AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions

3. Preference Learning Techniques

- a. Learning Utility Functions
- b. Learning Preference Relations
- c. Structured Output Prediction
- d. Model-Based Preference Learning
- e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

TWO WAYS OF REPRESENTING PREFERENCES

Utility-based approach: Evaluating single alternatives

$$
U:\,\mathcal{A}\longrightarrow\mathbb{R}
$$

Relational approach: Comparing pairs of alternatives

$$
a \succeq b \Leftrightarrow a \text{ is not worse than } b \qquad \text{weak preference}
$$
\n
$$
a \succ b \Leftrightarrow (a \succeq b) \land (b \not\succeq a) \qquad \text{strict preference}
$$
\n
$$
a \sim b \Leftrightarrow (a \succeq b) \land (b \succeq a) \qquad \text{indifference}
$$
\n
$$
a \perp b \Leftrightarrow (a \not\succeq b) \land (b \not\succeq a) \qquad \text{incomparability}
$$

UTILITY FUNCTIONS

- A **utility function** assigns a utility degree (typically a real number or an ordinal degree) to each alternative.
- Learning such a function essentially comes down to solving an (ordinal) **regression problem.**
- Often **additional conditions**, e.g., due to bounded utility ranges or monotonicity properties (\rightarrow) *learning monotone models*)
- A **utility function induces a ranking** (total order), but not the other way around!
- But it can not represent more general relations, e.g., a **partial order**!
- The **feedback** can be **direct** (exemplary utility degrees given) or **indirect** (inequality induced by order relation):

$$
(\boldsymbol{x},u) \ \Rightarrow \ U(\boldsymbol{x}) \approx u, \qquad \boldsymbol{x} \succ \boldsymbol{y} \ \Leftrightarrow \ U(\boldsymbol{x}) > U(\boldsymbol{y})
$$

absolute feedback relative feedback

PREDICTING UTILITIES ON ORDINAL SCALES

(Graded) multilabel classification

Collaborative filtering

Exploiting dependencies (correlations) between items (labels, products, …)

 \rightarrow see work in MLC and RecSys communities

LEARNING UTILITY FUNCTIONS FROM INDIRECT FEEDBACK

 A (latent) utility function can also be used to solve ranking problems, such as instance, object or label ranking → ranking by (estimated) utility degrees (scores)

Instance ranking

Object ranking CODE CONFIDENTIAL CONSUMING THE READ FIND A UTILITY function that agrees as much as possible with the preference information in the sense that, for most examples,

$$
x_i \succ y_i \quad \Leftrightarrow \quad U(x_i) > U(y_i)
$$

Absolute preferences given, so in principle an ordinal regression problem. However, the goal is to maximize ranking instead of classification performance.

RANKING VERSUS CLASSIFICATION

A ranker can be turned into a classifier via thresholding:

A good classifier is not necessarily a good ranker:

2 classification but 10 ranking errors

learning AUC-optimizing scoring classifiers !

RankSVM AND RELATED METHODS (BIPARTITE CASE)

 The idea is to minimize a convex upper bound on the empirical ranking error over a class of (kernelized) ranking functions:

\rightarrow the training set scales QUADRATICALLY with the number of data points!

RankSVM AND RELATED METHODS (BIPARTITE CASE)

The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachimes 2002]:

$$
f^* \in \arg\min_{f \in \mathcal{F}_K} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\mathbf{x} \in P} \sum_{\mathbf{x}' \in N} \left(1 - (f(\mathbf{x}) - f(\mathbf{x}'))_+ + \frac{\lambda}{2} \cdot \|f\|_K^2 \right\}
$$

\n
$$
\uparrow \qquad \qquad \uparrow
$$

\n
$$
\uparrow \qquad \qquad \uparrow
$$

\n
$$
\uparrow \qquad \qquad \uparrow
$$

\n
$$
\downarrow
$$

\n
$$
\downarrow
$$

\n $$

\rightarrow learning comes down to solving a QP problem

RankSVM AND RELATED METHODS (BIPARTITE CASE)

■ The bipartite RankBoost algorithm [Freund et al. 2003]:

$$
f^* \in \arg\min_{f \in \mathcal{L}(\mathcal{F}_{base})} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\mathbf{x} \in P} \sum_{\mathbf{x}' \in N} \exp(-(f(\mathbf{x}) - f(\mathbf{x}'))) \right\}
$$

class of linear
combinations of base
functions

\rightarrow learning by means of boosting techniques

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \ldots, y_k\}$, from exemplary pairwise preferences $y_i \succ_x y_j$.

