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Abstract. We resort to preference learning in order to address the prob-
lem of acquiring necessary knowledge in two distinct steps of the doc-
ument image analysis process: 1) reading order detection, and 2) docu-
ment summarization. We advocate a relational approach for both cases
and we propose a probabilistic relational learning method. Experiments
on real data for both applications prove the effectiveness of the proposed
method.

1 Introduction

Studies in document image analysis concern how to convert document images
into symbolic form which facilitate document storage and retrieval, as well as
document modification and reuse [21]. This conversion is a complex process artic-
ulated in several steps. After preprocessing, the document image is decomposed
into several constituent items which represent coherent components of the docu-
ments (e.g., text lines or halftone images), without any knowledge of the specific
format. This layout analysis step prepares for the document image understand-
ing, whose aim is that of recognizing semantically relevant layout components
(e.g., title and abstract) as well as extracting abstract relationships between lay-
out components (e.g., reading order). The conversion of document images can
be completed by applying an OCR to extract the text and then by summarizing
the textual content.

The large amount of knowledge required to perform this conversion is often
unavailable, therefore, a pervasive application of machine learning techniques
in all conversion steps has been proposed as a practicable solution [12]. In this
paper, we focus our attention on two steps which may benefit of current develop-
ments on learning preferences, namely reading order detection [5] and document
summarization [2].

In reading order detection, the preference relation between layout compo-
nents define the order in which these should be read in order to get a correct
understanding of their content. This order is crucial for the correct reconstruc-
tion of the textual content [1, 3] and the subsequent application of information
extraction methods. The main issue in defining a preference relation is that the
spatial organization of the document content may be related more to optimizing
the printing process than to reflecting the logical order of presentation.



For document summarization, we follow the approach of selecting the most
salient sentences of a document to be included in the summary [2]. Although
this approach can produce weakly cohesive extracts, the resulting summaries are
still considered satisfactory [2], particularly when they are used by other systems
(e.g. information retrieval systems) and are not directly used by humans. In this
approach, the preference relation between textual sentences “read” by OCR can
be used to generate a ranking on sentence saliency and hence to generate a
summary.

The objective difficulty in defining suitable preference relations for a broad
class of documents, makes appealing an approach based on inductive learning
of preferences from both positive and negative examples. Moreover, we have
arguments in favor of a relational learning approach [10]. Indeed, for the problem
of reading order detection, we observe that:

1. Layout components cannot be considered independent observations since
their spatial arrangement is mutually constrained by formatting rules typi-
cally used in document editing.

2. Spatial relationships between a layout component and a variable number of
other components in its neighborhood cannot be properly represented by a
fixed number of attributes in a table.

3. Layout components are of different type (e.g. textual and graphical), thus
they should be described by different sets of properties (e.g., “brightness”
for pictures).

For the document summarization problem we observe that:

1. Sentences are not independent, but instead are highly correlated.
2. Relationships among sentences in the same paragraph cannot be properly

represented by a fixed number of attributes in a single table.

Therefore, the main contribution of this paper is twofold. Firstly, we have
shown how preference learning can be applied in two steps of the document image
analysis process. Secondly, we have developed a relational method, named CORA
(Complex Objects Ranking Algorithm), for preference learning.

The paper is organized as follows. In the next section, background and mo-
tivations of the proposed approach are presented. The problem of learning pref-
erence relations and an overview of CORA are reported in Section 3. Sections
4, 5 and 6 are devoted to the presentation of the method. Finally, in Section 7,
experiments on the two considered tasks are reported.

2 Background and Motivations

The problem of learning preference functions has recently received increasing
attention due to its many potential applications in information retrieval. Studies
reported in the literature focus on two tasks: 1) ranking labels associated with
objects [15], and 2) ranking objects. In this paper, we focus on the second task,
for which two distinct approaches are reported in the literature. An approach



aims at learning a function which assigns a numeric value to each item of a set.
This value is then used to rank items. The alternative approach asks for less: the
learned preference function has to make pairwise comparisons in order to define
a relative order (if any) between two objects. In a subsequent step this preference
function is used to obtain either a total or a partial ordering of objects in a set.

