
Learning from Pairwise Preference Data using Gaussian
Mixture Model

Mihajlo Grbovic and Nemanja Djuric and Slobodan Vucetic1

Abstract. In this paper we propose a fast online preference learning
algorithm capable of utilizing incomplete preference information. It
is based on a Gaussian mixture model that learns soft pairwise la-
bel preferences via minimization of the proposed soft rank loss mea-
sure. Standard supervised learning techniques, such as gradient de-
scent or Expectation Maximization can be used to find the unknown
model parameters. Algorithm outputs are soft pairwise label prefer-
ence predictions that need to be further aggregated to produce a total
label ranking prediction, for which several existing algorithms can
be used. The main advantages of the proposed learning algorithm are
the ability to process a single training instance at a time, low time
and space complexity, ease of implementation, and model reuse.

1 INTRODUCTION
Label Ranking is emerging as an important and practically relevant
preference learning field. Unlike the standard problems of classifi-
cation and regression, label ranking learning is a complex learning
task, which involves the prediction of strict label order relations,
rather than single values. Specifically, in the label ranking scenario,
each instance, which is described by a set of features x, is assigned
a ranking of labels π, that is a total (e.g. π = (3, 5, 1, 4, 2)) or
partial (e.g. π = (5, 3, 2)) order over a finite set of class labels
Y (e.g. Y = {1, 2, 3, 4, 5}). The label ranking problem consists
of learning a model that maps instances x to a total label order
h : xn → πn. It is assumed that a sample from the underlying distri-
bution D = {(xn , πn),n = 1, ...,N }, where xn is a d -dimensional
feature vector and πn is a vector containing a total or partial order of
a finite set Y of L class labels, is available for training.

This problem has recently received a lot of attention in the ma-
chine learning community and has been extensively studied [6, 4, 9,
3, 16]. A survey of recent label ranking algorithms can be found in
[8].

There are many practical applications in which the objective is to
learn an exact label preference of an instance in form of a total or-
der. For example, in the case of document categorization, where it
is very likely that a document belongs to multiple topics (e.g. sports,
entertainment, baseball, etc.), one might not be interested only in pre-
dicting which topics are relevant for a specific document, but also to
rank the topics by relevance. Additional applications include: meta-
learning [18], where, given a new data set, the task is to induce a
total rank of available algorithms according to their suitability based
on the data set properties; predicting food preferences for new cos-
tumers based on the survey results, demographics, and other char-
acteristics of respondents [12]; determining an order of questions in
1 Temple University, Department of Computer and Information Sci-

ences, Philadelphia, USA, email: {mihajlo.grbovic, nemanja.djuric, slobo-
dan.vucetic }@temple.edu

a survey for a specific user based on respondent’s attributes. A re-
cent publication [14], suggests clustering of label ranking data, which
could be of great practical importance, especially in target marketing.

There are three principal approaches for label ranking. The first
decomposes label ranking problem into one or several binary classi-
fication problems. Ranking by pairwise comparison (PW) [11], for
example, creates L · (L− 1)/2 classification problems, one for each
possible pairwise ranking. Pairwise binary classifier predictions are
aggregated into a total label order by voting. The constraint classi-
fication (CC) [9], on the other hand, transforms the label ranking
problem into a single binary classification problem by augmenting
the data set, such that each example x is mapped into L · (L− 1)/2,
(d × L)-dimensional, examples. This allows for training of a single
classifier.

The second approach is to use utility functions, where the goal is
to learn mappings fk : X → R for each label k = 1, ...,L, which as-
sign a value fk(x) to each label, such that fi(x) < fj (x) if x prefers
label j over i . For example, the label ranking method proposed in [6]
represents each fk as a linear combination of base ranking functions.
The utility functions are learned to minimize the number of ranking
errors and the final rank is produced simply by ranking the utility
scores. It should be noted that the utility function-based approach is
also popular in the related object ranking problem, where techniques
based on SVM [10] and AdaBoost [7] have been proposed.

The third approach is represented by a collection of algorithms
which use probabilistic approaches for label ranking, such as the ones
that rely on the Mallows [13] and the Plackett-Luce (PL) [15] mod-
els. A typical representative is the instance-based (IB) label ranking
[4, 3]. Given a new instance x, the k-Nearest Neighbor algorithm is
used to locate its neighbors in the feature space. Then, the neighbors’
label rankings are aggregated to provide prediction. Rank aggrega-
tion for prediction is not a trivial task, particularly in presence of
partial label ranks. Mallows [4] and Plackett-Luce [3] models that de-
scribe probability distribution of rankings have been used to come up
with the optimization criterion for rank aggregation. As an alterna-
tive, CPS probabilistic model for rank aggregation has been recently
proposed [16].

