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Abstract.1  One of the most challenging goals of recommender 
systems is to infer the preferences of users through the observation 
of their actions. Those preferences are essential to obtain a 
satisfactory accuracy in the recommendations. Preference learning 
is especially difficult when attributes of different kinds (numeric or 
linguistic) intervene in the problem, and even more when they take 
multiple possible values. This paper presents an approach to learn 
user preferences over numeric and multi-valued linguistic attributes 
through the analysis of the user selections. The learning algorithm 
has been tested with real data on restaurants, showing a very good 
performance. 

1 Introduction 

Nowadays it is practically unconceivable to select our summer 

holiday destination or to choose which film to see in the cinema 

this weekend without consulting specialized sources of information 

in which, in some way or another, our preferences can be specified 

to aid the system to recommend us the best choices. That is 

because we live in an era where there are so many data easily 

available that it is impossible to manually filter every piece of 

information and evaluate it accurately. Recommender Systems (RS) 

have been designed to do this time-consuming task for us and, by 

feeding them with information about our interests, they are capable 

enough to tell us the best alternatives for us in a personalized way. 

A RS stores the preferences of the user about the values of some 

criteria and uses this information to rate and sort a corpus of 

alternatives. The management of the preferences, the accuracy of 

the recommendations, and how these interests evolve over time are 

three of the most challenging tasks of these type of systems [8]. 

Concerning the first goal, RSs may obtain feedback from a user 

implicitly, explicitly or combining both approaches. This paper 

discusses an unsupervised way to infer the user interests, which 

observes the user interaction and does not require any explicit 

information from him [4]. 

The criteria used to describe the alternatives may have different 

natures. Some works propose the use of ontologies to represent 

concepts within a hierarchy [2,9]. Other researchers use fuzzy logic 

techniques to deal with linguistic criteria [1,10], and many 

approaches only consider numerical criteria [5]. This paper 

considers the use of linguistic and numerical data, which permit a 

high degree of expressivity and can be applied in a wide range of 

domains. 
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The basic idea is to use the preferences to sort a set of 

alternatives, show this ordered list to the user, and observe his final 

selection. With this information, the preference learning algorithm 

is able to modify the user profile so that it captures better the user 

preferences and the next recommendation is more accurate.  

The rest of the paper is organized as follows. Section 2 includes 

a brief explanation of the related work the authors conducted in the 

area of preference learning over linguistic and numeric attributes, 

explaining how the interests of users over certain attributes or 

criteria are managed and learned. Section 3 explains a new 

approach to manage categorical attributes when they can take 

multiple linguistic values in a single alternative. Section 4 

describes how a more expressive function which defines the 

behaviour of the preference over numeric attributes can be 

automatically learned. In Section 5 the case study where our 

approach has been tested (restaurant recommendation) is 

explained, describing the data set used and the results obtained. 

Finally, Section 6 gives the main conclusions of the paper and 

identifies some lines of future research. 

2 Preference learning over categorical and 
numerical attributes 

When we face a decision problem in which we require the aid of a 

RS to help us make a choice, all of the possible alternatives to said 

problem are defined, in most of the cases, by the same attributes. In 

this work we focus only on categorical and numeric attributes. The 

following subsections explain how preferences over the two 

different kinds of attributes are expressed, how alternatives are 

evaluated and ranked, and how the user interests are learned and 

adapted from his selections. 

2.1 Attributes and management of preferences  

In a recent work ([7]) we proposed to represent the level of interest 

over categorical attributes by using a linguistic scale in which 

preference labels are defined as fuzzy sets representing values of 

preference such as “Very Low”, “Low”, “Medium”, “High” or 

“Very High” (see Figure 1). 

 



Figure 1. Example of a linguistic preference set 

 

 

For the case of numeric attributes, we assumed that each user 

has a preference function for each attribute. This function has a 

triangular shape (see ) and is defined as 

 

(1) 

 

 

where pa(x) is the preference of the value x of the attribute a, and 

  is the width of the function, which we considered to be 10% of 

the attribute domain. 

 

Figure 2. Basic numeric preference function 

2.2 Alternatives evaluation 

When evaluating an alternative, the objective is to aggregate all 

of the values of all of the attributes into a single value. Since we 

have two kinds of attributes, a conversion to the same domain is 

made. In our approach, we chose to translate the numerical 

preferences to linguistic ones. The translation is done by, first, 

calculating the value of preference of a certain numeric attribute 

value by using Eq. (1). Then that value is mapped to the fuzzy 

linguistic labels domain and matched with the label with a higher 

value in that point. 

