AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)

3. Preference Learning Techniques (Eyke)

- a. Learning Utility Functions
- b. Learning Preference Relations
- c. Structured Output Prediction
- d. Model-Based Preference Learning
- e. Local Preference Aggregation
- 4. Complexity of Preference Learning (Johannes)
- 5. Conclusions

Two Ways of Representing Preferences

Utility-based approach: Evaluating single alternatives

$$U: \mathcal{A} \longrightarrow \mathbb{R}$$

• **Relational approach:** Comparing pairs of alternatives

$$\begin{array}{lll} a \succeq b & \Leftrightarrow & a \text{ is not worse than } b & \text{weak preference} \\ \\ a \succ b & \Leftrightarrow & (a \succeq b) \land (b \nsucceq a) & \text{strict preference} \\ \\ a \sim b & \Leftrightarrow & (a \succeq b) \land (b \succeq a) & \text{indifference} \\ \\ a \perp b & \Leftrightarrow & (a \nsucceq b) \land (b \nsucceq a) & \text{incomparability} \end{array}$$

Utility Functions

- A utility function assigns a utility degree (typically a real number or an ordinal degree) to each alternative.
- Learning such a function essentially comes down to solving an (ordinal) regression problem.
- Often additional conditions, e.g., due to bounded utility ranges or monotonicity properties (→ *learning monotone models*)
- A utility function induces a ranking (total order), but not the other way around!
- But it can not represent a **partial order**!
- The feedback can be direct (exemplary utility degrees given) or indirect (inequality induced by order relation):

$$(\boldsymbol{x}, u) \Rightarrow U(\boldsymbol{x}) \approx u, \qquad \boldsymbol{x} \succ \boldsymbol{y} \Leftrightarrow U(\boldsymbol{x}) > U(\boldsymbol{y})$$

direct feedback

indirect feedback

Predicting Utilities on Ordinal Scales

(Graded) multilabel classification

X1	X2	Х3	X4	Α	В	С	D
0.34	0	10	174		+	++	0
1.45	0	32	277	0	++		+
1.22	1	46	421			0	+
0.74	1	25	165	0	+	+	++
0.95	1	72	273	+	0	++	
1.04	0	33	158	+	+	++	

Collaborative filtering

	P1	P2	P3	 P38	 P88	P89	P90
U1	1		4			3	
U2		2	2		 1		
U46	?	2	?	 ?	 ?	?	4
U98	5				 4		
U99			1			2	

Exploiting dependencies (correlations) between items (labels, products, ...).

 \rightarrow see work in MLC and RecSys communities

Learning Utility Functions from Indirect Feedback

A (latent) utility function can also be used to solve ranking problems, such as instance, object or label ranking
 → ranking by (estimated) utility degrees (scores)

Object ranking

(0.74, 1, 25, 165)	\succ	(0.45, 0, 35, 155)
(0.47, 1, 46, 183)	\succ	(0.57, 1, 61, 177)
(0.25, 0, 26, 199)	\succ	(0.73, 0, 46, 185)
(0.95, 0, 73, 133)	\succ	(0.25, 1, 35, 153)
(0.68, 1, 55, 147)	\succ	(0.67, 0, 63, 182)

Instance ranking

X1	X2	Х3	X4	class
0.34	0	10	174	
1.45	0	32	277	0
1.22	1	46	421	
0.74	1	25	165	++
0.95	1	72	273	+

Find a utility function that agrees as much as possible with the preference information in the sense that, for most examples,

 $\boldsymbol{x}_i \succ \boldsymbol{y}_i \quad \Leftrightarrow \quad U(\boldsymbol{x}_i) > U(\boldsymbol{y}_i)$

Absolute preferences given, so in principle an ordinal regression problem. However, the goal is to maximize ranking instead of classification performance.

Ranking versus Classification

A ranker can be turned into a classifier via thresholding:

A good classifier is not necessarily a good ranker:

2 classification but 10 ranking errors

→ learning AUC-optimizing scoring classifiers !

