
Direct Value Learning: a Preference-based Approach to
Reinforcement Learning

David Meunier(1), Yutaka Deguchi(2), Riad Akrour(1)

Einoshin Suzuki(2), Marc Schoenauer(1), Michele Sebag(1)

Abstract. Learning by imitation, among the most promising tech-

niques for reinforcement learning in complex domains, critically de-

pends on the human designer ability to provide sufficiently many

demonstrations of satisfactory quality.

The approach presented in this paper, referred to as DIVA (Di-

rect Value Learning for Reinforcement Learning), aims at address-

ing both above limitations by exploiting simple experiments. The ap-

proach stems from a straightforward remark: while it is rather easy

to set a robot in a target situation, the quality of its situation will nat-

urally deteriorate upon the action of naive controllers. The demon-

stration of such naive controllers can thus be used to learn directly a

value function, through a preference learning approach. Under some

conditions on the transition model, this value function enables to de-

fine an optimal controller.

The DIVA approach is experimentally demonstrated by teaching

a robot to follow another robot. Importantly, the approach does not

require any robotic simulator to be available, nor does it require any

pattern-recognition primitive (e.g. seeing the other robot) to be pro-

vided.

1 Introduction

Since the early 2000s, significant advances in reinforcement learn-

ing (RL) have been made through using direct expert’s input (inverse

reinforcement learning [18], learning by imitation [10], learning by

demonstration [16]), assuming the expert’s ability to demonstrate

quasi-optimal behaviors and to provide an informed representation.

In 2011, new RL settings based on preference learning and al-

legedly less demanding for the expert have been proposed (more in

section 2).

In this paper, a new preference-based reinforcement learning

approach called DIVA (Direct Value Learning for Reinforcement

Learning) is proposed. DIVA aims at learning directly the value func-

tion from basic experiments. The approach is illustrated on the sim-

ple problem of teaching a robot to follow another robot. It is shown

that DIVA yields a competent follower controller without requiring

the primitive “I see the other robot“ to be either provided, or explic-

itly learned.

2 State of the art

Reinforcement learning is most generally formalized as a Markov

decision process. It involves a state space S, an action space A,

and an upper bounded reward function r defined on the state space

r : S 7→ R. The model of the world is given by the transition func-

tion p(s, a, s′), expressing the probability of arriving in state s′ on

making action a in state s under the Markov property; in the deter-

ministic case, the transition function tr : S × A 7→ S gives the

1 TAO, CNRS-INRIA-LRI, Université Paris-Sud
2 Dept. Informatics, ISEE, Kyushu University

state tr(s, a) of the agent upon making action a in state s. A policy

π : (S,A) 7→ R maps each state in S on some action in A with a

given probability. The return of policy π is defined as the expectation

of cumulative reward gathered along time when selecting the current

action after π, where the initial state s0 is drawn after some proba-

bility distribution q on S. Denoting ah ∼ π(sh) the random variable

action selected by π in state sh, sh+1 ∼ p(sh, ah, s) the state of the

agent at step h + 1 conditionally to being in state sh and selecting

action ah at step h, and rh+1 the reward collected in sh+1, then the

policy return is

J(π) = IEπ

[
∞∑

h=0

γhrh|s0 ∼ q

]

where γ < 1 is a discount factor enforcing the boundedness of the

return, and favoring the reaping of rewards as early as possibly in the

agent lifetime.

The so-called value function Vπ(s) estimates the expectation of

the cumulative reward gathered by policy π when starting in state s,

recursively given as:

Vπ(s) = r(s) + γ
∑

a,s′

π(s, a)p(s, a, s′)Vπ(s
′)

Interestingly, from a value function V can be derived a greedy policy

πV , provided the transition function is known: when in state s, select

the action a leading to the state with best expected value:

πV (s) = argmax a∈A

{
p(s, a, s′)V (s′) probabilistic trans.

V (tr(s, a)) deterministic trans.

}

(1)

By construction, πVπ
is bound to improve on π. By learning value

function V ∗ as the maximum over all policies π of Vπ

V ∗(s) = maxπVπ(s)

one can thus derive the optimal policy π∗ = πV ∗ .

