
Preference Function Learning over Numeric and

Multi-valued Categorical Attributes

Lucas Marin
1
, Antonio Moreno and David Isern

Abstract.1 One of the most challenging goals of recommender
systems is to infer the preferences of users through the observation
of their actions. Those preferences are essential to obtain a
satisfactory accuracy in the recommendations. Preference learning
is especially difficult when attributes of different kinds (numeric or
linguistic) intervene in the problem, and even more when they take
multiple possible values. This paper presents an approach to learn
user preferences over numeric and multi-valued linguistic attributes
through the analysis of the user selections. The learning algorithm
has been tested with real data on restaurants, showing a very good
performance.

1 Introduction

Nowadays it is practically unconceivable to select our summer

holiday destination or to choose which film to see in the cinema

this weekend without consulting specialized sources of information

in which, in some way or another, our preferences can be specified

to aid the system to recommend us the best choices. That is

because we live in an era where there are so many data easily

available that it is impossible to manually filter every piece of

information and evaluate it accurately. Recommender Systems (RS)

have been designed to do this time-consuming task for us and, by

feeding them with information about our interests, they are capable

enough to tell us the best alternatives for us in a personalized way.

A RS stores the preferences of the user about the values of some

criteria and uses this information to rate and sort a corpus of

alternatives. The management of the preferences, the accuracy of

the recommendations, and how these interests evolve over time are

three of the most challenging tasks of these type of systems [8].

Concerning the first goal, RSs may obtain feedback from a user

implicitly, explicitly or combining both approaches. This paper

discusses an unsupervised way to infer the user interests, which

observes the user interaction and does not require any explicit

information from him [4].

The criteria used to describe the alternatives may have different

natures. Some works propose the use of ontologies to represent

concepts within a hierarchy [2,9]. Other researchers use fuzzy logic

techniques to deal with linguistic criteria [1,10], and many

approaches only consider numerical criteria [5]. This paper

considers the use of linguistic and numerical data, which permit a

high degree of expressivity and can be applied in a wide range of

domains.

1 Department of Computer Science and Mathematics, Universitat Rovira i

Virgili, Tarragona, Catalonia (Spain). Email addresses:
lucas.marin@urv.cat, antonio.moreno@urv.cat, david.isern@urv.cat.

The basic idea is to use the preferences to sort a set of

alternatives, show this ordered list to the user, and observe his final

selection. With this information, the preference learning algorithm

is able to modify the user profile so that it captures better the user

preferences and the next recommendation is more accurate.

The rest of the paper is organized as follows. Section 2 includes

a brief explanation of the related work the authors conducted in the

area of preference learning over linguistic and numeric attributes,

explaining how the interests of users over certain attributes or

criteria are managed and learned. Section 3 explains a new

approach to manage categorical attributes when they can take

multiple linguistic values in a single alternative. Section 4

describes how a more expressive function which defines the

behaviour of the preference over numeric attributes can be

automatically learned. In Section 5 the case study where our

approach has been tested (restaurant recommendation) is

explained, describing the data set used and the results obtained.

Finally, Section 6 gives the main conclusions of the paper and

identifies some lines of future research.

2 Preference learning over categorical and
numerical attributes

When we face a decision problem in which we require the aid of a

RS to help us make a choice, all of the possible alternatives to said

problem are defined, in most of the cases, by the same attributes. In

this work we focus only on categorical and numeric attributes. The

following subsections explain how preferences over the two

different kinds of attributes are expressed, how alternatives are

evaluated and ranked, and how the user interests are learned and

adapted from his selections.

2.1 Attributes and management of preferences

In a recent work ([7]) we proposed to represent the level of interest

over categorical attributes by using a linguistic scale in which

preference labels are defined as fuzzy sets representing values of

preference such as “Very Low”, “Low”, “Medium”, “High” or

“Very High” (see Figure 1).

Figure 1. Example of a linguistic preference set

For the case of numeric attributes, we assumed that each user

has a preference function for each attribute. This function has a

triangular shape (see) and is defined as

(1)

where pa(x) is the preference of the value x of the attribute a, and

 is the width of the function, which we considered to be 10% of

the attribute domain.

Figure 2. Basic numeric preference function

2.2 Alternatives evaluation

When evaluating an alternative, the objective is to aggregate all

of the values of all of the attributes into a single value. Since we

have two kinds of attributes, a conversion to the same domain is

made. In our approach, we chose to translate the numerical

preferences to linguistic ones. The translation is done by, first,

calculating the value of preference of a certain numeric attribute

value by using Eq. (1). Then that value is mapped to the fuzzy

linguistic labels domain and matched with the label with a higher

value in that point.

