
On Solving Pentago
Betrachtung der Lösbarkeit des Spiels Pentago
Bachelor-Thesis von Niklas Büscher aus Münster
Mai 2011

Fachbereich Informatik
Knowledge Engineering Group

On Solving Pentago
Betrachtung der Lösbarkeit des Spiels Pentago

Vorgelegte Bachelor-Thesis von Niklas Büscher aus Münster

Gutachten: Prof. Dr. Johannes Fürnkranz

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 21. April 2011

(Niklas Büscher)

1

Abstract

This thesis deals with the different ways to solve games, with a special focus on solving the game of
Pentago. Pentago is a new and hence until now unvisited, zero-sum two-player game with perfect
information. We approximate the state space and game-tree complexity of Pentago to draw assumptions
on Pentagos solvability. We further introduce several algorithms which have been successfully used to
solve other board games so far. Testing their applicability on Pentago shows, that none of them will
succeed under reasonable resource constraints. To obtain more details on the game-tree we developed
an Artificial Intelligence (AI) to play Pentago called PentagoAI. In comparison with other available AIs,
PentagoAI reveals to be one of the actual strongest players for Pentago. Finally we can only make a guess
about the game theoretic value of Pentago.

Zusammenfassung

In dieser Arbeit haben wir uns der Lösbarkeit von Pentago auseinandergesetzt. Pentago ist ein neues
Nullsummen Brettspiel für zwei Spieler mit perfekten Informationen. Neben einer ausführlichen Betra-
chtung der Suchraum- und Spielbaumkomplexität von Pentago, diskutieren wir mehrere Algorithmen
die in der Vergangeheit erfolgreich verwendet wurden um Spiele zu lösen. Die Vor- und Nachteile dieser
Algorithmen werden vorgestell und es wird der benötigte Rechenaufwand für eine Anwendung auf Pen-
tago geschätzt. Wir zeigen, dass keiner der vorgestellen Algorithmen Pentago mit sinnvollen Zeitaufwand
lösen kann, solange wir nicht mehr Informationen über den Spielbaum und damit Lösungsbaum erlan-
gen. Daher stellen wir eine Künstliche Intelligenz (KI) für Pentago vor, die auf einer Alpha-Beta Suche
basiert. Im Vergleich mit anderen frei erhältlichen KIs zeigt sich, dass die von uns entwickelte KI Pen-
tagoAI eine der zurzeit spielstärksten KI Implementierung für Pentago ist. Über den spieltheoretischen
Wert von Pentago können wir schlussendlich nur Vermutungen anstellen.

2

Contents

1 Introduction 5

2 Pentago 6
2.1 Rules . 7
2.2 Related work . 7

3 Solving games and task definition 8
3.1 Historical background and motivation of solving games . 8
3.2 Definition of solving . 9
3.3 The task . 10

4 Complexity of Pentago 11
4.1 State space complexity . 11
4.2 Game-tree size . 15
4.3 Conclusions on the complexity of Pentago . 16

5 Solving methods and algorithms 18
5.1 Alpha-Beta Search . 18

5.1.1 Variants and improvements . 19
5.1.2 Computational costs . 20
5.1.3 Applicability onto Pentago . 20

5.2 Proof-Number Search . 21
5.2.1 Variants and improvements . 22
5.2.2 Applicability onto Pentago . 23

5.3 Threat-space Search . 24
5.3.1 Applicability onto Pentago . 25

5.4 Retrograde Analysis . 25
5.4.1 Computational costs . 26
5.4.2 Improvements and practical issues . 27
5.4.3 Applicability onto Pentago . 28

5.5 Hybrid approaches . 32
5.6 Conclusions . 33

6 PentagoAI 34
6.1 Related AIs . 34
6.2 Implementation overview . 34
6.3 Implementation details . 35

6.3.1 BitBoards . 36
6.3.2 Move generation and execution . 37
6.3.3 Negamax Search algorithm . 38
6.3.4 Evaluation function . 38
6.3.5 Transposition Table . 39

3

6.3.6 Move ordering . 39
6.4 Observations and benchmarks . 39

6.4.1 Human versus PentagoAI . 40
6.4.2 PentagoAI versus PentagoAI . 40
6.4.3 Pentagod and others versus PentagoAI . 40

7 Conclusions 43

8 Acknowledgments 44

9 Appendix 45

Contents 4

1 Introduction

This thesis deals with the different ways to solve games, with a special focus on solving the game of
Pentago. Pentago is a new and hence until now unvisited, zero-sum two-player game with perfect infor-
mation. Before going any deeper into the topic of solving, we start with an introduction into Pentago
and its rules in Chapter 2. Chapter 3 follows with a short historical summary of the work done in the
field of solving games so far. After examining the complexity of Pentago in Chapter 4, Chapter 5 intro-
duces several algorithms to solve games and points out their applicability on Pentago. We also discuss
the reasons, why we are not able to solve Pentago. Chapter 6 gives a detailed insight in the program
PentagoAI, written to play Pentago. Finally Chapter 7 concludes this work on Pentago.

The interested reader should be on the level of a graduate student in computer science. He should
especially be familiar with the topics of estimating computational costs (Landau notation), data struc-
tures (hash-functions, trees) and he should have basic knowledge in the field of Artificial Intelligence
(game-tree, minimax search algorithm). For simplicity reasons “he” will be the pronoun of choice in this
thesis.
For readers who are familiar with the topic of solving games, it might be reasonable to skip the Chapter
3 and to skim the introductions of the described solving methods in Chapter 5. Readers who already
played Pentago may skip smoothly the description of Pentago in Chapter 2. For all others it is suggested
to read the chapters in order of their occurrence beginning with the introduction into Pentago in the
following chapter.

5

2 Pentago

Pentago is an abstract strategy game for two players, invented by Tomas and Michael Flodén in Sweden,
2003. The Swedish company Mindtwister published the game in 2005 and has the rights of developing
and commercializing the product [44]. Since its release, Pentago won multiple prices, examples are
“Game of the Year 2005”, Sweden, “Game of the Year 2006”, France, “Spiel Gut”, Germany and “Mensa
Select 2006”. A german championship was played in 2010[24].
Moreover Pentago is a zero-sum game with perfect information and very similiar to Gomoku (Connect5)
on a 6x6 board, extended by a single element. Each placement of a marble is followed by a rotation of
a 3x3 part of the board by 90 degrees. This game extension offers a much more complex game than a
classic n-m-k-in-a-row game.

Figure 2.1: Official Pentago box layout by Mindtwisting games.

Explanations

Zero-sum games are games in which the win of one player is the loss of the other player and vice versa.
Cooperative games are usually not zero-sum games.
Perfect information games are games where both player can see the whole gamestate. The game poker
does not offer the whole gamestate to all players, because all players have access to their own cards and
the board, but they do not have any valid information about the cards of their opponents. Therefore
poker is a game with imperfect information.

6

2.1 Rules

The game Pentago is played on a 6x6 board, which is divided in four 3x3 sub-boards (further mentioned
as quadrants). Figure 2.2(a) shows the initial setup of the board. Two players take part by turns in Pen-
tago. Each move of one player consists of placing a marble of his own color onto an empty field on the
board and turning one of the quadrants by 90 degrees, either clockwise oder anti-clockwise, illustrated
in Figure 2.2(b) and Figure 2.2(c). No restriction of rotating based on previous moves exists. The game
finishes with a win for the player, who gets five in a row at first 2.2(d). Five in a row can occur vertical,
horizontal or diagonal, also before the sub-board rotation takes place. If no player achieves five in a row,
the game ends after the 36th move with a draw. When both players get five in a row as a player turns
the board, the game is also a draw.

(a) Initial board setup. (b) First marble set,
Player has to rotate a
quadrant.

(c) Position after first
clockwise rotation of the
south-east quadrant.

(d) Game ends, White
wins the game.

Figure 2.2: Pentago Board in different game situations.

2.2 Related work

There are rarely few publications about Pentago. Schiffel [37] and Finnsson [15] take a short look at
Pentago as a game in General Game Playing, moreover Schiffel uses Pentago as an example for automat-
ically detecting symmetry features in board games. But as far as we know, no work on expert knowledge
like transcriptions of tournament games or even opening-books has been done. However at least one
comparable AI implementation exists, which is taken into account in Chapter 6.
The next Chapter 3 gives an introduction into solving games and its historical development, followed by
a precise definition of solving.

2.1 Rules 7

3 Solving games and task definition

This thesis tries to figure out, whether and how Pentago is solvable within a reasonable amount of time.
Before defining the task and discussing what is meant with reasonable amount of time we take a short
look back in the history of Artificial Intelligence and explain the actual common sense of solving a game.

3.1 Historical background and motivation of solving games

Intelligent games are a research subject in the field of Artificial Intelligence for many years now. Be-
ginning in 1959 Arthur Samuel wrote the first checkers Artificial Intelligence (AI), called ”checkers“ to
play against human opponents [35]. Within a tournament in 1963 against a human checkers expert,
the checkers AI won a single game, based on oversight of the human expert. The media stated this as
“Checkers is solved”, even the AIs strength was probably lower than a human amateur and checkers was
by far not solved.
But it required almost another 50 years to solve checkers by Jonathan Schaeffer and his group [30]. Inbe-
tween these 50 years the Artificial Intelligence research on games developed many algorithms, strategies
and ideas to solve games and also the development of the underlaying hardware exploded. So there
must be a reason that it lasted almost 50 years to solve checkers:
At first we have to mention that checkers is probably the game with the largest complexity which has
been solved so far. Second the gap in resource requirements between playing on or below amateur
level and solving a game may be really large. Thinking of chess, where actual AIs are already able to
beat grand-masters on consumer hardware, the full solution of chess with it enormous large game-tree is
nowadays unfeasible. In conclusion the complexity of the games themselves seems to be the determining
factor whether games are solvable. A detailed introduction into complexity of games is given in Chapter
4.
But where does the motivation to examine games comes from? Herik et al. [43] described, the inter-
est of Artificial Intelligence researchers in strong game-playing programs as an important goal for more
than half a century now. ”The principal aim is to witness the ”intelligence“ of computers. A second aim
has been to establish the game-theoretic value of a game, i.e., the outcome when all participants play
optimally.“ Heule et al. [19] added the motivational question: ”Can artificial intelligence outperfom the
human masters in the game? “. Yet it is important to mention, that the methods to show intelligence and
outperform human master can differ substantially from those for solving. But all together, games seem
to be an interesting site to show Artificial Intelligence. Moreover solving games applies the Artificial
Intelligence methods to larger problems which may become computational puzzles. Even so the topic
of solving may be seen as a toy application, it is perfect to show that large knowledge based problems
are solvable. The following selection shows a few nontrivial games, which have been solved so far and
which have been used as a source for examining Pentago:

1980 Qubic: Qubic is a four-in-a-row in a three dimensional space (4x4x4) and was solved by Patashnik
in 1980 [26] and later again by Allis [3, 4]. Patashnik used a combination of mathematics and com-
putational power, wheres Allis developed a new search algorithm called Proof-Number search. Qubic is
interesting, since it game-tree size (1034) and state-space complexity (1020) [19] is rather large. But due
to symmetric positions and other advances the game was already solved in 1980.

8

1987 Connect4: Allis [2] and Allen [1] worked independently on the solving of Connect4. Both
succeeded in the same month in 1987 with two distinct different approaches. Allen highly optimized
the heuristics to reduce the runtime of the Alpha-Beta Search and Allis used a knowledge based ap-
proach (defining and proving rulesets) in combination with an Conspiracy and depth-first Search.

1994 go-moku: go-moku (Connect5) was also solved by Allis in 1994 [4]. He made use of a threat
based approach which again radically reduced the search space and let to the solution of go-moku.

1996 Nine Men’s Morris Gasser[16] combined the construction of an endgame database with an
Alpha-Beta Search so solve Nine Men’s Morris in 1996. Gasser stated, that ”Nine Men’s Morris is the
first non-trivial game to be solved that does not seem to benefit from knowledge-based methods“.

2007 Checkers: Schaeffer et al. [32, 33] began in 1989 to develop their checkers AI, called chi-
nook. In 1992 they won the first man-machine-world-championships. Since then their program was
above grand-master level. But they continued the development for the next years[31], utilized a cluster
to build an endgame database[34] and finally prove the draw in 2007 [30]. All together they worked 18
years to solve checkers. Nevertheless Schaeffer stated that nowadays the solution would become possible
within less than a few years.

