
Alleviating cold-user start problem with users’ social
network data in recommendation systems

Eduardo Castillejo and Aitor Almeida and Diego López-de-Ipiña 1

Abstract. The Internet and the Web 2.0 have radically changed
the way of purchasing items, provoking the fall of geographic sell-
ing barriers all over the world. So large is the amount of data and
items we can find in the Web that it turned out to be almost unman-
ageable. Due to this situation many algorithms have emerged trying
to filter items for e-commerce users based in their tastes. In order
to do this, these systems need information about the tastes of the
users as input. This limitation is reduced as the users interaction with
these systems increases. The main problem arises when new users
enter a recommendation platform for the first time. The so called
cold-start problem causes unsatisfactory random recommendations,
which goes against these systems’ purpose. Cold-start includes users
entering new systems, items, and even new systems. This situation
challenges for new ways of obtaining user data. Social networks can
be seen as huge information databases sources, and social network
analysis would help us to do it using different techniques. In this
paper, we present a solution which uses social network user data to
generate first recommendations, alleviating the cold-user limitation.
Besides, we have demonstrate that it is possible to reduce the cold-
user problem applying our solution in a recommendation system en-
vironment.

1 INTRODUCTION

The amount of information in the world is increasing far more
quickly than our ability to process it [17]. Common users of Web
based systems usually have to deal with such amount of data that
their interaction can become slow, ending in serious loss of users’ at-
tention, which also means losses of sells and user satisfaction. For ex-
ample, buying a CD or a vinyl in a music store has been an habit from
the 70s and 80s. People used to go to the store and navigate through
tens or hundreds of albums seeking those which fit with their tastes.
But nowadays, with all possibilities Internet offers to every user this
amount of items has been increased to millions, even more.

Therefore, taking advantage of the possibilities the Web 2.0 pro-
vides to us all, researches started to design algorithms which were
able to filter the information (or items) to the user. These algorithms
started to compound what we today know as recommender systems.
These systems use the opinions of a community of users to help in-
dividuals in that community to more effectively identify content of
interest from a potentially overwhelming set of choices [16]. Within
past years there have been many progresses in this area [4]. Some
systems, such as YouTube, started to store some information about
users’ searches to infer their tastes [8, 5] managing some explicit and

1 Deusto Institute of Technology - DeustoTech, University of Deusto,
Avda. Universidades 24, 48007 - Bilbao, Spain. email: {eduardo.castillejo,
aitor.almeida, dipina}@deusto.es

implicit information about users interactions. Others, such as Ama-
zon.com2, take into account the users’ ratings and purchases [12].
Both points of view are different sides of the same coin and follow
the same purpose: to present to the user the most suitable amount of
items.

Despite the advances in this area there are some intrinsic prob-
lems that are still unsolved. Probably the most important one is the
so called cold-user problem. It emerges every time a new user inter-
acts with recommender system by the first time. Without any search,
rating or purchase a recommender system is unable to find any in-
teresting items. Sometimes it even has been necessary many ratings
before being able to provide a reasonable recommendation [2].

Given the problem we asked ourselves a simple question: Is there
any other way to infer user tastes without their active participation in
the system? We think there is, and in this work we pretend to reduce
the cited problem taking into account users’ social interactions.

Social networks strength lies in the possibility of establishing
some social relationships among people, companies and other groups
using the Internet as the bridge of communication. The range of ac-
cessible social networks is very diverse, from those which just take
into account the user location in order to rate a place, bar or store, to
those which allows users to share not only their thoughts or beliefs,
even their personal pictures, videos and music. There is such amount
of information of the users in these networks that new challenges
arise to take advantage of it.

This way, our proposal seizes the opportunity of exploiting social
network data in order to reduce the cold-start problem in any rec-
ommendation system. Applying social network analysis techniques
we are able to get some recommendations to the user (with certain
accuracy) based on the relationships with others in social networks.

The remainder of this paper is structured as follows: first, in Sec-
tion 2 we analyse the current state of the art in recommendation
systems and the most popular techniques to avoid the cold-user or
cold-start problem. Next we present our methodology for collecting
valuable data from social networks taking into account users’ rela-
tionships (Section 3). In Section 4 we analyse the results obtained
from our proposal. Finally, in Section 5, we summarize our experi-
ences and discuss the conclusions and future work.