As regards the first approach, some works reformulate the problem of learn-
ing to rank as an ordinal regression problem. For instance, Herbrich et al. [14]
propose to learn the mapping of an input vector to a member of an ordered set
of numerical ranks. They model ranks as intervals on the real line and consider
loss functions that depend on pairs of examples and their target ranks. A similar
solution is proposed in [6], where learned functions are modeled by perceptrons.

As regards the second approach, Dekel et al. [8] provide a framework for
ranking based on directed graphs, where an arc from A to B means that A has
to be ranked higher than B. Arcs are computed according to log-linear models. A
drawback of this approach is that it does not quantify the degree of preference. As
observed in [4], “ranking algorithms often model preferences, and the ascription
of preferences is a much more subjective process than the ascription of, say,
classes”. To overcome this limitation, Freund et al. [13] propose to exploit a
probabilistic approach which permits to compute the probability that A follows
B. This probability is computed by exploiting decision stumps as weak learners.
The probability is a function of the margin over reweighted examples. Burges et
al. [4] propose to estimate probabilities on the basis of a cost function computed
according to a logistic regression function. Differently, in [5], a naive Bayesian
classifier is used to estimate such probabilities.

Although the first approach appears to be more efficient, it is applicable only
when a unique total ordering between objects is admissible. When not all the
objects have to be necessarily ranked, or more than one ordering is admissible,
the second approach is more suitable.

A common aspect of all methods reported above is that they work on train-
ing data represented in a single relational database table, such that each row (or
tuple) represents an object and columns correspond to object properties. This
tabular representation turns out to be too restrictive for several applications
(such as those found in document image analysis) whose units of analysis have a
complex structure involving several objects described by different sets of prop-
erties and related by one or more relationships. Some of these objects, called
reference objects, represent the units of analysis and are the main subject of the
analysis. The other objects, called task-relevant objects, contribute to defining
the units of analysis but are not the target of the analysis. The relational repre-
sentation of these units of analysis can be naturally modeled as a set of tables,
such that each table describes a specific type of objects involved in the units of
analysis, while foreign key constraints model relationships between objects.

At the best of our knowledge, only two methods have been proposed to
rank complex objects, i.e., objects described by multiple database relations. The
former is presented in [19], where the authors propose to apply an Inductive
Logic Programming (ILP) algorithm to learn a logical theory which defines the



predecessor relation. However, learned definitions are “crisp” and do not provide
us with a degree of preference. The latter is presented in [17], where the authors
propose a probabilistic relational kernel model for preference learning based on
relational graph kernels. This method allows us to mine relations between units of
analysis (or reference objects) only, hence it suffers from some limits of complex
data modeling.

In this paper, we present a different Relational Data Mining method, named
CORA (Complex Objects Ranking Algorithm) which discovers relational prefer-
ence patterns and determine when a complex object A precedes (in preference)
another object B. CORA uses these preference patterns to estimate the proba-
bility of the preference relation for any pair of complex objects. This probability
is finally used to rank the objects.

3 Mining Preference Relations

The problem of mining preference relations can be formalized as follows:
Given: A database schema S with h relational tables S = {T1, . . . , Th}. A set
PK of primary key constraints on tables in S. A set FK of foreign key constrains
on tables in S. A target relation T ∈ S 1. A preference relation PT ∈ S with
two attributes2. A training database TrDB with schema S and a new database
NewDB represented according to the schema S − {PT}.
Find : A ranking of reference objects (a1, a2, . . . , an), where ai ∈ NewDB.T .

The ranking is computed on the basis of the probability P (≺ |a, b), that
is, the probability of the relation “precedes” between a and b. By applying the
Bayes theorem, this probability can be computed as:

P (≺ |a, b) = P (≺)P (a, b| ≺)/P (a, b). (1)

The term P (≺) in (1) denotes the prior probability that an object precedes
another and is computed as:

P (≺) = |TrDB.PT |/(|TrDB.T | · (|TrDB.T | − 1)) (2)

This probability equals 0.5 when training reference objects are totally ordered,
while it differs from 0.5 for partial orders.

