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Abstract. To leverage on KDD architectures designed for business data-
bases, original unbounded RDF data has to be transformed. We report
on a use case consisting in adaptation of linked data, around a nu-
cleus of public procurement data, for a data mining challenge event.
The generic problems addressed are: linked data sampling; (generalised)
concise bounded description extraction; propositionalisation to CSV us-
ing SPARQL SELECT; and aggregation behaviour assigned by checking
conformance to eligibility criteria formulated as SPARQL queries.

1 Introduction

The discipline of Knowledge Discovery in Databases (hereafter KDD) emerged
in early 1990s, and was characterized, among other, as a “non-trivial process of
identifying valid, novel, potentially useful and ultimately understandable patterns
from data” [1]. In comparison with other related notions such as ‘inductive in-
ference’ or ‘machine learning’, it typically has a business connotation, which is
reflected by the ‘usefulness’ and ‘comprehensibility’ attributes in the definition.
Classical KDD focuses on regularly structured data stored in (mostly relational)
databases. In contrast, ‘knowledge extraction’ from the web of linked data, which
emerged more than a decade later, usually focuses on natively graph-structured
data often derived from free or semi-structured text (such as that of Wikipedia).
Moreover, in case of RDF, the boundaries between data mining and querying are
particularly blurry. Since most of the low-level knowledge structures are already
materialized in the semantic description of data, data mining needs to concen-
trate on discovering higher level patterns in data. With this focus, data mining
methods applicable on linked data (LD) typically have to be either designed from
scratch or derived from pre-existing but specifically flavoured mining methods
(text mining, graph mining etc.). The KDD mainstream thus remains isolated
from the usage of the Linked Open Data (LOD) cloud or even LD in general.

In order to leverage on the power of scalable KDD architectures originally
designed for business (or, e.g., public sector) databases, original ‘unbounded’
RDF data has to be transformed to a suitable shape and format. We report on
an ongoing process of such transformation, aiming at designing a benchmark for
mainstream KDD technologies that could benefit from available LD. We specifi-
cally elaborate on two aspects of the transformation: data sampling (extraction



of a manageable RDF graph from the large set of interconnected data) and data
propositionalization (which brings the data within the reach of tools that cannot
handle multiple interlinked tables at a time), which includes data regularization
(making it expressible in a concise form in a conventional format such as CSV).
The transformation attempts to explore some new paths, such as a generalized
form of the so-called concise bounded description in RDF extraction; it should be
however noted that this kind of technological contribution is so far unproven to
overcome pre-existing research; therefore, an (at least) equally important aspect
of the research contribution is the nature of the core dataset used: public procure-
ment data being substantially different from traditional, mostly encyclopaedic,
linked data sources addressed in semantic data mining projects.

The paper is structured as follows. Section 2 explains the nature of the core
dataset. Section 3 and 4 are devoted to the two crucial phases of the construction
of the benchmark dataset: sampling and propositionalization. Finally, Section 5
surveys some related research and Section 6 wraps up the paper.

2 Domain and Context

The public procurement domain is fraught with numerous opportunities to cor-
ruption, while also offering a great potential for cost savings through increased
efficiency. For example, it is estimated that the public procurement market ac-
counts for 17,3 % of EU’s GDP (as of 2008) [12], hence optimization in this area,
including detection of fraud and manipulative practices, truly matters.

For this reason we started to build a benchmark dataset, primarily for the
sake of a prospective first edition of a Linked Data Mining Challenge (LDMC)
to take place this year.1 The challenge will feature

1. A descriptive task, aiming at hypotheses to be further investigated by domain
experts;

2. Two predictive tasks, specifically,
– prediction of the number of tenders submitted for a particular call
– classification of a public contract as multi-contract (conjoining good-

s/services of dissimilar nature).

The datasets prepared for the tasks of LDMC will consist of UK+US public
procurement data, interlinked to data from the Linked Open Data Cloud2 such
as DBpedia.3

3 RDF Data Sampling

The first part of preparation of a benchmark dataset for data mining on LD
consists in extracting a sample. A key question that arises when sampling linked

1 As part of the DMoLD’13 workshop, see http://keg.vse.cz/dmold2013/.
2 http://lod-cloud.net/
3 http://dbpedia.org/



data is the definition of resource representation. Due to the unbounded nature of
LD resources, there is no single or straightforward solution for determining the
boundaries of resource representation that would fit all purposes. For example,
representations meant for user interfaces commonly include resource labels. Our
goal however was to provide a resource representation suited for KDD. For this
purpose of which we came up with a generalised version of the established notion
of concise bounded description (CBD). CBD [13] defines the scope of resource
representation as including the outbound triples, i.e., those having the resource in
the subject position, while for every such triple having either a blank node or an
instance of rdf:Statement in its object position the CBD of its object is included
recursively. There are several CBD variations such as the symmetric concise
bounded description (SCBD) that adds inbound triples for which the described
resource is used in the object position. The specification of CBD acknowledges
that the description may span over multiple resources, however it does so in a
rudimentary way by overloading the semantics of blank nodes and reified triples
to delimit the boundaries of the description.