Can be tackled by learning utility functions $U_1(\cdot),\ldots,U_k(\cdot)$ that are in appropriate agreement with the preferences in the training data. Given a new query x , the labels are ranked according to utility degrees, i.e., a permutation π is predicted such that

$$
U_{\pi^{-1}(1)}(\bm{x}) > U_{\pi^{-1}(2)}(\bm{x}) > \ldots > U_{\pi^{-1}(k)}(\bm{x})
$$

Proceeding from linear utility functions

$$
U_i(\boldsymbol{x}) = \boldsymbol{w}_i \times \boldsymbol{x} = (w_{i,1}, w_{i,2}, \dots, w_{i,m}) (x_1, x_2, \dots, x_m)^\top,
$$

a binary preference $y_i \succ_{\bm{x}} y_j$ is equivalent to

$$
U_i(\boldsymbol{x}) > U_j(\boldsymbol{x}) \Leftrightarrow \boldsymbol{w}_i \times \boldsymbol{x} > \boldsymbol{w}_j \times \boldsymbol{x} \Leftrightarrow (\boldsymbol{w}_i - \boldsymbol{w}_j) \times \boldsymbol{x} > 0
$$

and can be modeled as a linear constraint

Each **pairwise comparison** is turned into a **binary classification** example in a high-dimensional space!

ECAI 2012 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions

3. Preference Learning Techniques

- a. Learning Utility Functions
- **b. Learning Preference Relations**
- c. Structured Output Prediction
- d. Model-Based Preference Learning
- e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

LEARNING BINARY PREFERENCE RELATIONS

- Learning **binary preferences** (in the form of predicates $P(x,y)$) is often simpler, especially if the training information is given in this form, too.
- **E** However, it implies an additional step, namely **extracting a ranking** from a (predicted) preference relation.
- This step is not always trivial, since a predicted preference relation may exhibit inconsistencies and may not suggest a unique ranking in an unequivocal way.

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

- In a first step, a **binary preference function** PREF is constructed; $\text{PREF}(x,y) \in [0,1]$ is a measure of the certainty that x should be ranked before y, and $\text{PREF}(x,y)=1- \text{PREF}(y,x)$.
- This function is expressed as a linear combination of base preference functions: ΛT

$$
\text{PREF}(\boldsymbol{x},\boldsymbol{y})\,=\,\sum_{i=1}^N w_i\cdot R_i(\boldsymbol{x},\boldsymbol{y})
$$

- The weights can be learned, for example, by means of the weighted majority algorithm [Littlestone & Warmuth 94].
- I In a second step, a total order is derived, which is as much as possible in agreement with the binary preference relation.

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

The weighted feedback arc set problem: Find a permutation π such that

$$
\sum_{(\bm{x},\bm{y}): \pi(\bm{x}) > \pi(\bm{y})} \text{PREF}(\bm{x},\bm{y})
$$

becomes minimal.

 $cost = 0.1 + 0.6 + 0.8 + 0.5 + 0.3 + 0.4 = 2.7$

0.8

OBJECT RANKING: LEARNING TO ORDER THINGS [Cohen et al. 99]

Since this is an NP-hard problem, it is solved heuristically.

```
Input: an instance set X; a preference function PREF
Output: an approximately optimal ordering function \hat{\rho}let V = Xfor each v \in V do
while V is non-empty do \pi(v) = \sum_{u \in V} \text{PREF}(v, u) - \sum_{u \in V} \text{PREF}(u, v)let t = \arg \max_{u \in V} \pi(u)let \hat{\rho}(t) = |V|V = V - \{t\}for each v \in V do \pi(v) = \pi(v) + \text{PREF}(t, v) - \text{PREF}(v, t)endwhile
```
- The algorithm successively chooses nodes having **maximal "net-flow"** within the remaining subgraph.
- It can be shown to provide a **2-approximation** to the optimal solution.

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \ldots, y_k\}$, from exemplary pairwise preferences $y_i \succ_x y_j$.

LPC trains a model

$$
\mathcal{M}_{i,j}:\,\mathcal{X}\rightarrow[0,1]
$$

for all $i < j$. Given a query instance x, this model is supposed to predict whether $y_i \succ y_j$ $(\mathcal{M}_{i,j}(\boldsymbol{x}) = 1)$ or $y_j \succ y_i$ $(\mathcal{M}_{i,j}(\boldsymbol{x}) = 0)$.