The term P (a, b| ≺) in (1) is the likelihood. To simplify its computation,
näıve Bayesian conditional independence is assumed, according to which:

P (a, b| ≺) = P (a1, . . . , am, b1, . . . , bm| ≺) = P (a1, b1| ≺) · . . . ·P (am, bm| ≺) (3)

where a1, . . . , am is the set of attribute values of a and b1, . . . , bm is the set of
attribute values of b. Finally, the term P (a, b) in (1) is computed as:

P (a, b) = P (≺)P (a, b| ≺) + (1− P (≺))P (b, a| ≺) (4)

1 Objects in T play the role of reference objects, while objects in S − {T, PT} play
the role of task-relevant objects.

2 Each tuple in PT represents an ordered pair of reference objects where the first
object precedes the second one



Fig. 1. The CORA workflow.

The formulation in (3) is limited to propositional representations. In the case
of complex objects, some extensions are necessary. The basic idea in CORA is
that of using a set ℜ of particular relational patterns, called preference relational
patterns, to describe the preference relation between reference objects, and then
to define a decomposition of the likelihood à la naive Bayesian classifier in order
to simplify the probability estimation problem. Probabilities are finally used to
rank reference objects. The workflow of CORA is reported in Figure 1.

4 Relational Patterns discovery

A relational pattern is a set of atoms (atomset) [7]. An atom is a predicate
applied to a tuple of terms (variables or constants). Variables denote reference
objects in T or some task-relevant objects in S − {T, PT}, while constants de-
note attribute values. The set of predicates is automatically defined on the basis
of the database schema S. Predicates can be categorized into three classes: key
predicates, property predicates and structural predicates. The key predicates iden-
tify the reference objects. There are two key predicates that represent A and B,
respectively, in the A ≺ B preference relation. The property predicates are bi-
nary predicates which define the value taken by an attribute of an object. The
structural predicates are binary predicates that represent foreign key constraints
and relate task-relevant objects with task-relevant objects or reference objects
with task-relevant objects. Relational patterns discovered by CORA describe
preference relations between two reference objects:

Definition 1. A preference relational pattern P is a set of atoms:
preference(t′0, t

′′
0), key1(t

′
0), {pi(t

′
h, t

′
k)}i=1,...,s, key2(t

′′
0), {pi(t

′′
h, t

′′
k)}i=s+1,...,s+r

where preference( , ) is a structural predicate that represents the preference
relation between two reference objects. key1( ) and key2( ) are the key predicates
and pi( , ), i = 1, . . . , s+ r, is either a structural or a property predicate.

Preference relational patterns discovered in CORA satisfy the linkedness
property, which means that each task-relevant object in a relational pattern



Fig. 2. Logical view of the database schema.

P defined as in Definition 1 must be transitively linked to the reference objects
t′0 or t′′0 by means of structural predicates.

Example 1. Let us consider the database schema S reported in figure 2 where
the table PREFERENCE is the preference relation and BLOCK is the target
relation. An example of preference relational pattern is:

preference(X,Y ), block1(X), block2(Y ), to right(X,Z),
block x pos centre(Y, [435.1, . . . , 478.0])

where preference( , ) and to right( , ) are structural predicates, block x pos
centre( , ) is a property predicate and block1( ) and block2( ) are key predicates.

The support of a preference relational pattern P on the preference relation,
denoted as supp≺(P ), is the percentage of tuples in TrDB.PT “covered” (i.e.,
logically entailed) by P . Indeed, it is also possible to compute the support of
the same pattern on the complement TrDB.PT of the preference relation. The
complement is computed as the set of pairs of distinct reference objects that are
not present in TrDB.PT . In this case, the support, denoted as supp 6≺(P ) is the
percentage of the tuples in TrDB.PT “covered” by P .

P is frequent if supp≺(P ) ≥ minSup or supp 6≺(P ) ≥ minSup where minSup
is a user-defined threshold.

