AGENDA

- 1. Preference Learning Tasks
- Performance Assessment and Loss Functions
- 3. Preference Learning Techniques
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

TWO WAYS OF REPRESENTING PREFERENCES

Utility-based approach: Evaluating single alternatives

$$U: \mathcal{A} \longrightarrow \mathbb{R}$$

 $a \succ b \Leftrightarrow a \text{ is not worse than } b$

Relational approach: Comparing pairs of alternatives

$$a \succ b \Leftrightarrow (a \succeq b) \land (b \not\succeq a)$$
 strict preference $a \sim b \Leftrightarrow (a \succeq b) \land (b \succeq a)$ indifference $a \perp b \Leftrightarrow (a \not\succeq b) \land (b \not\succeq a)$ incomparability

weak preference

UTILITY FUNCTIONS

- A utility function assigns a utility degree (typically a real number or an ordinal degree) to each alternative.
- Learning such a function essentially comes down to solving an (ordinal) regression problem.
- Often additional conditions, e.g., due to bounded utility ranges or monotonicity properties (→ learning monotone models)
- A utility function induces a ranking (total order), but not the other way around!
- But it can not represent more general relations, e.g., a partial order!
- The **feedback** can be **direct** (exemplary utility degrees given) or **indirect** (inequality induced by order relation):

$$(m{x},u) \ \Rightarrow \ U(m{x}) pprox u, \qquad \ m{x} \succ m{y} \ \Leftrightarrow \ U(m{x}) > U(m{y})$$
 absolute feedback relative feedback

PREDICTING UTILITIES ON ORDINAL SCALES

(Graded) multilabel classification

X1	X2	ХЗ	Х4	Α	В	С	D
0.34	0	10	174		+	++	0
1.45	0	32	277	0	++		+
1.22	1	46	421			0	+
0.74	1	25	165	0	+	+	++
0.95	1	72	273	+	0	++	
1.04	0	33	158	+	+	++	

Collaborative filtering

	P1	P2	Р3	 P38	 P88	P89	P90
U1	1		4			3	
U2		2	2		 1		
U46	?	2	?	 ?	 ?	?	4
U98	5				 4		
U99			1			2	

Exploiting dependencies (correlations) between items (labels, products, ...)

→ see work in MLC and RecSys communities

LEARNING UTILITY FUNCTIONS FROM INDIRECT FEEDBACK

- A (latent) utility function can also be used to solve ranking problems, such as instance, object or label ranking
 - → ranking by (estimated) utility degrees (scores)

Object ranking

$$(0.74, 1, 25, 165) \succ (0.45, 0, 35, 155)$$

 $(0.47, 1, 46, 183) \succ (0.57, 1, 61, 177)$
 $(0.25, 0, 26, 199) \succ (0.73, 0, 46, 185)$
 $(0.95, 0, 73, 133) \succ (0.25, 1, 35, 153)$

Find a utility function that agrees as much as possible with the preference information in the sense that, for most examples,

$$\boldsymbol{x}_i \succ \boldsymbol{y}_i \quad \Leftrightarrow \quad U(\boldsymbol{x}_i) > U(\boldsymbol{y}_i)$$

Instance ranking

X1	X2	Х3	X4	class
0.34	0	10	174	
1.45	0	32	277	0
1.22	1	46	421	
0.74	1	25	165	++
0.95	1	72	273	+

 $(0.68, 1, 55, 147) \succ (0.67, 0, 63, 182)$

classification performance.

RANKING VERSUS CLASSIFICATION

A ranker can be turned into a classifier via thresholding:

A good classifier is not necessarily a good ranker:

→ learning **AUC-optimizing** scoring classifiers!

RankSVM AND RELATED METHODS (BIPARTITE CASE)

 The idea is to minimize a convex upper bound on the empirical ranking error over a class of (kernelized) ranking functions:

$$f^* \in \arg\min_{f \in \mathcal{F}} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} L(f, \boldsymbol{x}, \boldsymbol{x}') + \lambda \cdot R(f) \right\}$$
 check for all regularizer positive/negative pairs

→ the training set scales QUADRATICALLY with the number of data points!

