
Using and Learning GAI-Decompositions for
Representing Ordinal Rankings

Damien Bigot1, Hélène Fargier1, Jérôme Mengin1, Bruno Zanuttini 23

Abstract. We study the use of GAI-decomposable utility functions
for representing ordinal rankings on combinatorial sets of objects.
Considering only the relative order of objects leaves a lot of freedom
for choosing a particular utility function, which allows one to get
more compact representations. We focus on the problem of learn-
ing such representations, and give a polynomial PAC-learner for the
case when a constant bound is known on the degree of the target
representation. We also propose linear programming approaches for
minimizing such representations.

1 INTRODUCTION

The development of interactive systems for supporting decision-
making and of recommender systems highlighted the need for mod-
els capable of using a user’s preferences to guide her choices. For
over fifteen years, the modelling and compact representation of pref-
erences have been active topics in Artificial Intelligence [15, 16, 5,
6, 11].

Existing formalisms are rich and flexible enough to describe the
behaviour of complex decision rules. However, for being interest-
ing in practice, these formalisms must also permit fast elicitation
of a user’s preferences, involving a reasonable amount of interac-
tion only. Configuration of combinatorial products in business-to-
customer problems [14] and preference-based search [18] are good
examples of decision problems in which the user’s preferences are
not known a priori. In such applications, a single interaction with
the user must typically last at most 0.25 s, and the whole session
must typically last at most 20 minutes, even if the object to be rec-
ommended to the user is searched for in a combinatorial set.

When the user’s preferences are qualitative and have a “simple”
structure (for instance, when they are separable), conditional prefer-
ence networks (CP-nets) and their variants [5, 4, 6] are popular rep-
resentation frameworks. In particular, CP-nets come with efficient
algorithms for finding most preferred extensions of objects (outcome
optimisation problem), and with efficient elicitation procedures [13].
Unfortunately, CP-nets suffer a lack of expressivity, since most com-
plete pre-orders cannot be represented by simple (acyclic) CP-nets.

Contrastingly, generalised additively independent decompositions
(GAI-decompositions) of utility functions [9, 1, 11] can represent
complete pre-orders in a compact way, by exploiting the independen-
cies between sets of variables. In a word, these are representations of
utility functions by sums of the form

∑n
i=1 ui(Zi), where the ui’s

are sub-utility functions with (hopefully) small scopes Zi.

1 IRIT, Univ. Toulouse, France; email: prenom.nom@irit.fr
2 GREYC, Univ. Caen, France; email: prenom.nom@unicaen.fr
3 Partially funded by the ANR (projet LARDONS, ANR-2010,BLAN-0215)

Typically, a GAI-decomposition is used to represent a utility func-
tion, which assigns a value to each possible object and hence, implic-
itly defines a complete pre-order on them (the greater the value, the
more preferred the object). Such values may in some cases represent
an amount of money which the user is ready to spend for the object,
or may be defined implicitly by preferences on lotteries. However,
in many applications, the actual values of the utility function are not
important: it is the ranking of the objects that is induced by the utility
function, and the properties of this ranking, that are interesting. Fur-
thermore, the representation of the utility function is important too:
it should enable fast answers for a variety of queries, not only domi-
nance queries like “Is object o preferred to object o′ ?”, but also more
complex queries like “What are the top-k objects that fulfil some
given constraints?”, useful for typical recommendation systems.

In this paper, we investigate the use of GAI-decompositions
for representing such ordinal rankings. Precisely, we take a GAI-
decomposition to represent the ranking defined by the associated
utility function. Since in general many different utility functions rep-
resent the same ranking, this leaves a lot more freedom for finding
compact decompositions than if the utility function is fixed.

In this context, we focus on the problem of learning a com-
pact GAI-decomposition from (ordinal) examples, that is, essentially
from statements of the form “I prefer object o to object o′”. While
some works on this topic have focused on a fixed target utility func-
tion (rather than a ranking) and assumed the structure (the scopes
Xi) to be known in advance, we consider the issue of learning any
utility function which induces the target ranking, and assume noth-
ing about the target structure except for a constant, known bound on
its degree. We aim at finding a simple structure, in order to ease op-
timization queries (among others). This issue has not been addressed
in the “learning to rank” literature, where the aim is usually to find a
ranking function that can be used to answer dominance queries, as in
e.g. [12, 10, 8].

After a review of GAI-decompositions (Section 2), we show in
Section 3 that the GAI-decompositions consistent with a set of ex-
amples can be defined as the feasible solutions of a linear program.
We give an efficient PAC-learner for our problem in Section 4, and
extend our approach to the problem of learning minimal decomposi-
tions in Section 5. Some perspectives and are discusset in Section 6.