2 RELATED WORK
Since the mid-1990s recommender systems have become an impor-
tant research area attracting the attention of e-commerce companies.
Amazon [12], Netflix3 and Yahoo! Music4 [6] are widespread exam-

2 http://www.amazon.com
3 http://www.netflixprize.com/
4 http://music.yahoo.com/



Table 1: Some of the best known metrics in social network analysis.

Metric Description

Betweenness It takes into account the connectivity of the
node’s neighbours to reflect the number. of peo-
ple who a person is connecting indirectly through
their direct links.

Centrality It gives a rough indication of the social power of
a node based on how well they ”connect” the net-
work.

Closeness It reflects the ability to access information
through the “grapevine” of network members.

Cohesion It measures the degree to which actors are con-
nected directly to each other by cohesive bonds.

Degree The count of the number of ties to other actors in
the network.

Eigenvector centrality A measure of the importance of a node in a net-
work.

ples on making recommendations to its users based on their tastes
and previous purchases. Although these systems have evolved be-
coming more accurate, the main problem is still out there: to estimate
the rating of an item which has not been seen by users. This estima-
tion is usually based on the rest of items rated by the current user
or on the ratings given by others where the rating pattern is similar
to the user’s one. Although there are different kinds of recommenda-
tion systems (content-based, collaborative filtering and hybrid tech-
niques) [4] they all suffer from the same main limitations: sparsity
and scalability [17] and cold-start problems [15].

Some authors have tried to avoid the problem of cold-start users by
asking them a series of questions about their tastes or by proposing
some studied items in order to get any rating [13, 7]. As we presume
these solutions can usually cause displeasure on the users, becom-
ing tedious and cumbersome activities. An-Te Nguyen et al. [4] have
tried to reduce the cold-user problem by exploiting available data
(e.g. age, occupation, location, etc.). In [18] authors present a met-
ric (the CROC curve) to improve the evaluation of a recommender
system performance.

Moreover, some authors have improved their recommendation al-
gorithms combining users’ social data from social networks [10, 9].
Although they don’t tackle the cold-start problem, their idea of us-
ing the available social information of users as an input represents
a new starting point for these systems (e.g. Foursquare5 adds infor-
mation about user geolocation). There is also an open research in
the Carnegie Mellon University’s School of Computer Science about
how do people really inhabit their cities based on Foursquare data.
The project groups check-ins by physical proximity and it measures
“social proximity” by how often different people check in similar
places. This way resulting areas are dubbed [3].

But in a social network there is more beyond users, relationships
and data. Social network analysis (SNA) refers to methods used to
analyse social networks, social structures made up of individuals
called ”nodes”, which are connected by different representations of
relationships (e.g. friendship, kinship, financial exchange, etc.). Fig-
ure 1 represents an example of a social network graph in which dif-
ferent nodes are connected each other by relation lines called “links”.
Once we have empirical data on a social network new questions arise:
Which nodes are the most central members? Which are the most pe-
ripheral? Which people are influenced by others? Which connections
are most crucial? These questions and their answers represent the ba-
sic domain of SNA [14]. There are many metrics which measure dif-

5 http://www.foursquare.com

ferent aspects in a social network taking into account the nodes and
their edges. Table 1 shows some of the best known metrics in SNA.
As depicted in Section 3 we have chosen the eigenvector centrality
metric to face up to the cold-start problem. A variant of eigenvector
centrality is used by Google search engine to rank Web pages [11],
but it is based in the premise that the system already has data from
the user to work with.

Figure 1: An example of a collaborative social network. Squares rep-
resent nodes (people) and the edges represent social ties between
them. Yellow squares represent important nodes which relate differ-
ent sub-graphs [14].

3 PROPOSED SOLUTION

This section details the developed system to enable the generation of
generic recommendations to the user based in the rest of the users
who checked in the same venue with Foursquare. To get the rest of
the users (the network nodes) who checked in the same place we have
used the Foursquare API. Once we have the nodes we calculate those
which are the most important in the network at the current venue
and then we obtain the recommendations which fit better to the user
linking using probabilistic.

