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Training Complexity: Number of Preferences

we have d binary preferences for items X = {x1, …, xc}

 total ranking:

 multi-partite ranking (k partitions with pi items each):

 bi-partite ranking (with p and c-p items):
(e.g., multi-label classification)

 top rank: 
(e.g. classification)

d=
c⋅c−1

2

d=c−1

d= p⋅c− p

d=∑
i≠ j

pi⋅p j
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Training Complexity of Relational Approach

We generate one training example for each binary preference
 complexity of the binary base learner is f (d)
 e.g.                       for a learner with quadratic complexity

Single-set ranking:
 We have c items with ranking information
 Total complexity f (d) depends on the density of the ranking information
 quadratic in c for (almost) full rankings

 linear in c for bipartite rankings with a constant p

Multi-set ranking:
 We have n sets of c items with ranking information
 label ranking is a special case of this scenario
 object ranking where multiple sets of objects are ranked is also a special case

 Total complexity is 
              for approaches where all preferences are learned jointly

 can be more efficient if f is super-linear and problem is decomposed into smaller subproblems 
(pairwise label ranking)

f d =O d 2

f n⋅d 
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Example: Complexity of SVMRank

 Reformulation as Binary SVM [Herbrich et al. 2000, Joachims 2002]

 d constraints of the form 
 d slack variables 

Total complexity: f (d)
where f (.) is the complexity for solving the quadratic program
 super-linear for conventional training algorithms like SMO, SVM-light, etc.

 Reformulation as Structural SVM [Joachims 2006]

 2d constraints of the form 
 1 slack variable ξ

Total complexity: d
 Cutting-Plane algorithm:
 iterative algorithm for solving the above problem in linear time

 iteratively find an appropriate subset of the constraints
 convergence independent of d

 further optimization could even yield a total complexity of 

wT x i−x j ≥1−ij

ij

1
d
⋅wT ∑

x ix j

cijx i−x j≥
1
d
⋅∑
x ix j

cij−

min n⋅logn , d 
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Example: Complexity of Pairwise Label Ranking

n examples, c classes, d preferences in total,             preferences on average

 decomposed into               binary problems

 each problem  has       examples 

→ total training complexity

 upper bounds are tight if f is linear

 big savings are possible super-linear complexities  f (n) = no (o > 1)

 distributing the same number of examples over a larger number of smaller 
dataset is more efficient 

c⋅c−1

2
nij ∑

ij

nij=d

∑
ij

f nij ≤ d⋅f n ≤ f d = f ∑ij

nij 

d=
d
n

o1∑ ni
o∑ ni 

o

[Hüllermeier et al. 2008]
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Example: Complexity of Pairwise Classification

 Pairwise classification can be considered as a label ranking problem
 for each example the correct class is preferred over all other classes

→ Total training complexity 

For comparison:

 Constraint Classification:
 Utility-based approach that learns one theory from all                examples

Total training complexity:

 One-Vs-All Classification:
 different class binarization that learns one theory for each class

Total training complexity: 

≤c−1⋅ f n

c⋅f n

c−1⋅n

f c−1⋅n 
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Prediction Complexity

f  complexity for evaluating a single classifier, c items to rank

 Utility-Based Approaches:
 compute the utilities for each item: 
 sort the items according to utility: 

 

 Relational Approaches:
 compute all pairwise predictions:
 aggregate them into an overall ranking   
 method-dependent complexity

 Can we do better?

 

c⋅ f

c⋅log c

c⋅c−1

2
⋅ f

O c⋅logc  f 

O c2
⋅ f 
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Aggregation is NP-Hard

 The key problem with aggregation is that the learned preference function 
may not be transitive.
 Thus, a total ordering will violate some constraints

Aggregation Problem:
 Find the total order that violates the least number of predicted preferences.

 equivalent to the Feedback Arc Set problem for tournaments
 What is the minimum number of edges in a directed graph that need to be 

inverted so that the graph is acyclic?

 This is NP-hard [Alon 2006]
 but there are approximation algorithms with guarantees

[Cohen et al. 1999, Balcan et al. 2007, Ailon & Mohri 2008, Mathieu & Schudy, to appear]

 For example, [Ailon et al. 2008]
 propose Kwiksort, a straight-forward adaption of Quicksort to the aggregation problem
 prove that it is a randomized expected 3-approximation algorithm
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Aggregating Pairwise Predictions

 Aggregate the predictions                   of the binary classifiers into a final 
ranking by computing a score si for each class I

 Voting: count the number of predictions for each class
             (number of points in a tournament)

 Weighted Voting: weight the predictions by their probability

 General Pairwise Coupling problem  [Hastie & Tibshirani 1998; Wu, Lin, Weng 2004]

 Given                                         for all i, j 

 Find             for all i 
 Can be turned into a system of linear equations

si=∑
j=1

c

 {P i j0.5}  {x }={1 if x= true 
0 if x= false 

P i j

si=∑
j=1

c

P i j

P i j=P i∣i , j

P i



ECAI 2012 Tutorial on Preference Learning | Part 4 | J. Fürnkranz & E. Hüllermeier 11

Pairwise Classification & Ranking Loss
[Hüllermeier & Fürnkranz, 2010]

➔ Weighted Voting optimizes Spearman Rank Correlation 
 assuming that pairwise probabilities are estimated correctly 

➔ Kendall's Tau can in principle be optimized
 NP-hard (feedback arc set problem)

 Different ways of combining the predictions of the binary classifiers 
optimize different loss functions
 without the need for re-training of the binary classifiers!

 However, not all loss functions can be optimized
 e.g., 0/1 loss for rankings cannot be optimized
 or in general the probability distribution over the rankings cannot be 

recovered from pairwise information
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Speeding Up Classification Time

 Training is efficient, but pairwise classification still has to 
 store a quadratic number of classifiers in memory
 query all of them for predicting a class

Key Insight: 
 Not all comparisons are needed for determining the winning class

 More precisely:
 If class X has a total score of s
 and no other class can achieve an equal score
→ we can predict X even if not all comparisons have been made

Algorithmic idea:
 Keep track of the loss points 
 if class with smallest loss has played all games, it is the winner
→ focus on the class with the smallest loss 

 Can be easily generalized from voting (win/loss) to weighted voting 
(e.g., estimated pairwise win probabilities)
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Quick Weighted Voting
[Park & Fürnkranz, ECML 2007]

select class with
fewest losses

pair it with 
unplayed class 

with fewest losses

evaluate the 
classifier and
update loss 

statistics

we're done if no such
class can be found
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Decision-Directed Acyclic Graphs
[Platt, Cristianini & Shawe-Taylor, NIPS 2000]

DDAGS
 construct a fixed decoding scheme 

with c−1 decisions
 unclear what loss function is optimized

Comparison to QWeighted
 DDAGs slightly faster
 but considerably less accurate
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Average Number of Comparisons
for QWeighted algorithm
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