When all the attributes have been assigned a value of preference 

using the same fuzzy linguistic scale, all the terms are aggregated 

using the ULOWA aggregation operator [3]. The final result of this 

aggregation is the value of preference assigned to the whole 

alternative, used to rank the alternatives. 

2.3 Preference learning 

When the ranked alternatives are presented to the user, two 

things can happen: (a) the user selects the first ranked alternative or 

(b) the user selects any other alternative. The first case means that 

the recommendation process has worked accurately, since the 

system gave the first place to the selected alternative. However, in 

the second case, there were other alternatives (which we call over 

ranked) that were considered by the system as better than the one 

the user finally selected. Thus, that is probably indicating that the 

information that we have in the user profile is not accurate enough 

and should be modified. In a nut shell, the main intuition behind 

the user profile change algorithm is that we should increase the 

preference on the attribute values present in the selected alternative 

and decrease the preference on the attribute values appearing in the 

over ranked alternatives.   

The information required to infer this reasoning is extracted 

from what is called “relevance feedback”. In this case, it consists in 

the over ranked alternatives and the selected one. Numerical and 

categorical attributes are managed in different ways, as described 

in the following subsections. 

2.3.1 Linguistic preference adaptation 

The main idea is to find attribute values repeated among the over 

ranked alternatives that do not appear on the selection, which will 

be the candidates for having his preference decreased. Similarly, 

the preference of the attribute values that appear on the selection 

and do not appear often on the over ranked alternatives is likely to 

be increased. The interested reader may find a more detailed 

explanation of the process of adaptation of linguistic preferences in 

[7]. 

The profile adaptation is conducted by two processes. The first 

one—called on-line adaptation—is executed every time the user 

asks the system for a recommendation, and it evaluates the 

information that can be extracted from the current ranked set of 

alternatives. The main goals of this stage are to decrease the 

preference of the attribute values that are causing non-desired 

alternatives to be given high scores and to increase the preference 

of the attribute values that are important for the user but are not 

well judged on the basis of the current user profile. For each 

recommendation made by the system, two sources of information 

are evaluated: the selected alternative, which is the choice made by 

the user, and the alternatives that were ranked above it. Values 

extracted from the over-ranked alternatives haver their level of 

preference decreased whereas the ones extracted from the user’s 

final selection that do not appear in the set of over-ranked 

alternatives have their preference increased. 

The second one—called off-line adaptation—is triggered after 

the recommender system has been used a certain number of times. 

It considers the information given by the history of the previous 

rankings of alternatives and the selections made by the user in each 

case, but considers that information separately. When the system 

faces cases in which the number of over ranked alternatives is not 

large enough for reliable characteristics to be extracted, it stores the 

small number of over ranked alternatives in a temporary buffer. 

After several iterations in which the number of over ranked 

alternatives has been insufficient for evaluation, the system will 

have recorded enough alternatives to start evaluating them. When 

there are enough saved over-ranked alternatives, the values in their 

attributes will be analysed and their preference decreased. 

Moreover, user selections are also stored, and after a certain 

number of choices have been made, they are evaluated with the 

objective to increase the preference of the most repeated attribute 

values, since their repeated selection indicates that the user is really 

interested in them. 
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2.3.2 Numeric preference learning 

The numeric adaptation of the user profile presented in [6] is 

inspired by Coulomb’s Law: “the magnitude of the electrostatics 

force of interaction between two point charges is directly 

proportional to the scalar multiplication of the magnitudes of 

charges and inversely proportional to the square of the distances 

between them”. The main idea is to consider the value stored in the 

profile (current preference) as a charge with the same polarity as 

the values of the same criterion on the over ranked alternatives, and 

with opposite polarity to the value of that criterion in the selected 

alternative. Thus, the value of the profile is pushed away by the 

values in the over ranked alternatives and pulled back by the value 

in the selected alternative. Two stages have been considered in the 

adaptation algorithm. The first one, called on-line adaptation 

process, is performed each time the user asks for a 

recommendation. The other stage, called off-line process, is 

performed after a certain amount of interactions with the user.  
 