RankSVM and Related Methods (Bipartite Case)

The idea is to minimize a convex upper bound on the empirical ranking error over a class of (kernalized) ranking functions:

$$f^* \in \arg\min_{f \in \mathcal{F}} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} L(f, \boldsymbol{x}, \boldsymbol{x}') + \lambda \cdot R(f) \right\}$$

convex upper bound on
$$\mathbb{I} \left(f(\boldsymbol{x}) < f(\boldsymbol{x}') \right)$$

RankSVM and Related Methods (Bipartite Case)

The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachimes 2002]:

$$f^* \in \arg \min_{f \in \mathcal{F}_K} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \left(1 - \left(f(\boldsymbol{x}) - f(\boldsymbol{x}')\right)_+ + \frac{\lambda}{2} \cdot \|f\|_K^2 \right\} \right\}$$

$$f^* \in \arg \min_{f \in \mathcal{F}_K} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \left(1 - \left(f(\boldsymbol{x}) - f(\boldsymbol{x}')\right)_+ + \frac{\lambda}{2} \cdot \|f\|_K^2 \right\}$$

$$f^* \in \arg \min_{f \in \mathcal{F}_K} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \left(1 - \left(f(\boldsymbol{x}) - f(\boldsymbol{x}')\right)_+ + \frac{\lambda}{2} \cdot \|f\|_K^2 \right\}$$

$$f^* \in \arg \min_{f \in \mathcal{F}_K} \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \left(1 - \left(f(\boldsymbol{x}) - f(\boldsymbol{x}')\right)_+ + \frac{\lambda}{2} \cdot \|f\|_K^2 \right) \right\}$$

$$f^* = \operatorname{arg min}_{hinge loss}$$

$$f^* = \operatorname{arg min}_{hinge loss}$$

$$f^* = \operatorname{arg min}_{hinge loss}$$

\rightarrow learning comes down to solving a QP problem

RankSVM and Related Methods (Bipartite Case)

The bipartite RankBoost algorithm [Freund et al. 2003]:

$$\begin{aligned} f^* \in \arg\min_{f \in \mathcal{L}(\mathcal{F}_{base})} & \left\{ \frac{1}{|P| \cdot |N|} \sum_{\boldsymbol{x} \in P} \sum_{\boldsymbol{x}' \in N} \exp\left(-(f(\boldsymbol{x}) - f(\boldsymbol{x}'))\right) \right\} \\ & \uparrow \\ & \text{class of linear} \\ & \text{combinations of base} \\ & \text{functions} \end{aligned}$$

\rightarrow learning by means of boosting techniques

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \dots, y_k\}$, from exemplary pairwise preferences $y_i \succ_{\boldsymbol{x}} y_j$.

Can be tackled by learning utility functions $U_1(\cdot), \ldots, U_k(\cdot)$ that are as much as possible (but not too much) in agreement with the preferences in the training data. Given a new query x, the labels are ranked according to utility degrees, i.e., a permutation π is predicted such that

$$U_{\pi^{-1}(1)}(\boldsymbol{x}) > U_{\pi^{-1}(2)}(\boldsymbol{x}) > \ldots > U_{\pi^{-1}(k)}(\boldsymbol{x})$$

Label Ranking: Reduction to Binary Classification [Har-Peled et al. 2002]

Proceeding from linear utility functions

$$U_i(\boldsymbol{x}) = \boldsymbol{w}_i \times \boldsymbol{x} = (w_{i,1}, w_{i,2}, \dots, w_{i,m})(x_1, x_2, \dots, x_m)^{\top},$$

a binary preference $y_i \succ_{\boldsymbol{x}} y_j$ is equivalent to

$$U_i(\boldsymbol{x}) > U_j(\boldsymbol{x}) \Leftrightarrow \boldsymbol{w}_i \times \boldsymbol{x} > \boldsymbol{w}_j \times \boldsymbol{x} \Leftrightarrow (\boldsymbol{w}_i - \boldsymbol{w}_j) \times \boldsymbol{x} > 0$$

and can be modeled as a linear constraint

→ each **pairwise comparison** is turned into a **binary classification** example in a high-dimensional space!

AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning (Johannes)
- 5. Conclusions

Learning Binary Preference Relations

- Learning binary preferences (in the form of predicates P(x,y)) is often simpler, especially if the training information is given in this form, too.
- However, it implies an additional step, namely extracting a ranking from a (predicted) preference relation.
- This step is not always trivial, since a predicted preference relation may exhibit inconsistencies and may not suggest a unique ranking in an unequivocal way.

Object Ranking: Learning to Order Things [Cohen et al. 99]

- In a first step, a binary preference function PREF is constructed; PREF(x,y) ∈ [0,1] is a measure of the certainty that x should be ranked before y, and PREF(x,y)=1- PREF(y,x).
- This function is expressed as a linear combination of base preference functions:

$$PREF(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N} w_i \cdot R_i(\boldsymbol{x}, \boldsymbol{y})$$

- The weights can be learned, e.g., by means of the weighted majority algorithm [Littlestone & Warmuth 94].
- In a second step, a total order is derived, which is a much as possible in agreement with the binary preference relation.