The growth rates [9] of a preference relational pattern P , denoted as GR≺(P )
and GR 6≺(P ), represent the discriminative power of P in identifying pairs of
reference objects which appear or do not appear in the preference relation:

GR≺(P ) =
supp≺(P )

supp 6≺(P )
; GR 6≺(P ) =

supp 6≺(P )

supp≺(P )
(5)

As in [9], we assume GR(P ) = 0
0 = 0 and GR(P ) = >0

0 =∞. P is discriminative
if GR≺(P ) ≥ minGR or GR 6≺(P ) ≥ minGR where minGR is a user threshold.



CORA discovers frequent and discriminative preference relational patterns
by exploring level-by-level the lattice of preference relational patterns ordered
according to a generality relation (>) between patterns. This generality order is
based on θ-subsumption and is monotonic with respect to support. The search
proceeds in a Set Enumerated tree (SE-tree) search framework [24], starting from
the most general pattern (the one with only the preference predicate and two key
predicates), and iteratively alternating the candidate generation and candidate
evaluation [20]. The SE-tree search framework has several advantages. First,
the SE-tree enumerates all possible preference relational patterns by allowing
a complete search. Second, it prevents the generation and evaluation of candi-
dates which are equivalent under θ-subsumption. Third, it effectively exploits
the monotonicity property of ≥ to prune the search space.

A node of the SE-tree is associated with a progressive natural index and it
is represented by the head and the tail. The head of the root is the preference
relational pattern that contains only the preference predicate and two key pred-
icates. The tail is the ordered set of atoms which may be appended to the head
by the downward refinement operator ρ.

Definition 2 (Downward refinement operator). Let P be a preference re-
lational pattern. Then ρ(P ) = {P ∪{p(. . .)}|p is either a structural or a property
predicate that shares at least one argument with one of the atoms in P}.

Let n[head, tail] be a node of the SE-tree and q(. . .) be an atom in tail(n).
Then n has a child nq[head, tail] whose head is defined as follows:

head(nq) = head(n) ∪ q(. . . ). (6)

If q is based on a property predicate, its tail is defined as:

tail(nq) = Π>qtail(n) (7)

where Π>qtail(n) is the order set of atoms stored after q in tail(n). Differently,
if q is based on a structural predicate, its tail is defined as follows:

tail(nq) = Π>qtail(n) ∪ {r(. . .)} (8)

where {r(. . .)} is a set of atoms r(. . .). Each r(. . .) is an atom that belongs
to one of the refinement ρ(head(nq)) under the conditions that r(. . .) shares
variables with q(. . .) and r(. . .) is not included in tail(n). When r(. . .) is based
on a structural predicate, one of its arguments must be a new variable. Heads
of the nodes represent the discovered preference relational patterns.

The monotonicity property of ≥ with respect to support makes the expan-
sion infrequent patterns useless. In addition, we prevent the expansion of nodes
at a depth greater than MaxD. A further pruning criterion is based on the
growth rate of patterns. This criterion is applied when P ≥ Q and supp≺(P ) >
supp 6≺(P ) = 0. Due to monotonicity of support supp 6≺(Q) = 0 and GR 6≺(Q) = 0.
If supp≺(Q) = 0, the node which enumerates Q is pruned due to the fact that Q
is infrequent. Otherwise if supp≺(Q) 6= 0, then GR≺(P )→∞∧GR≺(Q)→∞.



In this case, the node which enumerates Q in the head is pruned since Q has
the same discriminating ability of P with respect to GR≺(.) and CORA prefers
simpler patterns to more complex patterns under the same growth rate. Analo-
gously, when P ≥ Q and supp 6≺(P ) > supp≺(P ) = 0, the node Q is pruned.

5 Probability estimation

Once the set ℜ of preference relational patterns is extracted from TrDB, it is
used in order to compute the likelihood in (1) for each pair (a, b) of reference
objects stored in the target table of NewDB.T .

