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Abstract. We introduce a generalization of lexicographic orders
and argue that this generalization constitutes an interesting model
class for preference learning in general and ranking in particular. We
propose a learning algorithm for inducing a so-called conditional lex-
icographic preference tree from a given set of training data in the
form of pairwise comparisons between objects. Experimentally, we
validate our algorithm in the setting of multipartite ranking.

1 INTRODUCTION

Preference learning is an emerging subfield of machine learning that
has received increasing attention in recent years [13]. A specific
though important special case of preference learning is “learning to
rank”, that is, the learning of models that can be used to predict pref-
erences in the form of rankings of a set of alternatives [7, 8]. Ranking
problems are often reduced to problems of a simpler type, such as
learning a value function that assigns scores to alternatives (with bet-
ter alternatives having higher scores) or learning a binary predicate
that compares pairs of alternatives [15]; while the former approach is
close to regression, the latter is in the realm of classification learning.

Another approach to learning ranking functions is to proceed from
specific model assumptions, that is, assumptions about the structure
of the sought preference relations. This approach is less generic than
the previous ones, as it strongly depends on the concrete assump-
tions made. On the other hand, it typically offers the advantage of
being more easily understandable and interpretable. An example is
the representation of preferences in the form of a CP-net [5]. An-
other example is lexicographic orders that are widely accepted as a
plausible representation of (human) preferences [16], especially in
complex decision making domains [1]. Here, the assumption is that
the target ranking of a set of alternatives, each one described in terms
of multiple attributes, can be represented as a lexicographic order.

From a machine learning point of view, assumptions of the above
type can be seen as an inductive bias restricting the hypothesis space.
Provided the bias is correct, this is clearly an advantage, as it may
simplify the learning problem. On the other hand, an overly strong
bias may prevent the learner from approximating the target ranking
sufficiently well. For example, while being plausible in some situa-
tions, the assumption of a lexicographic order will be too restrictive
for many applications.

In this paper, we therefore present a method for learning genera-
lized lexicographic orders. While still being simple and easy to un-
derstand, the model class we consider relaxes some of the assump-
tions of a proper lexicographic order. More specifically, we increase
flexibility thanks to two extensions of conventional lexicographic or-
ders.

1 Department of Mathematics and Computer Science, University of Marburg,
Germany, email: {braeunim,eyke}@mathematik.uni-marburg.de

• First, we allow for conditioning [3, 4]: The importance of at-
tributes as well as the preferences for the values of an attribute
may depend on the values of other variables preceding that one in
the underlying variable order.

• Second, we allow for grouping [17]: Several (one-dimensional)
variables can be grouped into a single high-dimensional variable,
and preferences can be specified on the cartesian product of the
corresponding domains.

The remainder of this paper is organized as follows. In the next
section, we give a brief overview of related work. In Section 3, we
introduce generalized lexicographic orders and the notion of con-
ditional lexicographic preference trees. In Section 4, we present an
algorithm for learning such preference models from data. An experi-
mental study is presented in Section 5, prior to concluding the paper
in Section 6.

2 RELATED WORK
The use of lexicographic orders in preference modeling has already
been considered in the seventies of the last century [10], whereas
in machine learning, this type of structure has attracted attention
only recently. Flach and Matsubara developed a lexicographic ranker
called LexRank, using a linear preference ordering on attributes de-
rived by the odds ratio [12, 11]. Experimentally, they show that
LexRank is competitive to decision trees and naive Bayes in terms
of ranking performance (AUC).

Further work on learning lexicographic orders was done by
Schmitt and Martignon [16], Dombi et al. [9], and Yaman et al.
[18]. However, these works are based on rather simplistic assump-
tions. More general models were studied by Booth et al. [3, 4], and
in fact, important parts of our approach (such as conditional impor-
tance of attributes and conditional preferences on attribute values)
is inspired by these models. Their work remains rather theoretical,
however, without a practical realization in terms of an implementa-
tion of algorithms or an experimental study with real data.

