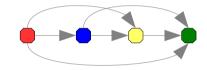
AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
- 4. Complexity of Preference Learning (Johannes)
 - a. Training Complexity
 - SVMRank
 - Pairwise Methods
 - b. Prediction Complexity
 - Aggregation of Preference Relations is hard
 - Aggregation Strategies
 - Efficient Aggregation
- 5. Conclusions

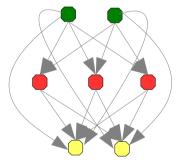
Training Complexity: Number of Preferences

we have *d* binary preferences for items $X = \{x_1, ..., x_c\}$

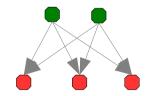
• total ranking: $d = \frac{c \cdot (c-1)}{2}$



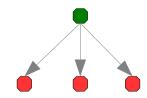
• multi-partite ranking (k partitions with p_i items each): $d = \sum_{i \neq j} p_i \cdot p_j$



• bi-partite ranking (with p and c-p items): $d = p \cdot (c - p)$ (e.g., multi-label classification)



• top rank: d=c-1 (e.g. classification)



Training Complexity of Relational Approach

We generate one training example for each binary preference

- complexity of the binary base learner is f(d)
 - e.g. $f(d) = O(d^2)$ for a learner with quadratic complexity

Single-set ranking:

- We have c items with ranking information
- Total complexity f (d) depends on the density of the ranking information
 - quadratic in c for (almost) full rankings
 - linear in c for bipartite rankings with a constant p

Multi-set ranking:

- We have n sets of c items with ranking information
 - label ranking is a special case of this scenario
 - object ranking where multiple sets of objects are ranked is also a special case
- Total complexity is
 - $f(n \cdot d)$ for approaches where all preferences are learned jointly
 - can be more efficient if f is super-linear and problem is decomposed into smaller subproblems (pairwise label ranking)

Example: Complexity of SVMRank

- Reformulation as Binary SVM [Herbrich et al. 2000, Joachims 2002]
 - d constraints of the form $\mathbf{w}^{T}(\mathbf{x}_{i}-\mathbf{x}_{j}) \geq 1-\xi_{ij}$
 - d slack variables ξ_{ij}

Total complexity: f(d)

where f(.) is the complexity for solving the quadratic program

- super-linear for conventional training algorithms like SMO, SVM-light, etc.
- Reformulation as Structural SVM [Joachims 2006]
 - 2^d constraints of the form $\frac{1}{d} \cdot \mathbf{w}^T \sum_{\mathbf{x}_i > \mathbf{x}_i} c_{ij} (\mathbf{x}_i \mathbf{x}_j) \ge \frac{1}{d} \cdot \sum_{\mathbf{x}_i > \mathbf{x}_i} c_{ij} \xi$
 - 1 slack variable ξ

Total complexity: d

- Cutting-Plane algorithm:
 - iterative algorithm for solving the above problem in linear time
 - iteratively find an appropriate subset of the constraints
 - covergence independent of d
 - further optimization could even yield a total complexity of $\min(n \cdot \log(n), d)$

Example: Complexity of Pairwise Label Ranking

n examples, *c* classes, *d* preferences in total, $\bar{d} = \frac{d}{n}$ preferences on average

- decomposed into $\frac{c \cdot (c-1)}{2}$ binary problems
- each problem has n_{ij} examples $\sum_{ij} n_{ij} = d$
- \rightarrow total training complexity $\sum_{ij} f(n_{ij}) \leq \overline{d} \cdot f(n) \leq f(d) = f\left(\sum_{ij} n_{ij}\right)$

[Hüllermeier et al. 2008]

- upper bounds are tight if f is linear
- big savings are possible super-linear complexities $f(n) = n^o$ (o > 1)
 - distributing the same number of examples over a larger number of smaller dataset is more efficient

$$o > 1 \rightarrow \sum n_i^o < \left(\sum n_i\right)^o$$

Example: Complexity of Pairwise Classification

- Pairwise classification can be considered as a label ranking problem
 - for each example the correct class is preferred over all other classes
- \rightarrow Total training complexity $\leq (c-1) \cdot f(n)$

For comparison:

- Constraint Classification:
 - Utility-based approach that learns one theory from all $(c-1)\cdot n$ examples

Total training complexity: $f((c-1)\cdot n)$

- One-Vs-All Classification:
 - different class binarization that learns one theory for each class

Total training complexity: $c \cdot f(n)$

AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
- 4. Complexity of Preference Learning (Johannes)
 - a. Training Complexity
 - SVMRank
 - Pairwise Methods
 - b. Prediction Complexity
 - Aggregation of Preference Relations is hard
 - Aggregation Strategies
 - Efficient Aggregation
- 5. Conclusions

Prediction Complexity

f complexity for evaluating a single classifier, c items to rank

- Utility-Based Approaches:
 - compute the utilities for each item: $c \cdot f$
 - sort the items according to utility: $c \cdot \log(c)$

$$O(c \cdot (\log(c) + f))$$

- Relational Approaches:
 - compute all pairwise predictions: $\frac{c \cdot (c-1)}{2} \cdot f$
 - aggregate them into an overall ranking
 - method-dependent complexity
 - Can we do better?

