33 ◦ 93.99 ◦ 92.86 ◦
labor 85.67 85.83 88.20 89.90 85.83 83.97 88.37
balance-scale 85.44 85.33 86.16 86.79 86.16 87.55 87.92 ◦
credit-rating 84.55 81.43 86.17 86.61 86.39 86.30 86.83
horse-colic 81.79 79.05 82.15 83.01 82.10 82.36 82.47
hungarian-14-heart-disease 80.41 78.33 82.52 82.16 80.48 82.46 83.55
soybean 80.08 91.67 ◦ 91.07 ◦ 90.17 ◦ 90.61 ◦ 86.91 ◦ 84.64 ◦
hepatitis 79.70 81.40 84.91 84.40 81.40 84.60 83.17
zoo 77.10 96.05 ◦ 96.35 ◦ 89.10 ◦ 96.05 ◦ 95.74 ◦ 89.79 ◦
lymphography 76.16 81.69 84.11 ◦ 80.28 81.69 83.57 ◦ 81.99
cleveland-14-heart-disease 75.59 76.19 83.08 ◦ 82.95 ◦ 77.36 82.06 ◦ 82.54 ◦
segment 73.89 97.14 ◦ 95.68 ◦ 95.44 ◦ 95.64 ◦ 94.06 ◦ 93.27 ◦
breast-cancer 72.15 72.35 73.37 74.18 73.68 73.80 73.20
horse-colic.ORIG 71.92 65.24 • 63.02 • 65.11 • 64.16 • 67.99 71.16
german-credit 70.84 71.87 73.11 73.73 ◦ 73.96 ◦ 72.75 ◦ 72.50
heart-statlog 70.63 76.59 79.33 ◦ 80.67 ◦ 77.63 ◦ 81.00 ◦ 82.56 ◦
pima-diabetes 69.91 70.52 73.84 ◦ 73.41 ◦ 73.25 ◦ 74.93 ◦ 74.19 ◦
autos 65.45 74.65 ◦ 68.81 68.51 74.65 ◦ 67.43 69.20
sonar 64.14 85.88 ◦ 82.42 ◦ 75.10 ◦ 85.88 ◦ 74.39 ◦ 70.55
Glass 61.10 69.15 ◦ 66.77 65.51 69.15 ◦ 64.96 68.89 ◦
vehicle 52.74 69.62 ◦ 70.56 ◦ 70.66 ◦ 70.74 ◦ 67.25 ◦ 65.96 ◦
audiology 48.30 78.39 ◦ 66.02 ◦ 63.26 ◦ 72.30 ◦ 63.17 ◦ 59.58 ◦
primary-tumor 41.18 38.97 43.45 44.49 41.56 44.69 45.05 ◦
vowel 29.42 99.06 ◦ 93.67 ◦ 71.31 ◦ 82.59 ◦ 46.29 ◦ 60.99 ◦
Average 75.37 82.55 82.84 81.59 82.49 80.63 80.70

◦ statistically significant improvement, • statistically significant degradation , α= 0.05
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Table 11: LAZYRULENN and different values for k compared to the highest ranked (k = 5) in the first column. Evaluated
on datasets D.