For many practical tasks a higher-level view of ‘entities’, rather than that
of individual resources an entity may be composed of, is more appropriate.
Hausenblas [3] defines an entity as “a thematic view on resources across con-
nectors, materialised through hyperlinks” while “data belonging to an entity is
potentially distributed over several data sources.” This approach is in line with
the SPARQL 1.1 Specification [2], which notes that the results of calling the
SPARQL DESCRIBE query form, traditionally implemented as some form of CBD,
“may include information about other resources.”

To reflect this intuition we propose the generalised concise bounded descrip-
tion (GCBD), which extends the scope of CBD to cover all resources that are
marked up as ‘dependent’ on the described resource (entity). GCBD is a repre-
sentation of a resource that includes both outbound triples and inbound triples,
but adds such triples recursively for all dependent resources, i.e., resources that
carry data specific to an entity. This includes both resources identified with
blank nodes and instances of classes a priori annotated as dependent. The de-
pendency can be detected either at syntactical level, e.g., for triples reified using
rdf:Statement, or at semantic level, e.g., for reified n-ary relationships identified
in a manual or semi-automatic manner, for example, using the PURO ontolog-
ical backrgound model [14] (where the annotation is assumed to be carried out
at the level of vocabulary using a Protégé plugin). The choice of classes to an-
notate as dependent thus proceeds from a particular use case; it may include a
common core, such as classes from the RDF namespace, and a use-case-specific
part containing annotations of domain ontologies and vocabularies.

GCBD can be implemented as a SPARQL CONSTRUCT query with a transitive
subquery that expands the description through dependent resources. Such class
annotations are loaded into a separate named graph that is then referenced in
the sampling queries. A straightforward way would be to attach annotations
directly to RDF classes; however, since the type of instances may not be present
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Fig. 1: Generalised concise bounded description and linked data

in source data (and we do not want to materialize it via rdfs:range inference)
we opted in for attaching the annotations through properties.

Sampling the resource representations for the benchmark dataset is then
straightforward. The sampler is given a SPARQL endpoint URL, a SPARQL
SELECT query template to retrieve the resources of interest, a list of URIs of
named graphs to sample data from, a target named graph URI, access creden-
tials to allow SPARQL Update operations, the sample size and the preferred lan-
guage tag to be used for sampling the labels. After checking if any data matches
the provided requirements, the sampler extracts a randomly selected subset of
resources. Consequently, for each resource in the subset its entity description is
inserted into the target named graph via a SPARQL Update request.

Since we are dealing with linked data, the sample data retrieved via a SPARQL
endpoint may be combined with data available through resolving linked URIs
of resources from external datasets. In the course of sampling, we only collect
links already present in linksets created by executing Silk4 linkage rules inside
the ODCleanStore framework.5 We issue a SPARQL query that computes an
intersection of the sample data with relevant linksets and produces a list of ex-
ternal URIs, which may be optionally narrowed down to include only URIs from
domains of interest. Linked resources on the list are harvested using LDSpider,6

performing a breadth-first crawl, and loaded into the sample named graph. The
extent of GCBD and associated linked data is depicted in figure 1.

4 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
5 http://sourceforge.net/p/odcleanstore
6 https://code.google.com/p/ldspider/



4 Data Propositionalization

Propositionalization in KDD means transforming relational data into a single
table with a set of propositions in the form of attribute-value pairs [7]; some
structural information is thus lost in aggregations and some relationships in data
discarded. Owing to the malleable nature of RDF and flexibility of SPARQL,
linked data can be propositionalized via the SPARQL SELECT query form, allow-
ing to transform graph-shaped data into the tabular format [4], which can then
be exported in the comma-separated values (CSV)7 data format. Such a query,
containing a GROUP BY clause on variables binding the described resource, can
be built programmatically based on the dataset structure previously revealed by
exploratory SPARQL queries. For each property a subquery is created that spec-
ifies the handling of its object values and their aggregation behaviour according
to eligibility criteria (formalized as SPARQL queries, too).

The conformance of a property with the criteria is schema-agnostic: rather
than from the property definition in its vocabulary, it is empirically inferred
from the way the property is used in the processed dataset, primarily from
its cardinality (assuming it is higher than one). Basic aggregations may be ac-
complished with in-built SPARQL aggregates, including COUNT, SUM, MIN, MAX,
AVG and GROUP CONCAT. SPARQL SAMPLE selects a random binding in a non-
deterministic fashion, which makes it inappropriate for our purposes. With the
exception of COUNT and GROUP CONCAT, SPARQL aggregations are intended to be
applied primarily on numeric values, therefore the eligibility criterion for such
aggregations contains a FILTER with the isNumeric function. A simple mea-
sure to fold multiple values into one is to choose a ‘default’ or ‘preferred’ value
(with the SPARQL IF functional form or COALESCE function). For example, in
multilingual datasets such approach may be used to pick a literal value with a
preferred language tag, in the case of labels.