The interested reader is referred to [19, 20] for a comprehen-

sive presentation of the main approaches to Reinforcement Learn-

ing, namely value iteration and policy iteration algorithms, building

a sequence of value functions V i and policies πi converging to V ∗

and π∗. The bottleneck of estimating the optimal value function is

that all states must be visited sufficiently often, and all actions must

be triggered in any state, in order to enforce the convergence of V i

and π(V i) toward V ∗ and π∗. For this reason, RL algorithms hardly

scale up when the size of the state and action spaces is large, all the

more so as the state description must encapsulate every information

relevant to action selection in order to enforce the Markov property.

New RL approaches devised to alleviate this bottleneck and based

on preference learning have been proposed in 2011 [11, 2]. [11] is

concerned with the design of the reward function in order to facil-

itate RL; for instance in the medical protocol application domains,

how to associate a numerical negative reward to the patient’s death

? The authors thus extend the classification-oriented approach first

proposed by [17] as follows. In a given state s, an action a is as-

sessed by executing the current policy until reaching a terminal state

(rollout). On the basis of these assessments, pairs of actions can be

ranked with regard to state s and policy π (a <s,π a′). These rank-

ing constraints are exploited within a learning-to-rank algorithm (e.g.

RankSVM [13]), yielding a ranking hypothesis hs,π : A 7→ R. The

claim is that such action ranking hypotheses are more flexible than

classification hypotheses, aimed at discriminating “the” best actions

from the others conditioned by the current state. In summary, the

ranking hypothesis depends on the policy and the current state, and

operates on the action space.

Quite the contrary, in [2] the ranking hypothesis operates on the

policy space. The motivating application is swarm robotics, facing

two severe issues. Firstly, swarm robotics is hardly compatible with

generative model-based RL approaches; simulator-based approaches

suffer from the supra-linear computational complexity of simula-

tions w.r.t. the number of robots in the swarm (besides the simula-

tion noise). Secondly, swarm robotics hinders the inverse reinforce-

ment learning approach [1, 15], using the expert demonstrations to

learn a reward function. In most cases the swarm expert cannot de-

scribe (let alone demonstrate) the individual robot behavior leading

to the desired swarm behavior (known as the inverse macro-micro

problem [7]). The proposed approach, called PPL (Preference-based

Policy Learning) proceeds along an interactive optimization setting:

the robot(s) demonstrates a behavior, which is ranked by the expert

comparatively to the previous best demonstration. The ranking con-

straints are exploited through a learning-to-rank algorithm, yielding

a ranking hypothesis on the policy demonstrations and thus on the

policy space Π (h : Π 7→ R). This ranking hypothesis is used as

policy return estimate, casting RL as an optimization problem (find

π∗
h = argmax h(π)). Policy π∗

h is demonstrated to the expert, who

ranks it compared to the previous best demonstration, and the process

is iterated. Note that PPL thus faces the same difficulty as interactive

optimization at large [9, 22]: if the expert is presented with too con-

strained a sample of demonstrations, she does not have a chance to

teach her preferences to the system. PPL is thus extended to integrate

an active learning criterion, yielding the APRIL (Active Preference

learning-based Reinforcement Learning) algorithm [3].

3 Overview of DIVA

This section introduces and formalizes the principle of DIVA, and

discusses its strengths and limitations w.r.t. the state of the art.

3.1 Principle

DIVA is rooted in Murphy’s law (Anything that can possibly go

wrong, does). Formally, it posits that when the agent happens to be

in some good situation, its situation tends to deteriorate under most

policies. Let us illustrate this idea on the simple problem of having a

robot following another robot in an open environment. Assume that

the follower robot is initially situated behind the leader robot (Fig. 1,

left, depicts the follower state, given as its camera image). Assume

that both follower and leader robots are equipped with the same sim-

ple Go Ahead controller (same actuator value on the left and right

wheel of both robots). Almost surely, each robot trajectory will devi-

ate from the straight line, due to e.g. the imperfect calibration of the

wheel actuators or different sliding frictions on the ground. Almost

surely, the two robot trajectories will be deviated in a different way.

Therefore, the follower will at some point lose track of the leader

(Fig. 1, right, depicts the follower state after circa 52.7 (+-20.6) time

steps, that is, XX seconds).