When all the attributes have been assigned a value of preference

using the same fuzzy linguistic scale, all the terms are aggregated

using the ULOWA aggregation operator [3]. The final result of this

aggregation is the value of preference assigned to the whole

alternative, used to rank the alternatives.

2.3 Preference learning

When the ranked alternatives are presented to the user, two

things can happen: (a) the user selects the first ranked alternative or

(b) the user selects any other alternative. The first case means that

the recommendation process has worked accurately, since the

system gave the first place to the selected alternative. However, in

the second case, there were other alternatives (which we call over

ranked) that were considered by the system as better than the one

the user finally selected. Thus, that is probably indicating that the

information that we have in the user profile is not accurate enough

and should be modified. In a nut shell, the main intuition behind

the user profile change algorithm is that we should increase the

preference on the attribute values present in the selected alternative

and decrease the preference on the attribute values appearing in the

over ranked alternatives.

The information required to infer this reasoning is extracted

from what is called “relevance feedback”. In this case, it consists in

the over ranked alternatives and the selected one. Numerical and

categorical attributes are managed in different ways, as described

in the following subsections.

2.3.1 Linguistic preference adaptation

The main idea is to find attribute values repeated among the over

ranked alternatives that do not appear on the selection, which will

be the candidates for having his preference decreased. Similarly,

the preference of the attribute values that appear on the selection

and do not appear often on the over ranked alternatives is likely to

be increased. The interested reader may find a more detailed

explanation of the process of adaptation of linguistic preferences in

[7].

The profile adaptation is conducted by two processes. The first

one—called on-line adaptation—is executed every time the user

asks the system for a recommendation, and it evaluates the

information that can be extracted from the current ranked set of

alternatives. The main goals of this stage are to decrease the

preference of the attribute values that are causing non-desired

alternatives to be given high scores and to increase the preference

of the attribute values that are important for the user but are not

well judged on the basis of the current user profile. For each

recommendation made by the system, two sources of information

are evaluated: the selected alternative, which is the choice made by

the user, and the alternatives that were ranked above it. Values

extracted from the over-ranked alternatives haver their level of

preference decreased whereas the ones extracted from the user’s

final selection that do not appear in the set of over-ranked

alternatives have their preference increased.

The second one—called off-line adaptation—is triggered after

the recommender system has been used a certain number of times.

It considers the information given by the history of the previous

rankings of alternatives and the selections made by the user in each

case, but considers that information separately. When the system

faces cases in which the number of over ranked alternatives is not

large enough for reliable characteristics to be extracted, it stores the

small number of over ranked alternatives in a temporary buffer.

After several iterations in which the number of over ranked

alternatives has been insufficient for evaluation, the system will

have recorded enough alternatives to start evaluating them. When

there are enough saved over-ranked alternatives, the values in their

attributes will be analysed and their preference decreased.

Moreover, user selections are also stored, and after a certain

number of choices have been made, they are evaluated with the

objective to increase the preference of the most repeated attribute

values, since their repeated selection indicates that the user is really

interested in them.

() 1
pref

a

x v
p x

2.3.2 Numeric preference learning

The numeric adaptation of the user profile presented in [6] is

inspired by Coulomb’s Law: “the magnitude of the electrostatics

force of interaction between two point charges is directly

proportional to the scalar multiplication of the magnitudes of

charges and inversely proportional to the square of the distances

between them”. The main idea is to consider the value stored in the

profile (current preference) as a charge with the same polarity as

the values of the same criterion on the over ranked alternatives, and

with opposite polarity to the value of that criterion in the selected

alternative. Thus, the value of the profile is pushed away by the

values in the over ranked alternatives and pulled back by the value

in the selected alternative. Two stages have been considered in the

adaptation algorithm. The first one, called on-line adaptation

process, is performed each time the user asks for a

recommendation. The other stage, called off-line process, is

performed after a certain amount of interactions with the user.