3.2 Definition of solving

Without any formal description most people would probably say that a game is solved, when you know
how to play to win in every match. However it is often out of sight, that the opponent may also play
perfect and therefor a win is not always possible. Hence, informally speaking: a game is solved, when
you know how to achieve your best possible result, even if it is a draw.

Over the years, the definition of solving became clearer, and the most accepted definition of solving
is divided into three levels of solving. Victor Allis [4] counted the following terms:

• Ultra-weakly-solved The perfect-play result for the initial position(s) is known, but the strategy
to achieve this result is not determined. One common example is Hex, which is proved as a first
player win, but until now, no perfect strategy exists [43].

• Weakly solved A strategy for the initial position(s) is known to obtain at least the perfect-play
result, for both players. Several games have been weakly solved, for example Connect Four [1, 2],
Go Moku [4], Nine Men’s Morris [16] and Checkers [30].

• Strongly solved A strategy to obtain at least the perfect-play result, for all legally reachable posi-
tions is known. Examples are Tic-Tac-Toe (solveable on a single sheet [27]), Awari [7] and chess
endgames.

It is quite obvious that a strongly solved game is also weakly solved, since strategies for all positions
are known also for the initial position(s). Moreover strongly and weakly solved games are as well ultra-
weakly solved because a strategy is known the gain the perfect play result. The optimal play result is
further denoted as game theoretical value.

3.2 Definition of solving 9

3.3 The task

The remainder of this thesis deals with the solvability of Pentago with the best case goal to weakly solve
the game under reasonable resource constraints. Reasonable resource constraints are that the program
which solves Pentago should run on actual consumer hardware or a small cluster (below 50 instances).
Furthermore the computation should finish in not only a predictable but also in a reliable amount of
time, e.g below one year.
Therefore after evaluating the complexity of Pentago, several algorithms to weakly solve a game are
discussed. To anticipate the results, we even were not able to ultra-weakly solve the game. But we
give a detailed discussion of the occurred challenges and an insight why Pentago is not solvable on
todays hardware. We also show, which technical means would be required to solve Pentago. We decided
to implement one method and this practical part is “recycled” as an Artificial Intelligence for playing
Pentago. The term ”recycled“ is used in the case, that our implementation does not fulfill its solving
purpose.

3.3 The task 10

4 Complexity of Pentago

In their survey paper on solved and solvable games Van den Herik et al.[43] mention two important
measurements to estimate the solvability of a board game within a reasonable time: state space complexity
and game-tree size. In the following sections both measurements are applied to the game of Pentago.

4.1 State space complexity

Definition 1. The state space is the set of all, by legal moves reachable states of the game.

A single state of Pentago can be described as a vector with 36 elements. As an example s1 =
0000 . . . 0000 represents an empty board while s2 = 0000 . . . 0012 can be interpreted as a board with
a black and a white marble on (5,6) and (6,6). A formal description should usually contain the mapping
between the vector position and board position, here omitted.
A naive approach to estimate the size of the state space n is to assume that there are three configurations
per field (empty, occupied by white, occupied by black) and 36 fields per board, hence

nnaiv e = 336 = 1.5 · 1017.

Using this simple combinatorial approach, states like s3 = 1111 . . . 1111 (only white marbles on the
board) are also considered which obviously can not occur by legal movement. So nnaiv e is not the correct
size of the state space complexity but offers a first upper bound.
Counting only states where the number of marbles on both sides is equal or differs by one will give a
better approximation.

Definition 2. For n, k1, k2, . . . , km ∈ N with n= k1+ k2+ · · ·+ km the multinomial coefficient is defined as

�

n

k1, k2, . . . , km

�

=
n!

k1! k2! · · · km!
.

The multinomial coefficient is the generalization of the binomial coefficient. Given a set of n distinct
objects, the multinomial coefficient expresses the number of possibilities to select k1, k2, . . . , km objects
without regarding the selecting order in k1, k2, . . . , km.
Giving an example, to calculate the possibilities of the German lottery game “6-aus-49”, setting m to two,
k1 = 6, k2 = 49− 6 = 43, the multinomial coefficient results in n!

k1! k2!
= n!

k1! (n−k1)!
which is equal to the

definition of the binomial coefficient
� n

k1

�

=
�49

6

�

.
Using the multinomial coefficient, we are able to appraise a harder upper bound on the possible game
states. Viewing the board as a bag filled with markers for the three different configurations (empty,
white and black), a state vector can be filled by picking these markers. The number of all combinatorial
possible vectors can now be calculate via the multinomial coefficient.
Let kb be the number of marbles placed on the board of the first player, kw the same for the opponent
and ke the left empty spaces on the board. Pentago is typically played on a 6x6 board, so obviously
n = kb + kw + ke = 36. Beginning with an empty board kb = 0, kw = 0, ke = 36, we alternately increase
kb or kw by one and decrease ke to cover all possible game situations. The results are shown in Table 4.1.

11

Figure 4.1: An impossible position, since all predecessors had to be a win for white.

The approximation of the overall state space complexity decreases in comparison to nnaiv e by the order of
one magnitude to:

nmul tinomial =
∑

�

n

kb, kw, ke

�

nmul tinomial = 2.4 · 1016.

Unfortunately these results still overestimate the number of reachable positions. The naive usage
of the multinomial coefficient does not regard further game mechanics, like the impossibility of two
winning lines in all four quadrants, illustrated in Figure 4.1. It is impossible to reach this state, because
all predecessors have to be a winning state for one of the players.

To get an exact result for the state space complexity of Pentago, a far more complex algorithm is needed
to regard all unreachable positions, which will require a recursive visiting of all positions and summing
them up. To overcome this problem, we show in the following paragraph, that the dimension of our
estimation does hardly differ from the exact dimension.
Let nwin be the number of winning states within the game state space. The multinomial coefficient can
once again be used to get an estimation of nwin. The ninth move is the first possibility for player one
to win a Pentago game. Since then, it is possible to estimate an upper bound onto the nwin by fixing
five stones of one color and calculating the multinomial coefficient for a board with f = 36− 5 = 31
fields. A winning line can be on 12 vertical, 12 horizontal and 8 diagonal positions l = 12+12+8= 32;
explained in Figure 4.2.

(a) Five in a row
vertical

(b) Five in a row
horizontal

(c) Five in a row di-
agonal

Figure 4.2: 32 possibilities to achieve five in a row in Pentago.

So the result of the multinomial coefficient has to be multiplied by 32. Given move k with kb black
and kw white marbles the number of winning states has to be lower than:

4.1 State space complexity 12

Table 4.1: Upper bound of state complexity for Pentago.
black white empty #total positions p log10(p) log2(p)

1 0 35 36 2 5
1 1 34 1260 3 10
2 1 33 21420 4 14
2 2 32 353430 6 18
3 2 31 3769920 7 22
3 3 30 38955840 8 25
4 3 29 292168800 8 8
4 4 28 2118223800 9 31
5 4 27 11862053280 10 33
5 5 26 64055087712 11 36
6 5 25 277572046752 11 38
6 6 24 1156550194800 12 40
7 6 23 3965314953600 13 42
7 7 22 13028891990400 13 44
8 7 21 35829452973600 14 45
8 8 20 94052314055700 14 46
9 8 19 209005142346000 14 48
9 9 18 441233078286000 15 49

10 9 17 794219540914800 15 49
10 10 16 1350173219555160 15 50
11 10 15 1963888319352960 15 51
11 11 14 2678029526390400 15 51
12 11 13 3124367780788800 15 51
12 12 12 3384731762521200 16 52
13 12 11 3124367780788800 15 51
13 13 10 2643695814513600 15 51
14 13 9 1888354153224000 15 51
14 14 8 1213941955644000 15 50
15 14 7 647435709676800 15 49
15 15 6 302136664515840 14 48
16 15 5 113301249193440 14 47
16 16 4 35406640372950 14 45
17 16 3 8330974205400 13 43
17 17 2 1470171918600 12 40
18 17 1 163352435400 11 37
18 18 0 9075135300 10 33

Total 24,072,650,378,629,800 16 54

4.1 State space complexity 13

nwin(kb, kw) = nwinBlack(kb, kw) + nwinWhite(kb, kw)

nwinBlack(kb, kw) = l ·
�

31

kb − 5, kw, 36− kb − kw

�

nwinWhite(kb, kw) = l ·
�

31

kb, kw − 5, 36− kb − kw

�

.

Table 4.2 shows nwin in comparison with nmul tinoimal . The estimation of the number of winning states is
really rough, but nwin and nmul tinomial differ by at least one order of magnitude, hence the approximated
size of the game state space, nmul tinomial , should contain an error around ten percent. Here we assume
that all states misleadingly included in nmul tinomial should also be counted in nwin, except there exists a
not winning but unreachable game state. We are not able to construct such an example.

Table 4.2: Comparison of winning states versus all states.
black white empty #total positions #winning positions

5 5 26 6.4 · 1010 9.5 · 106

6 5 25 2.7 · 1011 1.4 · 108

...
...

...
...

...
12 12 12 3.3 · 1015 4.0 · 1014

13 12 11 3.1 · 1015 4.9 · 1014

13 13 10 2.6 · 1015 5.1 · 1014

14 13 9 1.8 · 1015 4.6 · 1014

...
...

...
...

...
18 17 1 1.6 · 1011 1.8 · 1011

18 18 0 9.0 · 109 1.1 · 1010

Total 2.4 · 1016 3.3 · 1015

Summing up, nmul tinomial = 2.4 · 1016 provides a sufficient approximation of the state space complexity
to draw further conclusions onto suitable solving algorithms.

Axial symmetry

The state space space can be reduced by using symmetry. As shown in Figure 4.3, there are four axis
of symmetry. A lookup table for any solving approach may use the symmetry properties to map up to
eight positions onto a single slot to save memory. However, mapping a position towards another requires
CPU load, which has to be considered into a time-memory trade-off. Experimental results for utilizing
symmetry are shown in Chapter 6. Quite similar observations regarding the symmetry of Pentago are
given in [37].

4.1 State space complexity 14

Figure 4.3: Axial symmetry of Pentago Four axis of symmetry exist. One horizontal, one vertical and two
diagonal.

4.2 Game-tree size

Next to the state space the size of the game-tree is an important measurement to approximate the
solvability of a board game. The game-tree and the size of the game-tree are defined as:

Definition 3. A game-tree is a directed graph composed of game states as nodes and moves as edges. A
complete game-tree is a game-tree beginning with the initial state and containing all possible moves.

Definition 4. The game-tree size is the number of leafs of the complete game-tree, equal to the number of
possible games that can be played.

The most meaning full parameters to estimate the game-tree size are the number of moves until a game
finishes, called game depth, and the number of possible moves per state. To get the first upper bound
onto the game-tree size, the maximum game depth can be regarded as d = 36. After the 36th marble is
set, no more moves are possible, the game is a draw. The number of possible moves is bounded by

M(d) = f reePieces · quadrants · direct ions = (36− d) · 4 · 2.

Taking these numbers into account, an upper bound for the game-tree size can be calculated by

n=
36
∏

i=1

M(i) = 5 · 1063.

A common approach to estimate the game-tree size for game solving is the averaging of game depth,
especially if the game is a win for one player, than the game will end before the 36th move. Moreover
many moves from one state fabricate the same successive state. Often database of players on grandmas-
ter level, combined with an evaluation of existing computer AIs are used to calculate reliable average
values[30, 43]. Until now to our knowledge no database of played Pentago games exists. Our own
experiments with PentagoAI showed the following results:

depthav g =21

n=
21
∏

i=1

M(i) =
36!

15!
· 821 = 2 · 1048.

This value is more reliable the the first mentioned n= 5 ·1063, therefor further conclusions will be based
on the experimental observed game-tree size of n= 2 · 1048.

4.2 Game-tree size 15

4.3 Conclusions on the complexity of Pentago

Looking at Table 4.1, the size of the state space increases from move to move until the endgame is
reached. Beginning with an empty board, pieces are added during the play. This is opposite to con-
vergent games, where pieces are gradually removed during the game. Therefor Pentago is a divergent
game. The size of the state space increases in divergent games.
Typically convergent games are the target for solving on a state space approach. These approaches are
also mentioned as brute-force methods [43] because they often do not make use of any selective search,
rather than searching the whole state space. If the size of the state space is suitable, the brute force meth-
ods will succeed. Even so Pentago is a divergent game, Section 5.4 in Chapter 5 discusses the suitability
of one brute force approach on the state space.