2 GAI-DECOMPOSITIONS

In our context, the preference relation (or preferences) of a user on
a set of objects χ is a complete pre-order �, that is, a complete and
transitive binary relation. Given two objects o, o′ ∈ χ, we take o �
o′ to mean that o is at least as interesting to the user as o′. We write
� for the asymmetric part of the relation �, and ∼ for its symmetric

part. Hence � is a linear order with possible ties on χ, � is the strict
part of it, and ∼ contains the ties.

Generalized additive independence provides a representation for
preferences on combinatorial domains. Hence we assume that the ob-
jects inχ are described over a set of n variablesX = {X1, . . . , Xn}.
We write Di for the (finite) domain of Xi, hence the set of all ob-
jects is χ = D1 × · · · × Dn. Though our results can be extended
to arbitrary finite domains, for simplicity of exposition we consider
Boolean domains, and we write Di = {xi, x̄i}. Slightly abusing no-
tation, we also write objects of χ as sequences of values instead of
as vectors. For instance, with X = {X1, X2, X3, X4}, the object
(x1, x̄2, x3, x4) ∈ χ will be denoted by x1x̄2x3x4. Finally, for any
subset of variables Z ⊆ X and object o, o[Z] denotes the projec-
tion of o onto the variables in Z, and given a set of objects O ⊆ χ,
O[Z] = {o[Z] | o ∈ D1 × · · · ×Dn} denotes the set of projections
of elements of O onto Z.

It is easy to see that any complete and transitive preference relation
� can be represented by a utility function u : χ 7→ R satisfying
o � o′ ⇔ u(o) ≥ u(o′) for all o, o′ ∈ χ. Clearly, since the set χ
is combinatorial (it contains 2n objects), it is impractical to directly
elicit or explicitly store the relation� or a representation u. However,
in some cases, the utility function u satisfies strong independency
properties between attributes [7], so that it can be represented by a
set of local utility functions {ui : Di 7→ R | i = 1, . . . ,m} each of
arity 1, satisfying u(o) =

∑m
i=1 ui(o[{Xi}]) for all objects o. Such

representations are clearly very compact, easy to elicit, and allow
for efficiently computing optimal objects. Unfortunately, preference
relations seldom satisfy this property of additive independence.

Example 1. Consider the set of variables X = {X1, X2, X3} with
D1 = {beef(b), fish(f)}, D2 = {redWine(r),whiteWine(w)},
D3 = {lemon(l),mustard(m)}: χ contains 8 possible combina-
tions. Consider the following ordering over χ:

brm � brl � frm � frl ∼ bwm � bwl � fwm � fwl

It can be represented with the additive utility function u defined by
the following tables:

u1 :
b 5
f 2

u2 :
r 5
w 1

u3 :
l 2
m 3

Consider now the following ordering:

brm � bwm ∼ fwl � brl � fwm ∼ frl � bwl � frm

To represent this ordering with an additive utility, we should have
u1(b) > u1(f) since brm is preferred to frm, and u1(b) < u1(f)
since fwl is preferred to bwl. However, this ordering can be repre-
sented using local utilities over several variables: define for any ob-
ject o, u(o) = u{X1,X2}(o[{X1, X2}]) + u{X1,X3}(o[{X1, X3}])
where u{X1,X2} and u{X1,X3} are defined by:

u{X1,X2} :

b, r 5
f, r 1
b, w 2
f, w 4

u{X1,X3} :

b, l 3
b,m 7
f, l 5
f,m 2

Example 1 shows that some variables may depend on one another,
and that in this case the utility function must be decomposed onto
sets of variables rather than onto singletons.

Definition 1 (GAI-decomposition). Let X = {X1, ..., Xn} be a set
of variables, χ = D1×· · ·×Dn be a set of objects, and u : χ 7→ R

be a utility function on χ. A GAI-decomposition of u is a finite set
G = {uZ1 , . . . , uZm} of utility functions on subsets Zi of X (i.e.,
uZi : χ[Zi] 7→ R) such that u(o) = Σmi=1uZi(o[Zi]) holds for all
o ∈ χ. The degree ofG is defined to be deg(G) = maxi=1,...,m |Zi|,
where |Zi| denotes the cardinality of Zi.

Definition 2. Let u be a utility function, and let G be a GAI-
decomposition of u. Then u (resp.G) is said to represent a preference
relation � iff o � o′ ⇔ u(o) ≥ u(o′) for all o, o′ ∈ χ.
Considering u (resp. G) as given, we also say that it induces this
relation and denote it by �u (resp. �G).

The local utility functions uZ1 , . . . , uZm are also called GAI-
tables, because they are typically implemented in tabular form.

Clearly, for any utility function u, {u} is a GAI-decomposition
of u of degree |X|. Also, writing uc for the constant function with
value c, for any GAI-decomposition G of u and any set of variables
Z ⊆ X , G ∪ {u0(Z)} is also a GAI-decomposition of u. Similarly,
G ∪ {uc(Z)} is a GAI-decomposition of u + c, and hence induces
the same preferences as G. However, the most interesting decompo-
sitions are those which properly refine u.