Dataset k = 5 k = 1 k = 2 k = 3 k = 10 k = 15 k = 25
mushroom 100.00 100.00 100.00 100.00 99.98 99.96 99.94
anneal 98.24 99.13 97.58 97.44 • 98.52 98.11 97.63
kr-vs-kp 97.10 96.13 • 96.24 • 96.92 96.93 97.05 97.10
wisconsin-breast-cancer 96.85 95.28 • 94.81 • 96.60 96.58 96.24 95.95
sick 96.28 95.97 95.76 • 96.12 96.31 96.49 96.52
zoo 96.15 96.05 96.05 96.05 89.50 • 90.90 • 88.34 •
segment 95.68 97.14 ◦ 96.13 96.25 95.44 95.34 95.73
letter 95.62 96.02 ◦ 94.87 • 95.69 95.09 • 94.61 • 93.51 •
iris 95.40 95.53 95.53 95.33 95.00 94.40 94.33
anneal.ORIG 94.42 95.49 94.98 94.48 94.56 94.53 94.59
vowel 93.67 99.06 ◦ 97.76 ◦ 96.99 ◦ 71.31 • 55.57 • 50.09 •
hypothyroid 93.43 91.44 • 93.43 93.25 93.53 93.49 93.40
vote 93.36 92.69 93.17 93.08 93.45 93.06 92.76
soybean 91.05 91.67 91.77 91.48 90.16 89.15 • 87.62 •
labor 88.20 85.83 83.97 93.00 90.40 89.13 85.57
credit-rating 86.19 81.43 • 81.70 • 84.83 86.59 86.93 86.36
balance-scale 86.16 85.33 85.31 85.50 86.77 86.90 87.14
ionosphere 85.36 87.10 89.77 ◦ 86.02 84.73 85.30 83.22
hepatitis 84.91 81.40 76.42 • 81.10 84.47 83.97 84.35
lymphography 84.17 81.69 81.44 82.15 80.48 81.68 78.37 •
cleveland-14-heart-disease 83.08 76.19 • 77.36 • 81.59 82.88 81.66 82.61
hungarian-14-heart-disease 82.52 78.33 • 80.48 82.33 82.06 82.70 83.58
sonar 82.42 85.88 86.70 83.57 75.10 • 70.62 • 72.09 •
horse-colic 82.23 79.05 82.10 82.10 83.04 82.03 82.25
splice 80.40 74.49 • 72.39 • 77.92 • 82.46 ◦ 82.50 ◦ 83.39 ◦
heart-statlog 79.33 76.59 77.63 79.07 80.78 81.44 82.78
waveform 79.21 73.45 • 72.40 • 77.67 • 80.69 ◦ 82.31 ◦ 83.30 ◦
pima-diabetes 73.85 70.52 • 71.39 • 73.84 73.41 74.28 74.06
breast-cancer 73.34 72.39 73.71 72.49 74.36 73.91 73.31
german-credit 73.14 71.87 72.26 72.26 73.72 73.55 73.46
vehicle 70.55 69.62 67.63 70.30 70.71 69.36 67.89
autos 68.81 74.65 70.43 70.82 68.51 71.48 68.38
Glass 66.77 69.15 67.74 70.43 65.51 65.79 70.58
audiology 66.06 78.39 ◦ 72.26 ◦ 71.63 ◦ 63.30 61.57 58.69 •
horse-colic.ORIG 63.07 65.24 68.47 ◦ 64.16 65.01 68.32 70.76 ◦
primary-tumor 43.39 38.97 • 39.23 • 41.41 44.67 44.46 45.43
Average 83.90 83.31 83.02 84.00 82.94 82.47 82.09

◦ statistically significant improvement, • statistically significant degradation , α= 0.05
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Table 12: LAZYRULENN with k = 5 compared to different values for k for k-nearest neighbor algorithm. Evaluated on
datasets D.