Table 4.3: Complexity of different board games.
Game State space complexity Game-tree complexity Solved Reference

Qubic 1030 1034 Yes - 1980 [3, 19, 26]
Connect4 1014 1021 Yes - 1989 [1, 2, 19]
Go-moku 10105 1070 Yes - 1994 [4, 19]

Nine Men’s Morris 1010 1050 Yes - 1996 [16, 19]
Awari 1012 1032 Yes - 2003 [19]

Checkers 1021 1040 Yes - 2007 [30, 35]
Pentago 1016 1048 No -
Chess 1046 10123 No [43]
Shogi 1071 10226 No [43]

Go 10172 10360 No [43]

To give the pure numbers on complexity of Pentago some comparison, Table 4.3 shows the complexity
of other board games. As described by Heule and Rothkrantz [19] and Herik et al. [43] there is some
correlation between the state-space and game-tree complexity and the solvability of a game. Qubic and
go-moku are special cases, which have been solved by knowledge-based methods which cannot be easily
applied to other games. Both games have a rather small decision complexity. Heule and Rothkrantz
described the decision complexity, as the number of decisions which have to be stored for a full solution.
This might be all the nodes in a solution tree but also a proved pattern database or a symmetric position
may decrease the decision complexity. The decision complexity of Pentago is not easily measurable but
our observations did not show any sign of a low one. Herik et al. introduced a classification of solvabil-
ity according several methods and complexity. Later Heule and Rothkrantz refined these classification
which is illustrated in Figure 4.4. They stated that games with a lower state space complexity than
1010 or game-tree complexity of 1020 are solvable by any brute-force methods. All others games have to
be checked in detail for applicable algorithms. Since Pentago cross both lines further investigations in
solving methods are required. Those are given in the next chapter.

4.3 Conclusions on the complexity of Pentago 16

game-tree complexity

state-space complexity

solvability depends on the

applicable solving procedures

solvable by any method

solvable

by any

method

Figure 4.4: An (alternative) view on the game space. Figure by Heule and Rothkrantz [19].

4.3 Conclusions on the complexity of Pentago 17

5 Solving methods and algorithms

Within the last 50 years several methods have been developed to solve games. In this chapter we discuss
the main common solving procedures for zero-sum two player games with perfect information [19, 43].
It is obvious, that given an infinite amount of time, every game with a finite number of moves is solvable
by walking through the full game-tree. Since we do not have infinite time for solving games, we have to
find procedures, which reduce the problem and the solution size to acceptable computational costs.
The presented procedures are:

• Alpha-Beta Search and variants

• Proof-Number Search and variants

• Threat-space Search

• Retrograde Analysis

All procedures in this chapter are introduced in general, but with a special focus on the computational
costs for reducing the size of the solution. Moreover we point out their applicability onto Pentago. The
procedures are categorized, according their search direction, either forwards (Sections 5.1,5.2,5.3) or
backwards (Section 5.4)). The combination of both approaches is discussed in Section 5.5. Section 5.6
gives a conclusion of the presented algorithms.

5.1 Alpha-Beta Search

The Alpha-Beta Search, also known as Alpha-Beta pruning algorithm is probably the most common
choice for implementing game AIs. The Alpha-Beta Search is an adversarial depth-first Search algorithm
and in principal an extension of the minimax algorithm [20]. It is based on a brute-force search through
the game-tree by pruning unnecessary sub-trees.

To explain the Alpha-Beta Search algorithm, we start with a repetition of the minimax algorithm.
Given a position, minimax evaluates this position by expanding a game-tree until depth d. The val-
ues of the leafs are set according a game-specific evaluation function. In general a winning position gets
a high rating, a loosing positions a low rating and all positions inbetween are heuristically rated. For
example a material advantage of a queen in chess gives typically a better rating than material equal po-
sitions. Given this tree, all internal values are set either to the maximum or to the minimum values of
their children. This depends, whether it is the turn of the first player (MAX) or his opponent (MIN). The
procedure is recursively repeated until a value is propagated to the root. Two important remarks are,
that this algorithm can be run in a left-most depth-first manner, so that only a single branch has to be
maintained in memory. And second, the result of the minimax algorithm is perfect in the case that the
evaluation function gives the correct game theoretical value. Hence, minimax can be used to solve games.

Alpha-Beta Search tries to avoid needless visits of nodes which do not have an influence on the whole
result. For example: a position is given with n possibilities to move for the MAX player: m1, . . . , mn.
Now the MAX player evaluates the consequences of move m1 and receives as a result, that he will win
the game, if he plays move m1. Since he already knows which move leads to the highest result possi-
ble he does not need to investigate the moves m2, . . . , mn. So without any consequences for the game

18

theoretical result, Alpha-Beta Search finds such situations and prunes unnecessary sub-trees. To afford
the goal effectively the Alpha-Beta Search shrinks the branching factor by setting a lower (alpha) and an
upper (beta) border. Every search in each sub-tree is bounded by the window between the alpha and the
beta value. The alpha value presents the actual best possibility for the MAX player and the beta values
presents the same for the MIN player. Initially alpha is negative infinity and beta is positive infinity. The
window narrows typically through the recursive process. If a branch of a MIN node is evaluated below
the alpha value, than all other branches of the MIN node are pruned. This is because the actual best
move for the MAX player in an upper part of the three is better than the possible outcome of this MIN
node. This behavior is called Alpha-Cut-Off. There is also a Beta-Cut-Off, when a move in a MAX node
returns a higher evaluation than the beta border, all the remaining moves in the MAX node can safely
be pruned. Figure 5.1 explains the Alpha-Beta Algorithm among a detailed example. Another good
description of the Alpha-Beta Search algorithm can be found in [28].

4

4 <3

4 >6 3 ?

3 ? ?3 4 6 ?

[-inf, 4]

[4, inf]

beta

cut-off

alpha

cut-off

Figure 5.1: Alpha-Beta Search algorithm: This is an example for an evaluated tree with the Alpha-Beta
Search algorithm. MAX nodes are denoted as squares and MIN nodes as circles. The leafs
values are given by an evaluation function and propagated trough the inner nodes to the
root. Since Alpha-Beta Search is an depth-first algorithm the search begins at the deepest
left-most leaf and its sibling. The max value (4) of both leafs is given to the MIN node above.
The second branch of the MIN node is now evaluated with the upper border (beta) of 4. The
first leaf reveals a value of 6 > 4 which leads to a beta-cutoff because now this branch of the
MIN node reaches at least the value of 6 which is definitively worse than the first branch. The
same occurs in the examination of the second branch of the root (MAX).

5.1.1 Variants and improvements

Alpha-Beta Search was a research subject for many years, so a large number of improvements and varia-
tions have been developed. We will discuss the most common ones which do not violate the correctness
criterion. Many variants allow a faster search based on heuristics but they might oversee some positions
which is not acceptable for a solving algorithm.

Move ordering: As stated before, the Alpha-Beta Search algorithm returns exactly the same result

5.1 Alpha-Beta Search 19

as the minimax algorithm. But move ordering has a huge influence on the runtime of the Alpha-Beta
Search whereas it does not influence the runtime of the minimax algorithm. Since the window between
the alpha and beta value only shrinks if better moves are found, the Alpha-Beta Search performs the
same as minimax if the worst moves are the first branches. Now it becomes impossible to prune any
node. In consequence it is quite useful to order all moves by using a heuristic before examining them to
reduce the complexity of the Alpha-Beta algorithm although move ordering itself might be costly.

Transposition table: As in several other board games many equal positions are reachable through
different paths in the game-tree. So it might be useful to save the result of any evaluation in a so called
transposition table. Everytime the Alpha-Beta Search algorithm encounters this position again, it just
takes a look in the transposition table to rate this position. Typically the transposition table is organized
as a hash-table to offer fast lookups. Since not all positions fit into a transposition table within the main
memory, strategies are required to share the available space [9, 41]. It is important to note, that the
usage of transposition tables transforms the search-tree into a search-graph.

Iterative deepening: Instead of searching until depth d, the search runs d times with the search
depths 1 . . . d, beginning with depth 1. Although this iterative process requires more computational
costs in theory, it has been noticed that iterative deepening is often faster than searching for the given
depth. This happens due to dynamic move ordering techniques which use the results of the former search
[36]. Another feature is, that the search can be aborted by resource restrictions, but still returns a useful
output of the previous iteration.

Variable search depth: The outcome of all moves is not equal. Some moves lead to new complex
situations and require further exploration and others are more quite moves. Hence it might be useful to
reduce the search depth for weak moves and increase it for strong moves instead of a fixed-depth search.
This might not be exercisable for a holistic solving approach, since the whole tree has to be evaluated.

Minimal and Aspiration window: It has been shown [36, 38], that it might be useful to choose a
smaller window size than the Alpha-Beta Search suggests. On the one hand this leads to a raised num-
ber of cut-offs on the other hand, it has to be checked, whether the search with the narrowed window
was correct. If the assumption was wrong, the search has to be restarted with a larger window size.

This list of advances in the Alpha-Beta Search is by far not complete. Further ideas are noted in
[5, 36, 38].

5.1.2 Computational costs

To solve a game with minimax search algorithm, the whole game-tree has to be evaluated. This results
in a complexity of Θ(mov esdepth), where mov es and depth are observed average values, also described
in the prior Chapter 4. But Alpha-Beta Search is able to reduce the exponent by half if perfect move
ordering is given: Θ(mov esdepth/2) [20, 28]. Even with random move ordering the complexity shrinks to
Θ(mov esdepth·3/4). Transposition tables further decrease the complexity, but it is harder to estimate their
effort.

5.1.3 Applicability onto Pentago

In the last chapter we showed, that the size of the game-tree is estimated with 2 · 1048. Thus,
given perfect move ordering the computational costs for the Alpha-Beta Search algorithm are around

5.1 Alpha-Beta Search 20

Θ(mov esav g · depthav g/2== 1 ·1024. But on the negative side, there is no easy way to order the moves.
Pentago allows a rotation in every move, so the board may totally change from move to move. This
possibility has to be taken into account for designing a reliable heuristic.
Furthermore we do not have access to human expert knowledge in Pentago, which could be used to set
an good initial line to increase the pruning factor since good branches occur at first [35].

Time approximation: Note: The following approximation is really rough and disregards transpo-
sition tables. We assume costs of 500 instructions to examine an internal node and to generate all
successor moves in nearly perfect order. We further estimate the costs of the evaluation function with
100 instructions. The evaluation of the leafs is rather cheap, since we can efficiently check for five-
in-a-row, using bitboard techniques. In comparison, the examination of an internal node requires an
expensive move and successor generation. Our time estimation is based on the performance of an actual
Intel Core-i7 990X @3,46 GHz with 146,000 MIPS [40]. All together this leads to the following time
approximation:

internalNodes = 1 · 1022

lea f s = 1 · 1024

inst ruct ions = internalNodes · 500+ lea f s · 100

ipsi7 = 146, 000MIPS

t ime =
inst ruct ionstotal

ipsi7 · 106 = 3,5 · 1015 seconds= 108 years

This totally exceeds by far our time restrictions. On the positive side, it might be possible, that the
game is a forced win for the first player before the 36th move. This could decrease the average game
depth, so a valid solution becomes possible. Moreover the board of Pentago is rather small, so utilizing
a transposition table might have a large influence on the complexity. Without any of these assumptions
Pentago is actually not solvable with the Alpha-Beta Search algorithm. However all these speculations
require further evaluation with a testing Alpha-Beta implementation, then a clear statement may become
possible.

5.2 Proof-Number Search

Proof-Number Search (PN) is a best-first search algorithm for the game-tree [42], introduced by Allis
[4] to solve Qubic. PN Search is based on the work on Conspiracy Search by Schaeffer and McAllester
[23, 29] and it is especially suited for solving endgames. The key idea behind PN Search is to prove the
game-theoretical value by expanding nodes which heuristically promise the fastest proof.