Definition 3 (utility-preserving refinement). Let G,G′ be two
GAI-decompositions of the same utility function u. Then G =
(uZ1 , . . . , uZm) is said to u-refine G′ = (u′Z′1

, . . . , u′Z′
m′

) if for

i = 1, . . . ,m′, there is j ∈ {1, . . . ,m} with Z′i ⊆ Zj .

Definition 4 (preference-preserving refinement). Let G,G′ be two
GAI-decompositions of utility functions u, u′, respectively. Then
G = (uZ1 , . . . , uZm) is said to refine G′ = (u′Z′1

, . . . , u′Z′
m′

) if

�G and �G′ are the same relation and for i = 1, . . . ,m′, there is
j ∈ {1, . . . ,m} with Z′i ⊆ Zj .

For both definitions, the refinement is said to be proper if more-
over, for one relation Z′i ⊆ Zj as in the definition it holds Z′i 6= Zj ,
or for one Zj there is no Z′i ⊆ Zj .

Refinement differs from u-refinement because the same pref-
erence relation can be represented by several utility functions.
We will pay a particular attention to the maximally refined GAI-
decompositions which represent a given preference relation.

Example 2. Consider the set of boolean variables X =
{X1, X2, X3, X4}. Let u be the GAI utility defined as the sum of
uX1X2 , uX1X3 and uX1X4 , where these sub-utilities are defined by
the following tables:

x1x2 9
x1x̄2 5
x̄1x2 5
x̄1x̄2 2

x1x3 8
x1x̄3 9
x̄1x3 6
x̄1x̄3 9

x1x4 5
x1x̄4 2
x̄1x4 4
x̄1x̄4 1

It can easily be checked that the order over χ induced by u is also
induced by the utility u′ defined as the sum of u′X1X2

and u′X2X3X4

with the following tables:

x1x2 6
x1x̄2 2
x̄1x2 1
x̄1x̄2 0

x2x3x4 3 x̄2x3x4 2
x2x3x̄4 0 x̄2x3x̄4 0
x2x̄3x4 7 x̄2x̄3x4 4
x2x̄3x̄4 1 x̄2x̄3x̄4 1

Using a small program based on the ideas developed in the next sec-
tion, we have checked that none of these two GAI-decompositions of
the same pre-order can be refined.

This example shows that there is not always a unique maximally
refined GAI-decomposition inducing a given pre-order.

3 REPRESENTATION OF EXAMPLES
Our aim in this paper is to learn GAI-decompositions which induce a
hidden target preference relation. Hence in the following we assume
that there is a set of Boolean variables X = {X1, . . . , Xn}, which
defines a set of objects χ, and a target preference relation � on χ,
hidden to the learner. The learner has access to information on �
through examples.

Definition 5 (example). An example e of � is a triple of the form
(o,R, o′), where o, o′ ∈ χ and R is one of �,�,∼,�,≺.
For a set of examples E, we write OE for the set of all objects in-
volved in at least one example of E.

Examples formalize the information received by the learner, es-
pecially by observing the user. For instance, if the learner observes
that the user always chooses o over o′, it may represent this as the
example (o,�, o′). Similarly, if the user sometimes chooses o over
o′, and sometimes o′ over o, this may be represented as the example
(o,∼, o′), etc.

Definition 6 (consistency). A GAI-decompositionG of a utility func-
tion u is said to be consistent with a set of examples E if for ev-
ery example (o,R, o′) ∈ E, u(o) > u(o′) (respectively u(o) ≥
u(o′), u(o) = u(o′), . . .) holds if R is the relation � (respectively
�,∼, . . .).

Clearly, given a constant k, there is not always a GAI-
decomposition of degree k (or less) which is consistent with a given
set of examples E. To formalize this, we define a set of examples E
to be k-sound if there is at least one utility function u and a decom-
position G of u, of degree at most k, that is consistent with E.

We now define a system of linear inequalities, whose solutions
essentially correspond to the GAI-decompositions of degree k con-
sistent with E.

Definition 7 (linear representation of an example). Let e =
(o,R, o′) be an example of the target preference relation �, and let
k ∈ N. Moreover, let σ > 0 be a real constant, positive but arbitrary.
Finally, for all subsets of variables Z ⊆ X with 0 < |Z| ≤ k and
assignments z to Z, let UZ,z be a formal variable.