Instance-based label ranking algorithms are simple and intuitive.
Furthermore, they have been shown to outperform the competitors
in various label ranking scenarios. However, their success comes at
a large cost associated with both memory and time. First, they re-
quire that the entire training data set is stored in memory, which
can be costly or even impossible in the resource-constrained appli-
cations. Storing the original data can also raise privacy issues as the
data might contain sensitive user information. Second, the prediction
involves costly nearest neighbor search and aggregation of neigh-
bors’ label rankings. The aggregation is slow as it requires using op-

timization techniques at prediction time, such as iterative Minoriza-
tion Maximization(IB-PL) or exhaustive search (IB Mallows).

In this paper we propose an online, time- and memory-efficient al-
gorithm for learning label preferences based on the Gaussian Mixture
Model (GMM), which could be attractive because of an intuitively
clear learning process and ease of implementation. The model pre-
serves privacy as it consists of mixtures defined by prototypes which
are not the actual data points. Every prototype is associated with
preference judgments for each pair of labels. Unlike many competi-
tors, our algorithm is not limited to a specific type of label ranking
and could support various ranking structures (bipartite, multipartite,
etc). For an unlabeled instance, GMM predicts the soft label pref-
erences by averaging prototypes’ pairwise preferences according to
distances.

These soft label preferences in form of a preference matrix need to
be aggregated further, into a total order of labels. This is a well known
problem in preference learning and is an especially popular research
area in the object ranking scenario, where numerous methods have
been proposed [5, 1, 2].

2 PRELIMINARIES
In the label ranking scenario, a single instance, described by a d -
dimensional vector x, is associated with a total order of assigned
class labels, represented as a permutation π of the set {1, ...,L},
where L is the number of available class labels. We define π such
that π(i) is the class label at i-th position in the order, and π−1(j) is
a position of the yj class label in the order. The permutation can also
describe incomplete ranking {π(1), ..., π(k)} ⊂ {1, ...,L}, k < L.

In our approach, instead of the total order, we use a zero-diagonal
preference matrix Y. When a preference between labels yi and yj
exists, we set Y(i , j) > Y(j , i) if yi is preferred over yj and
Y(i , j) < Y(j , i) otherwise, Y(i , j) + Y(j , i) = 1, for i , j ∈
{1, ...,L}. A value of Y(i , j) which is close to 1 is interpreted as a
strong preference that yi should be ranked above yj . A typical ap-
proach is to assign Y(i , j) = 1 and Y(j , i) = 0 if yi �x yj .
Similarly, uncertain (soft) preferences can be modeled by using val-
ues lower than 1. For example, indifferences (ties) are represented by
setting Y(i , j) = Y(j , i) = 0.5. In case of non-existing, incompa-
rable or missing preferences, both Y(i , j) = 0 and Y(j , i) = 0.

This representation allows us to work with complete and partial
label orders, as well as with pairwise preferences with uncertainties
and indifferences. Finally, bipartite and multi-partite label rankings
could be handled as well.

Evaluation metrics. Let us assume that N historical observations
are collected in a form of a data set D = {(xn,Yn), n = 1, ..., N}.
The objective in all scenarios is to train a ranking function h : xn →
π̂n from data set D that outputs a total label order.

In the Label Ranking scenario, to measure the degree of corre-
spondence between true and predicted rankings for n-th example, πn
and π̂n respectively, it is common to use the Kendall’s tau distance
dn =| {(yi, yj) : π−1

n (yi) > π−1
n (yj)∧ π̂−1

n (yj) > π̂−1
n (yi)} |. To

evaluate a label ranking model, the label ranking loss on the data set
D is defined as the average normalized Kendall’s tau distance,

lossLR =
1

N

N∑
n=1

2 · dn
L · (L− 1)

. (1)

Note that the measure simply counts the number of discordant la-
bel pairs and reports the average over all considered pairwise rank-
ings. Given the general preference matrix representation, assuming

binary matrix predictions Ŷn, we can rewrite (1) as

lossP =
1

N

N∑
n=1

‖ Yn − Ŷn ‖2F
L · (L− 1)

, (2)

where ‖ · ‖F is Frobenius matrix norm. Indeed, for each example n,
the square of the Frobenius norm sums up to double the number of
discordant label pairs.

For models with soft label preference predictions Ŷn, e.g.,
Ŷn(i, j) = 0.7, Ŷn(j, i) = 0.3, loss (2) can be interpreted as a
soft version of (1).

We can solve the preference learning task in two stages. In the
learning stage, function f : xn → Yn is learned via minimizing
(2). In the aggregation stage, given the model predictions in a form
of Yn, the total order prediction πn is computed using a preference
aggregation mapping g : Yn → πn. In the next section we show
the details of the proposed Gaussian Mixture Model algorithm to be
used in the learning stage. Existing algorithms such as [5, 1, 2], can
be used in the aggregation stage.