A PN-tree can have three values: true, false and unknown. PN Search focuses onto a proof or dis-
proof of a binary property, for example a forced win for the first player denoted as true. Hence, a
disproved tree does not necessarily show a forced win for the opponent, the game theoretical value
might also be a draw. If no proof or disproof is possible, the value of the tree is unknown.
PN works as follows, the search-tree maintains two numbers for every node, the proof number pn and
disproof number dn. Both numbers express the estimated or calculated number of leafs which are further
required to prove or disprove the property for the given node. Thus, a winning leaf for player one, will
get the proof number pn = 0 since no more expanding of nodes is required to prove the win. The dis-
proof number for a winning leaf is set to dn =∞, since it is impossible to disproof this node. Unknown

5.2 Proof-Number Search 21

leaf nodes are given the numbers pn = dn = 1, but it is also possible to assign them values based on
heuristic estimations, for example evaluation functions. The pn / dn values at the leafs are propagated
according AND / OR rules. A MAX move for the first player is represented by an OR for the pn number,
thus the minimum of the children pn f ather = min(pn1, . . . , pnn) and the dn number is aggregated by an
AND which is the sum dn f ather = pn1+ · · ·+ pnn. A MIN move works vice versa to the MAX move. Now
given this AND / OR tree, PN-Search crawls the tree by expanding the most proofing node. Beginning
at the root (OR node), the branch with the lowest pn value is chosen, followed in the next level (AND
node) with the choice of the lowest dn value until the most proofing node is recursively identified. Hence,
PN Search is a best first search. Figure 5.2 presents an example of the PN Search.

R

A B

C D E F

G H I J

pn = 1

dn = 2

inf

0

inf

0

1

1

1

1

1

1

inf

0

0

inf

0

inf

1

2

1

2

Figure 5.2: Proof-Number Search This is an example of a Proof-Number Search tree. A square denotes
a MAX / AND node, whereas a circle denotes a MIN / OR node. The proof and disproof
numbers are written next to each node. The leaf J is proved as true, therefor its pn value is 0
and its dn value is∞. Opposite to that node, D and I have been disproved. The way to the
two most proving nodes is illustrated through the red bold line. In each AND node the pn
value is the minimum of its children pn values and the dn values is the sum of the children dn
values. Vice versa the same holds for the OR node. Here the pn value is the sum of the pn
values of its children and the dn value is the minimum of the children dn values.

5.2.1 Variants and improvements

What is the disadvantage of best-first search algorithms? It is unlikely to fulfill the memory requirements,
because the whole game-tree has to be stored in the main-memory. At least this assumptions holds for
games which are non-trivial to solve. Because of this problem a few ideas and variants of the PN Search
have been developed. We do not discuss them in detail, but their basic ideas and consequence on the
computational requirements are described:

Removing sub-trees: Allis suggested that all (dis)proved sub-trees may be deleted, since only their
result is relevant and no further investigation within these sub-trees is necessary. This may dramatically
shrink the tree size and in consequence the memory requirements. But an important remark is, that the
weakly/strongly solved property is violated because the strategy to play within these deleted sub-trees
becomes unknown. However during runtime playing, sub-trees which are rather small in comparison to

5.2 Proof-Number Search 22

the whole game-tree could be reconstructed with adequate costs.

PN2: Allis also suggested the PN2 Search algorithm whose idea is based on a two level PN Search.
The first level PN Search (PN1) initiates the second level PN Search (PN2) to evaluate every most-
proving node. The second level PN Search is limited by the number of positions which can be stored.
This limitation is set either by the bounds of the memory capabilities or by setting an upper bound
through the PN1 Search. Hence, the PN2 Search can prove, disprove or abort its sub-tree. Proved and
Disproved sub-trees are removed, only their results are preserved. This two level approach is called
delayed evaluation, since all children revealed in the PN1 Search are not directly evaluated, only the
most-proving node is passed to the PN2 Search.

PDS Nagai proposed the Proof-number and Disproof-number Search (PDS) as a multiple-iterative deep-
ening PN algorithm. PDS iterates at all nodes, not only beginning at the root like in typical iterative
deepening algorithms. Every node has two thresholds, one for the proof and one for the disproof num-
ber. Now each sub-tree is searched until the proof or disproof number is below the according threshold.
Moreover PDS makes extensive use of transposition tables to further decrease the runtime. Herik et al.
[42] showed, that PDS is able to solve harder problems than the PN Search, although it is not faster.

A few other minor variants exist, like the depth-first proof-number search (df-pn). But for our consid-
erations these algorithms do not make larger difference than the already presented variants.

5.2.2 Applicability onto Pentago

Obviously PN Search is memory bound. In chapter 4 we estimated the size of the game-tree with 1∗1049

and a naive implementation of a best-first search algorithm would probably exceed all memory resources.
But the depth-first variants of PN Search might handle this large game-tree size, especially when the so-
lution tree is much smaller than the full game-tree.
PN Search showed the most advantage in comparison to Alpha-Beta Search in games with unbalanced
trees [42]. On perfectly balanced trees PN Search did not perform any better than an optimized Alpha-
Beta Search algorithm, sometimes even worse. Since we do not have any expert knowledge on Pentago
or a tournament game database, we can only guess about the uniformity of the game-tree. Our own
observations showed that often positions occur which force the opponent to react to avoid losing the
game. This fact might lead to an uneven tree. But to prove the existence of an unbalanced tree, a first
implementation is required. (The concept of a forced move is also discussed in the next section on threat
based search algorithms.)
Moreover the most successful PN Search implementation relied on a good heuristic to rate new leafs.
But finding a good heuristic for Pentago is really hard. This problem is a similar problem to that in
the evaluation function in the previous section about Alpha-Beta Search. The only useful approach to
evaluate a node requires either a large pattern database or an expanding of the nodes children. Both
suggestions do not seem very promising according there computational costs, so in consequence a first
implementation of the PN Search has to be done without any heuristically rated leafs.

Summing up it seems at least worth trying to evaluate a PN Search by using a variant with reason-
able memory requirements. A first evaluation of the PN Search could begin with a proof of advanced
positions, where the Search depth is bounded by the number of empty places. With these results a more
exact prediction about required memory, time and tree uniformity should be possible. If the tree shows
up to be non-uniform and the memory within a small cluster is large enough to handle the PN Search

5.2 Proof-Number Search 23

Table 5.1: Complexity of qubic and go-moku and their solution sizes.
Game solved in search-space complexity game-tree complexity solution size

qubic 1980 1030 1034 2929
go-moku 1994 10105 1070 138.790

than the algorithm can be enlarged to earlier positions to finally solve Pentago.

Time approximation: Without any knowledge of the game-tree we can only speculate about the
computational time requirements to solve Pentago. Given enough memory resources a depth-first or
iterative PN implementation will probably be faster than the Alpha-Beta Search. But only a speed-up of
more than seven orders of magnitudes in comparison to the Alpha-Beta Search brings the PN Search into
reasonable regions of computational costs as of today.

5.3 Threat-space Search

Threat based search algorithms reduce the problem size by focusing on game threats. A game threat
forces the opponent to react and to concentrate his possibilities on the threat. A classic example for a
threat is the check in chess. Here a player is even forced by the rules to counter the check. Thus the
opponent is limited in the number of moves whose he is allowed to do. Instead of maintaining fully ex-
panded sub-trees, threat-based search algorithms focus on saving and traversing threat-sequences which
are often much more smaller.

According to Heule and Rothkrantz [19], at least three different variants of thread based searches
exists. They distinguish between Threat-sequence Search, Threat-space Search and Lambda Search. In
the following examination of the different algorithms, we disregard Lambda Search since it is only for
games where passing moves is allowed. Despite the fact that both remaining algorithms have several
differences we discuss them together, because they have similarities according their applicability onto
Pentago.

Threat-sequence Search was introduced to solve qubic [26], whereas Threat-space Search was pointed
out to solve go-moku [4]. Both games have a large search-space complexity and also a large game-tree
complexity in comparison to other solved games so far. Anyhow qubic has already been solved in 1980
and go-moku in 1994. This is because the two algorithms excellently play out their possibility to reduce
the solution size. See Table 5.1 for details.

Both algorithms search through the threat-space to find winning-threat-sequences. However if no threat
occurs, they have to fall back on other search algorithms, like the prior mentioned Alpha-Beta or Proof-
Number Search. Threat-sequence Search crawls through all combinations of threats until no new threat
occurs. Hence, if any winning-threat-sequence is possible, then Threat-sequence Search will find it, even
so this procedure might be cost intensive. In contrast, the Threat-space Search focuses rather on threats
which will produce new threats. This approach reduces the number of branches, but also increases the
chance to oversee winning sequences. Furthermore Allis executed all possible defending moves together
to speed up the search, despite the fact that he might overlook even more winning sequences. This
improvement might be hard to understand while first reading and requires a further insight in the game
of go-moku. Go-moku played between advanced players typically results in a play where one player

5.3 Threat-space Search 24

plays a threat sequence until no further threat is possible and the opponent starts his own threat se-
quence. The non winning-threats, for example 3-in-a-row, can often be countered by multiple moves.
The Threat-space Search executes all defensive placing of marbles together within a single move, so an
uneven number of stones might be on the board. Because of this, only a single branch for the opponent
has to be considered. As described before. this reduces the search space but increases the chance to
oversee an early win. Heule and Rothkrantz[19] described Allis approach as a more human like threat
search. Allis [4] proved the correctness of his advances with a formal model in his thesis, here omitted
since it goes beyond the scope of this work.

5.3.1 Applicability onto Pentago

Since go-moku and Pentago have several similarities, threat based algorithms seem to be very promis-
ing. It might be possible to implement threat based search algorithm to solve Pentago, however multiple
disadvantages have to be studied. In principle we observed two reasons which argue against utilizing
Threat-space and Threat-sequence for Pentago:

Finding threats in Pentago is very costly: Even if the board of Pentago is relatively small in com-
parison to go-moku, a large number of threats may occur and it is hard to describe the threats with
simple patterns. To detect a threat, every possible move has to be evaluated, since each quadrant may
be rotated within the next move. This is similar to expanding the search tree for the next level, which
probably will be implemented faster within highly optimized tree searches like Alpha-Beta Search.

Large number of counter moves are possible: The second argument has an even larger impact on
the applicability. Most threats can be countered by many moves. Figure 5.3 explains this fact among
an example position. In many cases a threat may be countered by rotation a single quadrant. Hence,
placing the marble is not concerned by the threat and the direction of the rotation is also irrelevant.
Thus, a large number of moves is still playable and threat based search reduces the problem size by only
a small factor. Furthermore it is not possible to play all counter moves together, as Allis used it for the
solution of go-moku. This is because every move in Pentago also consists of a rotation and more than
one rotation cannot be handled.

In our opinion, the trade-off that occurs while using Threat-space or Threat-sequence Search to re-
duce the problem size has to be considered carefully. A simple but easy and fast to implement game-tree
search algorithm might outperform a more costly threat search algorithm. A strong conclusion requires
an implementation and benchmarking of a threat based searches in comparison to other mentioned
algorithms. Therefor we cannot give any reliable computational time approximation.

5.4 Retrograde Analysis

Retrograde Analysis is an undirected search through the state space, beginning at terminal positions to-
wards the initial position.
Instead searching forwards through the game-tree, a Retrograde Analysis begins with all terminal po-
sitions and stores their game result (won, draw or lost) into a database. This is the base for the first
iteration of the Retrograde Analysis. Assuming the first iteration of the Retrograde Analysis takes place
at the deepest depth d = n in the game-tree. In each iteration, the database for the previous depth d−1
is constructed. If depth d − 1 is MAXs turn, every predecessor of a winning position at depth d is also

5.4 Retrograde Analysis 25

position with threat

for black

threat not blocked threat blocked

by marble

threat blocked

by rotation

+ another 7

rotations possible

+ another 25

placements possible

Figure 5.3: A position with a threat for black has to be countered by white.

marked as a win. Every unmarked predecessor of a draw positions at depth d is marked as draw and all
the remaining unmarked positions in d − 1 are marked as loss. This is vice versa for a MIN turn.
Two variants of the Retrograde Analysis are common, they differ in the way of constructing the database
for depth d−1. At first, it is possible to iterate over the positions at depth d, as described before, to gen-
erate all prior positions and label them according the generating position. The second way is to iterate
over the positions at depth d − 1 and look up the successors of every position to gain the game theo-
retic value. For both variants the iterative process finishes at depth 0. Algorithm 1 illustrates this process.

Now the database contains perfect information for all possible game states, furthermore perfect play
is possible. For each given position, the successor with the best game theoretic value in the database is
chosen. This strategy does not guarantee a shortest move sequence, however a valid move sequence for
the given value is known. A second search from the initial position through the constructed database is
necessary to find the shortest move sequence for any position. Since Retrograde Analysis crawls through
the whole state space, Retrograde Analysis strongly solves a game.