The linear inequality for e = (o,R, o′), k, σ, written ineqσk (E)
(or simply ineqk(E)) is defined to be∑

Z⊆X,0<|Z|≤k

UZ,o[Z] ≥ σ +
∑

Z⊆X,0<|Z|≤k

UZ,o′[Z]

if R is the relation �, to be∑
Z⊆X,0<|Z|≤k

UZ,o[Z] ≥
∑

Z⊆X,0<|Z|≤k

UZ,o′[Z]

if R is the relation �, and similarly for the relations ∼ (using = in
ineqk(E)), � (using ≤), and ≺ (using ≤ and σ).

Definition 8 (linear system). Let E be a set of examples of the tar-
get preference relation �, and let k ∈ N, σ > 0. The linear sys-
tem for E, k, σ is defined to be the conjunction of linear inequalities
Σσk(E) =

∧
e∈E ineqσk (e) (also written simply Σk(E)).

Intuitively, variables UZ,z encode the components of the GAI-
tables in a decomposition G of the target relation. We use a constant
σ for strict preference with the aim of using linear programming,
for which we need a closed topological space. Proposition 1 below
shows that this is without loss of generality.

Importantly, note that the system Σk(E) has at most
∑k
i=0 2i

(
n
i

)
variables (as many as possible assignments to subsets of at most k
variables). However, another bound is obtained by observing that the
variable UZ,z appears only if there is an object o ∈ OE with o[Z] =
z. Hence the number of variables occurring in Σk(E) is at most∑k
i=0

(
n
i

)
.|OE |. Whatever formula we use, provided k is bounded

by a constant, the size of Σk(E) is polynomial in the number of
variables n and the number of examples E (using |OE | ≤ 2|E|).

Example 3. Let o = x1x2x̄3 and o′ = x̄1x2x3. The linear inequal-
ity associated with the exemple e = (o,�, o′) for k = 2 and σ = 0.1
is (writing, for exemple, Ux1x̄2 for U{X1,X2},x1x̄2) :

Ux1 + Ux2 + Ux̄3 + Ux1x2 + Ux1x̄3 + Ux2x̄3

≥ Ux̄1 + Ux2 + Ux3 + Ux̄1x2 + Ux̄1x3 + Ux2x3 + 0.1

We now show that the linear system Σk(E) characterizes the GAI-
decompositions of degree at most k and consistent with E. For tech-
nical reasons, we restricted ourselves to utility functions u with span
at least σ, that is, satisfying |u(o) − u(o′)| ≥ σ for all o, o′ with
u(o) 6= u(o′). This is without loss of generality however, since if u
has span σu < σ, then u′, defined by u′(o) = σ

σu
u(o) for all o ∈ χ,

is consistent with E as well and has span σ.

Proposition 1. Let� be a preference relation on χ, let E be a set of
examples for�, and let k ∈ N, σ > 0. Then the GAI-decompositions
of degree at most k, span of at least σ, and consistent with E are
exactly the solutions of Σk(E).

4 LEARNING

In this section we give an algorithm which, given a constant k ∈
N and a k-sound, hidden target preference relation �, learns a
GAI-decomposition G of � from examples only, in the Proba-
bly Approximately Correct (PAC) framework [17] (see Section 4.2).
Our algorithm essentially maintains the version space of all GAI-
decompositions of degree k (and span at least σ) consistent with the
examples received so far, using a compact representation by Σk(E).

4.1 VC-Dimension

So as to study the number of examples needed to learn �, we first
study the Vapnik-Chervonenkis dimension (VC-dimension for short)
of the classGk of all relations�which can be represented by a GAI-
decomposition of degree at most k.

The VC-dimension concerns classes of binary concepts, that is,
concepts c which assign one of two values to any object x (values
c(x) and ¬c(x)). Hence we view � as the two binary concepts �
and ≺ over objects (o, o′) ∈ χ × χ (and G�k , G

≺
k denote the corre-

sponding classes of concepts). This gives an equivalent view since,
for instance, o � o′ is equivalent to o 6≺ o′, o ∼ o′ is equivalent
to o 6≺ o′ ∧ o 6� o′, etc. Intuitively, the VC-dimension of � is the
largest number of “independent” couples (o,R, o′), in the sense that
the relation R of none depends on the relation of the others.

Definition 9 (VC-dimension). LetC be a set of binary concepts over
χ×χ. A set of couples O ⊆ χ×χ is said to be shattered by C if for
any partition {O+, O−} of O, there is a concept c ∈ C satisfying
∀(o, o′) ∈ O+, c(o, o′) and ∀(o, o′) ∈ O−,¬c(o, o′). The VC-dim-
ension of C is the size of the largest set O that is shattered by C.

We now give the VC-dimension of classes G�k , G
≺
k . The fact that

it is polynomial could not be taken for granted even for constant k,
since a priori arbitrary values can occur in each entry of the GAI-
tables.

Proposition 2. The VC-dimension of G�k (resp. G≺k) is in
O(2knk+1), where n denotes the number of variables over which
the objects are defined.