Figure 3. Attraction and repulsion forces

For the on-line stage, the information available in each iteration is

the user selection and the set of over ranked alternatives. In order

to calculate the change of the value of preference in the user profile

for each criterion it is necessary to study the attraction force done

by the selected alternative and the repulsion forces done by the

over ranked ones in each criterion, as represented in the example in

Figure 3, in which the j-th value of the five over ranked alternatives

o0, o1, o2, o3, and o4 causes a repulsion force Fo
j, and the value for

the same criterion of the selected alternative, sj, causes an attraction

force Fs
j. Both forces are applied on the j-th value of the profile, Pj.

The attraction force Fs done by the selected alternative for each

attribute j is defined as

(2)

In this equation, ∆j is the range of the criterion j, sj is the value

of the criterion j in the selected alternative and Pj is the value of the

same criterion in the stored profile P. The parameter α adjusts the

strength of the force in order to have a balanced adaptation process.

The repulsion force exerted by the over ranked alternatives for

each criterion j is defined as a generalization of Eq.(2) as follows:

 (3)

Finally, both forces are summed up and the resulting force is

calculated.

The techniques designed for the on-line stage fail at detecting

user trends over time since they only have information of a single

selection. The off-line adaptation process gathers information from

several user interactions. This technique allows considering

changes in the profile that have a higher reliability than those

proposed by the on-line adaptation process, because they are

supported by a larger set of data.

The off-line adaptation process can be triggered in two ways:

the first one evaluates the user choices, while the second one

analyses the over ranked alternatives discarded by the user in

several iterations. The possibility of running the off-line process (in

any of its two possible forms) is checked after each

recommendation. In the first case, the system has collected some

alternatives selected by the user in several recommendation steps,

and it calculates the attraction forces (F’s) exerted by each of the

stored selected alternatives over the values stored in the profile,

using an adaptation of Eq. (2), that has as inputs the profile P, the

past selections {s1,…,srs}, the criterion to evaluate j, and the

strength-adjusting parameter α.:

 (4)

The second kind of off-line adaptation process evaluates the set

of over ranked alternatives that have been collected through several

iterations and which were not used in the on-line adaptation

process (because it did not have enough over ranked alternatives in

a single iteration). When the stored over ranked alternatives reach a

certain number, the off-line adaptation process calculates the

repulsion forces over the profile values exerted by those

alternatives (Fo), which are calculated using Eq.(3).

3 Multi-valued linguistic attributes

As explained in Section 2, in our previous work we considered

categorical attributes that could take only one linguistic value (For

example, a city could have a single value in the “Climate”

attribute). However, there are cases in which it is interesting to

consider multiple values. One example of that situation could be

the attribute “Types of food” in a restaurant: a restaurant can have

the values {“Asian”, “Seafood”, “Vegetarian”} while another can

have only “Italian food”.

Extending our model so that it can manage lists of categorical

values implies addressing two issues: how to represent and

calculate the user preferences over the attribute taking into account

all of the values and how to adapt dynamically those preferences.

3.1 Preference value on multi-valued attributes

When there is an attribute with multiple values a procedure should

be defined to decide which single linguistic preference represents

better the whole set of linguistic values.

Going back to the restaurant example, if a user has a “High”

preference over “Asian food” restaurants and a “Low” preference

over “Rice dishes”, we can argue that the preference we could

assign to the “Type of food” attribute in a restaurant with both

values should be “Medium” (an average of the two kinds). If

another restaurant only offers “Asian food” then its preference

should be “High”, so this restaurant would have a higher ranking

than the first one. The rationale of this procedure is that it seems

more adequate to reward the alternatives that are more focused in

the aspects the user really likes. This example represents an

“average” preference aggregation policy, however, other policies

can also be considered depending on the attribute definition.

1

(, , ,)

0

j j

j j js
j jj j

j j

s P
if s P

F P s j s Ps P

if s P

 1

1

1
, ,..., , ,

ino
j jo no

ii
i j jj j

P o
F P o o j

P oP o

 ' 1

1

1
, ,..., , ,

irs
j jrs

s ii
i j jj j

s P
F P s s j

s Ps P

3.2 Preference learning on multi-valued
categorical attributes

The linguistic algorithm used to adapt categorical preferences

explained in Section 2 needs some improvements to be able to

manage lists of values. When single-valued attributes were

considered, the user selection pointed directly towards the value

the user liked for that attribute. Now, however, we cannot be sure

which one/s of the values listed in the attribute is/are the one/s of

interest for the user. That is the reason why it has been necessary to

design a “relevance function” which indicates how relevant is a

value found among the over ranked alternatives or in the selected

alternative. Relevance is measured in a [0,1] scale, with 1 meaning

maximum relevance. To calculate how relevant a term t of the

attribute j is among the over ranked alternatives we use this

expression (the relevance value is 0 if it does not appear in the over

ranked alternatives):

 (5)

Here, no represents the number of over ranked alternatives, nt

the number of over ranked alternatives where t appears, and nvi
j the

number of values that appear for the attribute j in the alternative i.