 

Figure 3. Attraction and repulsion forces 

 

For the on-line stage, the information available in each iteration is 

the user selection and the set of over ranked alternatives. In order 

to calculate the change of the value of preference in the user profile 

for each criterion it is necessary to study the attraction force done 

by the selected alternative and the repulsion forces done by the 

over ranked ones in each criterion, as represented in the example in 

Figure 3, in which the j-th value of the five over ranked alternatives 

o0, o1, o2, o3, and o4 causes a repulsion force Fo
j, and the value for 

the same criterion of the selected alternative, sj, causes an attraction 

force Fs
j. Both forces are applied on the j-th value of the profile, Pj. 

The attraction force Fs done by the selected alternative for each 

attribute j is defined as 

 

 

 

(2) 

 

 

 

In this equation, ∆j is the range of the criterion j, sj is the value 

of the criterion j in the selected alternative and Pj is the value of the 

same criterion in the stored profile P. The parameter α adjusts the 

strength of the force in order to have a balanced adaptation process. 

The repulsion force exerted by the over ranked alternatives for 

each criterion j is defined as a generalization of Eq.(2) as follows:  

 

 

   (3) 

 

Finally, both forces are summed up and the resulting force is 

calculated. 

The techniques designed for the on-line stage fail at detecting 

user trends over time since they only have information of a single 

selection. The off-line adaptation process gathers information from 

several user interactions. This technique allows considering 

changes in the profile that have a higher reliability than those 

proposed by the on-line adaptation process, because they are 

supported by a larger set of data. 

The off-line adaptation process can be triggered in two ways: 

the first one evaluates the user choices, while the second one 

analyses the over ranked alternatives discarded by the user in 

several iterations. The possibility of running the off-line process (in 

any of its two possible forms) is checked after each 

recommendation. In the first case, the system has collected some 

alternatives selected by the user in several recommendation steps, 

and it calculates the attraction forces (F’s) exerted by each of the 

stored selected alternatives over the values stored in the profile, 

using an adaptation of Eq. (2), that has as inputs the profile P, the 

past selections {s1,…,srs}, the criterion to evaluate j, and the 

strength-adjusting parameter α.:  

 

 

   (4) 

 

The second kind of off-line adaptation process evaluates the set 

of over ranked alternatives that have been collected through several 

iterations and which were not used in the on-line adaptation 

process (because it did not have enough over ranked alternatives in 

a single iteration). When the stored over ranked alternatives reach a 

certain number, the off-line adaptation process calculates the 

repulsion forces over the profile values exerted by those 

alternatives (Fo), which are calculated using Eq.(3). 

3 Multi-valued linguistic attributes 

As explained in Section 2, in our previous work we considered 

categorical attributes that could take only one linguistic value (For 

example, a city could have a single value in the “Climate” 

attribute). However, there are cases in which it is interesting to 

consider multiple values. One example of that situation could be 

the attribute “Types of food” in a restaurant: a restaurant can have 

the values {“Asian”, “Seafood”, “Vegetarian”} while another can 

have only “Italian food”.  

Extending our model so that it can manage lists of categorical 

values implies addressing two issues: how to represent and 

calculate the user preferences over the attribute taking into account 

all of the values and how to adapt dynamically those preferences. 

3.1 Preference value on multi-valued attributes 

When there is an attribute with multiple values a procedure should 

be defined to decide which single linguistic preference represents 

better the whole set of linguistic values.  

Going back to the restaurant example, if a user has a “High” 

preference over “Asian food” restaurants and a “Low” preference 

over “Rice dishes”, we can argue that the preference we could 

assign to the “Type of food” attribute in a restaurant with both 

values should be “Medium” (an average of the two kinds). If 

another restaurant only offers “Asian food” then its preference 

should be “High”, so this restaurant would have a higher ranking 

than the first one. The rationale of this procedure is that it seems 

more adequate to reward the alternatives that are more focused in 

the aspects the user really likes. This example represents an 

“average” preference aggregation policy, however, other policies 

can also be considered depending on the attribute definition. 
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3.2 Preference learning on multi-valued 
categorical attributes 

The linguistic algorithm used to adapt categorical preferences 

explained in Section 2 needs some improvements to be able to 

manage lists of values. When single-valued attributes were 

considered, the user selection pointed directly towards the value 

the user liked for that attribute. Now, however, we cannot be sure 

which one/s of the values listed in the attribute is/are the one/s of 

interest for the user. That is the reason why it has been necessary to 

design a “relevance function” which indicates how relevant is a 

value found among the over ranked alternatives or in the selected 

alternative. Relevance is measured in a [0,1] scale, with 1 meaning 

maximum relevance. To calculate how relevant a term t of the 

attribute j is among the over ranked alternatives we use this 

expression (the relevance value is 0 if it does not appear in the over 

ranked alternatives): 

 

    (5) 
 

 

Here, no represents the number of over ranked alternatives, nt 

the number of over ranked alternatives where t appears, and nvi
j the 

number of values that appear for the attribute j in the alternative i. 