Figure 1: Left: The follower robot is initially aligned behind the

leader robot. Right: Both leader and follower robots are operated by

the same Go ahead controller. Due to mechanical drift, the follower

sooner or later loses track of the leader.

The intuition can be summarized as: the follower state was never

as good as in the initial time step; it becomes worse and worse along

time.

3.2 Formalization

The above remarks enable to define a ranking hypothesis on the state

space, as follows. Let us consider K trajectories of the robot follower

noted S1 . . . SK , where each trajectory Si is defined as a sequence

of states s
(i)
t , t = 0 . . . Ti. A value function is sought as a function V

mapping the set of states S onto R, satisfying constraints V (s
(i)
t) >

V (s
(i)
t+1) for all i = 1 . . .K and t = 0 . . . Ti − 1.

Formally, it is assumed in the following that the state space S is

embedded in R
d. A linear value function V̂ ∗ : S 7→ R is defined as

V̂ ∗(s) = 〈ŵ∗, s〉

where ŵ∗ ∈ R
d is given after the standard learning-to-rank regular-

ized formulation [4]:

ŵ∗ = arg min 1
2
||w||22 + C

∑k

i=1

∑
t<t′≤Ti

ξ
(i)

t,t′

s.t. ∀ 1 ≤ i ≤ K, 0 ≤ t < t′ ≤ Ti

〈w, s
(i)
t 〉 ≥ 〈w, s

(i)

t′
〉+ 1− ξ

(i)

t,t′
; ξ

(i)

t,t′
≥ 0

(2)

This quadratic optimization under constraints problem can be solved

with affordable empirical complexity [14]. After Eq. (1) and pro-

vided that the transition model is known, value function V̂ ∗ derives

a policy π̂∗. Further, by construction any value function derived by

monotonous transformation of V̂ ∗ induces the same policy π̂∗.

3.3 Discussion

Among the main inspirations of the DIVA approach is TD-Gammon

[21]. TD-Gammon, the first backgammon program to reach a cham-

pion level in the 80s, exploits games generated from self-play to train

a value function along a temporal difference algorithm. The value

function is likewise trained from a set of games, or trajectories Si

described as a sequence of positions s
(i)
t , t = 0 . . . Ti. The dif-

ference is as follows. Firstly, TD-Gammon only imposes the value

for the initial and the final positions, with V (s
(i)
0) = 1/2 (the ini-

tial position is neutral), and V (s
(i)
Ti
) = 1 (respectively 0) if the first

player wins (resp., loses) the game. Secondly, the learning problem

is regularized through a total variation minimization (minimizing∑
i

∑Ti−1
t=1 (V (s

(i)
t)− V (s

(i)
t+1))

2).

A key difference between DIVA and TD-Gammon regards the

availability of a simulator. If a generative model (a simulator) is avail-

able for the problem domain, then indeed RL can rely on cheap and

abundant training data. In robotics however, simulator-based train-

ing is prone to the so-called reality gap [8]. Generally speaking, the

robotic framework is hardly compatible with data-intensive learning

approaches, due to the poor accuracy of simulator-based data on the

one hand, and the cost (experimenter time and robot fatigue) of in-

situ experiments on the other hand.

A consequence is that TD-Gammon can exploit high quality simu-

lated data whereas DIVA relies on a limited amount of data. Further,

these data are experimentally acquired and should require little or no

expertise from the human experimenter. Along the same line, TD-

Gammon only prescribes the values attached to the initial and final

state of each trajectory; the bulk of learning relies on the regulariza-

tion term. Quite the contrary, DIVA exploits short trajectories and

sets comparison constraints on the values attached to each time step

(besides using regularization too). Finally, TD-Gammon requires all

winning/losing terminal states to be associated the same value; there

is no such constraint in DIVA, as states from different trajectories are

not comparable.

Both approaches suffer from a same limitation: policy πV is com-

puted from value function V iff the transition function is known or

well approximated (Eq. (1)). Further, finding the optimal action re-

quires one to solve an optimization problem in each time step, which

usually requires the action space to be small. It will be seen (section

4.2) that a cheap estimate of the transition function can alleviate the

above limitations in the robotic framework in some cases. An ad-

ditional limitation of DIVA is that the value function V is learned

from a set of trajectories obtained from a ”naive” controller, which

does not necessarily reflect the target (test) distribution, thus raising a

transfer learning problem [6]. This issue will be discussed in section

5.