Let ℜ′ = {P |preference(A,B), P ∈ ℜ} be the set of relational patterns, then
patterns in ℜ′ do not have the preference( , ) atom. ℜ′ is used to compute the
likelihood in (1) as follows:

P (a, b| ≺) = P (
∧

Rk∈ℜ(a,b)

Rk| ≺) (9)

where ℜ(a, b) is the subset of ℜ′ that cover the pair (a, b).
The straightforward application of the näıve Bayes independence assumption

to all atoms in
∧

Rk∈ℜ(a,b)

Rk is not correct, since it may lead to underestimate

the probabilities for the case that the pair (a, b) is covered by several patterns
in ℜ′. For instance, suppose that ℜ′ = {P1, P2} such that:

P1 = block1(X), block2(Y ), to right(X,Z),
block x pos centre(Y, [435.1, . . . , 478.0])

P2 = block1(U), block2(V ), on top(U,W ),
block x pos centre(V, [435.1, . . . , 478.0])

where the variables X,Y, U, V represent the reference objects. The application
of the näıve Bayes independence assumption would produce the factorization:
P (a, b| ≺) = P (P1 ∧ P2| ≺) =
P (block1(X)| ≺)× P (block2(Y )| ≺)× P (to right(X,Z)| ≺)
×P (block x pos centre(Y, [435.1, . . . , 478.0]| ≺)
×P (block1(U)| ≺)× P (block2(V )| ≺)× P (on top(U,W )| ≺)
×P (block x pos centre(V, [435.1, . . . , 478.0]| ≺) =
P (block1(X)| ≺)2 × P (block2(Y )| ≺)2 × P (to right(X,Z)| ≺)
×P (block x pos centre(Y, [435.1, . . . , 478.0]| ≺)2 × P (on top(X,W )| ≺)
since the block1( , ) atoms, the block2( , ) atoms and the block x pos centre( ,
[435.1, . . . , 478.0]) atoms can be unified according to the substitution θ = {X ←
U, Y ← V }. Therefore there is a quadratic contribution of some probabilities and
if one of them is small, P (a, b| ≺) will approach zero. To prevent this problem
we adapt the clause factorization [23] to the notion of relational pattern.

Definition 3. Let P be a relational pattern, which has a non-empty subset Q ⊆
P of unifiable atoms with most general unifier θ. Then Pθ is a factor of P.

A factor of a pattern P is obtained by applying a substitution θ to P which
unifies one or more atoms in P , and then deleting all but one copy of these



unified atoms. In our context, we are interested in particular factors, namely
those that are obtained by substitutions θ which satisfy three conditions: i)
Domain(θ) =

⋃
Rk∈ℜ(a,b)

V ars(Rk), that is, the domain of θ includes all variables

in the pattern Rk ∈ ℜ(a, b); ii) Domain(θ) ∩Range(θ) = ⊘, that is, θ renames
all variables in the pattern Rk ∈ ℜ(a, b) with new variable names; iii) θ|V ars(Rk)

is injective, that is, the restriction of θ on the variables in Rk is injective.
In the previous example, θ = {A← X,B ← Y,A← U,B ← V,C ← Z,D ←

W} satisfies all these conditions, therefore, the factor of interest is:
block1(A), block2(B), to right(A,C),

block x pos centre(B, [435.1, . . . , 478.0], on top(A,D)
For each pattern P , a factor always exists. In the trivial case, it coincides

with P up to a renomination of variables in P . A factor Pθ is minimal, when
there are no other factors of P with less literals than Pθ. From a logic point of
view,

∧
Rk∈ℜ(a,b)

Rk is equivalent to one of its factors since only redundant atoms

are removed in the factorization. However, working with factors permits to avoid
that the probability will approach zero. For this reason, for any minimal factor
F of

∧
Rk∈ℜ(a,b)

Rk, we compute P (a, b| ≺) as P (F | ≺) in (9).

By separating in F the contribution of the conjunctions of atoms correspond-
ing to structural predicates (str(F ) = {reli1(A,B), . . . , relis(As, Bs)}) from the
contribution of the conjunction of atoms corresponding to property predicates
(prp(F ) = {attri1(A,B), . . . , attrit(At, Bt)}) we have:

P (a, b| ≺) = P (str(F )| ≺) · P (prp(F )|str(F )∧ ≺) (10)

Under the näıve Bayes independence assumption:

P (str(F )| ≺) = P (reli1(A1, B1)| ≺) · . . . · P (relis(As, Bs)| ≺) (11)

where P (relij (Aj , Bj)| ≺) is the relative frequency that two objects, denoted
as Aj and Bj respectively, are related in TrDB by the foreign key constraint
associated to the structural predicate relij given the event ≺.