In this equation we consider that every linguistic term that appears 

in the over ranked alternatives has a relevance which is inversely 

proportional to the number of other values for the same attribute 

that appear among the entire set of over ranked alternatives.  

To calculate the relevance of a term in the selection we use: 

  

    (6) 

 

 

Here nvj represents the number of values that appear for the 

attribute j in the selection, nl the total number of linguistic 

attributes, and tv the total number of linguistic values that appear in 

the selection. The relevance of a term in the selection is the mean 

between the importance of the term among the values that appear 

with it in the same attribute and the importance of each linguistic 

term that appears in the selection compared with the number of 

linguistic attributes. 

Finally, after calculating both partial relevancies for all the 

terms, the overall relevance Rj(t) is calculated as:  

  (7) 

 

In conclusion, considering a threshold γ to avoid making 

changes in the profile with low relevance, it can be deduced that: 

 If Rj(t)>γ, the preference over term t for the attribute j 

needs to be increased (moved to the next term). 

 If Rj(t)<γ, the preference over term t for the attribute j 

needs to be decreased (moved to the previous term). 

4 Learning preference functions for numeric 
attributes 

Although the numeric preference learning approach described in 

Section 2 provided an adequate way of learning the ideal value of 

preference over a numeric attribute, it was unable to learn all of the 

parameters that model the preference function such as the slope or 

the width, which were fixed. The new learning method presented in 

this section relies on historic data about the user selections to 

approximate the preference function of the numeric attributes to the 

most adequate one. With this approach, we have a new definition 

of the function of preference which now has 5 parameters (left and 

right slope, left and right width, and value of preference) instead of 

just the value of preference: 

 

 

 

(8) 

 

 

 

 

 

 

In this expression pa(x) is the preference of the value x of the 

attribute a, ml and mr are the function slope values (for the left and 

right sides of the triangle, respectively) and l and r are the 

parameters which define the width of the function  (also for the left 

and right sides of the triangle, respectively). An example of 

graphical representation of a preference function can be seen in 

Figure 4, where the left slope is a value under 1, the right slope is a 

value over 1, and the left width is greater than the right one. 

 

 

 

 

 

 

 

 

 

Figure 4. Numeric preference function with 5 parameters 

 

The whole process of adapting the numeric preference function 

is depicted in Figure 5.  

 

function PREF-FUNC-ADAPTATION( 

V(v0,…,vn), //historic of values of past selections 

vpref,  //value of maximum preference 

vmin,  //minimum numeric value 

vmax,  //maximum numeric value 

ti,  //trust interval 

s //probability distribution sampling) 

begin 

B=getBestValues(V, vpref, ti); 

PD=calculateProbabilityDistribution(B, vmin, vmin, s); 

∆{left,right}=calculateDelta(PD); 

m{left,right}=calculateBestSlope(PD, vpref, ∆); 

PreferenceFunction=(∆, m, vpref); 

return PreferenceFunction; 

end;  

 

Figure 5. Preference function learning algorithm 

 

The first step consists in obtaining the more reliable values from 

the historic set of selections. This is done by extracting a 

percentage of the values closer to the value of preference (trust 

interval), normally of 90%. With that we avoid considering outlier 

values. Then a probability distribution function, represented with a 

histogram, is calculated with those best values. The sample or 
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discretization step is a parameter, normally around 1% of the 

domain range. Delta values are then calculated by observing the 

width of the probability distribution. For example, if the first value 

different to 0 in the histogram is 3 and the last is 56, and the value 

of higher preference (vpref) is 34, ∆l would be 31 and ∆r would be 

22. Afterwards, the algorithm generates preference functions with 

different combinations of values for the slope values (m) (in the 

range from 0 to 4 in steps of 0.2), and compares the distance 

between each preference function and the probability distribution. 

The function with the lower distance shows the chosen slope. 

Finally, the new preference function is built with the new delta and 

slope values.  

5 Case study: restaurant recommendation 

In order to test our new approach to multi-valued attribute 

evaluation and numeric preference function learning, we have used 

data of the restaurants in Barcelona to implement a RS with the 

ability to learn the users’ interests from their selections. In the first 

part of this section a description of the data is given. Then, a basic 

explanation of the whole recommender and learning algorithm is 

given, as well as the preferences setup. Finally, the results of the 

evaluation are provided. 