4 Experimental validation

A proof of principle of DIVA is given in a robotic framework (sec-

tion 4.1), based on a delayed transition model estimate (section 4.2)

and a continuity assumption (section 4.3). The experimental setting

and goals of experiments are described in section 4.4 and results are

reported and discussed in section 4.5.

4.1 Framework

The robotic platform is a Pandaboard, driven by the dual-core ARM

Cortex-A9 OMAP4430, with each core running at 1 GHz, and

equipped with 1 GB DDR2 RAM. The robot is equipped with a USB

camera with resolution (320×240), and color depth of monochrome

8bit. All experiments are done in-situ, taking place in a real labora-

tory full of tables, chairs, feet and various (moving) obstacles. Al-

though no model of the world (transition function or simulator) is

available, a cheap estimate thereof can be defined (see below).

The primary description of the robot state is given by its camera

image (in R
76800). A pre-processing step aimed at dimensionality

reduction and inspired from the SIFT (scale-invariant feature trans-

form) descriptors is used and operated on the Pandaboard using the

Linux OS. More precisely, SURF (speeded up robust feature) de-

scriptors are used, claimed to be several times faster and more ro-

bust against different image transformations than SIFT [5]. Finally,

each block of d × d contiguous pixels in the initial image is repre-

sented by an integer, the number of SURFs occurring in the block

(d = 1, 2, 4, 16 in the experiments, with d = 4 the best empirical

setting, and the only considered in the remainder of the paper). The

state space S is finally included in R
4800.

4.2 Delayed transition model estimate

In the following, the action space A includes three actions: Ahead,

Right and Left. The extension to richer and more gradual action

spaces is left for further work. As already mentioned, the definition

of a controller from a value function requires a transition model to

be available (Eq. (1)). Two working assumptions are done to over-

come the lack of an accurate transition model for the considered open

world.

Firstly, a delayed transition model estimate is defined as follows.

Let st−1 and st denote the states at time t − 1 and t respectively,

and assume that the action selected at time t− 1 is Ahead. Then, the

idea is that if the robot had turned right at time t − 1, it would have

seen approximately the same image as in st, but translated on the left;

additionally, some new information would have been recorded on the

rightmost camera pixels while the information on the leftmost pixels

would have been lost. In other words, given st = tr(st−1,Ahead)
one can compute an approximation of tr(st−1,Right), by a circular

shift of st. Let state st be described as a pixel matrix st[i, j] where

i = 1 . . . nw, j = 1 . . . nh and nw (respectively nh) is the width

(resp. height) of the camera image. Then,

tr(st−1,Right) ≈ {st[i+∆ (mod nw), j]}

where ∆ is a constant translation width (64 pixels in the experiments;

this will be relaxed in further work, section 5). Note that the un-

known rightmost pixels in tr(st−1,Right) are arbitrarily replaced by

the leftmost pixels in st; the impact of this approximation will be

discussed further.

More generally, given st = tr(st−1, a), a delayed transition

model estimate is given by

t̂r(st−1, a
′|a, st = tr(st−1, a)) = {st[i+ℓ(a, a′) (mod nw), j]}

where the translation width ℓ(a, a′) is ∆ (resp. −∆) if a= Ahead,

a′ =Right (resp. Left), and completed by consistency (Table 3).

a a′ ℓ(a, a′)

Ahead Right ∆
Left Ahead ∆
Left Right 2∆

a a′ ℓ(a, a′)

Ahead Left −∆
Right Ahead −∆
Right Left −2∆

(3)

This estimate is delayed as it is only available at time t, since

t̂r(st−1, a
′|a, st = tr(st−1, a)) is computed from st. To some ex-

tent, this estimate can cope with partially observable environments

(another robot of the swarm might arrive in sight of the current robot

at t, while it was not seen at time t − 1). On the other hand, the

estimation error is known to be concentrated in the peripheral pixels.

4.3 Continuity assumption

Given a value function V̂ ∗, the action at−1 which has been selected

at t−1 and the current state st, the delayed transition model estimate

defines what would have been the best action a∗
t−1 that should have

been selected at time t− 1 instead of at−1, after Eq. (1):

a∗
t−1 = argmax a∈A

{
V̂ ∗(t̂r(st−1, a|at−1, st))

}
(4)

Figure 2: A lesion study: recording irrelevant states at the beginning

of the follower trajectory (the white board on the left and the author

feet on the right).