Dataset LR-5 kNN-1 kNN-2 kNN-3 kNN-5 kNN-10 kNN-15 kNN-25
mushroom 100.00 100.00 100.00 100.00 100.00 99.92 • 99.88 • 99.83 •
anneal 98.24 99.13 97.52 97.29 • 97.27 • 96.09 • 95.27 • 92.64 •
kr-vs-kp 97.10 96.12 • 96.15 • 96.56 • 96.16 • 95.04 • 94.55 • 93.22 •
wisconsin-breast-cancer 96.85 95.28 • 94.81 • 96.60 96.93 96.62 96.58 96.27
sick 96.28 96.10 95.86 • 96.21 96.28 96.03 95.80 95.47 •
zoo 96.15 96.05 92.61 92.61 95.05 88.71 • 88.53 • 81.69 •
segment 95.68 97.15 ◦ 95.82 96.12 95.25 • 94.55 • 94.36 • 93.58 •
letter 95.62 96.01 ◦ 94.82 • 95.62 95.50 • 94.76 • 94.11 • 92.81 •
iris 95.40 95.40 95.53 95.20 95.73 95.73 96.13 95.33
anneal.ORIG 94.42 95.49 94.89 93.77 93.23 • 90.97 • 89.43 • 87.34 •
vowel 93.67 99.05 ◦ 97.77 ◦ 96.99 ◦ 93.39 58.96 • 23.68 • 3.58 •
hypothyroid 93.43 91.52 • 93.33 93.21 93.31 93.22 92.95 • 92.82 •
vote 93.36 92.58 93.10 93.08 93.17 92.94 92.23 91.43 •
soybean 91.05 91.20 91.71 91.20 90.12 87.20 • 84.50 • 76.48 •
labor 88.20 84.30 83.97 92.83 87.53 88.70 85.83 75.93 •
credit-rating 86.19 81.57 • 81.42 • 84.96 86.13 86.12 85.75 86.06
balance-scale 86.16 86.72 86.72 86.74 87.97 ◦ 90.26 ◦ 90.14 ◦ 89.30 ◦
ionosphere 85.36 87.10 89.77 ◦ 86.02 85.10 84.87 84.25 79.43 •
hepatitis 84.91 81.40 76.73 • 80.85 84.93 83.32 81.96 81.39
lymphography 84.17 81.69 81.50 81.74 84.18 81.19 82.48 79.78
cleveland-14-heart-disease 83.08 76.06 • 77.20 • 81.82 82.13 82.31 82.22 83.01
hungarian-14-heart-disease 82.52 78.33 • 80.37 82.33 82.32 82.63 81.94 81.46
sonar 82.42 86.17 86.11 83.76 82.28 75.25 68.77 • 70.26 •
horse-colic 82.23 79.11 81.22 80.95 81.88 82.99 81.79 82.60
splice 80.40 74.43 • 72.14 • 77.59 • 79.86 • 83.48 ◦ 85.15 ◦ 87.12 ◦
heart-statlog 79.33 76.15 77.70 79.11 79.89 81.30 81.37 82.48
waveform 79.21 73.41 • 72.35 • 77.67 • 79.29 80.46 ◦ 82.46 ◦ 83.78 ◦
pima-diabetes 73.85 70.62 • 71.40 • 73.86 73.86 72.94 74.38 74.20
breast-cancer 73.34 72.85 73.19 73.13 74.00 73.44 73.31 73.06
german-credit 73.14 71.88 72.18 72.21 73.17 73.93 73.54 73.71
vehicle 70.55 69.59 67.63 70.21 70.17 69.90 69.07 68.22
autos 68.81 74.55 66.26 67.23 62.36 • 59.99 • 57.82 • 52.43 •
Glass 66.77 69.95 67.46 70.02 66.04 63.26 62.36 61.86
audiology 66.06 78.43 ◦ 68.81 67.97 62.31 55.42 • 54.44 • 47.75 •
horse-colic.ORIG 63.07 65.18 67.68 63.94 60.92 • 62.83 64.41 63.34
primary-tumor 43.39 39.91 43.21 44.98 47.32 ◦ 46.96 46.75 44.87
Average 83.90 83.35 82.75 83.73 83.47 81.73 80.23 78.18

◦ statistically significant improvement, • statistically significant degradation , α= 0.05
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Table 13: LAZYRULENN with k = 5 compared to different values for k for weighted k-nearest neighbor algorithm.
Evaluated on datasets D.