5.1 Barcelona restaurants data 

The data used in this problem has been collected from the 

BcnRestaurantes web page2. The data set contains information 

about 3000 restaurants of Barcelona evaluated by 5 attributes: 3 

categorical (“Type of food”- 15 values, “Atmosphere”- 14 values, 

“Special characteristics” – 12 values) and 2 numerical (“Average 

price”, “Distance to city center”). One example of register in the 

data file is “Fonda España; National, Season cuisine, Traditional; 

Classic, For families; Round tables, In a hotel, With video; 45; 

0.979”, being “Fonda España” the restaurant name, “National”, 

“Season cuisine” and “Traditional” the types of food served, 

“Classic” and “For families” the restaurant atmosphere, “Round 

tables” and “In a hotel” other important restaurant characteristics, 

45€ the average menu price, and 0.979 km the distance to the city 

centre.  

5.2 Recommendation and adaptation 

The set of 3000 restaurants has been divided in blocks of 15 

alternatives that are ranked independently, which gives out a total 

of 200 different recommendations. An ideal profile was manually 

defined and three initial profiles were created randomly. The goal 

is to learn the ideal profile starting from these three different 

points. In this evaluation the preferences over the categorical 

attributes are represented with a linguistic label term set of 7 

values, which are “Very Low”, “Low”, “Almost Low”, “Medium”, 

“Almost High”, “High” and “Very High”.  

The whole process (for each of the three profiles, repeated 200 

times) consists in: 

1. Ranking a set of 15 alternatives according the current 

(initially random) profile. 

2. Simulate the selection of the user by choosing the alternative 

that fits better the ideal profile. 

                                                                 
2 http://www.bcnrestaurantes.com. Last access May 30th, 2012. 

3. Extract relevance feedback from the selection (over ranked 

alternatives and the selection itself). 

4. Decide which changes need to be made to the current profile 

and apply them. 

Some information about the whole process is stored after each 

iteration, including the position of the selected alternative, the 

distance between the ideal and current profiles, and the preferences 

over linguistic and numeric values. 

5.3 Results evaluation 

In order to evaluate the results of the new learning techniques, a 

distance function has been defined to calculate how different the 

profile we are learning is to an ideal profile which represents the 

exact preferences of the user. The first step is to calculate the 

distance for each attribute, taking into account if it is numeric or 

categorical. The distance between numeric attributes is calculated 

as 

    (9) 
 

where n is the numerical attribute, c is the current profile (the one 

being learned), i is the ideal profile, and ( )c i
n pref np v  is the value 

of preference of the vpref value for the attribute n in i using the 

preference function of the same attribute in the profile c. A 

distance 0 means that the vpref values in both profiles are equal. 

The equation to calculate the distance between categorical 

attributes is 

 

(10) 

 

 

where l is the categorical attribute, card(l) is the cardinality of the 

attribute l (i.e., the number of different linguistic values it can 

take), ( ( ))c
l kCoG p v and ( ( ))i

l kCoG p v are the x-coordinate of 

the centres of gravity of the fuzzy linguistic labels associated to the 

value of preference of vk in the profiles c and i, respectively, and 

min( )CoG s and max( )CoG s  are the centres of gravity of the 

minimum and maximum labels of the domain, respectively. 

Finally, the distance between two profiles is calculated as 

 

(11) 

 

 

where na is the total number of attributes. 

During the three tests (one for each initial random profile) the 

distance between the adapting and the ideal profile has been 

calculated in each iteration. Figure 6 (continuous line) shows the 

average of the three distances. It can be seen that the initial average 

distance between the ideal and the adapting profiles is around 0.59. 

After 200 iterations it reaches a distance around 0.1. Although 200 

iterations may seem a large number, it can also be observed that 

with only 50 iterations a very acceptable result of 0.2 is obtained. 

To see to what extent the new approach to learn the numeric 

preference function explained in Section 4 has improved the result 

of our previous work (commented in Section 2), Figure 6 also 

compares the results with and without (dashed line) that 

functionality. It can be seen how the improvement has been 

noticeable (distance improvement of about 0.07). 
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Figure 6. Average distance between current and ideal profile 

 

To wrap up the results evaluation, Figure 7 shows in what 

position the user selection is being ranked by the RS on each of the 

iterations in the first test (the three give similar results). This figure 

shows the results in a more intuitive way. Notice that the system is 

accurate if the selected alternative is in the first positions of the 15-

items list in each iteration. Many factors can interfere in the 

process and make the learning of the exact ideal profile a very hard 

task, but if the user selection appears in the first positions, we can 

consider that the learning process is working properly. As it can be 

observed in Fig.7, after about 50 iterations, the selected alternative 

is among the first three ones in 95% of the cases (and the first one 

in around 70% of the cases). 