5.4.1 Computational costs

The whole state space has to be visited during a full Retrograde Analysis. This results in a complexity
of at least Θ(stateSpace). For both mentioned variants of the Retrograde Analysis, the complexity is

5.4 Retrograde Analysis 26

Algorithm 1: A MAX step from depth k + 1 to depth k in the Retrograde Analysis for games with
deterministic game depth.
Input: Array with the game theoretical values of all positions at depth k+ 1
Output: Array with the game theoretical values of all positions at depth k
Input: posi t ionsk+1

1 foreach p in posi t ionsk+1 do
2 v aluep ← value(p)
3 predeccessors← predecessors(p)
4 foreach pred in predeccessors do
5 hash← hash(pred,k)
6 if value(posi t ionsk[hash]) = UNKNOWN then
7 posi t ionsk[hash]← v aluep

8 else
9 posi t ionsk[hash]← max(v aluep,value(posi t ionsk[hash]))

10 end
11 end
12 end

Output: posi t ionsk

typically above Θ(stateSpace), because every lookup, either successor of predecessor, requires multiple
access onto the lower level of the database to evaluate the MAX or MIN function. Consequently the
average number of moves required to gain a MAX or MIN result has to be considered for the calculation
of the complexity, Θ(mov esav g ∗ stateSpace).

5.4.2 Improvements and practical issues

Parallel Retrograde Analysis: To decrease the runtime of the Retrograde Analysis an efficient parallel
implementation is necessary. Applying parallelism does not decrease the computational costs, but the
computational capacity can be increased. Larger implementations of a parallel database construction
with Retrograde Analysis is given in [7, 17, 34].
To exploit parallelism it is important to decompose the database in several smaller sub-databases with
as less dependency between the different sub-databases as possible. Independent sub-databases have
two positive effects. On the one hand, they can be divided onto several processors or computers within
a cluster and so computed independently, on the other hand smaller portions probably fit into a higher
level of the cache hierarchy which could dramatically speed up the database accesses.

Compression: A second important improvement for the Retrograde Analysis is the usage of com-
pression. As described, the constructed database requires at least one entry per state, which results
in a memory consumption of Θ(stateSpace) entries. Therefor it is important to compress as many in-
formation as possible.
A naive database approach would save every state next to its game theoretic value. The state information
in Pentago, requires at least a 6x6 board with 3 possible configurations per field. Even with Bitboard
techniques (introduced in Chapter 6), a single state requires more than 4 Bytes of space. Because of this,
typical Retrograde Analysis databases use minimal perfect hash functions [11] to map every state onto a
concrete position in the database. Minimal perfect hash functions give a bijective mapping for every state
s ∈ S onto values between 0 . . . |S| − 1. Hence the state information do not need to be stored inside the

5.4 Retrograde Analysis 27

database, only the game theoretic values of the states have to be saved.
Thinking in typical computational units (Char, Integer. . .), a game theoretic value requires at least a sin-
gle Byte within the database. But the required information in the database just takes three values (won,
loss, draw) or within the creation time a fourth value (unknown). Thus, 2 Bits are enough to save one
state. Second, a good arrangement of the database offers the possibility to use a Huffman encoding (for
example 010101 . . . 010101 is stored as (N)x01. A good arrangement means, that positions with similar
game theoretic values should be located together, if any prediction is possible. To give an example, a
decomposition in chess, based on the material could be useful. A player with an advantage of a queen
will have a more likely chance to win than his opponent. Thus, this subset will have an increased number
of win values, which leads to a better compression factor.

Both mentioned suggestions, have drawback on the computational costs, but Schaeffer et al.[21, 34]
were able to run several machines in parallel and saved more than 20 positions in a single bit, which led
to the solution of checkers.

5.4.3 Applicability onto Pentago

As seen before, the computational costs and memory consumption of the Retrograde Analysis relies on
the state space. In Chapter 2 we estimated the state space of Pentago with n = 2.4 ∗ 1016. Unfortunately
given actual consumer hardware, the Retrograde Analysis cannot easily be applied onto Pentago. This is
because of multiple reasons:

Storage space: Even with an optimistic approximation, the amount of required storage space is close
to the hardware borders. In Chapter 2 we showed, that 4 axes of symmetry exist, which results in a
reduction factor of 8. Furthermore assuming a compression, comparable to checkers, 20 positions per
bit, leads us to the following estimation:

sizedb = 2.4 · 1016/(8 ∗ 20) Bits

= 1.5 · 1014 Bits

= 1.875 · 1013 Bytes

= 17.5 TB

17,5 Terabyte of storage is nowadays feasible within a larger RAID or computer cluster, but this number
still relies on an optimistic approximation. At first, a minimal perfect hash function which regards symme-
try issues might be really hard to construct. Examples for minimal perfect hash function in similar board
games without regarding the symmetry are shown in [13, 21]. But adding symmetry issues requires a
unique ordering of all symmetry states and a mapping on continuous values, the latter problem is by far
the complex one. Furthermore we disregarded any space for checksums, needed data-structures and file
catalogs in our estimation. Summing up, the requirements on storage space might be accomplishable.
However a good decomposition in independent parts is necessary, because the whole database will not
fit onto a single Hard Disk (HD) or even Solid-State-Disk (SSD).

Database decomposition: As shown in Section 5.4.2 decomposition is essential for parallelism. A
first and easy decomposition of the database can be based onto the number of marbles on the board.
The sub-database with 4 marbles requires the sub-database with 5 marbles for construction purposes,
but does not directly rely on the sub-databases with more than 5 stones. So this decomposition offers

5.4 Retrograde Analysis 28

a possibility to split the data onto several HDs, but it is still impossible to handle these different sub-
databases in parallel. Moreover, according Table 4.1 in Chapter 4 the database with 24 marbles requires
more than 10 percent of the whole storage space, which might fit onto a single HD but actual Random-
Access-Memory (RAM) in this dimension, which would be much faster, is not payable. Hence further
decomposition is needed to exploit parallelism and to fit the sub-database into the main memory.
Until this point, the application of the Retrograde Analysis on Pentago seems to be quite forward, but

access key of

decomposition positions

Figure 5.4: An exemplary decomposition of a database for Pentago. One quadrant is defined as the key
quadrant and all positions according to this quadrant are handled together.

further decomposition is really hard, as a result of the rotating quadrants. For example subdividing
the database according to a single quadrant might be possible. This single quadrant presents the index
key for the decomposition. Figure 5.4 illustrates this process. Though any lookup for a single state,
either forwards or backwards, within the Retrograde Analysis will require an access up to 8 different sub
databases. From this follows a high interconnection between the different sub-databases. Other decom-
positions might be possible, but out of our knowledge we could not find any decomposition without this
dependency issue.

Dependency and memory accesses: As described before with this high interconnection between
the different sub-databases parallelism cannot be employed in a naive way, because the lookups into
different sub-databases would create a large communication overhead. This overhead may either occur
between different threads or between computers within a cluster, but the overhead may also result into
many locks on shared memory machines. Thinking of 2.4 ∗ 1016 states with an average of 180 possible
moves per state will result in a huge amount of time waiting for synchronization, which is incompara-
ble larger than straight forward processing states inside the CPU. Besides the synchronization time, the
access times on the memory increase with every dependency. This is because of the impossibility to use
cache localities. Register and L1-L3 caches are rather small and therefor many dependencies have to be
solved through slow RAM or even HD accesses. Figure 5.5 explains the latencies and capacity differ-
ences between the diverse types of memory in the cache hierarchy. Perhaps a heuristic approach is able

5.4 Retrograde Analysis 29

Register

L1 - Cache

L2 - Cache

L3 - Cache

Main Memory (DRAM)

Hard Disk Solid State Disk

latency space capacity

Bytes

64 KB

 16 MB

 1024 KB

4 - 256 GB

256 GB - 2 TB

1 cycle

few cycles

> 10 cycles

> 40 cycles

> 100 cycles

100000 cycles

increases increases

Positions

1-16

200,000

3,200,000

51,200,000

5.0 x 10^12

> 5.0 x 10^12

Figure 5.5: Storage hierarchy of actual consumer hardware. Unpredictable accesses to the main memory
and especially to the Hard Disk are very time intensive. Thus, these so called cache misses
should be avoided. The right most column expresses a rough estimation of positions which fit
into the given space without Huffman encoding.

to reduce the number of lookups between several sub-database. However in our opinion it is really hard
to find a way to fully avoid slow lookups into other sub-databases.

In conclusion, given actual hardware it is impossible to solve Pentago in less than a few years by us-
ing the Retrograde Analysis. Nevertheless the further development especially of the SSDs might change
this fact. The rapidly increasing number of random access onto different blocks in comparison to HDs
[10, 12] increases the chance to handle the dependency issues between the different sub-databases.

5.4 Retrograde Analysis 30

Time approximation: To underline our doubts, we make an optimistic calculation about the required
amount of time to solve Pentago by Retrograde Analysis. Our simple approximation is based on three
factors. At first we estimate the costs for fetching a position, calculating all successors or predecessors
and store back the result with 1000 instructions. Second we assume that every 10th position requires
a lookup in the main memory which is estimated with another 100 instructions. Last we assume that
every 1000th state requires a hard disc access with the cost of around 10,000 instructions. As prior in
this chpater, our estimation of the required time is based on the performance of an actual Intel Core-i7:

n=3.5 · 1016

inst ruct ionspos =1000

inst ruct ionsmm =100

inst ruct ionshd =10, 000

inst ruct ionstotal =n · inst ruct ionspos +
n

10
· inst ruct ionsmm+

n

1000
· inst ruct ionshd

ipsi7 =146, 000M I PS

time =
inst ruct ionstotal

ipsi7 · 106

=2, 660,958, 904seconds = 84 years

So optimistically speaking, in total 84 years are required to solve Pentago by utilizing the Retrograde
Analysis. Only linear scaling in parallel execution will make a pure Retrograde Analysis feasible with
a reasonable number (<100) of computers. But a linear scaling would require perfect decomposition,
which is as explained not given. Although these are all very optimistic assumptions with the further
hardware development a solving process might become realizable within the next years.

5.4 Retrograde Analysis 31

5.5 Hybrid approaches

Forward and backward search can be combined to a meet-in-the-middle or hybrid approach. The key idea
behind this approach is to build up an endgame database with the Retrograde Analysis and to find a way
from the initial node to the endgame database. Gasser[16] was able to solve Nine Men’s Morris by using
Alpha-Beta Search and endgame databases. Schaeffer solved checkers in 2007 with a hybrid approach
[30] by using Proof-Number Search and Alpha-Beta Search in combination with a large Retrograde Anal-
ysis. Further means to solve checkers, where an initial line of play to set a strong seed for the Search
algorithms. Figure 5.6 illustrates such a generic hybrid approach to solve games.

Endgame database

for k stones

Game-tree space

n

k

0

Game depth

Forward search

with solution tree

Figure 5.6: Hybrid search A endgame database up to k stones is created via Retrograde Analysis. Then a
forward tree search tries to hit into the endgame database.

As mentioned Schaeffer et al. also combined the Proof-Number Search with the Alpha-Beta Search to
solve checkers. They used a PN algorithm to maintain the whole game-tree and an efficient Alpha-Beta
Search implementation as a second level search. The so called Proof Manager controls the direction of
the search and distributes positions to solve by the second level search algorithm. If the Alpha-Beta
Search cannot prove the given position, either a second level PN Search is initiated or the Proof Manager
expands the node to further divide the task.

Applicability onto Pentago

The first mentioned hybrid approach is confronted with the same problems as the Retrograde Analysis.
Looking at Table 4.1 in Chapter 4, we see that that only the last six depths in the state-space are smaller
than one order of magnitude than the biggest part of the database. Since Pentago is a divergent game,
the state-space hardly shrinks with increasing depth. Another reason that opposes the endgame database
approach is, that our estimations of the game-tree size showed, that typical games do not reach the full
depth or even a 6-stones endgame database. Thus in conclusion either the whole game can be solved
by using a Retrograde Analysis, or given actual hardware it is even pointless to construct an endgame
database.

The second combination of a Proof-Number Search with an Alpha-Beta Search seems more promis-
ing to use. The size of the game-tree might be to large to fit into the main-memory for the PN Search.
But a smaller fraction beginning at the root might fit inside the main-memory and an Alpha-Beta Search

5.5 Hybrid approaches 32

Table 5.2: Comparison of the presented algorithms, along with an approximation of the computational
cost. The time estimation is calculated for a single CPU.