More generally, $\mathcal{M}_{i,j}(x)$ is the estimated probability that $y_i \succ y_j$.

Decomposition into $k(k-1)/2$ binary classification problems.

Training data (for the label pair A and B):

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

From this relation, a ranking is derived by means of a **ranking procedure**. In the simplest case, this is done by sorting the labels according to their sum of **weighted votes**.

DECOMPOSITION IN LEARNING RANKING FUNCTIONS

- A **ranking function** (mapping sets to permutations) is represented as
	- an **aggregation of individual utilitiy degrees** (argsort), or
	- as an **aggregation of pairwise preferences**.
- The corresponding **univariate** resp**. bivariate models** can be trained
	- **independently of each other**, or
	- **simultaneously** (in a coordinated manner).
- This also depends on the question whether the **target loss function** (defined on rankings) is decomposable, too.
- **Information retrieval terminology:**
	- **"pointwise learning"**: independent training of univariate models,
	- **"pairwise learning"**: independent training of bivariate models,
	- **"listwise learning"**: simultaneous learning of univariate models (direct minimization of a ranking loss)

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions

3. Preference Learning Techniques

- a. Learning Utility Functions
- b. Learning Preference Relations
- **c. Structured Output Prediction**
- d. Model-Based Preference Learning
- e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007]

- Rankings, multilabel classifications, etc. can be seen as specific types of **structured** (as opposed to scalar) **outputs**.
- Discriminative structured prediction algorithms infer a **joint scoring function on input-output pairs** and, for a given input, predict the output that maximises this scoring function.
- Joint feature map and scoring function

$$
\phi:\,\mathcal{X}\times\mathcal{Y}\rightarrow\mathbb{R}^d,\quad f(\boldsymbol{x},\boldsymbol{y};\boldsymbol{w})=\langle \boldsymbol{w},\phi(\boldsymbol{x},\boldsymbol{y})\rangle
$$

- The learning problem consists of estimating the weight vector, e.g., using structural risk minimization.
- Prediction requires solving a **decoding problem**:

$$
\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y} \in \mathcal{Y}} f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{w}) = \arg\max_{\boldsymbol{y} \in \mathcal{Y}} \langle \boldsymbol{w}, \phi(\boldsymbol{x}, \boldsymbol{y}) \rangle
$$

STRUCTURED OUTPUT PREDICTION [Bakir et al. 2007]

Preferences are expressed through **inequalities** on inner products:

 $\min_{\mathbf{w}, \xi} |||w|||^2 + \nu \sum_{i=1}^{m} \xi_i$ loss function s.t. $\langle w, \phi(x_i, y_i) \rangle - \langle w, \phi(x_i, y) \rangle \geq \Delta(y_i, y) - \xi_i$ for all $y \in \mathcal{Y}$ $\xi_i \geq 0 \quad (i = 1, \ldots, m)$

 The potentially huge **number of constraints** cannot be handled explicitly and calls for specific techniques (such as cutting plane optimization)

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions

3. Preference Learning Techniques

- a. Learning Utility Functions
- b. Learning Preference Relations
- c. Structured Output Prediction
- **d. Model-Based Preference Learning**
- e. Local Preference Aggregation
- 4. Complexity of Preference Learning
- 5. Conclusions

MODEL-BASED METHODS FOR RANKING

- By **model-based approaches** to ranking we subsume methods that
	- proceed from specific assumptions about the possible rankings (**representation bias**), or
	- make use of **probabilistic models** for rankings (parametrized probability distributions on the set of rankings).
- In the following, we shall see examples of both type:
	- Restriction to lexicographic preferences
	- Conditional preference networks (CP-nets)
	- Label ranking using the Plackett-Luce model

LEARNING LEXICOGRAPHIC PREFERENCE MODELS [Yaman et al. 2008]

- Suppose that objects are represented as feature vectors of length m , and that each attribute has k values.
- For $n=k^m$ objects, there are n! permutations (rankings).
- A **lexicographic order** is uniquely determined by
	- a total order of the attributes
	- a total order of each attribute domain
- **Example:** Four binary attributes $(m=4, k=2)$
	- there are $16! \approx 2 \cdot 10^{13}$ rankings
	- $-$ but only (2⁴) \cdot 4! $=$ 384 of them can be expressed in terms of a lexicographic order
- **F** [Yaman et al. 2008] present a learning algorithm that explictly maintains the version space, i.e., the attribute-orders compatible with all pairwise preferences seen so far (assuming binary attributes with 1 preferred to 0). Predictions are derived based on the "votes" of the consistent models.

LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010]

Induces partial order relation, e.g.,

LEARNING CONDITIONAL PREFERENCE NETWORKS [Chevaleyre et al. 2010]

Training data:

ECAI 2012 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

PROBABILISTIC MODELS IN LABEL RANKING

input $x \mapsto$

LABEL RANKING WITH THE PLACKETT-LUCE MODEL [Cheng et al. 2010c]

The Plackett-Luce (PL) model is specified by a parameter vector $\mathbf{v} = (v_1, v_2, \dots v_m) \in \mathbb{R}^m_+$:

$$
\mathbf{P}(\pi | \mathbf{v}) = \prod_{i=1}^{m} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \ldots + v_{\pi(m)}}
$$

Reduces problem to learning a mapping $x \mapsto v$.

Example:
$$
\mathbf{v} = (1, 4, 2), \quad \mathbf{P}(\pi | \mathbf{v}) = \frac{v_{\pi(1)}}{v_{\pi(1)} + v_{\pi(2)} + v_{\pi(3)}} \cdot \frac{v_{\pi(2)}}{v_{\pi(2)} + v_{\pi(3)}} \cdot 1
$$

\n1 2 3 0.0952
\n1 3 2 0.0476
\n2 1 3 0.1905

 $3 \quad 1$

 $\mathbf{1}$

 $3 \quad 1 \quad 2$

 2°

 $\mathbf{2}$

 $\overline{3}$

0.0571

0.3810

0.2286

Assume $\boldsymbol{x} = (x_1, \ldots, x_D) \in \mathbb{R}^D$ and model the v_i as log-linear functions:

$$
v_i \ = \ \exp\left(\sum_{d=1}^D \alpha_d^{(i)} \cdot x_d\right) \quad \longleftarrow \text{ can be seen as a log-linear}
$$

Given training data $\mathcal{T} = \left\{\left(\boldsymbol{x}^{(n)}, \pi^{(n)}\right)\right\}_{n=1}^N$ with $\boldsymbol{x}^{(n)} = \left(x_1^{(n)}, \dots, x_D^{(n)}\right)$, the log-likelihood is given by

$$
L = \sum_{n=1}^{N} \left[\sum_{m=1}^{M_n} \log \left(v(\pi^{(n)}(m), n) \right) - \log \sum_{j=m}^{M_n} v(\pi^{(n)}(j), n) \right],
$$

convex function, maximization through gradient ascent

where M_n is the number of labels in the ranking $\pi^{(n)}$, and

$$
v(m,n) = \exp\left(\sum_{d=1}^{D} \alpha_d^{(m)} \cdot x_d^{(n)}\right)
$$

ECAI 2012 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

AGENDA

- 1. Preference Learning Tasks
- 2. Performance Assessment and Loss Functions

3. Preference Learning Techniques

- a. Learning Utility Functions
- b. Learning Preference Relations
- c. Structured Output Prediction
- d. Model-Based Preference Learning
- **e. Local Preference Aggregation**
- 4. Complexity of Preference Learning
- 5. Conclusions

LOCAL PREFERENCE AGGREGATION

 Estimation of a **piecewise constant** model (determining proper subregions of the instance space and considering observations therein as representative).

LOCAL PREFERENCE AGGREGATION

Finding the generalized median:

$$
\hat{\boldsymbol{y}}\,=\,\arg\min_{\boldsymbol{y}\in\mathcal{Y}}\sum_{i=1}^k\Delta(\boldsymbol{y}_i,\boldsymbol{y})
$$

- If **Kendall's tau** is used as a distance, the generalized median is called the **Kemendy-optimal ranking**. Finding this ranking is an NP-hard problem (weighted feedback arc set tournament).
- In the case of **Spearman's rho** (sum of squared rank distances), the problem can easily be solved through Borda count.

