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Abstract. As unlabeled data is usually easy to collect, semi-
supervised learning algorithms that can be trained on large
amounts of unlabeled and labeled data are becoming increas-
ingly popular for ranking and preference learning problems
[6, 23, 8, 21]. However, the computational complexity of the
vast majority of these (pairwise) ranking and preference learn-
ing methods is super-linear, as optimizing an objective func-
tion over all possible pairs of data points is computationally
expensive.

This paper builds upon [16] and proposes a novel large scale
co-regularized algorithm that can take unlabeled data into
account. This algorithm is suitable for learning to rank when
large amounts of labeled and unlabeled data are available for
training. Most importantly, the complexity of our algorithm
does not depend on the size of the dataset. We evaluate the
proposed algorithm using several publicly available datasets
from the information retrieval (IR) domain, and show that
it improves performance over supervised methods. Finally,
we discuss possible implications of our algorithm for learn-
ing with implicit feedback in an online setting.

1 Introduction and background

Our paper proposes an algorithm that is applicable to large
scale learning to rank. Unlike existing approaches the pro-
posed algorithm can take into account unlabeled data, lead-
ing to improved ranking performance. Learning to rank al-
gorithms have been successfully applied to various domains
such as IR [12], bioinformatics [13], and automated reasoning
[11]. One of the bottlenecks associated with ranking tasks is
the quadratic dependence on the size of the dataset. That is,
most of the (pairwise) methods suffer from the computational
burden of optimizing an objective defined over O(m2) possi-
ble pairs for data points, where m is the size of the dataset.
Usually, the complexity of ranking algorithms has super-linear
dependency on m, except the work of [16] where the use of
stochastic gradient descent on pairs results in an extremely
efficient training procedure with strong generalization per-
formance. Pairwise learning to rank with stochastic gradient
descent results in a scalable methodology that we refer to as
stochastic pairwise descent (SPD).
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In [16] it is demonstrated that such stochastic gradient
based learning methods provide state of the art results us-
ing a fraction of a second of CPU time for training. However,
SPD is only applicable to supervised learning problems. A
natural and useful extension of SPD is an extension to semi-
supervised learning, where, in addition to labeled data, a large
amount of unlabeled data is used for training. We address this
problem and present a large scale co-regularized ranking al-
gorithm for semi-supervised tasks.

Our large scale co-regularized ranking algorithm (LCRA) is
formulated within a multi-view framework. In this framework
the dataset attributes (i.e., features) are split into indepen-
dent sets and an algorithm is trained based on these different
“views”. The goal of the learning process is to find a prediction
function for every view performing well on the labeled data in
such a way that all prediction functions agree on the unlabeled
data. Closely related to this approach is the co-regularization
framework described in [18], where the same idea of agreement
maximization between the predictors is central. Recently it
has been demonstrated that the co-regularization approach
works well for various tasks e.g. domain adaptation [7], classi-
fication, regression [2], and clustering [3]. Moreover, theoreti-
cal investigations demonstrate that co-regularization reduces
the Rademacher complexity by an amount that depends on
the “distance” between the views [15, 19].

We think that our co-regularization algorithm is partic-
ularly promising in online learning to rank for IR settings,
where a search engine learns from the limited feedback that
can be inferred from direct interactions with a search engine
users. In this paper, we first focus on co-regularization (in
Section 2) and our co-regularized pairwise learning algorithm
(3 and 4). Finally, we discuss possible extensions to the online
learning to rank for IR setting (Section 5).

2 Large Scale Pairwise Learning to Rank
and Co-regularization

Consider a training set D = (X,Y,Q), where X =
(x1, . . . ,xm)T ∈ Rm contains n−dimensional feature vec-
tors of the data points, Y = (y1, . . . , ym)T ∈ Nm are the
scores/ranks, and Q = (q1, . . . , qm)T ∈ Nm are the indices for
identification to which group/query a particular data point
belongs. Note that each entry xi ∈ X consists of features
that encode the relation between a particular item (e.g., a
document) to group or query qi. In addition to the train-
ing set D = (X,Y,Q) with labeled data we have a train-
ing set D̂ = (X̂, Q̂) with unlabeled data points. Also, let us
consider M different hypotheses spaces H1, . . . , HM or so-
called views. These views stem from different representations



of the data points, unique subsets of features. Finally, we de-
fine a set of candidate pairs P and P̂ (implied by the datasets
D and D̂) as the set of all tuples ((a, ya, qa), (b, yb, qb)) and
((a, qa), (b, qb)), where ya 6= yb and qa = qb.