Proof Let K =
∑k
i=0 2i

(
n
i

)
(hence K ∈ O(2knk+1)). We show

that no set O ⊆ χ × χ containing more than K couples (o, o′) is
shattered, from what the claim will follow. By duality, we give the
proof for G�k .

So let O ⊆ χ × χ with |O| ≥ K + 1. For all couples (o, o′) ∈
O we define the following formal sum, with variables UZ,z as in
Definition 7:

V ko,o′ =
∑

Z⊆X,0<|Z|≤k

UZ,o[Z] − UZ,o′[Z]

which corresponds to combining the rhs and lhs of any linear inequal-
ity associated to o and o′.

All sums V ko,o′ (for (o, o′) ∈ O) use variables among the same K
variables UZ,z (0 < |Z| ≤ k). Hence if O contains at least K + 1
couples, there is at least one of them, which we write (ω, ω′), such
that the sum V kω,ω′ is a linear combination of the others, that is, there
are values λo,o′ (for (o, o′) ∈ O \ {(ω, ω′)}) which satisfy

V kω,ω′ =
∑

(o,o′)∈O\{(ω,ω′)}

λo,o′V
k
o,o′

We write O≤ (resp. O>) for the set of all couples (o, o′) ∈ O \
{(ω, ω′)} with λo,o′ ≤ 0 (resp. λo,o′ > 0).

First assume O> 6= ∅. We show that no concept � in G�k is
consistent with the partition defined by O+ = O> and O− =
O≤ ∪ {(ω, ω′)}, that is, no concept � satisfies o � o′ for all
(o, o′) ∈ O>, o 6� o′ (i.e., o � o′) for all (o, o′) ∈ O≤, and ω 6� ω′.
Indeed, given those labels and using Proposition 1, we get that the
following linear system must be satisfied (for an arbitrary constant
σ > 0):

V ko,o′ ≥ σ (∀(o, o′) ∈ O>)

V ko,o′ ≤ 0 (∀(o, o′) ∈ O≤)

Because of the signs of λo,o′ ’s, it follows that the following inequal-
ities must be satisfied:

λo,o′V
k
o,o′ ≥ λo,o′σ (∀(o, o′) ∈ O>)

λo,o′V
k
o,o′ ≥ 0 (∀(o, o′) ∈ O≤)

Hence all solutions of this system must satisfy∑
(o,o′)∈O>∪O≤

λo,o′V
k
o,o′ ≥ σ

∑
(o,o′)∈O>

λo,o′

that is (using O> ∪O≤ = O \ {(ω, ω′)}),

Vω,ω′ ≥ σ
∑

(o,o′)∈O>

λo,o′

Because of σ > 0, O> 6= ∅ and λo,o′ > 0 for (o, o′) ∈ O>, it
follows that ω 6� ω′ is impossible, so O is not shattered by G�k .

Now assume O> = ∅. We show that no concept � in G�k is con-
sistent with the partition defined by O+ = O≤ ∪ {(ω, ω′)} and
O− = ∅. Indeed, reasoning as above we get:

V ko,o′ ≥ 0 (∀(o, o′) ∈ O≤)

λo,o′V
k
o,o′ ≤ 0 (∀(o, o′) ∈ O≤)∑

(o,o′)∈O≤
λo,o′V

k
o,o′ ≤ 0

Vω,ω′ ≤ 0

and hence, ω � ω′ is impossible, showing again that O is not shat-
tered by G�k . Since O was arbitrary of size at least K, we conclude
that the VC-dimension of G�k is at most K. 2

4.2 Algorithm
We now give an algorithm for learning a GAI decomposition of a
hidden preference relation �∗ accessed through examples. We use
the probably approximately correct learning (PAC learning) frame-
work proposed by Valiant [17]: the learner asks for a number m of
examples (o,R, o′) of the target relation �∗, and computes a prefer-
ence relation �. The number m of examples in the sample is chosen
by the learner as a function of the number of variables n and two real
parameters ε, δ ∈]0, 1[. Each example is drawn at random according
to a probability distribution D on χ× χ; D is fixed but unknown to
the learner. For any couple (o, o′) drawn from χ× χ, the learner re-
ceives the example (o,R, o′), whereR is determined by�∗ (without
noise). In this context, an algorithm is a PAC-learner if

• it outputs a concept � which with probability at least 1 − δ has
error less than ε on couples drawn from χ × χ according to D.
Formally,

∑
{D(o, o′) | oRo′ but ¬(oR∗o′)} < ε holds with

probability at least 1− δ, where R is any relation in {�,∼,≺},
• the number m of examples asked by the learner is polynomial in
n, 1/ε, 1/δ,

• the algorithm runs in time polynomial in n, 1/ε, 1/δ (counting
unit time for asking and receiving an example).

A concept class is said to be efficiently PAC-learnable if such a
PAC-learner exists for the class.