The continuity assumption posits that the environment changes

gracefully, implying that the action which was the most appropriate

at time t − 1 is still appropriate at time t. Along this line, the con-

troller defined from V̂ ∗ and noted π̂∗ selects at time t action a∗
t−1 as

defined by Eq. (4). A further assumption behind the definition of π̂∗

is that the noise of the delayed transition model estimate is moderate

with respect to V̂ ∗. In other words, it is assumed that the peripheral

pixels (unknown in truth and arbitrarily filled from st) are not key

to value function V̂ ∗ (the corresponding weights have low absolute

value).

4.4 Experimental setting

The controller goal is to enable the follower robot to follow the leader

robot.

Eleven trajectories are recorded. Each trajectory is initialized with

the follower positioned behind the leader at various locations in the

lab, and both robots operated with the constant policy π0(s) =
Ahead for 128 time steps. The i-th trajectory thus records the fol-

lower state s
(i)
t , t = 1 . . . 128. A computational time step amounts

to circa .5 second of real-time (two frames per second), due to the

on-board computation of the SURF descriptors. The value function

V̂ ∗ is learned from these trajectories as in section 3.2.

The primary goal of experiments is to study the performance of

controller π̂∗, in terms of the average time the follower can actually

follow the leader. Further, in order to allow for larger time horizons,

the controller run on the leader robot is an obstacle avoidance (Brait-

enberg) controller, enabling the leader to run for a couple of hundred

time steps before being stopped. Note that modifying the leader pol-

icy amounts to considering a different environment, making the goal

more challenging as the test setting differs from the training one: the

leader can turn abruptly upon seeing an obstacle, whereas it turns

only very gradually in the training trajectories.

The second goal of experiments is to assess the robustness of the

approach with respect to noise. A lesion study is conducted by per-

turbing the initial states in the training trajectories, e.g. recording

the images seen by the follower (e.g. the walls or the experimenter)

before the follower actually starts to follow the leader (Fig 2). The

value function learned from the perturbed trajectories and the asso-

ciated controller are referred to as NOISY-DIVA.

The DIVA approach and the merits of a rank-based approach are

also assessed by comparison with a simple regression based ap-

proach, referred to as REG-DIVA, where value function V̂ ∗ is re-

gressed from the training set E = {(s
(i)
t ,−t), i = 1 . . . 11, t =

1 . . . 128}.

Finally, the assumption that peripheral pixels are not relevant to

value function V̂ ∗ (section 4.3) is also examined, depicting the av-

erage weight of the value function for each (block of) pixel(s) in the

Figure 3: Comparative results of DIVA, NOISY-DIVA and REG-

DIVA: Histogram of the number of consecutive time steps the fol-

lower keeps on following a Braitenberg-operated leader, over 5 runs.

One time step corresponds to ca half a second, due to the on-board

computation of the SURF descriptors (2 frames per second).

image.

4.5 Results

The performance of the DIVA controller is assessed by learning V̂ ∗

from all 11 training trajectoriesin DIVA NOISY-DIVA and REG-

DIVA modes and running the associated π̂∗ controllers. Every con-

troller π̂∗ is launched on the follower robot for five runs. In each run,

the follower is initially positioned behind the Braitenberg-operated

leader, at various locations in the lab (same initial locations for DIVA,

NOISY-DIVA and REG-DIVA settings). In each run, the follower is

manually repositioned behind the leader when it loses the track.

The histogram over the 5 runs of the number of consecutive time

steps while the follower does follow the leader is displayed in Fig.

3, reporting the respective performances of DIVA, NOISY-DIVA and

REG-DIVA. As was expected, the best results are obtained for the

noiseless rank-based DIVA approach, followed by the noisy rank-

based NOISY-DIVA approach. The fact that some tracking sequences

are very short is explained as the leader meets very soon an obstacle

and turns fast, making the follower lose the track. Overall, the fol-

lower stays on the leader track for over 60 time steps in about 40%

of the experiments while the track was lost after 52.7 (+-20.6) time

steps in the training experiments.