Figure 7. Position of the selected alternative in each iteration (test 1) 

6 Conclusions and future work 

Two main contributions with respect to our previous work have 

been presented in this paper. The first one consists in managing 

multi-valued categorical attributes in the alternatives of a RS, 

allowing. more expressivity in their representation. The system 

considers a single preference for each possible value and 

aggregates them to find out the preference over the whole attribute. 

The consideration of multi-valued attributes is mandatory when 

working with alternatives such as the ones presented in this paper 

(e.g. “Type(s) of Food” in a restaurant alternative). 

The second contribution, which is learning the numeric 

preference function, allows shaping a more expressive and 

personalised representation of user preferences over each numeric 

attribute, defining a preference function with 5 parameters. This 

additional expressivity helped to improve the profile learning 

process by reducing the learning error around 7%. 

As a future work, two interesting lines can be considered. As 

pointed out in Section 3, an aggregation policy can be considered 

in the aggregation of the preferences in a single attribute, other 

than the use of the common “average” policy. Research can be 

made in this area in order to learn the aggregation policy that fits 

more the user interests. Another interesting line to consider is to 

incorporate information about the numeric preference function in 

the distance measure used to evaluate the algorithm since, 

currently, just the value of preference is being considered. 

ACKNOWLEDGEMENTS 

This work has been supported by the Universitat Rovira i Virgili (a 

pre-doctoral grant of L. Marin) and the Spanish Ministry of 

Science and Innovation (DAMASK project, Data mining 

algorithms with semantic knowledge, TIN2009-11005) and the 

Spanish Government (Plan E, Spanish Economy and Employment 

Stimulation Plan). 

REFERENCES 

[1] G. Castellano, C. Castiello, D. Dell'Agnello, A. M. Fanelli, C. 

Mencar, M. A. Torsello, Learning Fuzzy User Profiles for Resource 

Recommendation, International Journal of Uncertainty, Fuzziness 

and Knowledge-Based Systems 18 (4) (2010), 389-410. 

[2] I. Garcia, L. Sebastia, E. Onaindia, On the design of individual and 

group recommender systems for tourism, Expert Systems with 

Applications 38 (6) (2011), 7683-7692. 

[3] D. Isern, L. Marin, A. Valls, A. Moreno, The Unbalanced Linguistic 

Ordered Weighted Averaging Operator, in: IEEE International 

Conference on Fuzzy Systems, FUZZ-IEEE 2010,  IEEE Computer 

Society,  Barcelona, Catalonia, 2010,  3063-3070. 

[4] G. Jawaheer, M. Szomszor, P. Kostkova, Comparison of Implicit and 

Explicit Feedback from an Online Music Recommendation Service, 

in: 1st International Workshop on Information Heterogeneity and 

Fusion in Recommender Systems,  ACM Press,  Chicago, US, 2010,  

47-51. 

[5] T. Joachims, F. Radlinski, Search Engines that Learn from Implicit 

Feedback, Computer 40 (8) (2007), 34-40. 

[6] L. Marin, D. Isern, A. Moreno, Dynamic adaptation of numerical 

attributes in a user profile, International Journal of Innovative 

Computing Information and Control  (2012). 

[7] L. Marin, D. Isern, A. Moreno, A. Valls, On-line dynamic adaptation 

of fuzzy preferences, Information Sciences doi: 

10.1016/j.ins.2011.10.008  (2012). 

[8] M. Montaner, B. López, J. L. de La Rosa, A taxonomy of 

recommender agents on the internet, Artificial Intelligence Review 

19 (4) (2003), 285-330. 

[9] A. Moreno, A. Valls, D. Isern, L. Marin, J. Borràs, SigTur/E-

Destination: Ontology-based personalized recommendation of 

Tourism and Leisure Activities, Engineering Applications of 

Artificial Intelligence doi:10.1016/j.engappai.2012.02.014  (2012). 

[10] C. Porcel, A. G. López-Herrera, E. Herrera-Viedma, A recommender 

system for research resources based on fuzzy linguistic modeling, 

Expert Systems with Applications 36 (3, Part 1) (2009), 5173-5183. 

 