Object Ranking: Learning to Order Things [Cohen et al. 99]

• The weighted feedback arc set problem: Find a permutation π such that

$$\sum_{(oldsymbol{x},oldsymbol{y}):\pi(oldsymbol{x})>\pi(oldsymbol{y})} ext{PREF}(oldsymbol{x},oldsymbol{y})$$

becomes minimal.

cost = 0.1+0.6+0.8+0.5+0.3+0.4 = 2.7

Object Ranking: Learning to Order Things [Cohen et al. 99]

• Since this is an NP-hard problem, it is solved heuristically.

```
Input: an instance set X; a preference function PREF

Output: an approximately optimal ordering function \hat{\rho}

let V = X

for each v \in V do

while V is non-empty do \pi(v) = \sum_{u \in V} \text{PREF}(v, u) - \sum_{u \in V} \text{PREF}(u, v)

let t = \arg \max_{u \in V} \pi(u)

let \hat{\rho}(t) = |V|

V = V - \{t\}

for each v \in V do \pi(v) = \pi(v) + \text{PREF}(t, v) - \text{PREF}(v, t)

endwhile
```

- The algorithm successively chooses nodes having maximal "net-flow" within the remaining subgraph.
- It can be shown to provide a 2-approximation to the optimal solution.

Label ranking is the problem of learning a function $\mathcal{X} \to \Omega$, with Ω the set of rankings (permutations) of a label set $\mathcal{Y} = \{y_1, y_2, \ldots, y_k\}$, from exemplary pairwise preferences $y_i \succ_{\boldsymbol{x}} y_j$.

LPC trains a model

$$\mathcal{M}_{i,j}: \mathcal{X} \to [0,1]$$

for all i < j. Given a query instance x, this model is supposed to predict whether $y_i \succ y_j$ ($\mathcal{M}_{i,j}(x) = 1$) or $y_j \succ y_i$ ($\mathcal{M}_{i,j}(x) = 0$).

More generally, $\mathcal{M}_{i,j}(\boldsymbol{x})$ is the estimated probability that $y_i \succ y_j$.

Decomposition into k(k-1)/2 binary classification problems.

Training data (for the label pair A and B):

X1	X2	X3	X4	preferences	class
0.34	0	10	174	$A \succ B$, $B \succ C$, $C \succ D$	1
1.45	0	32	277	B ≻ C	
1.22	1	46	421	$B\succD,\mathbf{B}\succ\mathbf{A},C\succD,A\succC$	0
0.74	1	25	165	$C \succ A, C \succ D, A \succ B$	1
0.95	1	72	273	$B \succ D, A \succ D,$	
1.04	0	33	158	$D\succA$, $A\succB$, $C\succB$, $A\succC$	1

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

		А	В	С	D
	А		0.3	0.8	0.4
$\mathcal{M}_{i,i}(\boldsymbol{x}) \longrightarrow$	В	0.7		0.7	0.9
	С	0.2	0.3		0.3
	D	0.6	0.1	0.7	

At prediction time, a query instance is submitted to all models, and the predictions are combined into a binary preference relation:

		А	В	С	D	
	А		0.3	0.8	0.4	1.5
$\mathcal{M}_{i,i}(\boldsymbol{x}) \longrightarrow$	В	0.7		0.7	0.9	2.3
	С	0.2	0.3		0.3	0.8
	D	0.6	0.1	0.7		1.4

 $\mathsf{B}\succ\mathsf{A}\succ\mathsf{D}\succ\mathsf{C}$

From this relation, a ranking is derived by means of a **ranking procedure**. In the simplest case, this is done by sorting the labels according to their sum of **weighted votes**.

AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning (Johannes)
- 5. Conclusions

Structured Output Prediction [Bakir et al. 2007]

- Rankings, multilabel classifications, etc. can be seen as specific types of structured (as opposed to scalar) outputs.
- Discriminative structured prediction algorithms infer a joint scoring function on input-output pairs and, for a given input, predict the output that maximises this scoring function.
- Joint feature map and scoring function

$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d, \quad f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{w}) = \langle \boldsymbol{w}, \phi(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

- The learning problem consists of estimating the weight vector, e.g., using structural risk minimization.
- Prediction requires solving a decoding problem:

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y} \in \mathcal{Y}} f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{w}) = \arg \max_{\boldsymbol{y} \in \mathcal{Y}} \langle \boldsymbol{w}, \phi(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

Structured Output Prediction [Bakir et al. 2007]

Preferences are expressed through inequalities on inner products:

 The potentially huge number of constraints cannot be handled explicitly and calls for specific techniques (such as cutting plane optimization)

AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning (Johannes)
- 5. Conclusions

Model-Based Methods for Ranking

- Model-based approaches to ranking proceed from specific assumptions about the possible rankings (representation bias) or make use of probabilistic models for rankings (parametrized probability distributions on the set of rankings).
- In the following, we shall see examples of both type:
 - Restriction to lexicographic preferences
 - Conditional preference networks (CP-nets)
 - Label ranking using the Plackett-Luce model

Learning Lexicographic Preference Models [Yaman et al. 2008]

- Suppose that objects are represented as feature vectors of length m, and that each attribute has k values.
- For $n = k^m$ objects, there are n! permutations (rankings).
- A **lexicographic order** is uniquely determined by
 - a total order of the attributes
 - a total order of each attribute domain
- **Example:** Four binary attributes (m=4, k=2)
 - $-\,$ there are 16! $\approx 2\cdot 10^{13}$ rankings
 - but only $(2^4) \cdot 4! = 384$ of them can be expressed in terms of a lexicographic order
- [Yaman et al. 2008] present a learning algorithm that explicitly maintains the version space, i.e., the attribute-orders compatible with all pairwise preferences seen so far (assuming binary attributes with 1 preferred to 0). Predictions are derived based on the "votes" of the consistent models.

Learning Conditional Preference (CP) Networks [Chevaleyre et al. 2010]

Training data (possibly noisy):

(meat, red wine, Italian) (fish, whited wine, Chinease) (veggie, whited wine, Chinease)	<pre>> (veggie, red wine, Italian) > (veggie, red wine, Chinease) > (veggie, red wine, Italian)</pre>
(veggie, whited wine, Chinease)	<pre>> (veggle, red wine, italian)</pre>

ECML/PKDD-2010 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

Label Ranking based on the Plackett-Luce Model [Cheng et al. 2010c]

The Plackett-Luce (PL) model is specified by a parameter vector $\boldsymbol{v} = (v_1, v_2, \dots v_m) \in \mathbb{R}^m_+$:

$$\mathbf{P}(\pi \,|\, \boldsymbol{v}) = \prod_{i=1}^{m} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \ldots + v_{\pi(m)}}$$

Reduces problem to learning a mapping $x \mapsto v$.

2

3 1 2 0.3810

1

0.2286

ECML/PKDD-2010 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

3

ML Estimation of the Weight Vector in Label Ranking

Assume $\boldsymbol{x} = (x_1, \dots, x_D) \in \mathbb{R}^D$ and model the v_i as log-linear functions:

$$v_i = \exp\left(\sum_{d=1}^{D} \alpha_d^{(i)} \cdot x_d\right) \quad \longleftarrow \quad \text{can be seen as a log-linear utility function of i-th label}$$

Given training data $\mathcal{T} = \{ (\boldsymbol{x}^{(n)}, \pi^{(n)}) \}_{n=1}^{N}$ with $\boldsymbol{x}^{(n)} = (x_1^{(n)}, \dots, x_D^{(n)})$, the log-likelihood is given by

$$L = \sum_{n=1}^{N} \left[\sum_{m=1}^{M_n} \log \left(v(\pi^{(n)}(m), n) \right) - \log \sum_{j=m}^{M_n} v(\pi^{(n)}(j), n) \right],$$

convex function, maximization through gradient ascent

where M_n is the number of labels in the ranking $\pi^{(n)}$, and

$$v(m,n) = \exp\left(\sum_{d=1}^{D} \alpha_d^{(m)} \cdot x_d^{(n)}\right)$$

AGENDA

- 1. Preference Learning Tasks (Eyke)
- 2. Loss Functions (Johannes)
- 3. Preference Learning Techniques (Eyke)
 - a. Learning Utility Functions
 - b. Learning Preference Relations
 - c. Structured Output Prediction
 - d. Model-Based Preference Learning
 - e. Local Preference Aggregation
- 4. Complexity of Preference Learning (Johannes)
- 5. Conclusions

Learning Local Preference Models [Cheng et al. 2009]

- Main idea of instance-based (lazy) learning: Given a new query (instance for which a prediction is requested), search for similar instances in a "case base" (stored examples) and combine their outputs into a prediction.
- This is especially appealing for predicting structured outputs (like rankings) in a complex space Y, as it circumvents the construction and explicit representation of a "Y-valued" function.
- In the case of ranking, it essentially comes down to aggregating a set of (possibly partial or incomplete) rankings.