3 GENERALIZED LEXICOGRAPHIC ORDERS
Formally, we proceed from an attribute-value representation of deci-
sion alternatives or objects, i.e., an object is represented as a vector

o ∈ O = D(V ) = D(A1)× ...×D(An),

where V = {A1, ..., An} is the set of attributes (variables)
and D(Ai) is the domain of attribute Ai. For a subset A =
{Ai1 , . . . , Aik} ⊂ V of attributes we define D(A) = D(Ai1) ×
...×D(Aik ).

An assignment or instantiation of a subset A ⊆ V of attributes
is an element a ∈ D(A); an assignment is called complete if A =



V , otherwise it is called partial. For an object o ∈ O and a subset
A ⊂ V , we denote by o[A] the projection of o fromD(V ) toD(A);
if A = {Ak} is a single attribute, we also write o[k] instead of
o[{Ak}].

A lexicographic order on O is a total order � defined in terms of

• a total order A on V , i.e., a ranking of the attributes,
• a total order Ai on each attribute domain D(Ai).

More specifically, o∗ � o (suggesting that o∗ is preferred to o) if
and only if there exists a k ∈ {1, . . . , n} such that(

o∗[k] Ak o[k]
)
∧
(
(Ai A Ak)⇒

(
o∗[i] = o[i]

))
for all i ∈ {1, . . . , n}. The relations Ai indicate preference on indi-
vidual attributes: a Ai b means that, for a, b ∈ D(Ak), a is preferred
to b as a value for attribute Ai. Moreover, the relation A reflects the
importance of attributes: Ai A Aj means that attribute Ai is more
important than Aj , whence the former is considered prior to the lat-
ter. Without loss of generality, we shall subsequently assume that
A1 A A2 A · · · A An (unless otherwise stated).

3.1 Conditional preferences on attribute values
Conventional lexicographic orders assume that preferences Ak on
attribute domains are independent of each other. Needless to say, this
assumption is often violated in practice. For example, although it is
possible that a person prefers red wine to white wine in general, it is
also plausible that her preference for wine may depend on the main
dish: red is preferred to white in the case of meat, whereas white is
preferred to red in the case of fish.

In order to capture attribute dependencies of that type, the prefer-
ences relations Ak can be conditioned on the values of the attributes
Aj preceding Ak in the order A [3, 4]. That is, Ak is now replaced
by a set of strict orders{

A
(a1,...,ak−1)

k | (a1, . . . , ak−1) ∈ D({A1, . . . , Ak−1})
}

Moreover, the order relation� onO is then defined as follows: o∗ �
o for o∗ = (a∗1, . . . , a

∗
n) and o = (a1, . . . , an) if and only if there

exists a k ∈ {1, . . . , n} such that(
∀ i ∈ {1, . . . , k − 1} : a∗i = ai

)
∧
(
a∗k A

(a1,...,ak−1)

k ak

)
.

3.2 Conditional attribute importance
Going one step further, one may assume that the values of the first at-
tributes in the attribute order A do not only influence the preferences
on the values of the attributes that follow, but also the importance of
the attributes themselves [3, 4]. Thus, we are no longer dealing with
a lexicographic order in the sense that A defines a sequence of the
attributes V according to their importance. Instead, we are dealing
with a tree-like structure. This structure is defined by the following
(choice) function:

A = C
(
(Ai1 , Ai2 , . . . , Aik ), (ai1 , ai2 , . . . , aik )

)
,

where (Ai1 , Ai2 , . . . , Aik ) ∈ V k is a sequence of attributes (such
that Aij 6= Aik for j 6= k) and aij ∈ D(Aij ) for all j ∈ {1, . . . , k}.
Moreover, A ∈ V \ {Ai1 , . . . , Aik} is the most important attribute
given that Aij = aij for all j ∈ {1, . . . , k}.

3.3 Variable grouping
Another extension consists of grouping several variables, that is, to
allow the expression of preferences on attribute tuples instead of sin-
gle attributes only [17]. Formally, this means selecting an index set
I ⊆ {1, . . . , n} and defining a total order relation AI on the carte-
sian product D(VI) of the domains D(Ai), i ∈ I.

Note that the possibility of variable grouping significantly in-
creases the expressivity of the model class. In particular, taking
I = {1, . . . , n}, it is possible to define every order on D(V ), that
is, to sort the set of alternatives in any way. Since this level of ex-
pressivity is normally not desirable, it is reasonable to restrict to
variable grouping of order gmax, meaning to impose the constraint
|I| ≤ gmax for a fixed gmax ≤ n.