3.1 Foursquare API

Foursquare is a location-based social networking website which
allows users to ”check in” at venues using their smartphones.
The Foursquare API6 gives access to all of the data used by the
Foursquare mobile applications. Thanks to it developers can re-
quest some user data (e.g. location, friends, last check-ins, etc.). We
have developed an Android mobile application which allows users
to check in desired venues as they would do with Foursquare offi-
cial application or website (see Figure 3). Once the user checks in
any venue, our algorithm is launched: First, we must authenticate
the user with the Oauth protocol (required by the Foursquare API).
Then we are able to get the nodes who have checked in the current

6 https://developer.foursquare.com/



venue. To do this it is necessary to use the “herenow”7 API end-
point aspect, which responses a count and items (where items are
Checkin8 responses) in JSON format. For example, doing a check-in
at the Colosseo, in Rome, we obtained a JSON “herenow” response
containing 4 items representing 4 different people who had previ-
ously checked in the same venue (see Figure 2). That’s the point of
the “herenow” endpoint, to get the previous check-ins done by other
users at the current checked in venue.

Therefore, we can build a 5 × 5 square adjacency matrix (3) rep-
resenting the network graph at the current venue for each user (the
first column relates the current user with the others). Each Aij ele-
ment will be tied to another with a default weight value of 1. Then we
start looking to the ”createdAt” field of every Checkin object in the
“herenow” JSON response. This field is a long number, and it’s value
is based in the the Unix epoch time (it stores the number of seconds
that have elapsed since midnight Coordinated Universal Time (UTC),
January 1, 1970). We have split the importance of every check-in in
3 time intervals, adding weights to the values in the matrix in the
corresponding Aij position. We decided this because a Foursquare
check-in has a lifetime of 3 hours approximately, and that is the rea-
son why we have chosen a 3 hours time interval to give weights to
the check-ins. We also believe that people are defined by their acts,
and this is why we defend the temporal closeness approach. Being at
same places at similar time periods can be used as a tool for relate
different people with some and probable similar tastes.

To complete the weights assignation we must take into account
that the “herenow” request returns not only the list of the people who
have checked in the same venue but also a list of our Foursquare
friends who have also done it. Accordingly to this, we believe that
our friends have an extra weight (or importance) in the network. The
following (1) and (2) equations detail the possible weights distribu-
tion when a user checks in a venue. Given priority to user’s friends we
can see how the maximum weight for an unknown user is 3, although
for a friend scales up to 6. We have implemented such algorithm be-
cause being friends in a social network does not directly imply that
users’ tastes are the same.

current user

user 1
user 2

user 3

user 4

Legend
Friend user

Unknown user

1 hour interval

2 hours interval

3 hours interval

Users' check-ins time stamp
current user

user 1

user 2

user 3

1:00 pm

2:00 pm

3:00 pm

1:00 pm

user 4 4:00 pm

Figure 2: Example of a graph built from a user check-in where there
are 4 more Foursquare users who had checked in the same venue.
Matrix A′′ (4) represents the same graph.

Unknown user =


1 default weight

+3 if check-in interval ≤ 1 hour
+2 if 1 hour < check-in interval ≤ 2 hour
+1 if 2 hour < check-in interval ≤ 3 hour

 (1)

Friend user =


3 default weight

+3 if check-in interval ≤ 1 hour
+2 if 1 hour < check-in interval ≤ 2 hour
+1 if 2 hour < check-in interval ≤ 3 hour

 (2)

7 https://developer.foursquare.com/docs/venues/herenow
8 https://developer.foursquare.com/docs/responses/checkin

The following matrices show how the first default values are added
just when the adjacency matrix A is built and then how it is com-
pleted with the weights assignations (A′′). A′ is built by adding to
A the corresponding values of the relationships between the current
user and the others (see Figure 2 and equations (1) and (2)). Regard-
ing at node A′′

01 we can see that it has a value of 6. This is because of
the combination of the relationship between the current user and the
“user 1” (they are friends) and the check-in time interval (1 hour).