The framework of PAC-learning captures situations where the
learner observes some objects in its environment (those that come
to it — it cannot choose which), and is given by a “teacher” the cor-
rect labels for these objects. Some objects occurring possibly more
seldom than others (as formalized by the distribution D), the learner
has less chances to learn with them, but it is less penalized by errors
on them.

In order to show that for fixed, constant k, the class Gk of GAI-
decompositions having degree at most k are PAC-learnable, we fol-
low the classical consistent learning approach. The learner maintains
a concept (in fact, the version space of all concepts) consistent with
each of the examples received so far, namely, it maintains the linear
system Σk(E) (for a fixed but arbitrary span σ > 0).

Figure 1 depicts the algorithm. Since�∗ is assumed to be k-sound
and our setting is noise-free, the algorithm always returns a solution,
i.e., Σk(E) is necessarily a consistent system. The number m of ex-
amples which the learner needs is given by the following proposition.

Proposition 3. For any constant k > 0, the class Gk of GAI-
decompositions of degree at most k is efficiently PAC-learnable. The
number m of examples required by Algorithm GAI-Learning is in
O(max(1

ε
log 1

δ
, 2knk+1

ε
log 1

ε
).

Algorithm 1: The GAI-Learning Algorithm

begin
Σk(E)← ∅;
for i = 1, . . . ,m do

ask for an example e of the form (o,R, o′);
add ineqk(e) to Σk(E);

compute a solution Sol of Σk(E);
return the GAI-decomposition encoded by Sol;

end

Proof. Proposition 1 shows that Σk(E) is solvable, and that the con-
cept returned by the algorithm is consistent with all the examples
received.

We determine m using the VC-dimension of G�k and G≺k . Fol-
lowing [2], because the binary relations� and≺ uniquely determine
the concept � (see the discussion before Definition 9), we define the
“dimension” d of the class of non-binary conceptsGk to be the max-
imum of the VC-dimension of G�k and G≺k , hence d ∈ O(2knk+1);
intuitively, a learner learns� and≺ in parallel using the same exam-
ples for learning both, and deduces � (for more details we refer the
reader to [2]).

Then we can apply the well-known generic result of Blumer et
al. [3, Theorem 2.1 (ii)] to get that a number of examples m ∈
O(max(1

ε
log 1

δ
, d
ε

log 1
ε
) is enough for any concept � consistent

with the examples received to be probably approximately correct.
Finally, since m is polynomial in n, 1/ε, 1/δ (k is bounded), the

size of Σk(E) is polynomial. Since linear programming is polyno-
mial, the proof is complete.

5 MINIMIZING GAI-DECOMPOSITIONS
So far we have shown that for any constant k (small in practice),
the class Gk of GAI-decompositions with degree at most k is PAC-
learnable. However, our solution does not distinguish between a de-
composition with degree k and one with degree k′ � k, nor does it
distinguish between one with t clusters of variables Zi and one with
t′ � t clusters, etc.

We now briefly discuss how such parameters can be optimized.
The first natural objective is to learn a GAI-decomposition which is
maximally u-refined, that is, which cannot be decomposed further
while preserving the function.

Lemma 1. Let uZ be a utility function with a nontrivial
GAI-decomposition (uZ1 , . . . , uZm). Then

∑
z∈D(Z) uZ(z) >∑

i

(∑
zi∈D(Zi)

uZi(zi)
)

holds.

Proof. We have by definition of a decomposition∑
z∈D(Z)

uZ(z) =
∑

z∈D(Z)

∑
i

uZi(z[Zi]) =
∑
i

∑
z∈D(Z)

uZi(z[Zi])

Now because there are 2|Z|−|Zi| assignments to Z which match z on
Zi, it follows:∑

z∈D(Z)

uZ(z) =
∑
i

∑
zi∈D(Zi)

2|Z|−|Zi|uZi(zi)

Finally, because of Zi ⊆ Z we have 2|Z|−|Zi| ≥ 1 for all i, and
because the GAI-decomposition is not trivial, we have 2|Z|−|Zi| > 1
for at least one i, and hence∑

z∈D(Z)

uZ(z) >
∑
i

∑
zi∈D(Zi)

uZi(zi)

as desired.

Corollary 1. Let E be a k-sound set of examples. Then minimiz-
ing the objective function

∑
0<|Z|≤k

(∑
z∈D(Z) uZ(z)

)
, under the

constraints in Σk(E) plus the constraint UZ,z ≥ 0 (for all Z, z),
yields a GAI-decomposition (uZ1 , . . . , uZm) which is consistent
with E and in which no uZi can be u-refined.