3.4 Conditional lexicographic preference trees
Combining the generalizations discussed above, we end up with what
we call a Conditional Lexicographic Preference Tree (CLPT). Graph-
ically, this is a tree structure in which

• every node is labeled with a subset of attributes VI and a total or-
der on the cartesian product D(VI) of the corresponding attribute
domains D(Ai), i ∈ I;

• there is one outgoing edge (descendant node) for each value
o[VI ] ∈ D(VI);

• every attribute Ai ∈ V occurs at most once on each branch from
the root of the tree to a leaf node (i.e., the index sets I along a
branch are disjoint).

We call a CLPT complete if every attribute Ai ∈ V occurs exactly
once on each branch from the root of the tree to a leaf node (i.e., the
index sets I along a branch form a partition of {1, . . . , n}).

A (complete) CLPT can be thought of a defining an order rela-
tion on O through recursive refinement of a weak order �, that is,
by refining an order relation with tie groups in a recursive manner
(in the following, ∼ and � denote, respectively, the symmetric and
asymmetric part of �):

• One starts with a single equivalence class (tie group), i.e., o∗ ∼ o
for all o∗,o ∈ O.

• Let the root of the CLPT be labeled with the attribute set VI , and
let AI denote the corresponding order on D(VI). The current or-
der � is then refined by letting o∗ � o whenever o∗[VI ] AI
o[VI ]; otherwise, if o∗[VI ] = o[VI ], then o∗ and o remain tied.

• Thus, a linear order of tie groups (equivalence classes) is pro-
duced.

• Each equivalence class (represented by a value a ∈ D(VI)) is
then recursively refined by the subtree the objects of this equiva-
lence class are passed to.

Note that, if the CLPT is complete, the order relation � eventually
produced is a total order �.

4 LEARNING CLPTs
In this section, we outline a method for inducing a CLPT from train-
ing data

T =
{
(o∗i ,oi)

}N
i=1

(1)

that consists of a set of object pairs (o∗i ,oi) ∈ O2, suggesting that
o∗i is preferred to oi. Roughly speaking, this means finding a CLPT
whose induced order relation � on O is as much as possible in



agreement with the pairwise preferences in T (without overfitting
the training data). The induced order relation � is a total order � if
the CLPT is complete.

4.1 Performance and evaluation measures
In order to evaluate the predictive performance of a CLPT, there is
a need to compare the order relation � (with asymmetric part �)
induced by this model with a ground truth order� ∗. As will be seen
below, the same measures can be used to fit a CLPT to a given set of
training data (1) during the training phase. In this case, the “ground
truth” is not a total order but a set of pairwise comparisons between
objects. Since a total order �∗ can be decomposed into (a quadratic
number of) such comparisons, too, we can assume (without loss of
generality) that we compare � with a set T of pairs (o∗,o) ∈ O2,
suggesting that o∗ should be ranked higher than o.

Inspired by the corresponding notions introduced in [6], we define
two performance measures of correctness and completeness, respec-
tively, as follows:

CR(�, T ) =
|C| − |D|
|C|+ |D| , (2)

CP(�, T ) =
|C|+ |D|
|T | , (3)

where

C =
{
(o∗,o) ∈ T |o∗ � o

}
,

D =
{
(o∗,o) ∈ T |o � o∗

}
.

Note that CR(�, T ) assumes values between −1 (complete dis-
agreement) and +1 (complete agreement), while CP(�, T ) ranges
between 0 (no comparisons) and 1 (full comparison).

4.2 A greedy learning procedure
We implement an algorithm for learning a CLPT as a (greedy) search
in the space of tree structures based on the greedy algorithms pre-
sented by Schmitt and Martignon [16] as well as Booth et al. [3, 4].
This is done by constructing the tree from the root to the leaves in a
recursive manner. In each step of the recursion, a new node is created
with an associated subset VI of attributes, where |VI | ≤ gmax, and
a total order AI on D(VI).

