
ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 1

AGENDA

1. Preference Learning Tasks

2. Performance Assessment and Loss Functions

a. Evaluation of Rankings

b. Weighted Measures

c. Evaluation of Bipartite Rankings

d. Evaluation of Partial Rankings

3. Preference Learning Techniques

4. Complexity of Preference Learning

5. Conclusions



ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 2

Rank Evaluation Measures

 In the following, we do not discriminate between different ranking 
scenarios
 we use the term items for both, objects and labels

 All measures are applicable to both scenarii
 sometimes have different names according to context

 Label Ranking 
 measure is applied to the ranking of the labels of each examples
 averaged over all examples

 Object Ranking 
 measure is applied to the ranking of a set of objects
 we may need to average over different sets of objects which have disjoint 

preference graphs
 e.g. different sets of query / answer set pairs in information retrieval



ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 3

 Given:
 a set of items X = {x1, …, xc} to rank 

 Example: 
X = {A, B, C, D, E}

D
C

E
B

A

Ranking Errors

items can be 
objects or labels
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Ranking Errors

 Given:
 a set of items X = {x1, …, xc} to rank 

 Example: 
X = {A, B, C, D, E}

 a target ranking 
 Example: 

E  B  C  A  D  
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Ranking Errors

 Given:
 a set of items X = {x1, …, xc} to rank 

 Example: 
X = {A, B, C, D, E}

 a target ranking 
 Example: 

E  B  C  A  D 

 a predicted ranking 
 Example: 

A  B  E  C  D 

 Compute:
 a value              that measures the 

distance  between the two rankings
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Notation

    and    are functions from X → ℕ
 returning the rank of an item x

 the inverse functions r-1: ℕ → X 
 return the item at a certain position

 as a short-hand for         , we also define
function R: ℕ → ℕ
 R(i) returns the true rank of the i-th item 

in the predicted ranking

r

D

E

C

B

A

r r

D

C

A

B

E

r

r  A=4
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Spearman's Footrule

 Key idea:
 Measure the sum of absolute differences 

between ranks

DSF r , r =∑
i=1

c

∣r xi −r  xi ∣=∑
i=1

c

∣i−R i ∣
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d B=0
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d E=2

∑xi

d xi
=30102=6
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Spearman Distance

 Key idea:
 Measure the sum of absolute differences 

between ranks

 Value range:

→ Spearman Rank Correlation Coefficient

DS r , r =∑
i=1

c

r  xi −r  xi
2=∑

i=1

c

i−R i2
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d A=∣1−4∣=3

d B=0

d c=1

d D=0

d E=2

∑xi

d xi

2 =32012022=14

squared

min DS r , r =0

max DS r , r =∑
i=1

c

c−i −i 2
=

c⋅c2
−1

3

1−
6⋅DS r , r 

c⋅c2−1
∈[−1,1]
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Kendall's Distance

 Key idea:
 number of item pairs that are inverted in the 

predicted ranking

 Value range:

→ Kendall's tau
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4⋅D r , r 

c⋅c−1
∈[−1,1]

D r , r  =∣ {i , j ∣ r  xir  x j ∧ r  xi r x j}∣
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max D r , r =
c⋅c−1
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Weighted Ranking Errors

 The previous ranking functions give equal weight to all ranking positions
 i.e., differences in the first ranking positions have the same effect as differences 

in the last ranking positions

 In many applications this is not desirable
 ranking of search results
 ranking of product recommendations
 ranking of labels for classification
 ...
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Position Error

 Key idea:
 in many applications we are interested in 

providing a ranking where the target item 
appears a high as possible in the 
predicted ranking
 e.g. ranking a set of actions for the next step 

in a plan

 Error is the number of wrong items that 
are predicted before the target item

 Note:
 equivalent to Spearman's footrule with all 

non-target weights set to 0
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Discounted Error

 Higher ranks in the target position get 
a higher weight than lower ranks
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(Normalized) Discounted Cumulative Gain

 a “positive” version of discounted error:
Discounted Cumulative Gain (DCG)

 Maximum possible value:
 the predicted ranking is correct, 

i.e. 
 Ideal Discounted Cumulative Gain (IDCG)