In this equation we consider that every linguistic term that appears

in the over ranked alternatives has a relevance which is inversely

proportional to the number of other values for the same attribute

that appear among the entire set of over ranked alternatives.

To calculate the relevance of a term in the selection we use:

 (6)

Here nvj represents the number of values that appear for the

attribute j in the selection, nl the total number of linguistic

attributes, and tv the total number of linguistic values that appear in

the selection. The relevance of a term in the selection is the mean

between the importance of the term among the values that appear

with it in the same attribute and the importance of each linguistic

term that appears in the selection compared with the number of

linguistic attributes.

Finally, after calculating both partial relevancies for all the

terms, the overall relevance Rj(t) is calculated as:

 (7)

In conclusion, considering a threshold γ to avoid making

changes in the profile with low relevance, it can be deduced that:

 If Rj(t)>γ, the preference over term t for the attribute j

needs to be increased (moved to the next term).

 If Rj(t)<γ, the preference over term t for the attribute j

needs to be decreased (moved to the previous term).

4 Learning preference functions for numeric
attributes

Although the numeric preference learning approach described in

Section 2 provided an adequate way of learning the ideal value of

preference over a numeric attribute, it was unable to learn all of the

parameters that model the preference function such as the slope or

the width, which were fixed. The new learning method presented in

this section relies on historic data about the user selections to

approximate the preference function of the numeric attributes to the

most adequate one. With this approach, we have a new definition

of the function of preference which now has 5 parameters (left and

right slope, left and right width, and value of preference) instead of

just the value of preference:

(8)

In this expression pa(x) is the preference of the value x of the

attribute a, ml and mr are the function slope values (for the left and

right sides of the triangle, respectively) and l and r are the

parameters which define the width of the function (also for the left

and right sides of the triangle, respectively). An example of

graphical representation of a preference function can be seen in

Figure 4, where the left slope is a value under 1, the right slope is a

value over 1, and the left width is greater than the right one.

Figure 4. Numeric preference function with 5 parameters

The whole process of adapting the numeric preference function

is depicted in Figure 5.

function PREF-FUNC-ADAPTATION(

V(v0,…,vn), //historic of values of past selections

vpref, //value of maximum preference

vmin, //minimum numeric value

vmax, //maximum numeric value

ti, //trust interval

s //probability distribution sampling)

begin

B=getBestValues(V, vpref, ti);

PD=calculateProbabilityDistribution(B, vmin, vmin, s);

∆{left,right}=calculateDelta(PD);

m{left,right}=calculateBestSlope(PD, vpref, ∆);

PreferenceFunction=(∆, m, vpref);

return PreferenceFunction;

end;

Figure 5. Preference function learning algorithm

The first step consists in obtaining the more reliable values from

the historic set of selections. This is done by extracting a

percentage of the values closer to the value of preference (trust

interval), normally of 90%. With that we avoid considering outlier

values. Then a probability distribution function, represented with a

histogram, is calculated with those best values. The sample or

1

1 1
()

nt
o
j i

ji

R t
no nv

1 1
()

2

s
j

j

nl
R t

nv tv

() () ()s o
j j jR t R t R t

1 ()

() 1 ()

1 ()

l

r

m

pref

pref
l

a pref

m

pref

pref
r

x v
if x v

p x if x v

x v
if x v

discretization step is a parameter, normally around 1% of the

domain range. Delta values are then calculated by observing the

width of the probability distribution. For example, if the first value

different to 0 in the histogram is 3 and the last is 56, and the value

of higher preference (vpref) is 34, ∆l would be 31 and ∆r would be

22. Afterwards, the algorithm generates preference functions with

different combinations of values for the slope values (m) (in the

range from 0 to 4 in steps of 0.2), and compares the distance

between each preference function and the probability distribution.

The function with the lower distance shows the chosen slope.

Finally, the new preference function is built with the new delta and

slope values.