4.2.1 Creating a node

The problem to be solved in each recursion is the following: Given
a set of pairwise comparisons T and a set V ′ ⊆ V of attributes still
available, select a most suitable subset VI ⊆ V ′ and an order AI .
Following a greedy strategy, we choose (VI ,AI) so as to maximize
correctness (2), using completeness (3) as a second criterion to break
ties.

The selection of an attribute subset VI can be done through ex-
haustive search if its size is sufficiently limited, i.e., if the upper
bound gmax is small. Otherwise, a complete enumeration of all pos-
sibilities may become too expensive. Moreover, for each candidate
subset VI , a total order AI needs to be determined. Again, all such
orders can be tried if D(VI) is not too large. Otherwise, heuristic
ranking procedures such as Borda count can be used (counting the
number of “wins” and “losses” of each value a ∈ D(VI) in the
training data T and sorting according to the difference).

4.2.2 Limiting the number of candidate subsets

In order to avoid a complete enumeration of all candidate subsets VI
of size ≤ gmax, we combine a greedy search with a kind of looka-
head procedure: We provisionally create a node by selecting a single
attribute instead of a subset, i.e., we tentatively set gmax to 1; apart
from that, exactly the same selection procedure (as outlined above)
is applied. This step is repeated gmax times, thereby producing a
subtree of depth gmax. Let V ∗ ⊆ V denote the subset of attributes
that occur in this subtree, i.e., that are chosen in at least one of the
nodes. Then, as candidate subsets VI , we only try subsets V ∗, i.e.,
subsets VI ⊆ V ∗ such that |VI | ≤ gmax. Obviously, the underlying
assumption is that an attribute that has not been chosen in any of the
gmax steps is not important at this point.

4.2.3 Recursion

Once an optimal subset VI has been chosen, the training examples
(o∗,o) with o∗[VI ] 6= o[VI ] are removed from T (since they are
sorted at this node). Moreover, for each value a ∈ D(VI), a data set

Ta =
{
(o∗,o) ∈ T |o∗[VI ] = o[VI ] = a

}
is created and passed to the corresponding successor node (together
with V ′ \ VI as the attributes that have not been used so far). The
same recursive procedure is then applied to each of these successor
nodes.

4.2.4 Initialization and termination

The learning procedure is called with the original training set T and
the full set V of attributes as candidates. The recursion terminates
if no attribute is left (V ′ = ∅) or if the set of training examples is
empty (T = ∅).

4.2.5 CLeRa

We call the algorithm outlined above CLeRa, which is short for Con-
ditional Lexicographic Ranker. The CLPT induced by CLeRa can be
used to compare new object pairs {o∗,o} ⊂ O. To this end, the tuple
is submitted to the root and propagated through the tree until either a
leaf node is reached or a node at which o∗[VI ] 6= o[VI ]; in this case,
o∗ � o is decided if o∗ AI o and o � o∗ if o AI o∗. Otherwise,
if o∗[VI ] = o[VI ] in all nodes traversed by the two objects, then
o∗ ∼ o.

Given not only a pair but a complete set of objects to be ranked,
the pairwise comparison realized by the CLPT can be embedded in
any standard sorting algorithm, such as insertion sort. Note that, since
o∗ ∼ o is possible in a pairwise comparison, the result of the sorting
procedure will in general only be a weak order �.

5 EXPERIMENTAL RESULTS
We evaluate our approach on 15 benchmark data sets from the Statlog
and the UCI repository [2]. These data sets, which define binary or
ordinal classification problems, were pre-processed as follows: nu-
merical attributes and attributes with more than five values were dis-
cretized into four values using equal frequency binning. Moreover,
instances with missing values were neglected.

The learning problem we consider is multipartite ranking [14]:
Given a set of test instances X ⊂ O, the goal is to predict a ranking



� that agrees with the (ordered) class labels of these instances. For-
mally, this agreement is measured in terms of the so-called C-index,
which can be seen as an extension of the AUC:

C =
1∑

i<j ninj

∑
1≤i<j≤m

∑
(o,o∗)∈Xi×Xj

I(o∗ � o)+
1

2
I(o∗ ∼ o),

where Xi ⊆ X denotes the set of instances with class labels yi, and
these class labels are assumed to have the order y1 < y2 < · · · <
ym. The training data consists of a set of labeled instances, just like
in classification. Since CLeRa is learning from pairwise comparisons
of the form (o∗,o), it first extracts such comparisons from the origi-
nal data by looking at the class information: A preference (o∗,o) is
generated for each pair (o∗, yj) and (o, yi) of labeled instances in
the (original) training data such that yi < yj .