Proof. Observe that due to the nonnegativity constraint on UZ,z’s,
the minimum is well-defined. Now towards a contradiction, let
G∗ = (u∗Z1

, . . . , u∗Zm
) be an optimal solution, and let (wlog)

G1 = (uZ11 , . . . , uZ1p) (Z1i ⊆ Z1) be a nontrivial u-refinement
of uZ1 . Define G to be obtained from G∗ by replacing u∗Z1

with G1.
Then clearly G is a utility-preserving refinement of G∗, hence both
represent the same utility function. It follows that G is also consis-
tent with E and also a feasible solution of the program (in particular,
it has the same span ≥ σ). Now by Lemma 1, G has a better value
than G∗, which contradicts the optimality of G∗.

Let D(Z,E) denotes the set of the z ∈ D(Z) such that there si
some o ∈ OE with z = o[Z]: obviously, for every z ∈ D(Z), if
z /∈ D(Z,E) then the minimization will yield UZ,z = 0. Therefore,
the linear program of Corollary 1 can be expressed as follows:

(P1)

minimize

∑
Z⊆X,0<|Z|≤k,z∈D(Z,E)

UZ,z

under constraints
• ineqk(e) for every e ∈ E
• UZ,o[Z] ≥ 0 for every Z, o

However, though (P1) achieves some kind of minimality, it does
not tend to minimize the number of nonempty entries (nonnull val-
ues) in the tables, as the following example shows.

Example 4. Consider two boolean variables X1, X2, and let E =
{x1x2 � x1x̄2 , x1x̄2 � x̄1x̄2 , x̄1x̄2 � x̄1x2}. Fix k = 2, σ =
1, and consider the following decompositions (u1, u12) and (u′12),
which are both consistent with E:

u1 :
x1 1
x̄1 0

u12 :

x1x2 2
x1x̄2 1
x̄1x̄2 1
x̄1x2 0

u′12 :

x1x2 3
x1x̄2 2
x̄1x̄2 1
x̄1x2 0

The decomposition (u′12) has fewer non-zero entries than (u1, u12),
however it can be seen that the latter has a better value for (P1) than
the former.

Despite this, we can apply some efficient post-processing to the
solution computed for (P1), by reporting the values in the table of Zi
to the table of Zj ⊃ Zi, if any.

Clearly, minimizing the number of nonempty entries allows
for more efficient storage of the decomposition learnt. In order
to minimize this number over all possible GAI-decompositions
consistent with the example, one has to resort to mixed-integer
programming, using an additional set of 0/1 variables of the
form VZ,z (recording whether the entry uZ(z) is nonempty).
This yields the following program (using standard constructs):

(P2)

minimize
∑

Z⊆X,0<|Z|≤k,z∈D(Z,E)

VZ,z

under constraints
• ineqk(e) for every e ∈ E
• UZ,o[Z] ≥ 0 for every Z, o
• VZ,o[Z] ≥ UZ,o[Z] for every Z ⊆ X, 0 < |Z| ≤ k, o ∈ OE
• VZ,o[Z] ∈ {0, 1} for every Z ⊆ X, 0 < |Z| ≤ k, o ∈ OE

Note that the constant σ must be small enough so that constraining
the UZ,o[Z]s to be in the [0, 1] interval does not artificially eliminate
some solutions.

Finally, a natural objective is to minimize the degree of the GAI-
decomposition learnt (given that it will be at most k anyway).

Example 5. Consider three boolean variables X1, X2, X3, let k =
3, σ = 1, and E = {x1x2x3 � x̄1x2x3 , x̄1x2x̄3 � x̄1x̄2x̄3}.
Consider the decompositions (u123) and (u′1, u

′
2) defined as follows:

u123 :
x1x2x3 1
x̄1x2x̄3 1

else 0
u′1 :

x1 1
x̄1 0

u′2 :
x2 1
x̄2 0

Both decompositions are consistent with E. Moreover, (u123) is
clearly an optimum of (P1) and of (P2), but it does not have mini-
mal degree, since (u′1, u

′
2) has degree 1.

Again, one could resort to mixed-integer programming to mini-
mize the degree over all decompositions consistent with the exam-
ples. Nevertheless, it is clearly a more efficient approach to proceed
by exhaustive search (or by dichotomy): if there is a decomposition
of degree k, then look for one with degree k − 1, etc.

6 CONCLUSION
In this paper, we have shown that any complete preorder on a combi-
natorial domain, which can be represented by a GAI-decomposition
of degree k, can also be seen as the solution of a system of linear
equations. For a given k, a set of examples of such a hidden preorder
(encoding a preference relation) leads to a linear system whose vari-
ables encode the components of the GAI-tables. A judicious choice
of an objective function allows to get a minimal decomposition (with
various notions of minimality).

