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5. Conclusions
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Rank Evaluation Measures

In the following, we do not discriminate between different ranking
scenarios

= we use the term items for both, objects and labels

All measures are applicable to both scenarii
= sometimes have different names according to context

Label Ranking
= measure is applied to the ranking of the labels of each examples
= averaged over all examples

Object Ranking
= measure is applied to the ranking of a set of objects

= we may need to average over different sets of objects which have disjoint
preference graphs

= e.g. different sets of query / answer set pairs in information retrieval
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Ranking Errors

= Given:
= asetofitems X= {x, ..., x.} to rank A
= Example:
X=1{A, B, C, D, E} | B
items can be =

objects or labels
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Ranking Errors

= Given: i}
= asetofitems X= {x, ..., x.} to rank
= Example: E
X={A,B,C,D, E}
= atarget ranking 7 B
= Example:
E-~B>C>A>D C
A
D
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Ranking Errors

= Given:
= asetofitems X={x,...,x } torank

= Example:
X={A’ B) C) D) E}

= a target ranking 7

= Example:
E-B>C>A>D

= a predicted ranking 7

= Example:
A>B>E>C>D

= Compute:

= avalued(r,7) that measures the
distance between the two rankings
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Notation

= r and 7 are functions from X — IN
= returning the rank of an item x

= the inverse functions 7': IN — X
= return the item at a certain position

P ()=4 i (4)=4

= as a short-hand for -7, we also define
function R: IN — IN

= R(i) returns the true rank of the i-th item
in the predicted ranking

R()=r(#""(1))=4
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Spearman's Footrule

= Key idea:
= Measure the sum of absolute differences
between ranks

DSF<r,:>>=§1:yr<x,->—%<x,->

=§|i—R<z->|
:Z d,(r,7)
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Z d_=3+0+1+0+2=6
X; i



Spearman Distance

u Key |dea Squared
= Measure the sum of absolute-differences
between ranks

C C

>
~

=>.d, (r,7)
i=1

= Value range:

min Dy (7, 7)=0

d,=0
— Spearman Rank Correlation Coefficient
1 6:D(r,7)
c(c’—1)

Z d2=3+0+1"+0+2°=14
E[_l,‘l‘l] X !
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Kendall's Distance

= Key idea: 5 .
= number of item pairs that are inverted in the
predicted ranking A E
D (r, #) =], j) | r(x)<r(x,) A F(x)>7(x,)]|
| B | B
= Value range: = C
min D_(r,7)=0 C A
maxDT(r,?)zc.<c_1)
D D
— Kendall's tau
4-D_(r,7)
1— ( ) E[_la_l_l] DT(I",I/’\'>:4
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Weighted Ranking Errors

= The previous ranking functions give equal weight to all ranking positions

= |.e., differences in the first ranking positions have the same effect as differences
in the last ranking positions

= In many applications this is not desirable : -
o king of search results H|gher ranking
ranking | positions should
= ranking of product recommendations be given more
= ranking of labels for classification weight

. : . . . 11
ECML/PKDD-2010 Tutorial on Preference Learning | Part 2 | J. Firnkranz & E. Hillermeier



Position Error

= Key idea:
= in many applications we are interested in
providing a ranking where the target item
appears a high as possible in the

predicted ranking
= e.g. ranking a set of actions for the next step

in a plan
= Error is the number of wrong items that
are predicted before the target item

D py(r,7)=7(arg min ., 7 (x))—1

= Note:
= equivalent to Spearman's footrule with all

non-target weights setto 0

DPE(”JA”):Z Wi'dx,(’”’?)
i=1

with w, = ﬂxi:arg minxexr(x)ﬂ
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Discounted Error

= Higher ranks in the target position get
a higher weight than lower ranks

DDR(’/’I/;'):Z Wi'dxi<”,’A’)
i=1

1
log(r(xl.)+1)

with w; =

D . (r,7)= SE
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(Normalized) Discounted Cumulative Gain

= a “positive” version of discounted error:
Discounted Cumulative Gain (DCG)

>
~

c

DCG(r.7)=2, 1§g<R+<i1)>

= Maximum possible value:
= the predicted ranking is correct,

.e.Vi:i=R(i)
= |deal Discounted Cumulative Gain (IDCG)

1D
¢G= Zlog(z—l—l)