 Normalized DCG (NDCG)
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Bipartite Rankings
 The target ranking is not totally ordered 

but a bipartite graph
 The two partitions may be viewed as 

preference levels L = {0, 1}
 all c1 items of level 1 are preferred over all 

c0 items of level 0

 We now have fewer preferences

 for a total order:

 for a bipartite graph: 

Bipartite Rankings
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Evaluating Partial Target Rankings

 Many Measures can be directly adapted from 
total target rankings to partial target rankings

 Recall: Kendall's distance
 number of item pairs that are inverted 

in the target ranking

 can be directly used
 in case of normalization, we have to 

consider that fewer items satisfy r(xi) < r(xj)

 Area under the ROC curve (AUC)
 the AUC is the fraction of pairs of (p,n) for 

which the predicted score s(p) > s(n)
 Mann Whitney statistic is the absolute number

 This is 1 - normalized Kendall's distance 
for a bipartite preference graph with L = {p,n}

D r , r  =∣ {i , j ∣ r x ir  x j ∧ r  xir  x j}∣
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Evaluating Multipartite Rankings

 Multipartite rankings:
 like Bipartite rankings
 but the target ranking r consists of 

multiple relevance levels L = {1 … l}, 
where l < c

 total ranking is a special case where each 
level has exactly one item

 # of preferences

 ci is the number of items in level I

 C-Index [Gnen & Heller, 2005]

 straight-forward generalization of AUC

 fraction of pairs (xi ,xj) for which
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l i l  j  ∧ r  xir  x j 

D r , r  = 3

C-Index r , r  = 5
8



ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 19

Evaluating Multipartite Rankings

C-Index
 the C-index can be rewritten as a weighted sum of pairwise AUCs:

where       and        are the rankings    and    restricted to levels i and j.

Jonckheere-Terpstra statistic
 is an unweighted sum of pairwise AUCs:

 equivalent to well-known multi-class extension of AUC 
[Hand & Till, MLJ 2001]

C-Index r , r =
1

∑i , ji
ci⋅c j

∑i , ji
ci⋅c j⋅AUC r i , j , r i , j 

m-AUC=
2

l⋅l−1
∑i , ji

AUC r i , j , r i , j 

Note:
C-Index and m-AUC
can be optimized by
optimization of 
pairwise AUCs

Note:
C-Index and m-AUC
can be optimized by
optimization of 
pairwise AUCs

r i , j r i , j r r
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Normalized Discounted Cumulative Gain 
[Jarvelin & Kekalainen, 2002]
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r The original formulation of (normalized) 
discounted cumulative gain refers to
this setting

 the sum of the true (relevance) 
levels of the items

 each item weighted by its rank
in the predicted ranking

 Examples:
 retrieval of relevant or irrelevant pages
 2 relevance levels

 movie recommendation
 5 relevance levels

DCG r , r =∑
i=1

c
l i 

log i1



ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 21

AGENDA

1. Preference Learning Tasks

2. Performance Assessment and Loss Functions

a. Evaluation of Rankings

b. Weighted Measures

c. Evaluation of Bipartite Rankings

d. Evaluation of Partial Rankings

3. Preference Learning Techniques

4. Complexity of Preference Learning

5. Conclusions



ECAI 2012 Tutorial on Preference Learning | Part 2 |  J. Fürnkranz & E. Hüllermeier 22

Evaluating Partial Structures in the Predicted 
Ranking

 For fixed types of partial structures, we have conventional measures
 bipartite graphs → binary classification
 accuracy, recall, precision, F1, etc.
 can also be used when the items are labels!

 e.g., accuracy on the set of labels for multilabel classification

 multipartite graphs → ordinal classification
 multiclass classification measures (accuracy, error, etc.)
 regression measures (sum of squared errors, etc.)

 For general partial structures 
 some measures can be directly used on the reduced set of target preferences
 Kendall's distance, Gamma coefficient

 we can also use set measures on the set of binary preferences
 both, the source and the target ranking consist of a set of binary preferences
 e.g. Jaccard Coefficient

 size of interesection over size of union of the binary preferences in both sets
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Gamma Coefficient

 Key idea: normalized difference between 
 number of correctly ranked pairs

(Kendall's distance)

 number of incorrectly ranked pairs

 Gamma Coefficient
[Goodman & Kruskal, 1979]

 Identical to Kendall's tau 
if both rankings are total

 i.e., if 
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