Algorithm Advantages Disadvantages Required time

Alpha-Beta Search - easy to implement
- founded knowledge base
- can be used as AI

- game-tree too large →
will not finish

- CPU bound
- approx. 108

years
Proof-Number
Search

- optimized and developed
for solving
- profits from unbalanced
game-tree

- state-space is too large to
fit in memory

- Memory bound
- might be faster
than αβ

Threat-based Search - highly optimized for solv-
ing go-moku
- reduces problem size

- does not suit onto Pen-
tago
- finding threats is too
costly
- many counter moves pos-
sible → no parallel execu-
tion

- not applicable

Retrograde Analysis - easy to implement
- operates only on state
space

- state space might be too
large
- rotating violates storage
locality

- memory bound
>84 years

algorithm might solve the leafs of the PN tree. However these speculations require further testing and
evaluation to give a strong statement.

5.6 Conclusions

Table 5.2 sums up all mentioned algorithms next to their advantages and disadvantages regarding an
application onto Pentago. The Retrograde Analysis has the lowest approximation of required time but it
is useless to partly construct an endgame database which cannot be used any further. Thus, we decided
to begin with an implementation of an Alpha-Beta Search algorithm, although a Proof-Number Search
approach might require less computational time. But one reason convinced us to start with an Alpha-
Beta Search implementation, since it still serves as a game AI, even when it is not possible to solve
Pentago. Furthermore, with the results of an Alpha-Beta Search implementation, better approximations
of the game-tree size and complexity are possible. Details of the implementation are discussed in the
next chapter.

5.6 Conclusions 33

6 PentagoAI

As seen before, all discussed solving algorithms have drawbacks. We decided to begin with an Alpha-Beta
Search implementation which still can serve as a Pentago AI when the solving process reveals as impos-
sible. The components of our program PentagoAI are discussed in the following sections. We begin with
a discussion about already existing programs that play Pentago in Section 6.1. Followed by an overlook
on the basic structures in PentagoAI in Section 6.2. Section 6.3 discusses the implementation details of
the Alpha-Beta Search algorithm. Finally the last Section 6.4 describes our observations with PentagoAI.

6.1 Related AIs

As of our knowledge, there exist only two serious open source artificial intelligence for Pentago named
pentagod written by Tewalds [39] and Pentago Ag written by latkin [22]. The programs name of pen-
tagod derives from its ability to run as a httpd daemon for its graphical user interface (GUI). Tewalds
implements several algorithms in C++ to play Pentago like fixed depth Negamax, Negascout and UCT.
He describes his Alpha-Beta Search implementation with: ”As far as I know, the negamax version is
the strongest pentago player in existence right now. “. Hence his program seems to be a well suited
opponent for testing purposes. Also at least two Java Pentago implementation exists. But a deeper look
into their source codes points out, that their Alpha-Beta Search algorithm is not optimized in any way.
Furthermore as a human amateur it is quite easy to win against both AIs.
Lim Chee Aun [6] developed an animated Javascript interface named pentagoo in combination with a
simple php AI backend. He describes his AI as a weak test implementation. However the main compo-
nent is the frontend which is really well organized and easy to use along nice graphic components. Since
pentagoo and pentagod are released under the open source MIT license we hook into pentagod, which
further utilizes pentagoo to make use of the well developed http interface. Further details are discussed
in Section 6.3.

Also a few commercial products for smartphone devices are available. We took a short look at the
Symbian OS version [25] but we could only played testgames, since the lack of any source code. The
results of the comparison between both programs is shown in Section 6.3.

6.2 Implementation overview

Our program PentagoAI was developed in C++. Although we avoid object orientated programming to
maintain the best control over all storage structures and optimizations, we profit from the simpler I/O
concepts in C++. As described earlier, our program implements the pentagod httpd code as a frontend
for human versus AI games. Our benchmarks run without the httpd code and print all output either to
console or to file. Moreover the library Boost C++ [8] is used to read parameters from arguments or
configuration file. The advantage of the Boost C++ API is a really easy way to access configurations
files.
Our program is based on an iterative deepening Negamax search algorithm. We did not mention the
algorithm before, but it is in principal an Alpha-Beta algorithm which combines the two different func-
tions for the MAX and the MIN node to maximize the outcome for both players. Therefor only one
function is called with inverted alpha and beta value. A pseudo-code Negamax is given in Algorithm 2
in the Appendix. Typically the Alpha-Beta Search function is (recursively) called with five parameters:

34

alphaBeta(node, depth, alpha, beta, player), which requires a branching to handle the difference between
MAX and MIN nodes. Algorithm 3, also in the Appendix, shows this in detail. Now to avoid this branch,
which hardly has an impact on the complexity, at every depth the same function is called but the alpha
and beta values are exchanged and inverted. Furthermore the evaluation function outputs higher values
if an advantage for the actual player is calculated and lower or negative values for a disadvantage. In
contrast, the former evaluation function returned turn independent high values if an advantage for the
MAX player existed.

Launching and playing PentagoAI

In principal PentagoAI is invoked with " ./PentagoAI PARAM". Whereas the Parameters may also be
placed in a file named "pentagoAI.cfg" in the same directory of the binary. Here we only describe the
main options but the help of PentagoAI is in a sense self explaining.

Help: To display all parameters the program has to be called with " ./PentagoAI −−help".

GUI: To run the program with the GUI interface on top of the httpd Daemon: " ./PentagoAI −d". Further
httpd options are the hostname/IP (-h) and port(-p) to listen on. Moreover the pentagoo dir(-l), where
the pentagoo html files are located, may be specified.
It is also possible to configure the AI by setting either a fixed depth ("−−negamax_depth N") or a time
limit ("−−negamax_id_time T") for the iterative deepening search.

Benchmark: To Benchmark the performance of PentagoAI, the program has to called with
" ./PentagoAI −b". The default benchmark initializes two iterative deepening PentagoAIs to chal-
lenge each other in a single match. To increase the number of played games the parameter
"−−benchmark_games N" has to be added. To run the benchmark from random start positions instead
of the initial one, "−−benchmark_random_starts true" must be enabled. Furthermore it is possible to
use the pentagod player as opponent ("−−opponent_pentagod true"). The search depth of the Pen-
tagoAI player may also be configured, see "−−help" for more details.

The http daemon listens per default on ”http://127.0.0.1:9999/“ and may be accessed through an
Internet browser to play Pentago. The browser should display pentagoo with its interface shown Fig-
ure 6.1.

The game pops up with a human versus human match, which may be changed to human vs. computer
by choosing New Game → Player 2 = Computer → Start Game. The selection of the AI strength is
currently not implemented. Figure 6.2 shows a screen-shot of the settings menu.

6.3 Implementation details

This section is divided into six parts. We begin with an introduction of the used structures and BitBoard
technique. Then the details of the move generation are discussed, followed by a description of the
evaluation function. After that, the iterative deepening implementation is explained. We will finish with
the details of the used Transposition Table and implemented move ordering.

6.3 Implementation details 35

Figure 6.1: The frontend of PentagoAI, using pentagoo.

Figure 6.2: The New Game menu of pentagoo.

6.3.1 BitBoards

A gamestate in PentagoAI consists of two components, a board description and a move counter. The
move counter contains redundant information, since it is possible to derive its value from the boards
state. Thus it may be deleted, but we maintain the counter for performance reasons.
In general there are two ways to map a board to computational units. The naive approach is to construct
an array with 6x6 entries where each entry may be set to one of the three possible values (empty,
occupied by black, occupied by white). This requires at least 36 Bytes, if the variable type Byte is
supported by the compiler. Typically accesses on aligned datatypes like Integers are quite faster than
single Byte accesses. Using Integers this results in 36 Integers per board, which require architecture
depending either 144 Bytes (32 Bit) or 288 Bytes (64 Bit). Despite the fact, that 36 Integers do not fit
into registers of typical x86 hardware, the evaluation function requires more instructions to count all
occurrences of k-in-a-row. It is quite a performance advantage if the whole board fits into registers to
reach the maximum possible computational power instead of fetching and pushing positions from and
to the cache. To achieve this goal we used BitBoards. We maintain two 64-bit Integers (type uint64_t
in C++), one for each color. Every field on the board is mapped to a single bit inside the Integer,
beginning at the lowest significant bit. Figure 6.3 shows the whole mapping along with an example

6.3 Implementation details 36

board configuration. The mapping is the same for both colors. Hence if a white marble is set on position

123433343536

123456

12 11 10 9 8 7

1314151617

24

18

23

29 28 27 26 25

313233343536

30

22 21 1920

100 0100100 0 0

000 0000000 1 1

white

black

Figure 6.3: Linear mapping of each position in the board onto the bit string.

15, the 15th bit in bi t boardwhite is set to 1. The logical AND of both BitBoards always returns 0 since
only one marble per field is allowed. We chose a two Integer representation because two times 36 bit
does not fit into a single 64 Bit Integer.
Summing up, a gamestate is presented by the following structure in Listing 6.1:

Listing 6.1: The Pentago BitBoard structure P_BI T BOARD. The type BI T BOARD_T is a 64 Bit Integer.

1 typedef s t ruc t {
2 BITBOARD_T board [2] ;
3 unsigned in t move ;
4 } P_BITBOARD ;

To give an example how the BitBoards are accessed, Listing 6.2 shows an example of the setPos() function
which places a marble on a given position. It is easy to see that only two more but fast instructions are
required to access a chosen bit. These are the load immediate to push the 1 into a register and the
left shift. The logical OR just replaces a move instruction which would be required in an equal array
representation to set an element.

Listing 6.2: The setPos() functions places a marble onto the board given position and color.

1 i n l i n e void se tPos (P_BITBOARD *b , in t pos , in t co lo r)
2 {
3 b−>board [co lo r%2] |= (BITBOARD_T)(1L << (pos)) ;
4 }

6.3.2 Move generation and execution

The move structure consists of three parameters: The position where to set a new marble, the quadrant
which has to be rotated and the rotation direction. As described before, to place a marble to a position
pos a single bit in a bitmask is set and connected with a logical OR to the boards BitBoard. The rotation
of the quadrants is the bottleneck of the move execution. Every single bit of the affected quadrant has
to be fetched, shifted and pushed back in a temporary copy of the BitBoard. Because eight fields have
to be rotated this results in a very costly operation, thinking of billions generated moves. It might be
possible that better representation structures exist but they will all have a drawback on the simplicity of

6.3 Implementation details 37

the evaluation function.

The getMov es() functions returns a linked list with all possible moves for a given position. The
function iterates over all fields onto the given board and checks whether they are empty or not. If
an empty field is found, all eight possible rotations of the quadrants are appended to the linked list
together with the position where to place the marble.

6.3.3 Negamax Search algorithm

The practical Negamax implementation is almost the same as the pseudocode description 2 in the Ap-
pendix. Only the pulling and storing of evaluation values is added. Therefor every evaluated position
is added to the Transposition Table. Furthermore directly after isTerminal()- the lookup()- function is
called. This avoids needless examination of children.

6.3.4 Evaluation function

An evaluation function rates a given position according a heuristic. Thus it tries to figure out, which
player has a more likely chance to win the position. As extensively described earlier, it is really hard to
give a reliable heuristic for Pentago because each rotation of a quadrant may totally change the situation.
Hence we decided, to reduce the complexity of the evaluation function to extend the search depth to a
deeper level, this is a common approach [28].

The main component of our evaluation function check for a winning position. This is done by
using a bitmask and a logical AND. Two instructions are sufficient to check for a five-in-a-row:
" if (bitmask&b−>board[color])==bitmask))", if we assume that the mask and the board are already
in memory. Each further check of five-in-a-row requires one extra shift of the bitmask to iterate over all
positions. To give examples the horizontal bitmask is bi tmaskhorizontal = 31 = 011111b, whereas the
vertical bitmask is given by

bi tmaskv er t ical =820820800h

=100000

100000

100000

100000

100000

000000b

The diagonal bitmask is build in the same way. Now each bitmask is wrapped by a loop to shift it over
every possible occurrence of a five-in-a-row. In conclusion, it is possible to search over the board with
around 100 instructions per side. This concept may be transferred to check for four or even three in
a row, too. It is important to note, that Pentago demands a check of the whole board for both players
after every move, not only local around the last placed marble since the rotation produces new game
situations.

The second component is based on a simple heuristic to achieve a better gameplay: Marbles next to

6.3 Implementation details 38

center of the board get a higher rating than marbles touching the boards margin. We observed, that
midpoint marbles may join more k-in-a-rows possibilities than marbles next to the border. However
the rating for good placed marbles is far below the rating for a three-in-a-row and even lower for the
five-in-a-row. An example rating is given in Table 6.1. We implemented a linear evaluation function:

Table 6.1: Weights used in the linear evaluation function.
Occurrence x i Weight wi

5-in-a-row 100,000
4-in-a-row 1,000
3-in-a-row 100

marble in center 5
marble at board 0

ev al(pos) =
∑

wi ∗ x i

Hence both components are summed up according the given weights for both colors. Finally the differ-
ence between the actual player and his opponent is calculated.