The performance of the DIVA controller is also assessed on the

training trajectories along a leave-one-out procedure, learning 11

value functions V̂ ∗(i) from all trajectories but the i-th one. V̂ ∗(i) is

computed on the remaining i-th trajectory (Fig. 4). As expected, the

value of V̂ ∗(i) decreases along time. Interestingly, DIVA and NOISY-

DIVA exhibit similar behaviors, rapidly decreasing as t increases al-

though the value remains high for some runs; after visual inspection,

the drift occurs late for these runs. The behavior of REG-DIVA is

more erratic, which is explained as the regression setting is over con-

strained regarding the quality of the experiments, requiring all states

s
(i)
t to be associated to the same value −t.

Figure 4: Comparative behavior of the value function V̂ ∗
i along time. A leave-one-out procedure is used: the value function is learned from all

but one trajectory, and its value on the remaining trajectory is reported. The value function learned by DIVA, NOISY-DIVA and REG-DIVA

are reported respectively on the left, middle and right.

Figure 5: Comparative behavior of controller π
V̂ ∗

i

on the test trajectory along time, for DIVA (left), NOISY-DIVA (medium) and REG-DIVA

(right).

The corresponding policy π̂∗(i)is plot in Fig. 5, where π̂∗(i)(s
(i)
t)

is indicated by a cross respectively on, above or below over the cen-

tral line depending on whether the selected action is Ahead, Right or

Left. The ground truth obtained by visual inspection of the logs is

reported below. It is seen that the policy generally selects the rele-

vant action, and becomes chaotic in the end of the trajectory as the

follower does no longer see the leader.

Finally, the working assumption that peripheral pixels hardly mat-

ter for the value function (section 4.3), implying that the noise of

the delayed transition model estimate does not harm the controller,

is confirmed by inspecting the average weight of the pixels in Fig. 6.

As could have been expected, the most important region is the central

upper one, where the leader is seen at the beginning of each training

trajectory; the low region overall is considered uninformative. In the

upper regions, the weight decreases from the center to the left and

right boundaries.

5 Discussion and perspectives

This paper has presented a proof of principle of the DIVA approach,

showing that elementary experiments can be used to “prime the

pump” of reinforcement learning and train a mildly competent value

function. Indeed, a controller with comparable performance might

have been manually written (hacked) easily. Many a student expe-

rience suggests however that the manual approach is subject to the

law of diminishing returns, as more and more efforts are required to

improve the controller as its performance increases.

The next step thus is to study the scalability of DIVA, e.g. by

gradually adding new logs to the training set. On-going experiments

consider the effects of adding the test trajectories (with Braitenberg-

Figure 6: Average relevance of the visual regions to the value function for DIVA (left), NOISY-DIVA (medium) and REG-DIVA (right).

operated leader) to the training trajectories to retrain the value func-

tion.

The main current limitation of the approach concerns the small

size of the action space. Still, it must be noted that the delayed

transition model estimate naturally extends to fine-grained actions,

by mapping the group of movement actions on the group of image

translation vectors (section 4.2), thus enabling to determine the op-

timal action in a large action space. For computational efficiency,

the underlying requirement is that the target behavior be sufficiently

smooth. Currently, this requirement is hardly compatible with the

low number of frames per second, due to the on-board computation

of the SURF descriptors. On-going study is considering more afford-

able image pre-processings.

Another applicative perspective is to learn a docking controller,

enabling robots in a swarm to dock to each other. This goal is

amenable to a DIVA approach, as training trajectories can be eas-

ily obtained by initially setting the robots in a docked position, and

having every robot to undock and start wandering along time. Like

for the follower problem, the best state is the initial one and the value

of the robot state decreases along time, in the spirit of Murphy’s law.

Acknowledgments

The authors gratefully acknowledge the support of the FP7 Eu-

ropean Project Symbrion, FET IP 216342, http://symbrion.

eu/, and the ANR Franco-Japanese project Sydinmalas ANR-08-

BLAN-0178-01. A part of this research was supported by JST and

the grants-in-aid for scientific research on fundamental research (B)

18300047 and on challenging exploratory research 24650070.