A =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 (3)

A′ =


0 3 1 1 3
3 0 1 1 3
1 1 0 1 1
1 1 1 0 1
3 3 1 1 0

A′′ =


0 6 3 4 4
6 0 3 3 1
3 3 0 2 3
4 3 2 0 1
4 1 3 1 0

 (4)

(a) (b) (c)

Figure 3: A user checks in a venue with developed Android applica-
tion. First a map is shown (a). Once the user touches the screen a
near venues list is presented (b). Finally, when a venue is selected,
the check-in is performed (c).

3.2 Eigenvector centrality

As we have depicted in Section 2 a network is a graph made up of
points, nodes or vertices tied each other by edges. We can also repre-
sent these graphs by a so called adjacency symmetric (n×n) matrix,
where n is the number of nodes. This matrix has elements

Aij =

{
1 if there is an edge between vertices i and j
0 otherwise

}
(5)

Eigenvector centrality is a more sophisticated version of the de-
gree metric, which is a simple way to measure the the influence or
importance of a node [14]. The degree ki of a node i is

ki =

n∑
j=1

Aij , (6)

whereA is the adjacency matrix which represents the ties between
nodes i and j.



Since degree centrality gives a simple count of the number of ties
a node has, eigenvector centrality acknowledges that not all con-
nections are equal. Therefore, and because some edges represent
stronger connections than others, the edges can be weighted. To sum
up, connections to nodes which are themselves influential to others
will lend a node more influence than connections to less influential
nodes. Denoting the centrality of a node i by xi, then it is possible to
make xi proportional to the average of the centralities of i’s network
neighbours:

xi =
1

λ

n∑
j=1

Aijxj , (7)

where λ is a constant. This equation can be also rewritten defining
the vector of centralities x = (x1, x2, ...):

λx = A · x, (8)

where x is an eigenvector of the adjacency matrix with eigenvalue
λ.

All these calculations are computed in the user’s device. The
JAMA [1] library has helped us to easily obtain the most important
nodes of the graph (we have also used an online tool9 to rapidly check
the JAMA obtained values). The following method uses this library
to obtain the eigenvectors to the given adjacency matrix. First the
corresponding eigenvalues are estimated. Then we extract those val-
ues of the eigenvectors which are related with the highest value of the
obtained eigenvalues, which corresponds to the most important node
of the grid. Applying this eigenvector calculation to the A′′ matrix
from Section 3.1 we obtain that the highest eigenvalue λ1 = 12.502,
and the corresponding eigenvector to this eigenvalue is

e1 =


0.569
0.491
0.401
0.392
0.349

 , (9)

where the first value corresponds to the current user (and it is also
the highest value), so we have to ignore it. The next highest value is
the one we will take into account as the most important node of the
grid.

We have encapsulated the Foursquare user object into a new
“CompactUser” which also has a set of recommendations assigned
to it, each one composed by a series of items. Taking as example the
generic categories of Amazon.com we have tested our solution using
a few controlled users who are friends in Foursquare and some ran-
dom generated users in order to have a controlled scenario. Results
are detailed in Section 4. Once the recommendations of the most
important users are obtained, we upload them to a web server by
Google AppEngine10 using a simple Python service. For each user
we store all possible recommendations (we manage nine main cate-
gories) and we update the estimate and the probability of fitting with
his tastes. To evaluate this the developed application asks first about
user’s tastes among the cited categories. This information is stored in
a SQLite database (this is just to evaluate the solution).

The service responses a JSON object with the recommendations
and their likelihood probabilities for the user. This JSON object is
parsed in the device side in order to generate the corresponding rec-
ommendations to the user.

9 http://www.bluebit.gr/matrix-calculator/
10 https://appengine.google.com/

4 RESULTS
Our solution has been evaluated by presenting to our test users the de-
fault categories that Amazon.com uses and another list with our cat-
egories recommendations. Once our users have compared both lists,
they have fulfilled a questionnaire to capture their satisfaction level
with the obtained results. Amazon.com default recommendations are
the following:

• Kindle related products
• Clothing trends
• Products being seen by other customers
• Best watches prices
• Laptops best prices
• Top seller books

These recommendations (not categories) are not based in any user
preference. On the contrary our list of recommendations establish
a new order within Amazon.com’s categories, indicating the proba-
bility of each one to be in the tastes of users. Navigating to Ama-
zon.com website with privacy mode enabled allows us to see default
recommendations, without taking into account any previous purchase
or search. Our objective is focused in recommend items from Ama-
zon.com categories (listed in Table 3).