LOCAL PREFERENCE AGGREGATION

- Another approach is to assume the neighbored rankings to be generated by a **locally constant probability distribution**, to estimate the parameters of this distribution, and then to predict the mode.
- Has been done, for example, for the **Plackett-Luce model** and the **Mallows model**, both for complete rankings and pairwise comparisons[Cheng et al. 2009, 2010c].

$$
\mathbf{P}(\pi | \mathbf{v}) = \prod_{i=1}^{m} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \ldots + v_{\pi(m)}}
$$

Plackett-Luce

$$
\mathbf{P}(\pi \,|\, \pi_0, \theta)\,=\, \frac{\exp\big(-\theta \Delta(\pi, \pi_0)\big)}{\phi(\pi_0, \theta)}
$$

Mallows

ML ESTIMATION FOR THE MALLOWS MODEL [Cheng et al. 09]

 Similar methods can also be used for other purposes, for example **clustering** using mixtures of probability distributions [Murphey & Martin 2003, Lu & Boutilier 2011].

SUMMARY OF MAIN ALGORITHMIC PRINCIPLES

- **Reduction** of ranking to (binary) classification (e.g., constraint classification, LPC)
- **Direct optimization** of (regularized) smooth approximation of ranking losses (RankSVM, RankBoost, …)
- **Structured output prediction**, learning joint scoring (*n* matching") function
- Learning parametrized **probabilistic ranking models** (e.g., Mallows, Plackett-Luce)
- **Restricted model classes**, fitting parametrized models such as lexicographic orders or CP nets.
- **Local preference aggregation** (lazy learning, recursive partitioning)

References

- G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar and S. Vishwanathan. *Predicting structured data*. MIT Press, 2007.
- W. Cheng, K. Dembczynski and E. Hüllermeier. *Graded Multilabel Classification: The Ordinal Case*. ICML-2010, Haifa, Israel, 2010.
- W. Cheng, K. Dembczynski and E. Hüllermeier*. Label ranking using the Plackett-Luce model*. ICML-2010, Haifa, Israel, 2010.
- W. Cheng and E. Hüllermeier. *Predicting partial orders: Ranking with abstention*. ECML/PKDD-2010, Barcelona, 2010.
- W. Cheng, C. Hühn and E. Hüllermeier. *Decision tree and instance-based learning for label ranking*. ICML-2009.
- Y. Chevaleyre, F. Koriche, J. Lang, J. Mengin, B. Zanuttini. *Learning ordinal preferences on multiattribute domains: The case of CP-nets*. In: J. Fürnkranz and E. Hüllermeier (eds.) Preference Learning, Springer-Verlag, 2010.
- W.W. Cohen, R.E. Schapire and Y. Singer. *Learning to order things*. Journal of Artificial Intelligence Research, 10:243–270, 1999.
- Y. Freund, R. Iyer, R. E. Schapire and Y. Singer. *An efficient boosting algorithm for combining preferences*. Journal of Machine Learning Research, 4:933–969, 2003.
- J. Fürnkranz, E. Hüllermeier, E. Mencia, and K. Brinker. *Multilabel Classification via Calibrated Label Ranking*. Machine Learning 73(2):133-153, 2008.
- J. Fürnkranz, E. Hüllermeier and S. Vanderlooy. *Binary decomposition methods for multipartite ranking*. Proc. ECML-2009, Bled, Slovenia, 2009.
- D. Goldberg, D. Nichols, B.M. Oki and D. Terry. *Using collaborative filtering to weave and information tapestry*. Communications of the ACM, 35(12):61–70, 1992.
- S. Har-Peled, D. Roth and D. Zimak. *Constraint classification: A new approach to multiclass classification*. Proc. ALT-2002.
- R. Herbrich, T. Graepel and K. Obermayer*. Large margin rank boundaries for ordinal regression*. Advances in Large Margin Classifiers, 2000.
- E. Hüllermeier, J. Fürnkranz, W. Cheng and K. Brinker. *Label ranking by learning pairwise preferences*. Artificial Intelligence, 172:1897–1916, 2008.
- T. Joachims. *Optimizing search engines using clickthrough data*. Proc. KDD 2002.
- N. Littlestone and M.K. Warmuth. *The weighted majority algorithm*. Information and Computation, 108(2): 212–261, 1994.
- T. Lu and C. Boutilier. Learning Mallows models with pairwise preferences. ICML 2011.
- T.B. Murphey and D. Martin. Mixtures of distance-based models for ranking data. Comp. Statistics and Data Analysis, 41, 645-655, 2003.
- G. Tsoumakas and I. Katakis. *Multilabel classification: An overview*. Int. J. Data Warehouse and Mining, 3:1–13, 2007.
- F. Yaman, T. Walsh, M. Littman and M. desJardins. *Democratic Approximation of Lexicographic Preference Models*. ICML-2008.