The näıve Bayes conditional independence is also assumed to compute
P (prp(F )|str(F )∧ ≺) as follows:

P (prp(F ) | str(F )∧ ≺) = P (attri1(A1, vi1)|str(F )∧ ≺) ·

. . . · P (attrit(At, vit)|str(F )∧ ≺) (12)

where P (attrij (Aj , vij )|str(F )∧ ≺) is computed as the relative frequency that
the attribute Aj assumes the value vij in TrDB given str(F ) and ≺.

The probabilities in the Equations (11-12) are apriori computed on TrDB
and are stored in the probability base ℘. This means that both the pattern base
ℜ and the probability base ℘ are the output of the training phase. For each
new database NewDB, the probability estimation phase is then in charge of
computing the probability P (≺ |a, b) for each pair of reference objects (a, b).
This probability is computed as reported in Equation (1). In particular, the
likelihood P (a, b| ≺) is obtained by combining the probabilities stored in ℘ for
the patterns falling in ℜ(a, b) according to the schema reported in Eq. (12).



6 Ranking

The ranking algorithm in CORA allows us to identify a total order of reference
objects stored in any new database. The ranking algorithm follows the proposal
in [16]. The basic idea is that of using a directed graph, where nodes represent
reference objects to be ranked and edges express the preference relation between
them, and to iteratively evaluating the most promising object to be appended
to the resulting rank. Let G = 〈V,E〉 be a weighted directed graph where:
V = {b ∈ NewDB.T} is the node set and E = {(a, b, wa,b) ∈ V 2 × [0, 1]|wa,b

is the set of weighted edges where weights wa,b are the probabilities P (≺ |a, b)
computed according to (1).

We denote as SUMPREFG : V → [0,#V ] the function SUMPREFG(a) =∑

b∈V,b 6=a

wa,b that expresses the degree of preference of an object a.

The rationale of the ranking identification is that a reference object is itera-
tively added to the final ranking. Such object is that for which SUMPREFG( )
is the highest. Higher values of SUMPREFG( ) are given to objects which have
a high sum of probabilities to precede others.

7 Experiments

In this Section, we focus our attention on the two document image analysis tasks
of reading order detection and document summarization.

7.1 Reading order detection

In this task, reference objects are the layout components extracted from docu-
ment images and they are described according to the database schema in Figure
2 (the target table is blocks). Properties or attributes of layout components are:
• Locational : (x pos centre, y pos centre): position of the centroid of the lay-
out component.
• Geometrical : height (width): size in pixels of a layout component.
• Logical : “logical label” associated to a layout component.
• Topological : on top: a layout component is on top/above another layout com-
ponent. to right: a layout component is to the right of another layout compo-
nent. alignment: defines the type of vertical (col) or horizontal (row) alignment
between two layout components. Possible alignments are: right col, left col, mid-
dle col, both columns, middle row, lower row,upper row, both rows.
• Content type: type of : content type of a layout component. Possible values
are: {image, text, horizontal line, vertical line, graphic, mixed}.
• Page position: Position of the page in the document. Possible values are:
{first, intermediate, last but one, last}.

For the experiments we considered 211 document images obtained from 24
papers published as either regular or short articles in the IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) in two issues of 1996.



a) b)
Concept ≺ relation ≺ relation in [19]

Precision % Recall% Precision % Recall%
FOLD1 76.32 81.44 76.90 64.10
FOLD2 77.24 79.19 74.10 65.20
FOLD3 81.69 83.29 81.00 66.10
FOLD4 77.97 87.63 67.80 56.30
FOLD5 77.26 84.75 78.40 68.70
FOLD6 80.46 85.38 79.40 62.90
AVG 78.49% 83.61% 76.27% 63.88%

Algorithm Avg StDev

CORA 0.180 0.03
In [19] 0.491 0.03
In [5] 0.240 0.07

Table 1. a) Precision and Recall results. b) CV Results: normalized Spearman footrule
distance.