Testing our solution with real users we obtained a certain approx-
imation to their tastes. Despite the few users, check-ins and data
we have access to, the system is capable of generating first generic
Amazon.com recommendations (as we have already detailed in this
section). Table 3 show the probabilities obtained for a user with the
following tastes (see the Amazon.com whole categories listed in Ta-
ble 2):

• Automotive & industrial
• Movies, music, games
• Electronics & computers
• Sports & outdoors

The middle column shows the system generated probability for
each category with just an input of 3 user check-in. On the contrary
the right column values corresponds to the same user doing 5 check-
ins. These values are more refined, being more in accordance with
the user known tastes.

Finally users have to fulfil a questionnaire rating the presented cat-
egories. This rating includes mandatory and controlled answers, from
1 to 4. This way we can compare the results with the obtained proba-
bilities. Table 2 shows the probabilities calculated for a user from the
resulting questionnaire answers. Then Table 4 compares both proba-
bilities and calculates the approximation of each estimation.

It is important to emphasize that a new matrix is built with ev-
ery user check-in. This means that previous matrices are overwritten.
However, the probabilities are dynamic, and they are refined every
time the user checks in a venue.

The more approximate to 0.0 ε is, the more accurate our solu-
tion becomes. There are some values of ε which shows that there are
needed more check-ins to refine the obtained probabilities. On the
one hand, in case of 3 check-in results the worst ones are for ”Au-
tomotive & industrial”, ”Grocery, health & beauty”, “Toys, kids &
baby” and ”Sports & outdoors”. This means that if the user is inter-
ested in “Sports & outdoors” the system could not recommend any
item from this category, or even worse, recommend items from ”Gro-
cery, health & beauty”. On the other hand, 5 check-in error column
is more accurate and its values are closer to 0.0. This test shows how
more check-ins come out onto more refined recommendations.



Table 2: Results obtained from a user questionnaire answers. Left
column corresponds to the recommendations names. Right column
shows the taste probabilities obtained from the questionnaire.

Recommendation Probability

Home, garden & tools (1) 0.04761904
Clothing, shoes & jewelry (2) 0.09523809
Books (3) 0.14285714
Electronics & computers (4) 0.19047619
Automotive & industrial (5) 0.14285714
Movies, music, games (6) 0.19047619
Grocery, health & beauty (7) 0.04761904
Toys, kids & baby (8) 0.04761904
Sports & outdoors (9) 0.14285714

Table 3: Results obtained from our system for one user performing 3
and 5 check-ins.

Rec. Probability (3 check-ins) (5 check-ins)

(1) 0.04347826 0.02222222
(2) 0.04761905 0.13333334
(3) 0.1904762 0.13333334
(4) 0.1904762 0.17391305
(5) 0.0 0.16521739
(6) 0.15 0.16382979
(7) 0.13043478 0.08510638
(8) 0.17391305 0,05319149
(9) 0.0 0,05319149

Table 4: Comparison of probabilities obtained from the questionnaire
and the probabilities calculated with the proposed solution using 3
and 5 check-in results.

Rec. App. 3 check-ins 5 check-ins 3 check-in ε 5 check-in ε

(1) 0.91304360 0.466666695 0.086956393 0.533333305
(2) 0.50000005 1.400000147 0.499999947 -0.400000147
(3) 1.33333342 0.933333399 -0.333333426 0.066666601
(4) 1.00000005 0.913043515 -0.000000053 0.086956485
(5) 0.0 1.156521753 1.0 -0.156521753
(6) 0.78750000 0.8601064 0.212499998 0.1398936
(7) 2.73913081 1.787234266 -1.73913081 -0.787234266
(8) 3.65217463 1.117021469 -2.65217463 -0.117021469
(9) 0.0 0.372340437 1.0 0.627659563

Approximation (App.) = (Solution probability / Questionnaire probability)
Deviation error (ε) = 1 - approximation

5 CONCLUSIONS AND FUTURE WORK
This paper explores the possibility of using relevant data from users’
social network to alleviate the cold-user problems in a recommender
system domain. The proposed solution extracts the most valuable
node in the graph generated by check in a venue with an Android
application using the Foursquare API. By obtaining the recommen-
dations to this node we estimate the probability of some categories
to be similar to users tastes.