$$O(c^2 \cdot f)$$

Aggregation is NP-Hard

- The key problem with aggregation is that the learned preference function may not be transitive.
 - Thus, a total ordering will violate some constraints

Aggregation Problem:

- Find the total order that violates the least number of predicted preferences.
- equivalent to the Feedback Arc Set problem for tournaments
 - What is the minimum number of edges in a directed graph that need to be inverted so that the graph is acyclic?
- This is NP-hard [Alon 2006]
 - but there are approximation algorithms with guarantees
 [Cohen et al. 1999, Balcan et al. 2007, Ailon & Mohri 2008, Mathieu & Schudy, to appear]
 - For example, [Ailon et al. 2008]
 - propose Kwiksort, a straight-forward adaption of Quicksort to the aggregation problem
 - prove that it is a randomized expected 3-approximation algorithm

Aggregating Pairwise Predictions

- Aggregate the predictions $P(\lambda_i > \lambda_j)$ of the binary classifiers into a final ranking by computing a score s_i for each class I
 - Voting: count the number of predictions for each class (number of points in a tournament)

$$s_i = \sum_{j=1}^{c} \delta \left\{ P(\lambda_i > \lambda_j) > 0.5 \right\}$$
 $\delta \{x\} = \begin{cases} 1 & \text{if } x = \text{ true} \\ 0 & \text{if } x = \text{ false} \end{cases}$

Weighted Voting: weight the predictions by their probability

$$s_i = \sum_{j=1}^{c} P(\lambda_i > \lambda_j)$$

- General Pairwise Coupling problem [Hastie & Tibshirani 1998; Wu, Lin, Weng 2004]
 - Given $P(\lambda_i > \lambda_j) = P(\lambda_i | \lambda_i, \lambda_j)$ for all i, j
 - Find $P(\lambda_i)$ for all i
 - Can be turned into a system of linear equations

Pairwise Classification & Ranking Loss

[Hüllermeier & Fürnkranz, 2010]

- Weighted Voting optimizes Spearman Rank Correlation
 - assuming that pairwise probabilities are estimated correctly
- → Kendall's Tau can in principle be optimized
 - NP-hard (feedback arc set problem)
- Different ways of combining the predictions of the binary classifiers optimize different loss functions
 - without the need for re-training of the binary classifiers!
- However, not all loss functions can be optimized
 - e.g., 0/1 loss for rankings cannot be optimized
 - or in general the probability distribution over the rankings cannot be recovered from pairwise information

Speeding Up Classification Time

- Training is efficient, but pairwise classification still has to
 - store a quadratic number of classifiers in memory
 - query all of them for predicting a class

Key Insight:

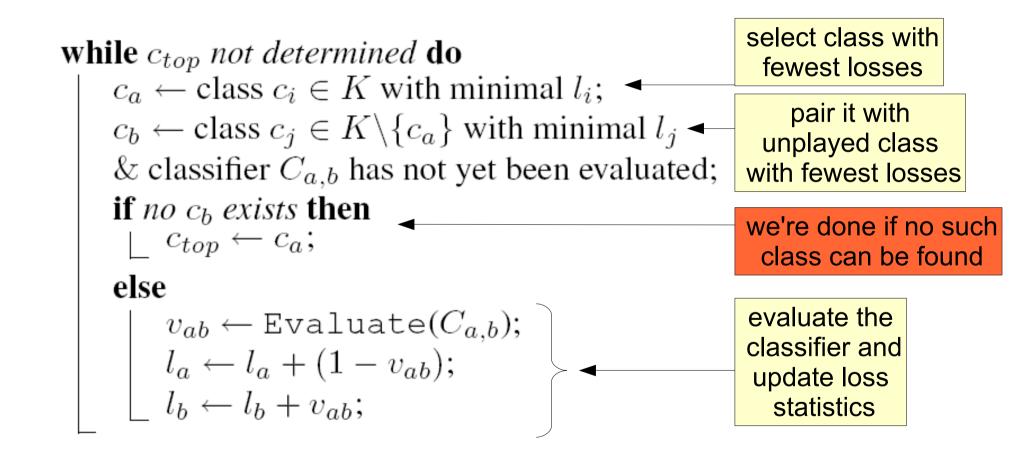
- Not all comparisons are needed for determining the winning class
- More precisely:
 - If class X has a total score of s
 - and no other class can achieve an equal score
 - → we can predict X even if not all comparisons have been made

Algorithmic idea:

- Keep track of the loss points
- if class with smallest loss has played all games, it is the winner
- → focus on the class with the smallest loss
- Can be easily generalized from voting (win/loss) to weighted voting (e.g., estimated pairwise win probabilities)

Quick Weighted Voting

[Park & Fürnkranz, ECML 2007]



Decision-Directed Acyclic Graphs

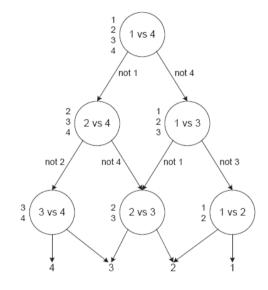
[Platt, Cristianini & Shawe-Taylor, NIPS 2000]