Initially, document images were pre-processed by WISDOM++3 in order to seg-
ment them, perform layout analysis, identify the membership class and identify
the logical label of a layout component. In all, 206 reading orderings were man-
ually specified and 1,629 layout components were involved in such orderings.
Possible logical labels for each layout component, in this class of documents,
are: {abstract, affiliation, author, biography, formulae, index term, reference, sec-
tion title, paragraph, subsection title, title, caption, figure, table, page no, run-
ning head}. In this work, reading ordering is identified only on {abstract, affilia-
tion, author, biography, formulae, index term, reference, section title, paragraph,
subsection title, title}. Remaining components are not considered to be relevant
for the reading order.

We evaluated the performance of the proposed approach by means of a 6-
fold cross-validation, that is, the dataset of 24 documents was divided into six
folds and then, for every fold, training is performed on the remaining folds,
while evaluation is performed on the current fold. Parameters of training are
minSup = 0.1, minGR = 1.5 and MaxD = 4.

For each fold, statistics on precision and recall were recorded. Such measures
refer to the ≺ relation. To evaluate these measures, we considered a reference
object a to precede another object b when P (≺ |a, b) > P (≺ |b, a). This per-
mits us to evaluate decision capabilities of probabilities computed by CORA.
To globally evaluate CORA, we resorted to metrics used in information retrieval
for the evaluation of the returned rankings [11]. In particular, we considered the
normalized Spearman footrule distance which, given two complete lists L and L1

on a set S (L and L1 are two different permutations without repetition of all the
elements in S), is defined as F (L,L1) = 2/|S|2

∑
b∈S abs(pos(L, b)− pos(L1, b))

where the pos(L, b) returns the position of the element b in L.

Results reported in Table 1.a permit to compare CORA with the multi-
relational approach proposed in [19] that is applied to the same dataset with
equivalent representation. It is noteworthy that although the proposed approach
shows comparable results in terms of precision to those obtained in [19], results
in terms of recall are significantly in favour of the present approach. This can be
explained by the high degree of adaptivity to noise of probabilistic approaches.

3 http:/www.di.uniba.it/%7Emalerba/wisdom++/



Experimental results concerning the reconstruction of the ranking (reading
order) are reported in Table 1.b. We recall that lower the Spearman distance
value, the better the reconstruction of the original ranking. Also in this case,
CORA outperforms competitors. In particular, since the algorithm proposed in
[5] is probabilistic and, as in our case, exploits the naive Bayesian learner, it is
possible to say that the multi-relational approach is beneficial since it permits
to capture the spatial dimension of the document layout.

From a qualitative point of view, 6,229 preference relational patterns have
been automatically extracted in average for each learning task. Two examples
of patterns with high growth rate are reported in the following:
preference(X,Y ), block1(X), block2(Y ), to right(X,Z),

block x pos centre(Y, [435.1, . . . , 478.0]).
(supp≺ : 0.1 GR≺ : +∞)

This pattern states that a block X that appears to the left of another block (Z)
is preferred to a block Y that is approximately located close to the right margin
of the document page. The second example of pattern is:
preference(X,Y ), block1(X), block2(Y ),

only lower row(X,Z), block author(X, false),
block biography(X, false), block section title(X, false).

(supp≺ : 0.12 GR≺ : 6.5)
This pattern includes information on the logical label associated to a block and
states that a block X (which represents neither the biography block nor an
author block nor a section title block) which is aligned on the bottom margin to
another block (Z) is preferred to a block Y .

Preference patterns with lower growth rate are less interesting from a quali-
tative point of view, but are still useful for computing probabilities.