While the rich structure of LD makes automation of aggregation difficult,
it can be, on the other hand, exploited for ‘smart’ aggregations. For instance,
generalization to a common broader concept may be applied if the property
range values come from hierarchically structured taxonomies or partonomies
(e.g., skos:ConceptSchemes) [8]. Resource descriptions can also be expanded
through the linked resources’ URI references, since if a property has a non-literal
range, the aggregation behaviour may be recursively applied to its object val-
ues; for example, n-ary relationships can be decomposed into multiple columns.
A question is then how the graph traversal depth should be set, especially when
it comes to traversing linked external resources. In our case, the traversal bound-
aries are established by the scope of the sample (as defined using GCBD) or can
be set arbitrarily when crawling the linked resources. Properties could also be
equipped with manually selected aggregation behaviour expressed in the SPIN
SPARQL syntax,8 which supports basic SPARQL aggregations and allows to ex-
press arbitrary queries.This approach opens an opportunity for further research

7 http://tools.ietf.org/html/rfc4180
8 http://spinrdf.org/sp.html



on the use of machine learning to assign the aggregation behaviour automati-
cally. Another challenge requiring further research is to specify how to handle
properties with heterogenous ranges (e.g., mixing literal and URI references).

5 Related Research

The related research can be divided into data mining approaches applied to
public procurement data on the (semantic) web and data mining on semantic
web data in general.

Even though there seems to be much to gain by applying data mining meth-
ods in the procurement domain in connection with LD, relatively few projects ex-
plored it. One such undertaking is the Linked Open Tenders Electronic (LOTED)
project [15]. LOTED triplified data from RSS feeds published by Tenders Elec-
tronic Daily, an European Commission portal aggregating public procurement
data from the EU member states. After converting the data to RDF and linking
it, LOTED was able to apply lightweight data analysis methods and showcase
interactive visualizations. Furthermore, Monteiro [9] applied data mining for
outlier detection to spot fraud in Portuguese public procurement. However, in
this case the data used were structured in XML and it took into account only a
limited subset of data including contract description and award price.

In terms of applying semantic data in data mining, Liu [8] provided a gen-
eral outline for incorporating semantic technologies in data mining, such as with
semantic annotation. Kiefer et al. [6] proposed SPARQL-ML, an approach to
data mining on semantic web data focused on statistical relational learning
and SPARQL. Similar direction is followed by the RMonto tool [11], an upper
layer for the popular RapidMiner tool. It allows to apply ontologies as back-
ground knowledge for several mining tasks, possibly combining relational and
propositional subtasks. Another implementation of RDF data pre-processing for
RapidMiner [5]. Finally, Paulheim & Fürnkranz [10] suggested an automated
method for data enrichment from Linked Data, pipelining entity recognition,
feature generation and feature selection. These generic projects are, unarguably,
technologically more mature than our effort, primarily launched as rapid and
self-governed means for building a concrete challenge dataset; we thus assume
that such systems are likely to be directly applicable on the RDF modality of
our procurement data and would achieve propositionalization by themselves if
participating in the Linked Data Mining Challenge. Our effort is to a large de-
gree orthogonal to the research of semantic web data mining algorithms proper;
it strives to build a single resource containing the same data objects in multiple
levels of complexity, thus potentially allowing relational DM tools to compete
with propositional ones. A relatively well structured real-world dataset was cho-
sen so as not to disqualify the non-relational (but highly scalable) tools from the
beginning.



6 Conclusions

In general, there are two ways to facilitate data mining on linked data. First,
transform data to a form more familiar to the existing data mining tools, thus
lowering the barrier to applying established data mining methods. Second, to
move the KDD tools closer to linked data, so that they can work with it na-
tively. Although we presume that a more attractive opportunity lies, in long
term, with data mining tools exploiting the rich structures of graph-shaped data
(e.g., RDF) directly, we selected to explore the first approach. While the trans-
formation of linked data to tabular format entails serious information loss, this
approach has at least two positive aspects: 1) efficient processing of data that
is already regularly structured (such as the core LDMC dataset harvested from
the centralized public contract servers) is preserved, and, 2) business analysts
can interact with familiar tools and thus fully exploit their competence.

In the above-described work we experimented with transforming highly-
relational linked data into a propositional dataset. Such transformation is, neces-
sarily, a lossy process that ‘downgrades’ RDF into a tabular format, while giving
up some of the structural information and materialized relationships. This ap-
proach is a subject to trade-off between the extent of data loss and ease of use
with existing data mining software. Consequently, our further work needs to val-
idate whether such approach yields data that is easily amenable to data mining
tools or if it produces data crippled to such an extent that few insights may be
discovered in it. We also plan to compare the added value of GCBD compared
to CBD, applied in the extraction phase, in terms of the mining result quality.
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