Co-regularized algorithms are usually not straightforwardly
applicable to large scale learning tasks, when large amounts
of unlabeled as well as labeled data are available for training.
Several recently proposed algorithms have complexity that
is linear in the number of unlabeled data points and super-
linear in the number of labeled examples (e.g. cubic as in case
of co-regularized least squares [2, 23]). Such methods become
infeasible to use as the dataset size increases. In particular,
this applies to the pairwise learning setting (note that in the
worst case |P | grows quadratically with the dataset size).

2.1 Constructing the pairs

In the pairwise learning setting it is important to be able to
sample from |P | and |P̂ | without explicitly constructing the
datasets of pairs. Several approaches to address this problem
are suggested in [16]. For simplicity we adopt one of the most
basic techniques: we repeatedly select two examples (a, ya, qa)
and (b, yb, qb) from the data until a pair is found such that
ya 6= yb and qa = qb. Then we construct a feature vector of
the corresponding pair as p = a−b and the label y = ya−yb.

3 The Algorithm

Stochastic gradient based algorithms are amongst the most
popular approaches for large scale learning. Methods such
as Pegasos [17], LaSVM [1], GURLS [22] and many oth-
ers have been successfully applied to large scale classification
and regression problems, leading to state-of-the-art general-
ization performance. Recently, the SPD algorithm [16] has
been successfully used to address large scale learning to rank
tasks. The main idea is to sample candidate pairs from P
for stochastic steps, without constructing P explicitly. This
avoids dependence on |P |. In essence, the approach proposed
in [16] reduces learning to rank to learning a binary classi-
fier via stochastic gradient descent. This reduction preserves
the convergence properties of stochastic gradient descent. Our
algorithm is related to the above mentioned methods but is
preferable in case unlabeled data points are available for learn-
ing.

Let us consider the large scale co-regularized ranking algo-
rithm. We write the objective function as

J(W ) =

M∑
v=1

 |P |∑
i=1

L(pvi , yi;w
v) + λLR(wv)

 (1)

+µ

M∑
v,u=1
v 6=u

|P̂ |∑
i=1

LC(pvi ,p
u
i ;wv,wu),

where the first term corresponds to the loss function on
the labeled pairs and the second term to a regularization
on the individual prediction functions. The third is the co-
regularization term that measures the disagreement between
the different prediction functions on unlabeled pairs. Note
that W ∈ RM×n is a matrix containing weight vectors for
different views. Once the model is trained the final prediction

can be obtained, for example, by averaging individual predic-
tions for different views (as in [15]). We can approximate the
optimal solution (obtained when minimizing (1)) by means of
gradient descent

wv
t+1 = wv

t − ηvt∇wvJ(W ). (2)

Let us consider the setting in which the squared loss function
is used for co-regularization, and the L2 norm is used for regu-
larization. Choosing the squared loss for the co-regularization
term is quite natural as it penalizes the differences among the
prediction functions constructed for multiple views (similar
to the standard regression setting where the differences be-
tween the predicted and true scores are penalized). For every
iteration t of the algorithm, we first construct pairs via the
procedure described in section 2.1 and denote the set of se-
lected pairs by At ⊆ P of size k. Similarly we choose Ât ⊆ P̂
of size l for each round t on the unlabeled dataset. Let us also
denote by Avt the set At as seen in the view v. Then, we re-
place the “true” objective (1) with an approximate objective
function and write the update rule as follows

wv
t+1 = (1− ηvt λ)wv

t − ηvt
∑

(p,y∈Av
t )

∇L(pv, y;wv
t ) −

4µηvt

M∑
v,u=1
v 6=u

∑
(p,y∈Âv

t∪Â
u
t )

(
wvT
t pv −wuT

t pu
)
pv. (3)

Note that if we choose At to contain a single randomly se-
lected pair, we recover a variant of the stochastic gradient
method. In general, we allow At to be a set of k and Ât to be
a set of l data points sampled i.i.d. from P and P̂ , respectively.

Recall that in the setting described above we are solving
a learning to rank problem via reduction to classification of
pairs of data points. For classification tasks, the hinge loss
is usually considered as more appropriate, although in several
studies it has been empirically demonstrated that the squared
loss often leads to similar performance (see [14, 27]). The up-
date rule using the hinge loss is derived as follows. Let us
define Av+ to be the set of examples for which wv obtains a
non-zero loss, that is Av+ = {(pv, y) ∈ Avt : y〈pv,wv〉 < 1}.
Then by substituting the second term in equation (3) with
ηvt
∑

(p,y∈Av+) yp
v we obtain the update rule for the large

scale co-regularized algorithm with hinge loss. When the
squared loss function is used for labeled and unlabeled data
we obtain the update rule by substituting the second term in
equation (3) with ηvt

∑
(p,y∈Av

t )
(y−wvTpv)pv. Our large scale

co-regularized ranking algorithm has complexity of O(Md),
where d is the number of nonzero elements in pv. The pseu-
docode is shown in Algorithm 1.