5 Case study: restaurant recommendation

In order to test our new approach to multi-valued attribute

evaluation and numeric preference function learning, we have used

data of the restaurants in Barcelona to implement a RS with the

ability to learn the users’ interests from their selections. In the first

part of this section a description of the data is given. Then, a basic

explanation of the whole recommender and learning algorithm is

given, as well as the preferences setup. Finally, the results of the

evaluation are provided.

5.1 Barcelona restaurants data

The data used in this problem has been collected from the

BcnRestaurantes web page2. The data set contains information

about 3000 restaurants of Barcelona evaluated by 5 attributes: 3

categorical (“Type of food”- 15 values, “Atmosphere”- 14 values,

“Special characteristics” – 12 values) and 2 numerical (“Average

price”, “Distance to city center”). One example of register in the

data file is “Fonda España; National, Season cuisine, Traditional;

Classic, For families; Round tables, In a hotel, With video; 45;

0.979”, being “Fonda España” the restaurant name, “National”,

“Season cuisine” and “Traditional” the types of food served,

“Classic” and “For families” the restaurant atmosphere, “Round

tables” and “In a hotel” other important restaurant characteristics,

45€ the average menu price, and 0.979 km the distance to the city

centre.

5.2 Recommendation and adaptation

The set of 3000 restaurants has been divided in blocks of 15

alternatives that are ranked independently, which gives out a total

of 200 different recommendations. An ideal profile was manually

defined and three initial profiles were created randomly. The goal

is to learn the ideal profile starting from these three different

points. In this evaluation the preferences over the categorical

attributes are represented with a linguistic label term set of 7

values, which are “Very Low”, “Low”, “Almost Low”, “Medium”,

“Almost High”, “High” and “Very High”.

The whole process (for each of the three profiles, repeated 200

times) consists in:

1. Ranking a set of 15 alternatives according the current

(initially random) profile.

2. Simulate the selection of the user by choosing the alternative

that fits better the ideal profile.

2 http://www.bcnrestaurantes.com. Last access May 30th, 2012.

3. Extract relevance feedback from the selection (over ranked

alternatives and the selection itself).

4. Decide which changes need to be made to the current profile

and apply them.

Some information about the whole process is stored after each

iteration, including the position of the selected alternative, the

distance between the ideal and current profiles, and the preferences

over linguistic and numeric values.

5.3 Results evaluation

In order to evaluate the results of the new learning techniques, a

distance function has been defined to calculate how different the

profile we are learning is to an ideal profile which represents the

exact preferences of the user. The first step is to calculate the

distance for each attribute, taking into account if it is numeric or

categorical. The distance between numeric attributes is calculated

as

 (9)

where n is the numerical attribute, c is the current profile (the one

being learned), i is the ideal profile, and ()c i
n pref np v is the value

of preference of the vpref value for the attribute n in i using the

preference function of the same attribute in the profile c. A

distance 0 means that the vpref values in both profiles are equal.

The equation to calculate the distance between categorical

attributes is

(10)

where l is the categorical attribute, card(l) is the cardinality of the

attribute l (i.e., the number of different linguistic values it can

take), (())c
l kCoG p v and (())i

l kCoG p v are the x-coordinate of

the centres of gravity of the fuzzy linguistic labels associated to the

value of preference of vk in the profiles c and i, respectively, and

min()CoG s and max()CoG s are the centres of gravity of the

minimum and maximum labels of the domain, respectively.

Finally, the distance between two profiles is calculated as

(11)

where na is the total number of attributes.

During the three tests (one for each initial random profile) the

distance between the adapting and the ideal profile has been

calculated in each iteration. Figure 6 (continuous line) shows the

average of the three distances. It can be seen that the initial average

distance between the ideal and the adapting profiles is around 0.59.

After 200 iterations it reaches a distance around 0.1. Although 200

iterations may seem a large number, it can also be observed that

with only 50 iterations a very acceptable result of 0.2 is obtained.

To see to what extent the new approach to learn the numeric

preference function explained in Section 4 has improved the result

of our previous work (commented in Section 2), Figure 6 also

compares the results with and without (dashed line) that

functionality. It can be seen how the improvement has been

noticeable (distance improvement of about 0.07).