6.3.5 Transposition Table

The Transposition Table is realized in two different implementations. On the one hand the Standard
Template Library (STL) hashmap, provided with C++, is used, on the other hand the slower google-
sparshash hashmap[18]. The letter one is more space-efficient which allows larger Transposition Tables.
We do not need considered any replacement schemes because we utilized well implemented hashmaps.
To avoid memory issues, the Transposition Table is only used from depth 1 to d − k whereas k has to
be specified by the user. The reason for this decision is that the deeper depths may be as fast calculated
as looked up inside the Transpositions Table, especially the level of the leafs. The performance of the
different Transposition Tables and techniques is discussed in the next section.

6.3.6 Move ordering

As extensively described earlier move ordering is very important for a good performance of the Alpha-
Beta Search. We have only two means to order the moves, since the lack of any good reliable heuristic.
The getMov es() function has to execute every move and if a resulting position reveals as a win for the
actual player, the position becomes the new head of the linked list. Furthermore the resulting position is
checked against the Transposition Table, all positive rated positions are placed directly after the winning
positions. All other positions are added to the end of the list in order of their occurrence. The linked list
perfectly suits our needs for an ordered list of moves. Fast adding of positions is played out via pointers
to the head and tail of the victory positions.
This procedure might be cost intensive but as shown earlier a good move ordering may half the search
depth.

6.4 Observations and benchmarks

Given the program PentagoAI we had three different possibilities to benchmark and observe its perfor-
mance. At first we could play ourselves against PentagoAI, second we could let it play against itself and
last we connected pentagod with PentagoAI to test the performance against another AI.

6.4 Observations and benchmarks 39

6.4.1 Human versus PentagoAI

We begin with our non-quantitative observations during playing against PentagoAI. We presume that our
Pentago skills are on an advanced amateur level. However the first thing we noticed is that the program
starts totally undirected into the game. The marbles are set on heuristically good rated fields but no
consequent way to five-in-a-row is visible. This behavior was expectable. since we do not use any open-
ing books. Although no perfect way to win was visible to us, we never won or played a draw against
PentagoAI, despite some crashes due to programming failures. Even as the first player, concentrating
only on defensive moves, we had no chance. So a match developed rather slow and randomly but ended
with a loss on our side. Now, what are the strengths of PentagoAI? The exact search depth is discussed
in the next paragraphs, but typically PentagoAI is able to search at least 4 ply. This is enough to defend
any occurring open three- or four-in-a-row. Furthermore after a few marbles are placed, as a human
amateur you have to strongly focus not to oversee any loosing position. Its is unlikely harder to see more
than 1 ply in forecast than in other typically board games. This is probably because of two reasons. At
first their is a large branching factor in every move, which is still smaller than for example Go. The other
fact is, that the positions may totally change for every move. This seems to make the game much more
complicated for a human player. In result without any > 6 ply winning move sequence or strategy, we
do not see any chance for us to win.

6.4.2 PentagoAI versus PentagoAI

We used the possibility to observe matches between PentagoAI and itself to tune different parameters.
Furthermore the average game depth depthav g = 21.03 was monitored in 200 games of PentaogAI with
the search depth of four. In average the time to evaluate a position with the search depth of four is below
ten seconds. But each further step in the search depth requires at least the factor around 10-20. Hence
an evaluation of the search depth of five finishes in around one minute. This shows, that PentagoAI has
no chance to solve Pentago in a reasonable amount of time.
Moreover we did not any sing of a non-uniform tree, which might have reduce the game-tree complexity.
Looking at the evaluation function, small changes in the weights of the heuristic did not show any
significant influence on the performance. Even more interesting to see are the consequences when one
or more parts (four-in-a-row, three-in-a-row etc.) of the heuristic are removed. We observed that the
strengths of PentagoAI decreases with a less complex evaluation function. However the runtime also
decreases, but not far enough to reach a deeper search depth under the same time constraints. Hence
we decided to use the complex evaluation function for all further benchmarks.
We also measured the required time to evaluate a position with the two different hashmaps mentioned
above which are used as Transpositions Tables. They both handle collisions themselves therefor they do
not change the outcome of the Alpha-Beta search. Collisions may occur if two or more positions map on
the same entry in the hashmap and this case has to be handled, else a lookup in the Transposition Table
would read a value for a different position. Our observations showed, that the STL hashmap is slightly
faster than the googe-sparsehash hashmap. But the latter one requires far less memory, which would be
interesting for a solving approach. All following benchmarks are based on the STL hashmap.

6.4.3 Pentagod and others versus PentagoAI

As said, there exist only a few AIs for Pentago, but pentagod and Pentago Ag [22] seem to be the only
comparable opponents. Nevertheless we also took a short look at Pentago for Symbian OS [25] and Pen-

6.4 Observations and benchmarks 40

tagoPP [45].

PentagoPP: PentagoPP is written in Java and was developed in a course at the Georg-Augustin-University
in Germany (Göttingen). Its main focus lies on its network component and on the visualization of the
board but they also included a basic AI. Unfortunately testgames with PentagoPP showed, that the search
depth is too low to stand against PentagoAI.

Pentago for Symbian OS: There a similar versions for the Iphone OS available, but we took a look
at the closed source Symbian version. Since we are unable to connect both AIs we had to enter the
moves by hand. As expected due to the hardware limitations Pentago for Symbian OS lost all ten played
games against PentagoAI. Probably the strength of this commercial product is limited by purpose to ad-
dress more customers.

pentagod: As mentioned, we compared PentagoAI with pentagod which is described by the author
with ”As far as I know, the negamax version is the strongest pentago player in existence right now.“[39].
Pentagod implements a k-ply fixed depth Alpha-Beta Search without Transposition Tables. The evalua-
tion function is very similar to the one of PentagoAIs. All three, four and five-in-a-row are counted, linear
weighted and summed up to a heuristic value. BitBoard techniques are not used, hence the accesses to
single fields on the board are realized with to array accesses.
We begin our comparison with a setup of a fixed depth search on both sides. The results are presented in
Table 6.2. The first color to move is white. Twenty matches are played, where each AI plays 10 times as
white and another 10 times as black. It is good to see that both algorithms perform nearly on the same

Table 6.2: Comparison of Pentagod and PentagoAI by search depth. Twenty games were played, where
each AI plays ten times as white.
pentagod
PentagoAI

3-ply
3-ply

3-ply
4-ply

4-ply
3-ply

4-ply
4-ply

Win for pentagod 11 4 18 5
Win for PentagoAI 9 15 2 8
Draw 0 1 0 6

Win for White 11 12 10 7
Win for Black 9 7 10 7
Total 20 20 20 20

level but pentagod has a slightly advantage with the same search depth. This is probably based on the
different evaluation strategies. Pentagod evaluates every three-in-a-row, whereas PentagoAI only evalu-
ates four- and five-in-a-row. But as expected, an increased search depth by one ply results in a advantage
for the respective AI. However these results are more or less meaningless without a comparison of the
required computational time. Hence we decided to compare the runtime of both programs to evaluate a
given position for a specified depth. Both programs run on the same hardware (Intel Core2Duo T7700
2,4Ghz; 4GB of Main Memory) with the same compiler setup (gcc-4.3.3 x64 -O2). The results are shown
in Table 6.3.
Comparing the runtimes, it is good to see that PentagoAI is able expand more nodes per second than

pentagod. But it is also very interesting, that although BitBoard techniques and Transposition Tables
are used both programs only differ by such a low factor. The performance difference between pentagod

6.4 Observations and benchmarks 41

Table 6.3: Comparison of Pentagods and PentagoAIs runtime to evaluate a position for a given depth.
The initial position is the empty board, the other positions are generated by random.

pentagod PentagoAI
depth time [ms] pos / second time [ms] pos / second

initial position 3 10 2959833 ply/s 76 ms 3840597 ply/s
initial position 4 79 3134635 ply/s 775 ms 5420301 ply/s

random (7 marbles) 3 66 ms 3219924 ply/s 88 ms 4132180 ply/s
random (7 marbles) 4 4192 ms 3453730 ply/s 1212 ms 6036505 ply/s

random (12 marbles) 3 95 ms 2734171 ply/s 170 ms 4470351 ply/s
random (12 marbles) 4 2307 ms 3151974 ply/s 1200 ms 6685262 ply/s
random (20 marbles) 3 105 ms 3547428 ply/s 112 ms 3745221 ply/s
random (20 marbles) 4 726 ms 3489536 ply/s 477 ms 7140927 ply/s

and PentagoAI rises with after the first marbles are placed on the board. This is because pentagod dis-
cards symmetric positions during move generation. Since symmetric positions only occur during the first
moves which are more or less played randomly we omitted the removal of those. But it is definitive
useful to implement this feature in a future version of PentagoAI.
Unfortunately the time advantage for PentagoAI is not large enough to evaluate one more depth. Thus,
both programs are on the same level, pentagod convinces with its evaluation function, but is also slower
than PentagoAI. In contrast to PentagoAI, pentagod is able to support multithreading on the first level of
the Negamax Search. This decrease the evaluation time given a multi core system. Since we did not yet
implement multithreading we did not take the multithreaded version into account.

Pentago Ag: This Pentago AI is developed in C# and its algorithmic base is quite comparable to pentagod
and PentagoAI. Pentago Ag makes use of BitBoard techniques but does not implement Transposition Ta-
bles. Since it is written in C# we did not spend the time to play a tournament with Pentago Ag. However
the author states on his homepage [22] that Pentago Ag is able to evaluate 550,000 - 600,000 position
per second on an 2,4GHz x64 processor, which is the same as the authors used for PentagoAI. Moreover
a short look in the source code of Pentago Ag reveals that the number of evaluated position is counted in
the same way as in pentagod and PentagoAI. Hence we strongly assume, that PentagoAI is quite stronger
than Pentago Ag.

6.4 Observations and benchmarks 42

7 Conclusions

Our first look at the solveability of Pentago seemed very promising but during the work of this thesis
many hard and complex problems occurred. Probably the relatively small board size of 6 x 6 was very
misleading.
We approximated the runtime of four different solving approaches but non of them would finish in rea-
sonable amount of time. The Alpha-Beta and Proof-Number Search are confronted with a too large
game-tree and a threat based search algorithm is not easily applicable. A Retrograde Analysis requires
better decomposition schemes to succeed on todays hardware.
Now we can only speculate about the game-theoretical outcome in Pentago. However we can apply the
Strategy Stealing Argument [14] which states that if the second player would know a strategy to win
than the first player could apply this strategy for himself. This argument only holds for symmetric boards
where both players have the same possibilities to move with the same outcome which is given in Pen-
tago. Hence Pentago cannot be a game theoretic win for the second player. But our observations with
PentagoAI in Chapter 6 showed that no clear advantage for the first player is visible. This leads us to the
guess that Pentago might be a game theoretic draw. However this is a very rough estimation since it is
based on the naive Alpha-Beta Search implementation of PentagoAI.

Despite the fact, that we were not even close at solving Pentago a few interesting observations were
made. The simple Alpha-Beta Search implementation of PentagoAI is able to beat us human players al-
though it reaches only a rather small search depth. This is a very interesting and surprising fact since this
opposes many other board games already researched in the field of AI. To give an example, the branching
factor at the beginning of Pentago is comparable to the branching factor of Go, where in contrast actual
programs are still on an amateur level. Another positive outcome of this thesis is that PentagoAI is one
of the best AIs for Pentago. We cannot offer any proof but we won the most games against all our known
opponents in a fair comparable setup.

We left an open field for future work on Pentago. On the one side, we disregarded knowledge based
methods like Pattern Search and on the other side our Artificial Intelligence implementation is by far not
complete. Many advances in Alpha-Beta Search, like Aspiration Window and better Transposition Tables
and replacement schemes could be applied. Also a strong UCT approach would be interesting to see.
Furthermore in our opinion Pentago is still an interesting game and probably a Retrograde Analysis will
become feasible within the next ten years.

43

8 Acknowledgments

I want to thank family and friends, particularly Peter Heise, Benjamin Milde, Rober Müller and Katharina
Werth for taking the time to read my thesis and for the really motivational comments. Furthermore I
want to thank Felix Büscher for introducing me into vector graphics.
Also, I acknowledge gratefully Prof. Dr. Johannes Fürnkranz for his supervision of my thesis. I especially
enjoyed the freedom he gave me in my research in the interesting field of Artificial Intelligence.