REFERENCES

[1] P. Abbeel and A.Y. Ng, ‘Apprenticeship learning via inverse reinforce-
ment learning’, in ICML, ed., Carla E. Brodley, volume 69 of ACM

International Conference Proceeding Series. ACM, (2004).
[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag, ‘Preference-based

policy learning’, In Gunopulos et al. [12], pp. 12–27.
[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag, ‘April: Active

preference-based reinforcement learning’, in ECML/PKDD, p. to ap-
pear, (2012).

[4] G. Bakir, T. Hofmann, B. Scholkopf, A.J. Smola, B. Taskar, and S.V.N.
Vishwanathan, Machine Learning with Structured Outputs, MIT Press,
2006.

[5] Herbert Bay, Tinne Tuytelaars, and Luc J. Van Gool, ‘Surf: Speeded
up robust features’, in Computer Vision - ECCV 2006, volume 3951 of
Lecture Notes in Computer Science, pp. 404–417, (2006).

[6] Steffen Bickel, Christoph Sawade, and Tobias Scheffer, ‘Transfer learn-
ing by distribution matching for targeted advertising’, in Advances in

Neural Information Processing Systems, NIPS 21, pp. 145–152. MIT
Press, (2008).

[7] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm Intelli-

gence: From Natural to Artificial Systems, Santa Fe Institute Studies
in the Sciences of Complexity, Oxford University Press, 1999.

[8] Lipson H. Bongard J., Zykov V., ‘Resilient machines through continu-
ous self-modeling’, Science, 314(5802), 1118 – 1121, (2006).

[9] E. Brochu, N. de Freitas, and A. Ghosh, ‘Active preference learning
with discrete choice data’, in Advances in Neural Information Process-

ing Systems 20, pp. 409–416, (2008).
[10] S. Calinon, F. Guenter, and A. Billard, ‘On Learning, Representing and

Generalizing a Task in a Humanoid Robot’, IEEE transactions on sys-

tems, man and cybernetics, Part B. Special issue on robot learning by

observation, demonstration and imitation, 37(2), 286–298, (2007).
[11] Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-

Hyeun Park, ‘Preference-based policy iteration: Leveraging preference
learning for reinforcement learning’, In Gunopulos et al. [12], pp. 312–
327.

[12] Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and
Michalis Vazirgiannis, eds. Proc. European Conf. on Machine Learning

and Knowledge Discovery in Databases, ECML PKDD, Part I. LNCS
6911, Springer Verlag, 2011.

[13] Thorsten Joachims, ‘A support vector method for multivariate perfor-
mance measures’, in ICML, eds., Luc De Raedt and Stefan Wrobel, pp.
377–384, (2005).

[14] Thorsten Joachims, ‘Training linear svms in linear time’, in KDD, eds.,
Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopu-
los, pp. 217–226. ACM, (2006).

[15] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng, ‘Hierarchical appren-
ticeship learning with application to quadruped locomotion’, in NIPS.
MIT Press, (2007).

[16] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen, ‘Constructing
skill trees for reinforcement learning agents from demonstration trajec-
tories’, in Advances in Neural Information Processing Systems 23, pp.
1162–1170, (2010).

[17] Michail Lagoudakis and Ronald Parr, ‘Least-squares policy iteration’,
Journal of Machine Learning Research (JMLR), 4, 1107–1149, (2003).

[18] A.Y. Ng and S. Russell, ‘Algorithms for inverse reinforcement learn-
ing’, in Proc. of the Seventeenth International Conference on Machine

Learning (ICML-00), ed., P. Langley, pp. 663–670. Morgan Kaufmann,
(2000).

[19] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT
Press, Cambridge, 1998.

[20] Csaba Szepesvári, Algorithms for Reinforcement Learning, Morgan &
Claypool, 2010.

[21] Gerald Tesauro, ‘Programming backgammon using self-teaching neural
nets’, Artif. Intell., 134(1-2), 181–199, (2002).

[22] Paolo Viappiani and Craig Boutilier, ‘Optimal Bayesian recommenda-
tion sets and myopically optimal choice query sets’, in NIPS, pp. 2352–
2360, (2010).

http://symbrion.eu/
http://symbrion.eu/

	Introduction
	State of the art
	Overview of DiVa
	Principle
	Formalization
	Discussion

	Experimental validation
	Framework
	Delayed transition model estimate
	Continuity assumption
	Experimental setting
	Results

	Discussion and perspectives