= Normalized DCG (NDCG) 1 3 4 2 0
+ +

A + +
NDCG(r,7)=2CG . ) NDCG (7, 7)=10g2 Iog3 "Togd " Tog5 " log6
’ IDCG 4 .3 2 1 0

log2 log3 log4 log5 logb6

: . . . 14
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Bipartite Rankings

Bipartite Rankings

= The target ranking is not totally ordered
but a bipartite graph

= The two partitions may be viewed as
preference levels L = {0, 1}

= all ¢, items of level 1 are preferred over all
c, items of level O

>
~

= We now have fewer preferences

~—(c—1
= for a total order: 5'(6_ )

= for a bipartite graph: ¢,"(c—c¢;)
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Evaluating Partial Target Rankings

= Many Measures can be directly adapted from
total target rankings to partial target rankings

~>
~

= Recall: Kendall's distance

= number of item pairs that are inverted
in the target ranking

D, (r,#) =] {(i,j) | r(x)<r(x) A (x)>F(x,)]|

= can be directly used

= in case of normalization, we have to
consider that fewer items satisfy r(x,) < r(x)

= Area under the ROC curve (AUC)

= the AUC is the fraction of pairs of (p,n) for
which the predicted score s(p) > s(n)

= Mann Whithney statistic is the absolute number D_(r,7)=2

= This is 1 - normalized Kendall's distance AUC(r #) =
for a bipartite preference graph with L = {p,n} ’

N
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Evaluating Multipartite Rankings

= Multipartite rankings:

7 r
= like Bipartite rankings
= but the target ranking » consists of -
multiple relevance levels L = {1 ... [},
where [ <c 4'?
= total ranking is a special case where each

level has exactly one item

2

1
= # of preferences =) ¢ ¢, < %'(1—7)
(i, J)

= ¢, is the number of items in level /

= C-Index [Gnen & Heller, 2005]
= straight-forward generalization of AUC
= fraction of pairs (x,.x)) for which D.(r,7)=3

[(i)>1(j) A 7(x,)<F(x)) C-Index (r,7) ==

o0 | D

. . . 1
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Evaluating Multipartite Rankings

C-Index
= the C-index can be rewritten as a weighted sum of pairwise AUCs:

1 Zl oy -AUC (r

Z .. l]’ l])
i,j>ici Cj

where r, ; and 7, ; are the rankings » and 7 restricted to levels i and .

C-Index(r,7)=

" Note:
Jo.nckheere Terpstra statistic o C-Index and m-AUC
= is an unweighted sum of pairwise AUCs: can be optimized by
9) optimization of
m'AUC21.<l_1)Zi,J->1AUC< T ) pairwise AUCs

= equivalent to well-known multi-class extension of AUC
[Hand & Till, MLJ 2001]

ECML/PKDD-2010 Tutorial on Preference Learning | Part 2 | J. Firnkranz & E. Hillermeier 19



Normalized Discounted Cumulative Gain
[Jarvelin & Kekalainen, 2002]

= The original formulation of (normalized)
discounted cumulative gain refers to
this setting

>
=

DCG (r Z

log z—l—l

= the sum of the true (relevance)
levels of the items

= each item weighted by its rank
in the predicted ranking

= Examples:
= retrieval of relevant or irrelevant pages
= 2 relevance levels
= movie recommendation
= 5 relevance levels

. . . 2
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Evaluating Partial Structures in the Predicted
Ranking

= For fixed types of partial structures, we have conventional measures
= bipartite graphs — binary classification
= accuracy, recall, precision, F1, etc.

= can also be used when the items are labels!
= e.g., accuracy on the set of labels for multilabel classification

= multipartite graphs — ordinal classification
= multiclass classification measures (accuracy, error, etc.)
6
= regression measures (sum of squared errors, etc.)

= For general partial structures
= some measures can be directly used on the reduced set of target preferences
= Kendall's distance, Gamma coefficient
= we can also use set measures on the set of binary preferences
= both, the source and the target ranking consist of a set of binary preferences

= e.g. Jaccard Coefficient
= size of interesection over size of union of the binary preferences in both sets

. : . . . 22
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Gamma Coefficient

= Key idea: normalized difference between

= number of correctly ranked pairs
(Kendall's distance)

d=D_(r,7r)

= number of incorrectly ranked pairs
d =i, j)Ir(x)<r(x)A#(x)<F(x,)]]

= Gamma Coefficient
[Goodman & Kruskal, 1979]

A d_CZ_
= — ¢|—1,+1

= |dentical to Kendall's tau
if both rankings are total

=ie. ifd+d :c'<02_1)
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