7.2 Document summarization

In this task, reference objects correspond to descriptions of sentences extracted
from document images. The representation of the sentences is obtained through
natural language processing techniques such as tokenization, sentence splitting,
part-of-speech (POS) tagging, stop-word removing and stemming. The execution
in sequence of these techniques permits to represent sentences in terms of the
following features:
• ADJ POS FREQ, V F POS FREQ, NOUN POS FREQ that express the per-
centage of the words of POS categories (adjectives,verbal forms and nouns) in-
cluded in the sentence w.r.t. the total set of words in the same sentence.
• TF IDF WORD1, . . . , TF IDF WORDN that denote the presence in the sen-
tence of the N words having highest tf− idf [25] values over the training corpus.
• POSITION IN DOC, POSITION IN SEM COMP that represent the normal-
ized position of the sentence in the document and in the semantic component.

We also consider the presence of indicator phrases (CUE WORDs), used in
discourse analysis, that give information about the discourse structure[22].

The database schema is reported in Figure 3 which includes the tables to
describe the semantic components (table SEMANTIC COMPONENTS), layout



Fig. 3. Logical view of the summarization DB.

components (table BLOCKS) as well as the preference table (PREFERENCE).
Where semantic components are components at a higher level of abstraction
composed by several logic components possibly belonging to different document
pages (e.g., motivations and experiments of a scientific paper).

Layout components are described according to features that are classified as:
• Locational : x pos centre (y pos centre): position of the centroid of the logical
component w.r.t. the x (y) axis.
• Geometrical : height (width): the size in pixels of a logical component.
• Logical : “logical label” associated to a logical component.
• Content type: type of : content type of a logical component. Possible values
are: {image, text, horizontal line, vertical line, graphic, mixed}.

CORA is used in the domain of document image understanding in order to
generate summaries in terms of phrases contained in the semantic components.
The corpus of training documents is the same used in Section 7.1. Documents are
processed in order to perform layout analysis and identify logical and semantic
components. Admissible semantic components are abstract, method, motivations
and experimental results. The relevant semantic components used for summa-
rization in this work are method and motivations.

Since the PREFERENCE table is not populated in each training database,
we populate it according to the value of cosine similarity computed between sen-
tences waj occurring in the abstract of the document and sentences wk occurring
in method and motivations:

sim(waj , wk) =
waj · wk

||waj || · ||wk||
(13)

where each sentence (waj or wk) is represented in form of a tf − idf vector of N
elements. The score score(wk) = maxj sim(waj , wk) is used for ranking (and,
then for defining tuples of the training preference relation).

Evaluation of automatically generated summaries on testing documents is
performed by means of a six fold cross validation. Obtained summaries have
been compared with original abstracts and the cosine similarity between them
has been recorded. This similarity is similar to the ROUGE-1 metric [2] typically



CORA GREEDYexpGREEDYunifSVD FURTHEST

fold #1 81.1 80.52 80.52 82.51 83.53
fold #2 77.17 76.50 80.29 77.64 75.25
fold #3 77.77 78.31 75.01 83.81 86.37
fold #4 85.77 77.88 77.75 75.53 79.25
fold #5 80.40 81.95 81.63 86.77 83.30
fold #6 87.84 81.69 81.41 78.21 86.87
Average 82.19 79.52 79.63 80.6 82.26

Table 2. CV Results: average cosine similarity between abstracts and summaries.

used in document summarization. The main difference is that cosine similarity
considers weights of terms in the document instead of their presence/absence.
Parameters of the experiments are minSup = 0.05, minGR = 1.1, MaxD =
3, N = 10 and M = 10. Where M is the number of best ranked sentences
to be included in the summary. Evaluation has been performed by comparing
CORA with the algorithms of document summarization implemented in the
ManyAspects system [18]. This comparison allows us to prove the applicability
of CORA on this task.

Results are reported in Table 2 and show that summaries obtained by CORA
are generally better than those obtained by other techniques. The only competi-
tor is Furthest, whose performances, however, depend on a chosen seed [18].

8 Conclusions

In this paper we have motivated, presented and evaluated a probabilistic, rela-
tional algorithm for preference learning. The algorithm determines the proba-
bility that an object can be preferred to another. We applied the algorithm to
the domain of document image understanding for reading order detection and
for document summarization. Experimental results prove the advantages of the
proposed algorithm with respect to other algorithms reported in the literature.
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