4 Experiments

The task of ranking query-document pairs is a problem central
to document retrieval - given a query some of the available
documents are more relevant in regards to it than some oth-
ers. Because the user will usually be most interested in the
top results returned, document retrieval systems are typically
evaluated using performance measures such as mean average
precision (MAP).



Algorithm 1 Large scale co-regularized ranking algorithm (LCRA-k-l)

Require: Datasets D and D̂, regularization parameter λ, batch sizes k and l, number of iterations N , number of views M ,
co-regularization parameter µ.

Ensure: W = 0
1: for t = 1, 2, . . . , N do
2: Construct At ⊆ P (using procedure from Sec 2.1), where |At| = k and Ât ⊆ P̂ , where |Ât| = l
3: for v = 1, 2, . . . ,M do
4: Set Av+t = {(pv, y) ∈ Avt : y〈pv,wv

t 〉 < 1}
5: Set ηvt = 1

λt

6: wv
t+1 ← (1− ηvt λ)wv

t − ηvt
∑

(p,y∈Av+
t )

ypv − 4µηvt
∑M
v,u=1
v 6=u

∑
(p,y∈Âv

t∪Â
u
t )

(
wvT
t pv −wuT

t pu
)
pv

7: Output W

To benchmark the performance of our algorithm we use
Letor 3.0 (LEarning TO Rank) - a collection of several
datasets extracted from corresponding IR data collections.
The whole collection consists of a set of document-query pairs.
Each document-query pair is represented as an example with
a quite small number of highly abstract features. Our exper-
iments are performed on each of the datasets separately. We
preprocess the datasets by normalizing all feature values to
values between 0 and 1 on a per query basis. We use the
classical learning setting, where 70% of the data is used for
training and the remaining 30% as testing. To simulate a semi-
supervised learning setting, a subset of 20% of the training
data is randomly selected to be used as labeled data. From
the remaining training data, labels are removed.

We compare the performance of our large scale co-
regularized ranking algorithm with several other methods,
namely the baseline - supervised - version of the algorithm
(without co-regularization), which is in equivalent to SPD [16]
and to the pairwise Pegasos algorithm [17]. We also compare
with the multi-view version of the algorithm, also excluding
the co-regularization term, referred to as SPD MV. The com-
parison is made with several instantiations of the large scale
co-regularized ranking algorithm, termed as LCRA-k-l, using
various sizes of unlabeled batch examples. For the supervised
learning algorithms, only the labeled part of the dataset is
used for training. The same set is then used for training the
co-regularized model, together with the unlabeled data.

Parameter selection for each model is done by 5-fold cross-
validation over the training partition of the data. For the su-
pervised models, parameters to be selected are learning rate
η0 and regularization parameter λ. For the supervised and
semi-supervised multi-view models we consider two views that
are constructed via random partitioning of the data attributes
into two unique sets. Such division of the attributes for con-
structing multiple views has been previously used in [2]. For
the multi-view model we have to estimate the learning rate
η0, as well as the λ1 and λ2 parameters. The semi-supervised
model has an additional parameter µ controlling the influence
of the co-regularization on model selection.

The results of our experiments are included in Table 1. It
can be observed that in all experiments the proposed LCRA
algorithm outperforms supervised learning methods. The ob-
tained results are expected, as it has been previously demon-
strated that co-regularization leads to improved classification
performance. Note that our algorithm can be considered a
pairwise classification approach for learning to rank.

Dataset LCRA-1-5 LCRA-1-1 SPD SPD MV

TD2003 0.15 0.11 0.10 0.11

TD2004 0.14 0.12 0.10 0.10

NP2003 0.54 0.54 0.47 0.49

NP2004 0.51 0.48 0.44 0.45

HP2003 0.60 0.57 0.50 0.52

HP2004 0.52 0.50 0.45 0.45

OHSUMED 0.33 0.31 0.29 0.30

Table 1. MAP-performance comparison of the LCRA algorithm
and the baseline methods on the Letor dataset. Note that results

of supervised learning algorithms are not comparable to
previously reported benchmarks on Letor dataset due to the fact

that they are trained only on 20% of the labeled data points.

5 Co-regularization in Online Learning to
Rank for IR

In the previous sections we introduced a co-regularization al-
gorithm for semi-supervised learning to rank. We think that
this approach is particularly promising in the context of online
learning to rank for IR, and discuss its application below.