44

9 Appendix

Algorithm 2: Negamax Search algorithm. Negamax maximizes the outcome for both players. The
ev aluation() function returns higher values if the actual player has an advantage. The output of the
best move is omitted.
Input: A board configuration(position), the search depth and a lower alpha and an upper beta
border.
Output: The evaluation value of the minimax tree.
Input: position, depth, alpha, beta
Output: bestValue

1 if isTerminal(position) or depth=0 then
2 return ev aluate(posi t ion)
3 end
4 bestv alue← −∞
5 mov es← generateMov es(posi t ion)
6 foreach m in moves do
7 successor ← doMov e(posi t ion, m)
8 v alue← −negaMax(successor, depth− 1,−beta,−alpha)
9 bestv alue← max(v alue, bestv alue)

10 if bestvalue >= beta then
11 return beta
12 end
13 if value > alpha then
14 alpha← bestv alue
15 end
16 end
17 return bestvalue

45

Algorithm 3: Alpha-Beta Search algorithm. The output of the best move is omitted. The variable
pla yer changes by turn between MIN and MAX. The ev aluation() function returns higher values
for positions with an advantage for the first player and lower values for a disadvantage.
Input: A board configuration(position), the search depth,a lower alpha, an upper beta border and
the player to move.
Output: The evaluation value of the minimax tree.
Input: position, depth, alpha, beta, player
Output: bestValue

1 if isTerminal(position) or depth=0 then
2 return ev aluate(posi t ion)
3 end
4 mov es← generateMov es(posi t ion)
5 if player = MAX then
6 foreach m in moves do
7 successor ← doMov e(posi t ion, m)
8 v alue← alphaBeta(successor, depth− 1, alpha, beta, MIN)
9 if value > beta then

10 return beta
11 end
12 if value > alpha then
13 alpha← v alue
14 end
15 end
16 return alpha
17 else
18 foreach m in mov es do
19 successor ← doMov e(posi t ion, m)
20 v alue← alphaBeta(successor, depth− 1, alpha, beta, MAX)
21 if value <= alpha then
22 return alpha
23 end
24 if value < beta then
25 beta← v alue
26 end
27 end
28 return beta
29 end

46

References

[1] JD Allen. A note on the computer solution of Connect-Four. Heuristic Programming in Artificial
Intelligence, 1989. 3.1, 3.2, 4.3

[2] LV Allis. A knowledge-based approach of connect-four. Master Thesis, 1988. 3.1, 3.2, 4.3

[3] LV Allis. Qubic solved again. Heuristic Programming in Artificial Intelligence, 1992. 3.1, 4.3

[4] LV Allis. Searching for solutions in games and artificial intelligence. PhD thesis, 1994. 3.1, 3.2, 4.3,
5.2, 5.3, 5.3

[5] Thomas Anantharaman, Murray S Campbell, and Feng-hsiung Hsu. Singular extensions : Adding
selectivity to brute-force searching. Artificial Intelligence, 43(1):99–109, 1990. ISSN 0004-3702.
doi: DOI:10.1016/0004-3702(90)90073-9. 5.1.1

[6] Lim Chee Aun. Pentagoo - Pentago game in Javascript, 2009. URL http://code.google.com/p/
pentagoo/. 6.1

[7] J. Bal and H. Romein. Solving the game of awari using parallel retrograde analysis. IEEE computer,
36, 2003. 3.2, 5.4.2

[8] Boost. Boost C++ Library, 2011. URL http://www.boost.org/. 6.2

[9] DM Breuker. Replacement Schemes and Two-Level Tables. ICCA Journal, 19:175—-180, 1996.
5.1.1

[10] Feng Chen, David A Koufaty, and Xiaodong Zhang. Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In Proceedings of the eleventh interna-
tional joint conference on Measurement and modeling of computer systems, SIGMETRICS ’09, pages
181–192, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-511-6. 5.4.3

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to Algo-
rithms, third edition. MIT Press, 2009. 5.4.2

[12] Cagdas Dirik and Bruce Jacob. The performance of PC solid-state disks (SSDs) as a function of
bandwidth, concurrency, device architecture, and system organization. ACM SIGARCH Computer
Architecture News, 37(3):279, June 2009. ISSN 01635964. doi: 10.1145/1555815.1555790. 5.4.3

[13] Stefan Edelkamp and Damian Sulewski. GPU Exploration of Two-Player Games with Perfect Hash
Functions. Third Annual Symposium on Combinatorial Search, AAAI:23–30, 2010. 5.4.3

[14] Richard K. Guy Elwyn R. Berlekamp, John Horton Conway. Winning ways for your mathematical
plays, Volume 3. Wellesley, Massachusetts: A. K. Peters Ltd., 2nd editio edition, 2004. ISBN ISBN
1-56881-143-8. 7

[15] H Finnsson. Cadia-player: A general game playing agent. Master’s thesis, Reykjavik University,
2007. 2.2

[16] R Gasser. Solving nine men’s Morris. Computational Intelligence, 1996. 3.1, 3.2, 4.3, 5.5

47

http://code.google.com/p/pentagoo/
http://code.google.com/p/pentagoo/
http://www.boost.org/

[17] Ralph Gasser and Informatik Eth. Applying retrograde analysis to nine men’s morris. Heuristic
Programming in Artificial Intelligence 2: the second computer olympiad, pages 161–173, 1991. 5.4.2

[18] Google Inc. google-sparsehash - An extremely memory-efficient hash_map implementation, 2011.
URL http://code.google.com/p/google-sparsehash/. 6.3.5

[19] M Heule and L Rothkrantz. Solving games - Dependence of applicable solving procedures. Science
of Computer Programming, 67(1):105–124, June 2007. ISSN 01676423. doi: 10.1016/j.scico.
2007.01.004. 3.1, 4.3, 4.4, 5, 5.3, 5.3

[20] D Knuth. An analysis of alpha-beta pruning. Artificial Intelligence, 6(4):293–326, 1975. ISSN
00043702. doi: 10.1016/0004-3702(75)90019-3. 5.1, 5.1.2

[21] R. Lake, J. Schaeffer, and P. Lu. Solving large retrograde analysis problems using a network of
workstations. Advances in Computer Chess, 7:135–162, 1994. 5.4.2, 5.4.3

[22] Latkin. PentagoAg - A C# Pentago AI, 2009. URL http://pentagoag.codeplex.com/. 6.1, 6.4.3,
6.4.3

[23] D McAllester. Conspiracy numbers for min-max search. Artificial Intelligence, 35(3):287–310, July
1988. ISSN 00043702. doi: 10.1016/0004-3702(88)90019-7. 5.2

[24] Mindtwister AB. Pentago Meisterschaft, 2010. URL http://www.pentago-meisterschaft.de/
index.html. 2

[25] Nokia Inc. Pentago for Symbian, 2011. URL http://store.ovi.com/content/39814. 6.1, 6.4.3

[26] O Patashnik. Qubic: 4× 4× 4 tic-tac-toe. Mathematics Magazine, 1980. URL http://www.jstor.
org/stable/2689613. 3.1, 4.3, 5.3

[27] Randall Munroe. xkcd Comic 832 - TicTacToe. URL http://xkcd.com/832/. 3.2

[28] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. February 2003. ISBN
0137903952. 5.1, 5.1.2, 6.3.4

[29] J Schaeffer. Conspiracy numbers. Artificial Intelligence, 43(1):67–84, April 1990. ISSN 00043702.
5.2

[30] J Schaeffer. Game over: Black to play and draw in checkers. ICGA Journal, 2007. 3.1, 3.2, 4.2, 4.3,
5.5

[31] J. Schaeffer and R. Lake. Solving the game of checkers. Games of no chance: combinatorial games
at MSRI, 1994, page 119, 1998. 3.1

[32] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world championship caliber
checkers program. Artificial Intelligence, 53(2-3):273–289, 1992. 3.1

[33] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. CHINOOK the world man-machine checkers champion.
AI Magazine, 17(1):21, 1996. 3.1

[34] J. Schaeffer, Y. Bjornsson, N. Burch, R. Lake, P. Lu, S. Sutphen, and A. Edmonton. Building the
Checkers 10-piece Endgame Database. In Advances in computer games: many games, many chal-
lenges: proceedings of the ICGA/IFIP SG16 10th Advances in Computer Games Conference (ACG 10),
November 24-27, 2003, Graz, Styria, Austria, page 193. Springer Netherlands, 2004. 3.1, 5.4.2

References 48

http://code.google.com/p/google-sparsehash/
http://pentagoag.codeplex.com/
http://www.pentago-meisterschaft.de/index.html
http://www.pentago-meisterschaft.de/index.html
http://store.ovi.com/content/39814
http://www.jstor.org/stable/2689613
http://www.jstor.org/stable/2689613
http://xkcd.com/832/

[35] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu, and S. Sutphen.
Checkers is solved. Science, 317(5844):1518, 2007. 3.1, 4.3, 5.1.3

[36] Jonathan Schaeffer and Aske Plaat. New advances in Alpha-Beta searching. In Proceedings of the
1996 ACM 24th annual conference on Computer science, CSC ’96, pages 124–130, New York, NY,
USA, 1996. ACM. ISBN 0-89791-828-2. 5.1.1

[37] Stephan Schiffel. Symmetry detection in general game playing. In Proceedings of the IJCAI-09
Workshop on General Game Playing (GIGA’09), pages 67–74, 2009. 2.2, 4.1

[38] Reza Shams, Hermann Kaindl, and Helmut Horacek. Using aspiration windows for minimax algo-
rithms. In Proceedings of the 12th international joint conference on Artificial intelligence - Volume 1,
pages 192–197, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN 1-55860-
160-0. 5.1.1

[39] Tewalds. pentagod - A pentago bot/ai, 2010. URL http://code.google.com/p/pentagod/. 6.1,
6.4.3

[40] Tom’s Hardware. Review Core-i7-990x-Extreme-Edition-Gulftown, 2011. URL http://www.
tomshardware.com/reviews/core-i7-990x-extreme-edition-gulftown,2874-6.html. 5.1.3

[41] Tony Warnock and Burton Wendroff. Search Tables in Computer Chess. ICCA Journal, 11(1), 1988.
5.1.1

[42] H. van den Herik and M. Winands. Proof-Number search and its variants. Oppositional Concepts in
Computational Intelligence, Volume 155(Studies in Computational Intelligence):91–118, 2008. 5.2,
5.2.1, 5.2.2

[43] H. Jaap van den Herik, Jos W. H. M Uiterwijk, and Jack van Rijswijck. Games solved: Now and in
the future. Artificial Intelligence, 134:277 – 311, 2002. 3.1, 3.2, 4, 4.2, 4.3, 4.3, 5

[44] Wikipedia. Pentago — Wikipedia, The Free Encyclopedia, 2011. URL http://en.wikipedia.org/
wiki/Pentago. 2

[45] Andreas Wilhelm. PentagoPP - A Java implementation of Pentago, 2008. URL http://www.avedo.
net/pentago_pp/. 6.4.3

References 49

http://code.google.com/p/pentagod/
http://www.tomshardware.com/reviews/core-i7-990x-extreme-edition-gulftown,2874-6.html
http://www.tomshardware.com/reviews/core-i7-990x-extreme-edition-gulftown,2874-6.html
http://en.wikipedia.org/wiki/Pentago
http://en.wikipedia.org/wiki/Pentago
http://www.avedo.net/pentago_pp/
http://www.avedo.net/pentago_pp/

	Introduction
	Pentago
	Rules
	Related work

	Solving games and task definition
	Historical background and motivation of solving games
	Definition of solving
	The task

	Complexity of Pentago
	State space complexity
	Game-tree size
	Conclusions on the complexity of Pentago

	Solving methods and algorithms
	Alpha-Beta Search
	Variants and improvements
	Computational costs
	Applicability onto Pentago

	Proof-Number Search
	Variants and improvements
	Applicability onto Pentago

	Threat-space Search
	Applicability onto Pentago

	Retrograde Analysis
	Computational costs
	Improvements and practical issues
	Applicability onto Pentago

	Hybrid approaches
	Conclusions

	PentagoAI
	Related AIs
	Implementation overview
	Implementation details
	BitBoards
	Move generation and execution
	Negamax Search algorithm
	Evaluation function
	Transposition Table
	Move ordering

	Observations and benchmarks
	Human versus PentagoAI
	PentagoAI versus PentagoAI
	Pentagod and others versus PentagoAI

	Conclusions
	Acknowledgments
	Appendix