RankSVM AND RELATED METHODS (BIPARTITE CASE)

The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachimes 2002]:

→ learning comes down to solving a QP problem

RankSVM AND RELATED METHODS (BIPARTITE CASE)

The bipartite RankBoost algorithm [Freund et al. 2003]:

$$f^* \in \arg\min_{f \in \mathcal{L}(\mathcal{F}_{base})} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \exp\left(-(f(\boldsymbol{x}) - f(\boldsymbol{x}'))\right) \right\}$$
 class of linear combinations of base functions

→ learning by means of boosting techniques

LEARNING UTILITY FUNCTIONS FOR LABEL RANKING

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \dots, y_k\}$, from exemplary pairwise preferences $y_i \succ_{\boldsymbol{x}} y_j$.

Can be tackled by learning utility functions $U_1(\cdot), \ldots, U_k(\cdot)$ that are in appropriate agreement with the preferences in the training data. Given a new query x, the labels are ranked according to utility degrees, i.e., a permutation π is predicted such that

$$U_{\pi^{-1}(1)}(\boldsymbol{x}) > U_{\pi^{-1}(2)}(\boldsymbol{x}) > \ldots > U_{\pi^{-1}(k)}(\boldsymbol{x})$$

REDUCTION TO BINARY CLASSIFICATION [Har-Peled et al. 2002]

Proceeding from linear utility functions

$$U_i(\mathbf{x}) = \mathbf{w}_i \times \mathbf{x} = (w_{i,1}, w_{i,2}, \dots, w_{i,m})(x_1, x_2, \dots, x_m)^{\top},$$

a binary preference $y_i \succ_{\boldsymbol{x}} y_j$ is equivalent to

$$U_i(\boldsymbol{x}) > U_j(\boldsymbol{x}) \Leftrightarrow \boldsymbol{w}_i \times \boldsymbol{x} > \boldsymbol{w}_j \times \boldsymbol{x} \Leftrightarrow (\boldsymbol{w}_i - \boldsymbol{w}_j) \times \boldsymbol{x} > 0$$

and can be modeled as a linear constraint

$$(\boldsymbol{w}_1, \boldsymbol{w}_2 \dots \boldsymbol{w}_k) \times (0 \dots 0 \ \boldsymbol{x} \ 0 \dots 0 \ - \boldsymbol{x} \ 0 \dots 0)^{\top} > 0$$

(m x k)-dimensional weight vector positive example in the new instance space

Each **pairwise comparison** is turned into a **binary classification** example in a high-dimensional space!

AGENDA

- 1. Preference Learning Tasks
- Performance Assessment and Loss Functions
- 3. Preference Learning Techniques
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

LEARNING BINARY PREFERENCE RELATIONS

- Learning binary preferences (in the form of predicates P(x,y)) is often simpler, especially if the training information is given in this form, too.
- However, it implies an additional step, namely extracting a ranking from a (predicted) preference relation.
- This step is not always trivial, since a predicted preference relation may exhibit inconsistencies and may not suggest a unique ranking in an unequivocal way.

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

- In a first step, a **binary preference function** PREF is constructed; $PREF(\mathbf{x},\mathbf{y}) \in [0,1]$ is a measure of the certainty that \mathbf{x} should be ranked before \mathbf{y} , and $PREF(\mathbf{x},\mathbf{y}) = 1$ $PREF(\mathbf{y},\mathbf{x})$.
- This function is expressed as a linear combination of base preference functions:

$$PREF(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N} w_i \cdot R_i(\boldsymbol{x}, \boldsymbol{y})$$

- The weights can be learned, for example, by means of the weighted majority algorithm [Littlestone & Warmuth 94].
- In a second step, a total order is derived, which is as much as possible in agreement with the binary preference relation.

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

• The weighted feedback arc set problem: Find a permutation π such that

$$\sum_{(\boldsymbol{x},\boldsymbol{y}):\pi(\boldsymbol{x})>\pi(\boldsymbol{y})} \text{PREF}(\boldsymbol{x},\boldsymbol{y})$$

becomes minimal.

cost = 0.1 + 0.6 + 0.8 + 0.5 + 0.3 + 0.4 = 2.7

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

Since this is an NP-hard problem, it is solved heuristically.

```
Input: an instance set X; a preference function PREF Output: an approximately optimal ordering function \hat{\rho} let V=X for each v\in V do while V is non-empty do \pi(v)=\sum_{u\in V}\operatorname{PREF}(v,u)-\sum_{u\in V}\operatorname{PREF}(u,v) let t=\arg\max_{u\in V}\pi(u) let \hat{\rho}(t)=|V| V=V-\{t\} for each v\in V do \pi(v)=\pi(v)+\operatorname{PREF}(t,v)-\operatorname{PREF}(v,t) endwhile
```

- The algorithm successively chooses nodes having **maximal** "net-flow" within the remaining subgraph.
- It can be shown to provide a 2-approximation to the optimal solution.