In online learning for IR a search engine learns improved
ranking functions by directly interacting with a user4 [10, 25].
It is typically modeled as a contextual bandit problem5 [20],
where the query is the context provided by the user, and feed-
back can be inferred from user clicks on result documents that
the search engine returned in response to the query.

5.1 Online learning for IR

The most important difference between the online learning
to rank setting and the traditionally considered supervised
learning to rank for IR setting is the feedback available to the
learning algorithm. Like in other reinforcement learning (RL)
settings [20], a retrieval system that learns from user interac-
tions can only infer feedback about the documents or docu-
ment rankings that it actually presents to the user (and that
are inspected by the user). This results in much more limited
information to learn from than is available in the supervised

4 Here we use online in the RL sense, meaning that learning and
application of the learned solution are performed at the same
time. Note that this differs from the term’s use in the optimization
literature, where is usually refers to the scalability of algorithms.

5 Contextual bandit problems are a type of reinforcement learning
problem actions (i.e., presented documents) depend on the con-
text (i.e., the query), but not on previous interactions between
system and environment.



setting, where it is assumed that labels are exhaustive [24], or
sampled in some systematic way [4].

In addition to the limited amount of feedback available in
the online learning to rank for IR setting, the quality of the
feedback is constrained as follows. Users of a retrieval system
expect a ranked list of results, that is more or less ordered
by the usefulness of these results given their information need
(expressed as e.g., a text query). Consequently, they are most
likely to inspect results presented at the top of the returned
result list, and continue examining and/or interacting with
documents at subsequently lower ranks until their informa-
tion need is met, or until they run out of time, patience, or
some other restricted resource. For the most effective learning
outcomes, this means that the documents (or pairs of docu-
ments) on which feedback would be most useful for learning
should be presented first (we call this strategy of presenting
result documents exploration). However, the documents that
are most useful for learning may not be the ones that are
most likely to fulfill the users information need (exploitation).
Consequently, an effective learning algorithm should balance
exploration and exploitation to optimize online performance,
i.e., performance while learning from user interactions.

5.2 Related work

Several recent approaches address the problem of learning to
rank for IR in an online setting. Yue et al. formulate the
Dueling Bandit problem [26] and the K-armed Bandit prob-
lem [25]. In both formulations, learning is based on observ-
ing pairwise feedback on complete rankings, obtained using
so-called interleaved comparison methods, where user clicks
are observed on specially constructed result lists that allow
inferring a preference between the two rankings [5, 9]. The
algorithms proposed to address these tasks follow an exploit-
then-explore approach, where it is assumed an algorithm can
learn quickly before starting to exploit what has been learned,
and performance while learning is largely ignored.

Follow-up work suggests that online performance can be
improved by balancing exploration and exploitation [10]. In
this work, it was shown that different learning approaches
are affected by a balance of exploration and exploitation in
different ways. For the listwise Dueling Bandit approach, it
was shown that the originally proposed, purely exploratory
algorithm over-explored, and that effective learning could be
achieved by injecting only two exploratory documents into
an otherwise exploitative result list. For the alternative pair-
wise approach, that is the most similar to the SPD approach
evaluated in this paper, it was found that a purely exploita-
tive algorithm performed very well when feedback could be
reliably inferred from user clicks. However, when user feed-
back was noisy, bias introduced by the preference of users for
higher-ranked results caused learning outcomes to deteriorate
dramatically. To combat this performance loss, exploration
had to be increased (which, in its simplest form can consist
of random exploration).

5.3 Relation to online co-regularization

The co-regularization algorithm presented in this paper is di-
rectly applicable to existing pairwise learning approaches for
the online learning to rank for IR setting. Because labeled

feedback is particularly limited in the start-up phase of an on-
line learning task, high initial learning gains are expected in
this setting when easily obtainable unlabeled data can be used
to complement this data. The resulting higher-quality result
lists are expected to result in more reliable feedback [10]. As a
result, learning could be sped up while reducing the need for
exploration, leading to increased online performance. An ex-
perimental investigation of this hypothesis will be conducted
in follow-up work.

6 Conclusion

In this paper we have presented a large-scale co-regularized
algorithm for ranking and preference learning. Our algorithm
can use unlabeled data to improve learning when labeled data
is scarce. Our experiments on 7 standard learning to rank
data sets show that our co-regularization component con-
sistently improves performance over algorithms without co-
regularization. We think that this approach can be particu-
larly beneficial in an online learning to rank setting, where
algorithms learn directly from interacting with users and ef-
fective use of limited feedback is paramount. We conclude
with a brief outlook on future work in this area.
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