The ranking performance of CLeRa (with maximum grouping size
of gmax = 2) is compared with LexRank, which was implemented
as proposed by Flach and Matsubara [12, 11]; therefore, this method
was only applied to binary (two-class) problems but not to problems
with more than two classes.2 We applied naive Bayes (NB) and de-
cision tree (J48) learning as additional baselines, using the standard
implementations in Weka (trees are not pruned) and sorting instances
according to the estimated probability of the positive class; note that
these methods are not applicable to the multi-class case either.

Table 1. Average performance in terms of C-index based on a 10-fold
cross-validation.

Dataset CLeRa LexRank J48 NB
Red Wine 0.7827 0.8011 0.7378 0.8110
Census Income 0.7952 0.5776 0.7401 0.8607
Credit Approval 0.9201 0.9229 0.8517 0.9061
Mammographic Mass 0.8831 0.8960 0.8524 0.8999
Mushroom 1.000 0.9865 1.0000 0.9484
SPECT Heart 0.674 0.6590 0.5106 0.7409
Ionosphere 0.9198 0.5748 0.8059 0.9061
MAGIC Gamma Telescope 0.8218 0.7263 0.7841 0.8241
Breast Cancer Wisconsin 0.9837 0.9901 0.9793 0.9909
German Credit 0.6285 0.4523 0.6251 0.7835
Car Evaluation 0.9198 n/a n/a n/a
Nursery 0.9052 n/a n/a n/a
Tic-Tac-Toe Endgame 0.7728 n/a n/a n/a
Vehicle 0.7554 n/a n/a n/a
Cardiocraphic 0.9551 n/a n/a n/a

The results of a 10-fold cross-validation are given in Table 1.
Since CLeRa produced a completeness of 1 or extremely close to
1 throughout, these values are not reported here. Overall, the perfor-
mance of the methods is quite comparable. In particular, CLeRa and
LexRank produce quite similar results on many data sets. In some
cases, however, the results are strongly in favor of CLeRa (Census
Income, Ionosphere, MAGIC Gamma Telescope, German Credit).
Probably, this is because the bias imposed by the assumption of a
standard lexicographic order is inadequate for these data sets, and
hence our extensions (conditional attribute importance, conditional
value preferences, variable grouping) clearly pay off.

6 CONCLUSIONS AND FUTURE WORK
Lexicographic orders constitute an interesting model class for pref-
erence learning, which allows for representing rankings of a set of
objects in a very compact and comprehensible way. Yet, as we have

2 The red wine data actually has a target attribute with values between 1 and
10; it was binarized by thresholding at the median.

argued in this paper, this model class may not be flexible enough
for many real-world applications. Therefore, we have proposed to
weaken the assumptions underlying a lexicographic order in vari-
ous directions, allowing for conditional attribute importance, condi-
tional preferences on attribute values, and variable grouping. More-
over, we have proposed an algorithm called CLeRa, which learns
preference models in the form of conditional lexicographic prefer-
ence trees from training data in the form of pairwise comparisons
between objects.

First experimental results in the setting of multipartite ranking are
quite promising and show CLeRa to be competitive with other meth-
ods. In a direct comparison with an existing lexicographic ranker, the
benefit of our extensions are becoming quite obvious.

Important topics of future work can be found both on the the-
oretical and practical side. In particular, we are currently studying
formal properties of our generalized model class, such as its expres-
siveness and means for regularization and complexity control. Prac-
tically, there is certainly scope for improving our current algorithm,
for example by devising a suitable procedure for estimating an opti-
mal value gmax for the oder of variable grouping. Moreover, improv-
ing the computational efficiency of CLeRa would be desirable, too.
Last but not least, we are of course interested in real applications for
which (generalized) lexicographic models appear to be an adequate
representation.
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