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \dots, y_k\}$, from exemplary pairwise preferences $y_i \succ_{\boldsymbol{x}} y_j$.

LPC trains a model

$$\mathcal{M}_{i,j}:\,\mathcal{X}\to[0,1]$$

for all i < j. Given a query instance x, this model is supposed to predict whether $y_i > y_j$ ($\mathcal{M}_{i,j}(x) = 1$) or $y_j > y_i$ ($\mathcal{M}_{i,j}(x) = 0$).

More generally, $\mathcal{M}_{i,j}(\boldsymbol{x})$ is the estimated probability that $y_i \succ y_j$.

Decomposition into k(k-1)/2 binary classification problems.

Training data (for the label pair A and B):

X1	X2	Х3						class
			X1	X2	X3	X4	class	
0.34	0	10	0.34	0	10	174	1	1
1.45	0	32	1.22	1	46	421	0	
1.22	1	46	0.74	4	25	465		0
0.74	1	25	0.74	1	25	165	1	4
0.74	1	25	1.04	0	33	158	1	1
0.95	1	72	2/3	- , .	,	-,		
1.04	0	33	158	D ≻ .	A, A ≻	B , C ≻	B, A ≻ C	1

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

From this relation, a ranking is derived by means of a **ranking procedure**. In the simplest case, this is done by sorting the labels according to their sum of **weighted votes**.

DECOMPOSITION IN LEARNING RANKING FUNCTIONS

- A ranking function (mapping sets to permutations) is represented as
 - an aggregation of individual utility degrees (argsort), or
 - as an aggregation of pairwise preferences.
- The corresponding univariate resp. bivariate models can be trained
 - independently of each other, or
 - simultaneously (in a coordinated manner).
- This also depends on the question whether the target loss function (defined on rankings) is decomposable, too.
- Information retrieval terminology:
 - "pointwise learning": independent training of univariate models,
 - "pairwise learning": independent training of bivariate models,
 - "listwise learning": simultaneous learning of univariate models (direct minimization of a ranking loss)

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions
- 3. Preference Learning Techniques
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007]

- Rankings, multilabel classifications, etc. can be seen as specific types of structured (as opposed to scalar) outputs.
- Discriminative structured prediction algorithms infer a joint scoring function on input-output pairs and, for a given input, predict the output that maximises this scoring function.
- Joint feature map and scoring function

$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d, \quad f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{w}) = \langle \boldsymbol{w}, \phi(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

- The learning problem consists of estimating the weight vector, e.g., using structural risk minimization.
- Prediction requires solving a decoding problem:

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y} \in \mathcal{Y}} f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{w}) = \arg \max_{\boldsymbol{y} \in \mathcal{Y}} \langle \boldsymbol{w}, \phi(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007]

Preferences are expressed through inequalities on inner products:

$$\begin{aligned} & \min_{\boldsymbol{w}, \boldsymbol{\xi}} \ ||\boldsymbol{w}|||^2 + \nu \sum_{i=1}^m \xi_i & \text{loss function} \\ & \boldsymbol{\downarrow} \\ & \text{s.t.} & \langle \boldsymbol{w}, \phi(\boldsymbol{x}_i, \boldsymbol{y}_i) \rangle - \langle \boldsymbol{w}, \phi(\boldsymbol{x}_i, \boldsymbol{y}) \rangle \geq \Delta(\boldsymbol{y}_i, \boldsymbol{y}) - \xi_i \text{ for all } \boldsymbol{y} \in \mathcal{Y} \\ & \xi_i \geq 0 \quad (i = 1, \dots, m) \end{aligned}$$

 The potentially huge number of constraints cannot be handled explicitly and calls for specific techniques (such as cutting plane optimization)

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions
- 3. Preference Learning Techniques
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

MODEL-BASED METHODS FOR RANKING

- By model-based approaches to ranking we subsume methods that
 - proceed from specific assumptions about the possible rankings (representation bias), or
 - make use of **probabilistic models** for rankings (parametrized probability distributions on the set of rankings).
- In the following, we shall see examples of both type:
 - Restriction to lexicographic preferences
 - Conditional preference networks (CP-nets)
 - Label ranking using the Plackett-Luce model