Dataset LR-5 w.NN-2 w.NN-3 w.NN-5 w.NN-10 w.NN-15 w.NN-25
mushroom 100.00 100.00 100.00 100.00 99.96 99.93 • 99.90 •
anneal 98.24 99.12 98.02 98.14 98.20 97.60 96.92 •
kr-vs-kp 97.10 96.23 • 96.67 • 96.44 • 95.67 • 95.21 • 94.17 •
wisconsin-breast-cancer 96.85 95.45 • 96.64 97.03 96.93 96.67 96.28
sick 96.28 96.10 96.21 96.28 96.30 95.78 95.43 •
zoo 96.15 93.10 92.61 95.05 90.90 • 89.81 • 86.94 •
segment 95.68 97.03 ◦ 96.51 ◦ 96.15 ◦ 95.90 95.85 95.57
letter 95.62 95.96 ◦ 96.08 ◦ 96.01 ◦ 95.54 95.01 • 94.07 •
iris 95.40 95.40 95.20 95.60 95.27 95.73 95.60
anneal.ORIG 94.42 95.22 93.86 93.15 • 91.39 • 89.37 • 87.31 •
vowel 93.67 99.05 ◦ 97.51 ◦ 96.29 ◦ 93.40 92.48 92.79
hypothyroid 93.43 91.55 • 93.35 93.40 93.38 93.04 • 92.85 •
vote 93.36 93.03 93.01 93.08 92.92 92.21 91.47 •
soybean 91.05 91.61 91.13 90.16 88.26 • 86.91 • 80.60 •
labor 88.20 84.30 92.83 87.53 89.43 86.90 78.00
credit-rating 86.19 81.57 • 84.57 86.13 86.54 86.35 86.77
balance-scale 86.16 86.72 86.74 87.98 ◦ 90.27 ◦ 90.15 ◦ 89.49 ◦
ionosphere 85.36 87.41 86.02 85.33 84.27 84.36 80.66 •
hepatitis 84.91 81.40 80.72 • 84.47 83.53 82.73 81.98
lymphography 84.17 83.57 83.69 85.05 82.47 82.61 80.73
cleveland-14-heart-disease 83.08 76.06 • 80.34 81.86 82.02 83.38 83.44
hungarian-14-heart-disease 82.52 78.33 • 82.33 82.32 82.15 81.94 81.46
sonar 82.42 86.17 83.90 83.18 77.80 72.56 • 72.37 •
horse-colic 82.23 79.19 81.01 81.93 82.39 81.87 82.60
splice 80.40 75.77 • 79.62 82.14 ◦ 85.09 ◦ 86.32 ◦ 87.85 ◦
heart-statlog 79.33 76.15 78.56 79.81 81.07 81.15 82.15
waveform 79.21 73.41 • 77.68 • 79.33 81.10 ◦ 82.49 ◦ 83.79 ◦
pima-diabetes 73.85 70.62 • 73.81 73.81 73.83 74.92 74.80
breast-cancer 73.34 73.30 72.88 73.86 73.62 73.35 73.03
german-credit 73.14 71.88 72.13 73.30 74.57 73.93 73.98
vehicle 70.55 69.59 70.75 71.41 70.16 69.22 68.60
autos 68.81 74.55 75.08 ◦ 72.79 70.50 70.24 67.79
Glass 66.77 69.95 71.32 71.26 ◦ 67.63 67.03 65.77
audiology 66.06 73.19 ◦ 71.42 ◦ 65.81 60.46 • 59.57 • 52.75 •
horse-colic.ORIG 63.07 64.96 63.86 61.98 63.56 65.16 64.02
primary-tumor 43.39 41.47 43.62 45.66 46.46 46.52 45.10
Average 83.90 83.29 84.16 84.27 83.69 83.29 82.14

◦ statistically significant improvement, • statistically significant degradation , α= 0.05
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Table 14: LAZYRULENN with k = 5 compared to separate-and-conquer algorithm (JRip) and decision tree algorithm (J48).
Evaluated on datasets D.

Dataset LR-5 JRip J48
mushroom 100.00 100.00 100.00
anneal 98.24 98.26 98.57
kr-vs-kp 97.10 99.21 ◦ 99.44 ◦
wisconsin-breast-cancer 96.85 95.61 95.01 •
sick 96.28 98.29 ◦ 98.72 ◦
zoo 96.15 86.62 • 92.61
segment 95.68 95.47 96.79 ◦
letter 95.62 86.31 • 88.03 •
iris 95.40 93.93 94.73
anneal.ORIG 94.42 95.03 92.35
vowel 93.67 70.39 • 80.20 •
hypothyroid 93.43 99.42 ◦ 99.54 ◦
vote 93.36 95.75 ◦ 96.57 ◦
soybean 91.05 91.80 91.78
labor 88.20 83.70 78.60
credit-rating 86.19 85.16 85.57
balance-scale 86.16 80.30 • 77.82 •
ionosphere 85.36 89.16 89.74 ◦
hepatitis 84.91 78.13 • 79.22 •
lymphography 84.17 76.31 75.84 •
cleveland-14-heart-disease 83.08 79.95 76.94 •
hungarian-14-heart-disease 82.52 79.57 80.22
sonar 82.42 73.40 • 73.61 •
horse-colic 82.23 85.10 85.16
splice 80.40 94.20 ◦ 94.03 ◦
heart-statlog 79.33 78.70 78.15
waveform 79.21 79.30 75.25 •
pima-diabetes 73.85 75.18 74.49
breast-cancer 73.34 71.45 74.28
german-credit 73.14 72.21 71.25
vehicle 70.55 68.32 72.28
autos 68.81 73.62 81.77 ◦
Glass 66.77 66.78 67.63
audiology 66.06 73.10 ◦ 77.26 ◦
horse-colic.ORIG 63.07 82.82 ◦ 66.31
primary-tumor 43.39 38.74 41.39
Average 83.90 83.09 83.37
◦, • statistically significant improvement/degradation , α= 0.05