In the near future we will take into account data not only from
Foursquare. Other social networks with accessible APIs will be use-
ful enough to determinate more accurately the preferred items for a
user. Moreover, combining different social network analysis metrics
can come out onto more accurate results. Another important aspect
is to take into account more than the most valuable node for doing
recommendations.

It will be also interesting to store the obtained matrices for each
venue and update them with every check-in. By now matrices are not
stored, so they are not dynamic, which means that a new matrix is
built every time the user checks in a venue, overwriting any other
previous matrix.

Finally, it becomes necessary to test the solution among a higher
number of users, increasing their tastes possibilities and the offered
items. We are limited by our environment because of the small
amount of users and check-ins available. Therefore a dissemination
of this work would be very useful to get more real data.

REFERENCES
[1] Jama : A java matrix package.

http://math.nist.gov/javanumerics/jama/.
[2] Movielens movies recommendation service.

http://movielens.umn.edu.
[3] Using foursquare data to redefine a neighborhood.

http://www.technologyreview.com/web/40224/.
[4] G. Adomavicius and A. Tuzhilin, ‘Toward the next generation of rec-

ommender systems: A survey of the state-of-the-art and possible exten-
sions’, Knowledge and Data Engineering, IEEE Transactions on, 17(6),
734–749, (2005).

[5] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, ‘Video suggestion and discovery for
youtube: taking random walks through the view graph’, in Proceedings
of the 17th international conference on World Wide Web, pp. 895–904.
ACM, (2008).

[6] P.L. Chen, C.T. Tsai, Y.N. Chen, K.C. Chou, C.L. Li, C.H. Tsai, K.W.
Wu, Y.C. Chou, C.Y. Li, W.S. Lin, et al., ‘A linear ensemble of individ-
ual and blended models for music rating prediction’, in KDDCup 2011
Workshop, (2011).

[7] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and
M. Sartin, ‘Combining content-based and collaborative filters in an on-
line newspaper’, in Proceedings of ACM SIGIR Workshop on Recom-
mender Systems, pp. 1–11. Citeseer, (1999).

[8] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, et al., ‘The youtube video
recommendation system’, in Proceedings of the fourth ACM conference
on Recommender systems, pp. 293–296. ACM, (2010).

[9] H. Kautz, B. Selman, and M. Shah, ‘Referral web: combining social
networks and collaborative filtering’, Communications of the ACM,
40(3), 63–65, (1997).

[10] I. Konstas, V. Stathopoulos, and J.M. Jose, ‘On social networks and col-
laborative recommendation’, in Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, pp. 195–202. ACM, (2009).

[11] A.N. Langville, C.D. Meyer, and P. FernÁndez, ‘Google’s pagerank
and beyond: The science of search engine rankings’, The Mathematical
Intelligencer, 30(1), 68–69, (2008).

[12] G. Linden, B. Smith, and J. York, ‘Amazon. com recommendations:
Item-to-item collaborative filtering’, Internet Computing, IEEE, 7(1),
76–80, (2003).



[13] P. Melville, R.J. Mooney, and R. Nagarajan, ‘Content-boosted collab-
orative filtering for improved recommendations’, in Proceedings of the
National Conference on Artificial Intelligence, pp. 187–192. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
(2002).

[14] M.E.J. Newman, ‘The mathematics of networks’, The New Palgrave
Encyclopedia of Economics, 2, (2008).

[15] A.T. Nguyen, N. Denos, and C. Berrut, ‘Improving new user rec-
ommendations with rule-based induction on cold user data’, in Pro-
ceedings of the 2007 ACM conference on Recommender systems, p.
121–128, (2007).

[16] P. Resnick and H. R. Varian, ‘Recommender systems’, Communications
of the ACM, 40(3), 56–58, (1997).

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, ‘Item-based collabora-
tive filtering recommendation algorithms’, in Proceedings of the 10th
international conference on World Wide Web, p. 285–295, (2001).

[18] A.I. Schein, A. Popescul, L.H. Ungar, and D.M. Pennock, ‘Methods
and metrics for cold-start recommendations’, in Proceedings of the 25th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, p. 253–260, (2002).