DDAGS

- construct a fixed decoding scheme with c-1 decisions
- unclear what loss function is optimized

Comparison to QWeighted

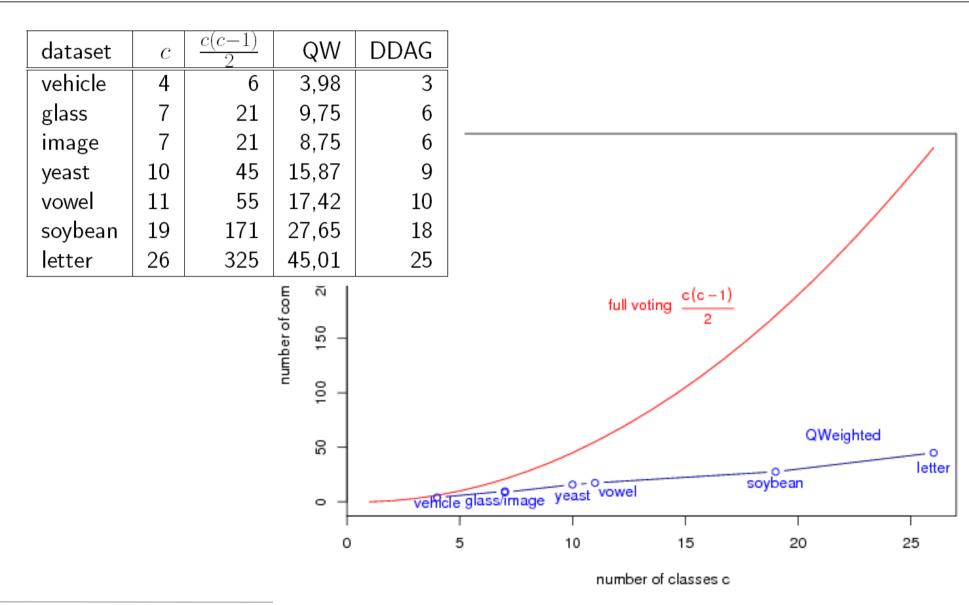
- DDAGs slightly faster
- but considerably less accurate



dataset	JRip		NB		C4.5(J48)		SVM	
vehicle	73,88	72,46	45,39	44,92	71,99	70,92	75,06	75,06
glass	74,77	74,30	49,07	49,07	71,50	69,16	57,01	57,94
image	96,62	96,41	80,09	80,09	96,93	96,75	93,51	93,51
yeast	58,96	58,09	57,55	57,21	58,56	57,75	57,68	57,41
vowel	82,42	76,67	63,84	63,64	82,93	78,28	81,92	81,52
soybean	94,00	93,56	92,97	92,97	93,56	91,80	94,14	93,41
letter	92,33	88,33	63,08	63,00	91,50	86,15	83,80	82,58

Accuracy: left - QWeighted, right - DDAG

Average Number of Comparisons for **QWeighted algorithm**



References

- Ailon, N., Charikar, M., and Newman, A. *Aggregating inconsistent information: ranking and clustering*. Journal of the ACM 55, 5, Article 23, 2008.
- Ailon, N. and Mohri, M. An efficient reduction of ranking to classification. Procs. 21st COLT-08. 87–97, 2008.
- Alon, N. 2006. Ranking tournaments. SIAM J. Discrete Math. 20, 1, 137–142.
- Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., & Sorkin, G. B. Robust reductions from ranking to classification. Proceedings COLT-07, pp. 604–619, 2007.
- W. W. Cohen, R. E. Schapire and Y. Singer, *Learning to Order Things*, Journal of Al Research, 10:243-270, 1999.
- J. Fürnkranz: Round Robin Classification. Journal of Machine Learning Research 2: 721-747 (2002)
- S. Har-Peled, D. Roth, D. Zimak: Constraint Classification for Multiclass Classification and Ranking. Proceedings NIPS 2002: 785-792
- T. Hastie and R. Tibshirani, *Classification by pairwise coupling*, Annals of Statistics 26 (2):451-471, 1998.
- R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, pages 115–132. MIT Press, Cambridge, MA, 2000.
- E. Hüllermeier, J.Fürnkranz, Weiwei Cheng, K. Brinker: *Label ranking by learning pairwise preferences*. Artificial Intelligence 172(16-17): 1897-1916 (2008)
- T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), 2002.
- T. Joachims, Training Linear SVMs in Linear Time, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), 2006
- C. Mathieu and W. Schudy. How to Rank with Fewer Errors A PTAS for Feedback Arc Set in Tournaments, To appear.
- S.-H. Park, J. Fürnkranz: Efficient Pairwise Classification. Proceedings ECML 2007: 658-665
- J. C. Platt, N. Cristianini, J. Shawe-Taylor: Large Margin DAGs for Multiclass Classification. Proceedings NIPS 1999: 547-553
- T.-F. Wu, C.-J. Lin and R. C. Weng, *Probability Estimates for Multi-class Classification by Pairwise Coupling,* Journal of Machine Learning Research, 5(975—1005), 2004