Learning Local Preference Models: Rank Aggregation

Finding the generalized median:

$$\hat{\boldsymbol{y}} = rg\min_{\boldsymbol{y}\in\mathcal{Y}}\sum_{i=1}^{k}\Delta(\boldsymbol{y}_{i}, \boldsymbol{y})$$

- If Kendall's tau is used as a distance, the generalized median is called the Kemendy-optimal ranking. Finding this ranking is an NP-hard problem (weighted feedback arc set tournament).
- In the case of Spearman's rho (sum of squared rank distances), the problem can easily be solved through Borda count.

Learning Local Preference Models: Probabilistic Estimation

- Another approach is to assume the neighbored rankings to be generated by a locally constant probability distribution, to estimate the parameters of this distribution, and then to predict the mode [Cheng et al. 2009].
- For example, using again the PL model:

$$\mathbf{P}(\pi_1, \dots, \pi_k \,|\, \boldsymbol{v}) = \prod_{j=1}^k \mathbf{P}(\pi_j \,|\, \boldsymbol{v}) = \prod_{j=1}^k \prod_{i=1}^m \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(m)}}$$
$$\log L = \sum_{j=1}^k \sum_{i=1}^m \log \left(v_{\pi(i)} \right) - \log(v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(m)})$$

Can easily be generalized to the case of incomplete rankings [Cheng et al. 2010c].

Summary of Main Algorithmic Principles

- Reduction of ranking to (binary) classification (e.g., constraint classification, LPC)
- Direct optimization of (regularized) smooth approximation of ranking losses (RankSVM, RankBoost, ...)
- Structured output prediction, learning joint scoring ("matching") function
- Learning parametrized **statistical ranking models** (e.g., Plackett-Luce)
- Restricted model classes, fitting (parametrized) deterministic models (e.g., lexicographic orders)
- Lazy learning, local preference aggregation (lazy learning)

References

- G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar and S. Vishwanathan. *Predicting structured data*. MIT Press, 2007.
- W. Cheng, K. Dembczynski and E. Hüllermeier. *Graded Multilabel Classification: The Ordinal Case*. ICML-2010, Haifa, Israel, 2010.
- W. Cheng, K. Dembczynski and E. Hüllermeier. *Label ranking using the Plackett-Luce model*. ICML-2010, Haifa, Israel, 2010.
- W. Cheng and E. Hüllermeier. *Predicting partial orders: Ranking with abstention*. ECML/PKDD-2010, Barcelona, 2010.
- W. Cheng, C. Hühn and E. Hüllermeier. *Decision tree and instance-based learning for label ranking*. ICML-2009.
- Y. Chevaleyre, F. Koriche, J. Lang, J. Mengin, B. Zanuttini. *Learning ordinal preferences on multiattribute domains: The case of CP-nets*. In: J. Fürnkranz and E. Hüllermeier (eds.) Preference Learning, Springer-Verlag, 2010.
- W.W. Cohen, R.E. Schapire and Y. Singer. *Learning to order things*. Journal of Artificial Intelligence Research, 10:243–270, 1999.
- Y. Freund, R. Iyer, R. E. Schapire and Y. Singer. *An efficient boosting algorithm for combining preferences*. Journal of Machine Learning Research, 4:933–969, 2003.
- J. Fürnkranz, E. Hüllermeier, E. Mencia, and K. Brinker. *Multilabel Classification via Calibrated Label Ranking*. Machine Learning 73(2):133-153, 2008.
- J. Fürnkranz, E. Hüllermeier and S. Vanderlooy. *Binary decomposition methods for multipartite ranking*. Proc. ECML-2009, Bled, Slovenia, 2009.
- D. Goldberg, D. Nichols, B.M. Oki and D. Terry. *Using collaborative filtering to weave and information tapestry*. Communications of the ACM, 35(12):61–70, 1992.
- S. Har-Peled, D. Roth and D. Zimak. *Constraint classification: A new approach to multiclass classification*. Proc. ALT-2002.
- R. Herbrich, T. Graepel and K. Obermayer. Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, 2000.
- E. Hüllermeier, J. Fürnkranz, W. Cheng and K. Brinker. *Label ranking by learning pairwise preferences*. Artificial Intelligence, 172:1897–1916, 2008.
- T. Joachims. *Optimizing search engines using clickthrough data*. Proc. KDD 2002.
- N. Littlestone and M.K. Warmuth. *The weighted majority algorithm*. Information and Computation, 108(2): 212–261, 1994.
- G. Tsoumakas and I. Katakis. *Multilabel classification: An overview*. Int. J. Data Warehouse and Mining, 3:1–13, 2007.
- F. Yaman, T. Walsh, M. Littman and M. desJardins. *Democratic Approximation of Lexicographic Preference Models*. ICML-2008.