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TWO WAYS OF REPRESENTING PREFERENCES 
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 Utility-based approach: Evaluating single alternatives 

 
 
 

 Relational approach: Comparing pairs of alternatives 

weak preference 

strict preference 

indifference 

incomparability 
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UTILITY FUNCTIONS 
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 A utility function assigns a utility degree (typically a real number or an 
ordinal degree) to each alternative. 

 Learning such a function essentially comes down to solving an (ordinal) 
regression problem. 

 Often additional conditions, e.g., due to bounded utility ranges or 
monotonicity properties ( learning monotone models) 

 

 A utility function induces a ranking (total order), but not the other way 
around!  

 But it can not represent more general relations, e.g., a partial order! 

 The feedback can be direct (exemplary utility degrees given) or indirect 
(inequality induced by order relation): 

absolute feedback relative feedback 



ECAI 2012 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier 

PREDICTING UTILITIES ON ORDINAL SCALES 
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(Graded) multilabel classification 

Collaborative filtering 

Exploiting dependencies 
(correlations) between items 
(labels, products, …) 

 see work in MLC and RecSys communities 
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LEARNING UTILITY FUNCTIONS FROM INDIRECT FEEDBACK 
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 A (latent) utility function can also be used to solve ranking problems, 
such as instance, object or label ranking 
 ranking by (estimated) utility degrees (scores) 

Instance ranking 

Absolute preferences given, so in 
principle an ordinal regression 
problem. However, the goal is to 
maximize ranking instead of 
classification performance.  

Object ranking 
Find a utility function that agrees 
as much as possible with the 
preference information in the 
sense that, for most examples,  
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RANKING VERSUS CLASSIFICATION 
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positive negative 

A ranker can be turned into a classifier via thresholding: 

A good classifier is not necessarily a good ranker: 

2 classification but 
10 ranking errors 

   learning AUC-optimizing scoring classifiers ! 
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RankSVM AND RELATED METHODS (BIPARTITE CASE) 

 The idea is to minimize a convex upper bound on the empirical ranking 
error over a class of (kernelized) ranking functions: 
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convex upper bound on 

regularizer check for all 
positive/negative pairs 

 the training set scales QUADRATICALLY with the number of data points!  
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RankSVM AND RELATED METHODS (BIPARTITE CASE) 

 The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachimes 2002]: 
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hinge loss 

regularizer 

reproducing kernel 
Hilbert space (RKHS) with 

kernel K 

 learning comes down to solving a QP problem 
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RankSVM AND RELATED METHODS (BIPARTITE CASE) 

 The bipartite RankBoost algorithm [Freund et al. 2003]: 
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class of linear 
combinations of base 

functions 

 learning by means of boosting techniques 
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LEARNING UTILITY FUNCTIONS FOR LABEL RANKING 
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REDUCTION TO BINARY CLASSIFICATION [Har-Peled et al. 2002]  
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Each pairwise comparison is turned into a binary classification 
example in a high-dimensional space! 

positive example in the new instance space (m x k)-dimensional weight vector 
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LEARNING BINARY PREFERENCE RELATIONS 

 Learning binary preferences (in the form of predicates P(x,y)) is often 
simpler, especially if the training information is given in this form, too.  

 However, it implies an additional step, namely extracting a ranking from a 
(predicted) preference relation. 

 This step is not always trivial, since a predicted preference relation may 
exhibit inconsistencies and may not suggest a unique ranking in an 
unequivocal way. 
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1 1 0 0 

0 0 1 0 

0 1 0 0 

1 0 1 1 

1 1 1 0 

inference 
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OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99] 

 In a first step, a binary preference function PREF is constructed;  
PREF(x,y) 2 [0,1] is a measure of the certainty that x should be ranked 

before y, and PREF(x,y)=1- PREF(y,x). 

 This function is expressed as a linear combination of base preference 
functions: 

 

 

 The weights can be learned, for example, by means of the weighted 
majority algorithm [Littlestone & Warmuth 94].  

 In a second step, a total order is derived, which is as much as possible in 
agreement with the binary preference relation.  