44



Table 15: Average rule lengths for LAZYRULE and LAZYRULENN. Evaluated on datasets A.

Dataset LAZYRULE LAZYRULENN, >, k = 5 LAZYRULENN, ≥, k = 5
zoo 1.68 0.24 15.26
labor 1.80 0.95 8.29
sonar 2.00 0.99 49.28
ionosphere 2.00 0.51 36.30
vowel 2.03 1.19 13.59
hypothyroid 2.10 0.40 25.14
segment 2.16 0.24 22.95
Glass 2.18 1.35 11.46
anneal.ORIG 2.25 0.28 20.68
autos 2.31 1.55 34.67
iris 2.33 0.29 3.72
anneal 2.34 0.21 44.85
hepatitis 2.40 0.71 13.44
pima-diabetes 2.48 1.32 8.05
sick 2.51 0.21 24.64
vote 2.54 0.30 9.81
horse-colic.ORIG 2.54 1.44 12.87
soybean 2.72 0.48 25.05
horse-colic 2.78 0.67 8.20
credit-rating 3.07 0.84 13.46
breast-cancer 3.11 1.41 4.83
lymphography 3.18 0.84 14.78
german-credit 3.30 1.17 20.02
cleveland-14-heart-disease 3.32 0.97 11.34
hungarian-14-heart-disease 3.45 0.84 10.34
vehicle 3.62 1.38 16.86
wisconsin-breast-cancer 3.78 0.23 16.45
audiology 4.50 1.29 61.98
heart-statlog 4.81 0.98 28.49
primary-tumor 4.93 2.24 13.60
balance-scale 4.98 2.05 5.90
Average 2.88 0.89 19.56
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Table 16: Percent of empty rules learned for LAZYRULE and LAZYRULENN. Evaluated on datasets A.

Dataset LAZYRULE LAZYRULENN, >, k = 5 LAZYRULENN, ≥, k = 5
vehicle 0.00 31.19 0.98
audiology 0.00 24.38 0.00
ionosphere 0.00 74.36 0.00
horse-colic 0.00 56.17 0.00
segment 0.00 87.84 0.00
cleveland-14-heart-disease 0.00 48.48 0.00
horse-colic.ORIG 0.00 15.11 0.00
german-credit 0.00 31.79 0.00
anneal 0.00 88.13 0.00
sick 0.00 89.36 0.00
soybean 0.00 65.37 0.00
vowel 0.00 40.56 0.00
anneal.ORIG 0.00 85.28 0.00
sonar 0.00 50.64 0.00
hepatitis 0.00 60.01 0.00
zoo 0.00 83.22 0.00
wisconsin-breast-cancer 0.00 88.96 0.36
Glass 0.00 32.67 0.00
labor 0.00 48.03 1.57
iris 0.00 85.53 28.80
heart-statlog 0.00 51.04 0.00
balance-scale 0.00 56.91 13.45
primary-tumor 0.00 14.09 0.00
hungarian-14-heart-disease 0.00 57.35 0.00
credit-rating 0.00 54.36 0.00
breast-cancer 0.00 16.03 0.00
lymphography 0.00 37.36 0.00
autos 0.00 20.21 0.00
hypothyroid 0.00 79.83 0.00
pima-diabetes 0.09 34.23 9.53
vote 0.23 78.20 0.51
Average 0.01 54.41 1.78
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