LEARNING LEXICOGRAPHIC PREFERENCE MODELS [Yaman et al. 2008]

- Suppose that objects are represented as feature vectors of length \mathbf{m} , and that each attribute has k values.
- For $n=k^m$ objects, there are n! permutations (rankings).
- A lexicographic order is uniquely determined by
 - a total order of the attributes
 - a total order of each attribute domain
- **Example:** Four binary attributes (m=4, k=2)
 - there are 16! $\approx 2 \cdot 10^{13}$ rankings
 - but only $(2^4) \cdot 4! = 384$ of them can be expressed in terms of a lexicographic order
- [Yaman et al. 2008] present a learning algorithm that explictly maintains the version space, i.e., the attribute-orders compatible with all pairwise preferences seen so far (assuming binary attributes with 1 preferred to 0). Predictions are derived based on the "votes" of the consistent models.

LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010]

Induces partial order relation, e.g.,

```
(meat, red wine, Italian) > (meat, white wine, Chinese)
(fish, white wine, Chinese) > (fish, red wine, Chinese)
(meat, white wine, Italian) ? (meat, red wine, Chinese)
```

LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010]

Training data:

PROBABILISTIC MODELS IN LABEL RANKING

permutation	probability
	0.2
	0
	0.1
	0.4
	0
	0.1

 $\mathsf{input}\ x\ \mapsto$

LABEL RANKING WITH THE PLACKETT-LUCE MODEL [Cheng et al. 2010c]

The Plackett-Luce (PL) model is specified by a parameter vector $\boldsymbol{v} = (v_1, v_2, \dots v_m) \in \mathbb{R}_+^m$:

$$\mathbf{P}(\pi \,|\, \boldsymbol{v}) = \prod_{i=1}^{m} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \ldots + v_{\pi(m)}}$$

Reduces problem to learning a mapping $x \mapsto v$.

Example:
$$\boldsymbol{v} = (1, 4, 2)$$
, $\mathbf{P}(\pi \,|\, \boldsymbol{v}) = \frac{v_{\pi(1)}}{v_{\pi(1)} + v_{\pi(2)} + v_{\pi(3)}} \cdot \frac{v_{\pi(2)}}{v_{\pi(2)} + v_{\pi(3)}} \cdot 1$

- 1
 2
 3
 0.0952

 1
 3
 2
 0.0476

 2
 1
 3
 0.1905
- 2 3 1 0.0571
- 3 1 2 0.3810
- 2 1 0.2286

ML ESTIMATION OF THE WEIGHT VECTOR

Assume $x = (x_1, \dots, x_D) \in \mathbb{R}^D$ and model the v_i as log-linear functions:

Given training data $\mathcal{T}=\left\{\left(m{x}^{(n)},\pi^{(n)}
ight)
ight\}_{n=1}^N$ with $m{x}^{(n)}=\left(x_1^{(n)},\dots,x_D^{(n)}
ight)$, the log-likelihood is given by

$$L = \sum_{n=1}^{N} \left[\sum_{m=1}^{M_n} \log \left(v(\pi^{(n)}(m), n) \right) - \log \sum_{j=m}^{M_n} v(\pi^{(n)}(j), n) \right], \quad \begin{array}{c} \text{convex function,} \\ \text{maximization} \\ \text{through gradient} \\ \text{ascent} \end{array} \right]$$

where M_n is the number of labels in the ranking $\pi^{(n)}$, and

$$v(m,n) = \exp\left(\sum_{d=1}^{D} \alpha_d^{(m)} \cdot x_d^{(n)}\right) .$$

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions
- 3. Preference Learning Techniques
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

LOCAL PREFERENCE AGGREGATION

 Estimation of a piecewise constant model (determining proper subregions of the instance space and considering observations therein as representative).

LOCAL PREFERENCE AGGREGATION

Finding the generalized median:

$$\hat{\boldsymbol{y}} = \arg\min_{\boldsymbol{y} \in \mathcal{Y}} \sum_{i=1}^{k} \Delta(\boldsymbol{y}_i, \boldsymbol{y})$$

If Kendall's tau is used as a distance, the generalized median is called the Kemendy-optimal ranking. Finding this ranking is an NP-hard problem (weighted feedback arc set tournament).

 In the case of Spearman's rho (sum of squared rank distances), the problem can easily be solved through Borda count.