With this in hand, we designed an algorithm which learns a GAI-
decomposition of a hidden preference relation, provided a constant
bound on the degree of such a decomposition is known a priori, in
the framework of PAC-learning. To our knowledge, this is the first
algorithm able to learn GAI-decompositions without being given the
structure of the tables (the sets of variables Zi). Even if we require
a constant bound on the degree to be given, the result could not be
taken for granted, since the presence of arbitrary values in the GAI-
tables makes a priori GAI-decompositions of degree k a very expres-
sive class (hence difficult to learn). On the practical side, requiring a
small, constant bound typically fits in the applicative context, where
(human) users usually have very local preferences.

When the training set is noisy or the chosen bound k is too low,
the linear system has no solution. It is simple to relax the system
by introducing a slack variable δe in the left part of each inequality
ineqk(e). Then the sum of the δi’s is obviously to be minimized (the
variant of the algorithm given in the paper corresponds to null δi’s).

The next development of this work is the design of a good strat-
egy for the choice of the degree of the GAI to be learnt. A simple

approach is to follow an increasing strategy, first assuming that vari-
ables are independent, then setting k = 2 and so on, until a good
coverage of the examples is reached. A finer strategy would be to use
a tolerance parameter and to analyze the (imperfect) graph learnt for
k = 2 in order to have a better idea of the dependencies: the knowl-
edge of a clique on a set Y of variables leading to the necessity of
the local utility function uY . More generally, such further develop-
ment would imply interleaving two procedures, one being devoted to
learning k (or the structure of the GAI), and the other to learning the
entries in the tables using linear programming.

Last, but not least, we shall go back to the development of (active)
elicitation methods close to the ones used in CP-net learning. The
idea is to ask the user a series of question, whose answer allows the
learner to infer (in)dependencies between variables [13]. In this con-
text, the equations and variables of the linear system would show up
only when necessary, leading to a much more efficient procedure in
terms of memory.

Acknowledgments We thank all anonymous reviewers of ECAI
2012 for helpful comments.

REFERENCES
[1] Fahiem Bacchus and Adam Grove, ‘Graphical models for preference

and utility’, in Proceedings of UAI’95, pp. 3–10, (1995).
[2] Shai Ben-David, Nicolò Cesa-Bianchi, David Haussler, and Philip M.

Long, ‘Characterizations of learnability for classes of {0,. . . ,n}-valued
functions’, J. Of Computer and System Sciences, 50, 74–86, (1995).

[3] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth, ‘Learnability and the vapnik-chervonenkis dimension’, J.
ACM, 36(4), 929–965, (1989).

[4] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman, ‘Ucp-
networks: A directed graphical representation of conditional utilities’,
in Proceedings of UAI’01, (2001).

[5] Craig Boutilier, Ronen Brafman, Holger Hoos, and David Poole, ‘Rea-
soning with conditional ceteris paribus preference statem’, in Proceed-
ings of UAI-99, pp. 71–80, San Francisco, CA, (1999).

[6] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos,
and David Poole, ‘Cp-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements’, JAIR, 21, 135–191,
(2004).

[7] G. Debreu, ‘Topological methods in cardinal utility theory’, in Mathe-
matical Methods in the Social Sciences, eds., K.J. Arrow, S. Karlin, and
P. Suppes, 16–26, Stanford University Press, Stanford, (1960).

[8] Carmel Domshlak and Thorsten Joachims, ‘Unstructuring user prefer-
ences: Efficient non-parametric utility revelation’, in Proc. of UAI ’05,
pp. 169–177, (2005).

[9] P.C. Fishburn, Utility Theory for Decision Making, Wiley, New York,
1970.

[10] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer, ‘An
efficient boosting algorithm for combining preferences’, Journal of Ma-
chine Learning Research, 4, 933–969, (2003).

[11] Christophe Gonzales and Patrice Perny, ‘Gai networks for utility elici-
tation’, in Proceedings of KR’04, pp. 224–234, (2004).

[12] Thorsten Joachims, ‘Optimizing search engines using clickthrough
data’, in Proc. of ACM KDD’02, pp. 133–142.

[13] Frédéric Koriche and Bruno Zanuttini, ‘Learning conditional prefer-
ence networks with queries’, in Proc. IJCAI’09, pp. 1930–1935, (2009).

[14] Daniel Mailharro, ‘A classification and constraint-based framework for
configuration’, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 383–397, (September 1998).

[15] Anand S. Rao and Michael P. Georgeff, ‘Modeling rational agents
within a bdi-architecture’, in Proc. KR’92, pp. 473–484, (1991).

[16] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie, ‘Valued con-
straint satisfaction problems: Hard and easy problems ’, in Proceedings
of IJCAI’95), pp. 631–637. Morgan Kaufmann, (aot 1995).

[17] Leslie G. Valiant, ‘A theory of the learnable’, Communications of the
ACM, 27(11), 1134–1142, (1984).

[18] Paolo Viappiani, Boi Faltings, and Pearl Pu, ‘Preference-based search
using example-critiquing with suggestions’, JAIR, 27, 465–503, (2006).