(, ,) 1 ()c i
n pref nd n c i p v

1

1
(,) (, ,)

na

k

D c i d k c i
na

()

min max1

(()) (())1
(, ,)

() () ()

c icard l
l k l k

k

CoG p v CoG p v
d l c i

card l CoG s CoG s

Figure 6. Average distance between current and ideal profile

To wrap up the results evaluation, Figure 7 shows in what

position the user selection is being ranked by the RS on each of the

iterations in the first test (the three give similar results). This figure

shows the results in a more intuitive way. Notice that the system is

accurate if the selected alternative is in the first positions of the 15-

items list in each iteration. Many factors can interfere in the

process and make the learning of the exact ideal profile a very hard

task, but if the user selection appears in the first positions, we can

consider that the learning process is working properly. As it can be

observed in Fig.7, after about 50 iterations, the selected alternative

is among the first three ones in 95% of the cases (and the first one

in around 70% of the cases).

Figure 7. Position of the selected alternative in each iteration (test 1)

6 Conclusions and future work

Two main contributions with respect to our previous work have

been presented in this paper. The first one consists in managing

multi-valued categorical attributes in the alternatives of a RS,

allowing. more expressivity in their representation. The system

considers a single preference for each possible value and

aggregates them to find out the preference over the whole attribute.

The consideration of multi-valued attributes is mandatory when

working with alternatives such as the ones presented in this paper

(e.g. “Type(s) of Food” in a restaurant alternative).

The second contribution, which is learning the numeric

preference function, allows shaping a more expressive and

personalised representation of user preferences over each numeric

attribute, defining a preference function with 5 parameters. This

additional expressivity helped to improve the profile learning

process by reducing the learning error around 7%.

As a future work, two interesting lines can be considered. As

pointed out in Section 3, an aggregation policy can be considered

in the aggregation of the preferences in a single attribute, other

than the use of the common “average” policy. Research can be

made in this area in order to learn the aggregation policy that fits

more the user interests. Another interesting line to consider is to

incorporate information about the numeric preference function in

the distance measure used to evaluate the algorithm since,

currently, just the value of preference is being considered.

ACKNOWLEDGEMENTS

This work has been supported by the Universitat Rovira i Virgili (a

pre-doctoral grant of L. Marin) and the Spanish Ministry of

Science and Innovation (DAMASK project, Data mining

algorithms with semantic knowledge, TIN2009-11005) and the

Spanish Government (Plan E, Spanish Economy and Employment

Stimulation Plan).

REFERENCES

[1] G. Castellano, C. Castiello, D. Dell'Agnello, A. M. Fanelli, C.

Mencar, M. A. Torsello, Learning Fuzzy User Profiles for Resource

Recommendation, International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems 18 (4) (2010), 389-410.

[2] I. Garcia, L. Sebastia, E. Onaindia, On the design of individual and

group recommender systems for tourism, Expert Systems with

Applications 38 (6) (2011), 7683-7692.

[3] D. Isern, L. Marin, A. Valls, A. Moreno, The Unbalanced Linguistic

Ordered Weighted Averaging Operator, in: IEEE International

Conference on Fuzzy Systems, FUZZ-IEEE 2010, IEEE Computer

Society, Barcelona, Catalonia, 2010, 3063-3070.

[4] G. Jawaheer, M. Szomszor, P. Kostkova, Comparison of Implicit and

Explicit Feedback from an Online Music Recommendation Service,

in: 1st International Workshop on Information Heterogeneity and

Fusion in Recommender Systems, ACM Press, Chicago, US, 2010,

47-51.

[5] T. Joachims, F. Radlinski, Search Engines that Learn from Implicit

Feedback, Computer 40 (8) (2007), 34-40.

[6] L. Marin, D. Isern, A. Moreno, Dynamic adaptation of numerical

attributes in a user profile, International Journal of Innovative

Computing Information and Control (2012).

[7] L. Marin, D. Isern, A. Moreno, A. Valls, On-line dynamic adaptation

of fuzzy preferences, Information Sciences doi:

10.1016/j.ins.2011.10.008 (2012).

[8] M. Montaner, B. López, J. L. de La Rosa, A taxonomy of

recommender agents on the internet, Artificial Intelligence Review

19 (4) (2003), 285-330.

[9] A. Moreno, A. Valls, D. Isern, L. Marin, J. Borràs, SigTur/E-

Destination: Ontology-based personalized recommendation of

Tourism and Leisure Activities, Engineering Applications of

Artificial Intelligence doi:10.1016/j.engappai.2012.02.014 (2012).

[10] C. Porcel, A. G. López-Herrera, E. Herrera-Viedma, A recommender

system for research resources based on fuzzy linguistic modeling,

Expert Systems with Applications 36 (3, Part 1) (2009), 5173-5183.