3 GAUSSIAN MIXTURE MODEL FOR LABEL
RANKING

The GMM model for label ranking is completely defined by a set of
K mixtures, i.e., prototypes {(mk,Qk), k = 1, ...,K}, where mk

is a d-dimensional vector in input space and Qk is the corresponding
preference matrix.

First, we introduce the probability P(k | x) of assigning observa-
tion x to k-th prototype that is dependent on their (Euclidean) dis-
tance. Let us assume that the probability density P(x) of x can be
described by a mixture model,

P(x) =
K∑
k=1

P(x | k) · P(k), (3)

where K is the number of prototypes, P(k) is the prior probabil-
ity that a data point is generated by k-th prototype, and P(x | k)
is the conditional probability that k-th prototype generates partic-
ular data point x. Let us represent the conditional density func-
tion P(x | k) with the normalized exponential form P(x | k) =
θ(k) · exp(f(x,mk)) and consider a Gaussian mixture with θ(k) =
(2πσ2

p)
−1/2 and f(x,mk) = −‖x−mk‖2/2σ2

p. We assume that all
prototypes have the same standard deviation σp and the same prior,
P(k) = 1/K. Given this, using the Bayes’ rule we can write the
assignment probability as

P(k | x) =
exp(−‖x−mk‖2/2σ2

p)
K∑
u=1

exp(−‖x−mu‖2/2σ2
p)

. (4)

To derive a cost function, we propose the following mixture model
for the posterior probability P(Y | x),

P(Y | x) =
K∑
k=1

P(k | x) · P(Y | k). (5)

Based on this model, example x is assigned to the prototypes prob-
abilistically and its preference matrix is a weighted average of the
prototype preference matrices. The mixture model assumes the con-
ditional independence between x and Y given k, P(Y | x, k) =
P(Y | k). For P(k | x) we assume the Gaussian distribution from

(4). For the probability of generating a preference matrix Y by pro-
totype k, P(Y | k), we also assume Gaussian error model with mean
(Y − Qk) and standard deviation σy . The resulting cost function
l(λ) can be written as the negative log-likelihood,

l(λ) = − 1

N

N∑
n=1

ln

K∑
k=1

P(k | x) · N (Y −Qk, σ
2
y), (6)

where λ = {mk,Qk, k = 1, ..., P, σp, σy} are the model parame-
ters. For the compactness of notation, let us define gnk = P(k | xn)
and enk = N (Yn −Qk, σ

2
y).

It is important to observe that, after proper normalization, (6) re-
duces to (2) if examples are assigned to prototypes deterministically.
Therefore, it can be interpreted as its soft version. If prototype matri-
ces Qk consisted of only 0 and 1 entries (hard label preferences) (6)
further reduces to (1).

The objective is to estimate the unknown model parameters,
namely prototype positions mk and their preference matrices
Qk, k = 1, ...,K. This is done by minimizing the cost function
l(λ) with respect to the parameters. This can be achieved in several
different ways. If online learning capability is a requirement, one
can use the stochastic gradient descent method and obtain the learn-
ing rules by calculating derivatives ∂l(λ)/∂mk and ∂l(λ)/∂Qk for
k = 1, ...,K. This results in following rules for n-th training exam-
ple,

mn+1
k = mn

k − α(n)
(Ln−enk)·gnk

Ln

(xn−mk)

σ2
p

Qn+1
k = Qn

k − α(n) enk·gnk
Ln

(Yn−Qk)

σ2
y

,
(7)

where Ln =
∑P
k=1(gnk · enk) and α(n) is the learning rate.

The resulting model has complexity O(NKL). Otherwise,
the problem can straightforwardly be mapped into Expectation-
Maximization (EM) framework following the procedure from [17].

Initialization is done by selecting the first P training points as the
initial prototypes. If any Qk prototype preference matrix obtained
in such manner contains empty elements, they are replaced with 0.5
entries, as the corresponding labels will initially be treated equally.

GMM model generalizes the training data to produce a represen-
tation in terms of prototype vectors and effectively utilizes distances
to prototypes as a similarity measure to calculate the predicted la-
bel rank. When compared to IB-based algorithms, GMM is a more
global model, that aggregates over more data, thus also alleviating
influence of noise. Therefore, it is expected to outperform IB-based
algorithms, whose performance is highly dependent on the quality of
the training data and the presence of outliers, since no abstraction is
made during the training phase. We could try to aggregate over more
data by considering a large number of neighbors in IB algorithms,
however, by doing so we start ignoring distances between the query
instance and its neighbors as a similarity measure. This remains to
be seen after a proper experimental evaluation.