LOCAL PREFERENCE AGGREGATION

- Another approach is to assume the neighbored rankings to be generated by a locally constant probability distribution, to estimate the parameters of this distribution, and then to predict the mode.
- Has been done, for example, for the Plackett-Luce model and the Mallows model, both for complete rankings and pairwise comparisons[Cheng et al. 2009, 2010c].

Plackett-Luce

$$\mathbf{P}(\pi \,|\, \boldsymbol{v}) = \prod_{i=1}^{m} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(m)}}$$

Mallows

$$\mathbf{P}(\pi \mid \pi_0, \theta) = \frac{\exp(-\theta \Delta(\pi, \pi_0))}{\phi(\pi_0, \theta)}$$

ML ESTIMATION FOR THE MALLOWS MODEL [Cheng et al. 09]

set of (local) preferences

 Similar methods can also be used for other purposes, for example clustering using mixtures of probability distributions [Murphey & Martin 2003, Lu & Boutilier 2011].

SUMMARY OF MAIN ALGORITHMIC PRINCIPLES

- Reduction of ranking to (binary) classification (e.g., constraint classification, LPC)
- Direct optimization of (regularized) smooth approximation of ranking losses (RankSVM, RankBoost, ...)
- Structured output prediction, learning joint scoring ("matching") function
- Learning parametrized probabilistic ranking models (e.g., Mallows, Plackett-Luce)
- Restricted model classes, fitting parametrized models such as lexicographic orders or CP nets.
- Local preference aggregation (lazy learning, recursive partitioning)

References

- G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar and S. Vishwanathan. *Predicting structured data*. MIT Press, 2007.
- W. Cheng, K. Dembczynski and E. Hüllermeier. Graded Multilabel Classification: The Ordinal Case. ICML-2010, Haifa, Israel, 2010.
- W. Cheng, K. Dembczynski and E. Hüllermeier. Label ranking using the Plackett-Luce model. ICML-2010, Haifa, Israel, 2010.
- W. Cheng and E. Hüllermeier. Predicting partial orders: Ranking with abstention. ECML/PKDD-2010, Barcelona, 2010.
- W. Cheng, C. Hühn and E. Hüllermeier. Decision tree and instance-based learning for label ranking. ICML-2009.
- Y. Chevaleyre, F. Koriche, J. Lang, J. Mengin, B. Zanuttini. *Learning ordinal preferences on multiattribute domains: The case of CP-nets*. In: J. Fürnkranz and E. Hüllermeier (eds.) Preference Learning, Springer-Verlag, 2010.
- W.W. Cohen, R.E. Schapire and Y. Singer. Learning to order things. Journal of Artificial Intelligence Research, 10:243–270, 1999.
- Y. Freund, R. Iyer, R. E. Schapire and Y. Singer. *An efficient boosting algorithm for combining preferences*. Journal of Machine Learning Research, 4:933–969, 2003.
- J. Fürnkranz, E. Hüllermeier, E. Mencia, and K. Brinker. Multilabel Classification via Calibrated Label Ranking. Machine Learning 73(2):133-153, 2008.
- J. Fürnkranz, E. Hüllermeier and S. Vanderlooy. Binary decomposition methods for multipartite ranking. Proc. ECML-2009, Bled, Slovenia, 2009.
- D. Goldberg, D. Nichols, B.M. Oki and D. Terry. *Using collaborative filtering to weave and information tapestry*. Communications of the ACM, 35(12):61–70, 1992.
- S. Har-Peled, D. Roth and D. Zimak. Constraint classification: A new approach to multiclass classification. Proc. ALT-2002.
- R. Herbrich, T. Graepel and K. Obermayer. Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, 2000.
- E. Hüllermeier, J. Fürnkranz, W. Cheng and K. Brinker. *Label ranking by learning pairwise preferences*. Artificial Intelligence, 172:1897–1916, 2008.
- T. Joachims. *Optimizing search engines using clickthrough data*. Proc. KDD 2002.
- N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation, 108(2): 212–261, 1994.
- T. Lu and C. Boutilier. Learning Mallows models with pairwise preferences. ICML 2011.
- T.B. Murphey and D. Martin. Mixtures of distance-based models for ranking data. Comp. Statistics and Data Analysis, 41, 645-655, 2003.
- G. Tsoumakas and I. Katakis. Multilabel classification: An overview. Int. J. Data Warehouse and Mining, 3:1–13, 2007.
- F. Yaman, T. Walsh, M. Littman and M. desJardins. *Democratic Approximation of Lexicographic Preference Models*. ICML-2008.