14 
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OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99] 

 The weighted feedback arc set problem: Find a permutation ¼ such that 
 
 
 
becomes minimal. 
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0.7 0.9 

0.6 

0.6 

0.8 0.5 

0.3 

0.1 0.6 

0.4 

0.5 

0.8 

cost = 0.1+0.6+0.8+0.5+0.3+0.4 = 2.7  

0.1 
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OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99] 

 Since this is an NP-hard problem, it is solved heuristically.  
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Input:  

Output: 

let 

for               do 

while          do 

         let 

         let 

 

         for          do 

endwhile 

 The algorithm successively chooses nodes having maximal „net-flow“ within the 
remaining subgraph.  

  It can be shown to provide a 2-approximation to the optimal solution. 
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LEARNING BY PAIRWISE COMPARISON (LPC) [Hüllermeier et al. 2008] 
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X1 X2 X3 X4 preferences class 

0.34 0 10 174 A Â B, B Â C, C Â D 1 

1.45 0 32 277 B Â C 

1.22 1 46 421 B Â D, B Â A, C Â D, A Â C 0 

0.74 1 25 165 C Â A, C Â D, A Â B 1 

0.95 1 72 273 B Â D, A Â D,  

1.04 0 33 158 D Â A, A Â B, C Â B, A Â C 1 

LEARNING BY PAIRWISE COMPARISON (LPC) [Hüllermeier et al. 2008] 

Training data (for the label pair A and B): 

X1 X2 X3 X4 class 

0.34 0 10 174 1 

1.22 1 46 421 0 

0.74 1 25 165 1 

1.04 0 33 158 1 
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At prediction time, a query instance is submitted to all models, and 
the predictions are combined into a binary preference relation: 

A B C D 

A 0.3 0.8 0.4 

B 0.7 0.7 0.9 

C 0.2 0.3 0.3 

D 0.6 0.1 0.7 

LEARNING BY PAIRWISE COMPARISON (LPC) [Hüllermeier et al. 2008] 
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At prediction time, a query instance is submitted to all models, and 
the predictions are combined into a binary preference relation: 

A B C D 

A 0.3 0.8 0.4 1.5 

B 0.7 0.7 0.9 2.3 

C 0.2 0.3 0.3 0.8 

D 0.6 0.1 0.7 1.4 

From this relation, a ranking is derived by means of a ranking procedure. 
In the simplest case, this is done by sorting the labels according to their 
sum of weighted votes.  

B Â A Â D Â C  

LEARNING BY PAIRWISE COMPARISON (LPC) [Hüllermeier et al. 2008] 
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DECOMPOSITION IN LEARNING RANKING FUNCTIONS 

 A ranking function (mapping sets to permutations) is represented as  

 an aggregation of individual utilitiy degrees (argsort), or  

 as an aggregation of pairwise preferences.  

 The corresponding univariate resp. bivariate models can be trained  

 independently of each other, or  

 simultaneously (in a coordinated manner).  

 This also depends on the question whether the target loss function 
(defined on rankings) is decomposable, too.  

 Information retrieval terminology:  

 „pointwise learning“: independent training of univariate models, 

  „pairwise learning“: independent training of bivariate models, 

  „listwise learning“: simultaneous learning of univariate models  
(direct minimization of a ranking loss) 

21 
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STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007] 

 Rankings, multilabel classifications, etc. can be seen as specific types of 
structured (as opposed to scalar) outputs.  

 Discriminative structured prediction algorithms infer a joint scoring 
function on input-output pairs and, for a given input, predict the output 
that maximises this scoring function. 

 Joint feature map and scoring function  

 

 

 The learning problem consists of estimating the weight vector, e.g., using 
structural risk minimization.  

 Prediction requires solving a decoding problem: 

23 



ECAI 2012 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier 

 Preferences are expressed through inequalities on inner products: 

 

 

 

 

 

 

 The potentially huge number of constraints cannot be handled explicitly 
and calls for specific techniques (such as cutting plane optimization) 

24 

loss function 

STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007] 
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MODEL-BASED METHODS FOR RANKING 

 By model-based approaches to ranking we subsume methods that 

 proceed from specific assumptions about the possible rankings 
(representation bias), or  

 make use of probabilistic models for rankings (parametrized probability 
distributions on the set of rankings). 

 

 In the following, we shall see examples of both type: 
 Restriction to lexicographic preferences 

 Conditional preference networks (CP-nets) 

 Label ranking using the Plackett-Luce model 

26 
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LEARNING LEXICOGRAPHIC PREFERENCE MODELS [Yaman et al. 2008]  

 Suppose that objects are represented as feature vectors of length m, and 
that each attribute has k values. 

 For n=km objects, there are n! permutations (rankings).  