A disadvantage of the GMM model is that it requires aggregation
of the predicted label preference matrix to produce a total order of
labels. Luckily, most of the existing algorithms have low complexity,
e.g. O(L logL) for QuickSort [1]. In our future work we plan to
evaluate the pros and cons of different aggregation methods.

4 CONCLUSION AND FUTURE WORK
We introduced an idea of a Gaussian Mixture Model algorithm for
Label Ranking. The main advantages of the new method are: (1) it is
capable of operating in an online manner, (2) it is memory-efficient
since it operates on a predefined budget, (3) it preserves privacy, (4)

it could potentially reuse the model when new labels are introduced.
There are several avenues which need to be pursued further: (1) ex-
perimental evaluation of the proposed method on benchmark data
(2) determining the optimal number of prototypes K using statisti-
cal learning theory, (3) low rank approximation of pairwise prefer-
ence matrices to reduce memory requirements, (4) evaluating differ-
ent preference matrix aggregation algorithms, (5) applying the algo-
rithm to clustering of label ranking data. In the future work we plan
to address these issues.

REFERENCES
[1] Nir Ailon and Mehryar Mohri, ‘An Efficient Reduction of Ranking to

Classification’, in COLT, pp. 87–98. Omnipress, (2008).
[2] Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Copper-

smith, John Langford, and Gregory B. Sorkin, ‘Robust Reductions from
Ranking to Classification’, in COLT, volume 4539 of Lecture Notes in
Computer Science, pp. 604–619, (2007).

[3] Weiwei Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier, ‘Label
ranking methods based on the Plackett-Luce model’, in Proceedings
of the 27th International Conference on Machine Learning (ICML-10),
pp. 215–222, (2010).

[4] Weiwei Cheng, Jens Hühn, and Eyke Hüllermeier, ‘Decision tree and
instance-based learning for label ranking’, in Proceedings of the 26th
International Conference on Machine Learning (ICML-09), pp. 161–
168, (2009).

[5] William W. Cohen, Robert E. Schapire, and Yoram Singer, ‘Learning to
order things’, Journal of Artificial Intelligence Research, 10, 243–270,
(1999).

[6] Ofer Dekel, Christopher Manning, and Yoram Singer, ‘Log-Linear
Models for Label Ranking’, in Advances in Neural Information Pro-
cessing Systems, volume 16, MIT Press, (2003).

[7] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer, ‘An
Efficient Boosting Algorithm for Combining Preferences’, Journal of
Machine Learning Research, 4, 933–969, (2003).

[8] Thomas Gärtner and Shankar Vembu, ‘Label Ranking Algorithms:
A Survey’, in Preference Learning, ed., Eyke Hüllermeier Jo-
hannes Fürnkranz, Springer–Verlag, (2010). (to appear).

[9] Sariel Har-Peled, Dan Roth, and Dav Zimak, ‘Constraint classification
for multiclass classification and ranking’, in Proceedings of the 16th
Annual Conference on Neural Information Processing Systems, NIPS-
02, pp. 785–792. MIT Press, (2003).

[10] R. Herbrich, T. Graepel, and K. Obermayer, ‘Large Margin Rank
Boundaries for Ordinal Regression’, in Advances in Large Margin
Classifiers, pp. 115–132. MIT Press, (2000).

[11] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus
Brinker, ‘Label ranking by learning pairwise preferences’, Artificial In-
telligence, 172, 1897–1916, (2008).

[12] Toshihiro Kamishima and Shotaro Akaho, ‘Efficient Clustering for Or-
ders’, in ICDM Workshops, pp. 274–278. IEEE Computer Society,
(2006).

[13] C. L. Mallows, ‘Non-null ranking models’, Biometrika, 44, 114–130,
(1967).

[14] Grbovic Mihajlo, Nemanja Djuric, and Slobodan Vucetic, ‘Supervised
clustering of label ranking data’, SIAM International Conference on
Data Mining, (2012).

[15] R. L. Plackett, ‘The analysis of permutations’, Applied Statistics, 24(2),
193–202, (1975).

[16] Tao Qin, Xiubo Geng, and Tie-Yan Liu, ‘A New Probabilistic Model
for Rank Aggregation’, in Advances in Neural Information Processing
Systems 23, 1948–1956, MIT Press, (2010).

[17] Weigend A. S., Mangeas M., and Srivastava A. N., ‘Nonlinear Gated
Experts for Time Series: Discovering Regimes and Avoiding Overfit-
ting’, International Journal of Neural Systems, 6, 373–399, (1995).

[18] Ricardo Vilalta and Youssef Drissi, ‘A perspective view and survey of
meta-learning’, Artificial Intelligence Review, 18, 7795, (2002).