 A lexicographic order is uniquely determined by 

 a total order of the attributes 

 a total order of each attribute domain 

 Example: Four binary attributes (m=4, k=2) 

 there are 16! ¼ 2 ¢ 1013 rankings  

 but only (24) ¢ 4! = 384 of them can be expressed in terms of a lexicographic order 

 [Yaman et al. 2008] present a learning algorithm that explictly maintains 
the version space, i.e., the attribute-orders compatible with all pairwise 
preferences seen so far (assuming binary attributes with 1 preferred to 0). 
Predictions are derived based on the „votes“ of the consistent models. 

27 
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LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010] 
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main dish 

drink restaurant 

meat > veggie > fish 

meat:   red wine   > white wine 

veggie: red wine   > white wine 

fish:   white wine > red wine 

meat:   Italian > Chinese 

veggie: Chinese > Italian 

fish:   Chinese > Italian 

Compact representation of a 
partial order relation, exploiting 
conditional independence of 
preferences on attribute values. 

Induces partial order relation, e.g., 

(meat, red wine, Italian)   >  (meat, white wine, Chinese) 

(fish, white wine, Chinese) >  (fish, red wine, Chinese) 

(meat, white wine, Italian) ?  (meat, red wine, Chinese) 

label ranking problem 
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LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010] 
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main dish 

drink restaurant 

meat > veggie > fish 

meat:   red wine   > white wine 

veggie: red wine   > white wine 

fish:   white wine > red wine 

meat:   Italian > Chinese 

veggie: Chinese > Italian 

fish:   Chinese > Italian 

Compact representation of a 
partial order relation, exploiting 
conditional independence of 
preferences on attribute values. 

 

(meat, red wine, Italian)       > (veggie, red wine, Italian)  

(fish, whited wine, Chinease)   > (veggie, red wine, Chinease) 

(veggie, whited wine, Chinease) > (veggie, red wine, Italian)  

            …                   …               … 

Training data: 
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PROBABILISTIC MODELS IN LABEL RANKING 

permutation probability 

0.2 

0 

0.1 

0.4 

0.1 

0 
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LABEL RANKING WITH THE PLACKETT-LUCE MODEL [Cheng et al. 2010c] 
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ML ESTIMATION OF THE WEIGHT VECTOR 
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can be seen as a log-linear 
utility function of i-th label 

convex function, 
maximization 
through gradient 
ascent 
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LOCAL PREFERENCE AGGREGATION 
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 Estimation of a piecewise constant model (determining proper subregions of 
the instance space and considering observations therein as representative).  

Nearest Neighbor Estimation Decision Tree Learning 
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LOCAL PREFERENCE AGGREGATION 
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 Finding the generalized median: 

 

 

 

 If Kendall‘s tau is used as a distance, the generalized median is called the 
Kemendy-optimal ranking. Finding this ranking is an NP-hard problem 
(weighted feedback arc set tournament). 

 

 In the case of Spearman‘s rho (sum of squared rank distances), the 
problem can easily be solved through Borda count.  
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LOCAL PREFERENCE AGGREGATION 
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 Another approach is to assume the neighbored rankings to be generated 
by a locally constant probability distribution, to estimate the parameters 
of this distribution, and then to predict the mode. 

 Has been done, for example, for the Plackett-Luce model and the Mallows 
model, both for complete rankings and pairwise comparisons[Cheng et al. 
2009, 2010c]. 

 

Plackett-Luce 

Mallows 
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ML ESTIMATION FOR THE MALLOWS MODEL [Cheng et al. 09]  
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ML 
estimation 

center ranking 

spread/precision 

set of (local) preferences 

 Similar methods can also be used for other purposes, for example clustering 
using mixtures of probability distributions [Murphey & Martin 2003, Lu & 
Boutilier 2011].  
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SUMMARY OF MAIN ALGORITHMIC PRINCIPLES 

 Reduction of ranking to (binary) classification (e.g., constraint 
classification, LPC) 

 Direct optimization of (regularized) smooth approximation of ranking 
losses (RankSVM, RankBoost, …) 

 Structured output prediction, learning joint scoring („matching“) 
function 

 Learning parametrized probabilistic ranking models (e.g., Mallows, 
Plackett-Luce) 

 Restricted model classes, fitting parametrized models such as 
lexicographic orders or CP nets. 

 Local preference aggregation (lazy learning, recursive partitioning) 
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