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Abstract. Conjoint analysis aims at measuring preferences on a set of
options that are elements in the Cartesian product of parameter sets.
Preferences are measured jointly, e.g., by comparing two options, where
all parameters contribute to the outcome of the comparison. For optimiz-
ing the options and for deriving preference models from measurements
it is helpful to know how much each parameter sets contributed to the
observed result, or at least which parameters contributed more than oth-
ers. In a strict lexicographic preference order one parameter decides the
outcome and only if the same value for this parameter is present in the
compared options, the second most important parameter becomes deci-
sive. In practice a strict lexicographic preference model often may not be
adequate, but still some parameters can be more important than others.
We discuss methods to measure a lexicographic bias in linear conjoint
analysis models, i.e., we quantify how close this model is to a strict lexi-
cographic ordering in a metric sense. We apply our methods to data sets
obtained in two conjoint measurement studies.

1 Introduction

Preferential choices by individuals on a multi-parameter set of options have been
studied from two points of view, namely (1) behavioral, and (2) empirical. Under
the behavioral point of view one investigates strategies that individuals may use
when confronted with a (multi-parameter) choice task, whereas the empirical
approach is to fit a preference model to a set of observed choices.
Behavioral strategies address the effort vs. accuracy trade-off faced by an in-
dividual confronted with a choice task, i.e., it may not always pay off for the
individual—in terms of effort—to determine the best option. Thus behavioral
strategies tend to be simple in terms of the required effort and are mostly of non-
compensatory nature. Non-compensatory strategies basically rank the different
aspects (parameter levels) of the choice options whereas compensatory strate-
gies weigh them. A crucial difference is, lacking a highly ranked aspect cannot
be compensated for by other aspects of an option, whereas a highly weighted
aspect still can be outweighed by a combination of other aspects. Weighting as-
pects and combining the weights typically requires more effort than just ranking
the aspects. Ranking the aspects essentially means employing a lexicographic
strategy. On the other hand, the empirical models used by practitioners, e.g., in
market research, are more general and mostly of compensatory nature.



Here we consider a special class of compensatory preference models, namely
linear conjoint analysis models, that are frequently used in market research to
represent preferences assessed in conjoint measurement studies. Linear conjoint
analysis models estimate weights assigned to the different aspects of the choice
options by the individuals whose preferences have been assessed. The weight of
an option is then assumed to be the sum of the weights of its aspects. These
models have turned out to be well suited for predicting future choices by the same
or similar individuals, but it is not straightforward to determine the impact of
the different parameter sets on these choices from a linear model, in contrast to
the parameter levels. The impact of the parameter sets (or short parameters)
can often be attributed to a lexicographic bias in the linear model. Knowing
the unimportant parameters can be helpful information when optimizing the
options. For example if the preferred level of an unimportant parameter is costly
to realize, then one can stick with a lesser level since the effect of improving to
the better level on the whole option is small. Similarly knowing the important
parameters can be helpful.
We introduce four different methods to define and compute a lexicographic bias
in a linear model and discuss their advantages and disadvantages. We apply the
methods to data from two conjoint measurement studies that we have conducted
earlier, and observe a strong lexicographic bias for the first study and a lack of
a lexicographic bias in the second study. The ability of our methods to detect a
lexicographic bias in data is confirmed by comparing the predictive power of lin-
ear conjoint analysis models and non-compensatory lexicographic models derived
from linear conjoint analysis models on holdout data. For the first study—where
we detect a strong lexicographic bias—the lexicographic models perform simi-
larly as the underlying linear conjoint analysis model, whereas for the second
study where we detected a lack of a strong lexicographic bias the correspond-
ing lexicographic models perform, as expected, much worse than the underlying
linear model.

2 Linear conjoint analysis models

Conjoint analysis comprises a family of techniques to assess and represent pref-
erences on a multi-parameter set of options [6]. Here we want to denote the set
of options as A = A1× . . .×An, where Ai is the set of values for the i’th param-
eter. The assessment stage of conjoint analysis involves a conjoint measurement,
i.e., a measurement on an element of A (jointly on all parameter values present
in the element) or more generally on an element of Ak (the Cartesian product
of k copies of A). That is, in a conjoint measurement the parameter values are
considered jointly. Examples of conjoint measurements include among others the
following: (1) Given an option a ∈ A, it is assessed if an individual likes or dislikes
this option. Note that at this stage it is not obvious how the different parameter
levels present in a contributed to the observed outcome of the measurement. (2)
Given k ≥ 2 options a1, . . . , ak ∈ A, it is assessed which of these options is most
preferred by an individual. The latter example is known as choice based conjoint



analysis since the individual has to choose from k options. In the following we
want restrict our discussion to choice based conjoint analysis with k = 2 choice
options, i.e., binary choices. The techniques developed here, however also apply
in the general case.
The goal of (choice based) conjoint analysis is to derive a model from a sequence
of conjoint measurements. Most popular are linear models that assign a numeri-
cal value to every parameter level. These values are also called partworth values
and denoted as vi(ai) for ai ∈ Ai. The linear model is then given as

v : A → R, a = (a1, . . . , an) 7→

n
∑

i=1

vi(ai).

The popularity of linear models has its roots in axiomatic conjoint measurement
theory [10] that provides axioms guaranteeing that ordinal measurements as in
choice based conjoint analysis result in an interval scale on the parameter sets Ai

that can be combined linearly into an interval scale for A. The interval scale on A
is invariant under transformations of the form αvi(·)+βi with α > 0 and βi ∈ R.
Note that the scale factor α needs to be the same for all i = 1, . . . , n, also note
already here that in practical situations the axioms of conjoint measurement are
almost never met. We will comment more on this later.
A machine learning approach to estimate partworth values for finite parameter
sets Ai has been introduced by Evgeniou et al. [3] who build on ideas of regu-
larization. This approach is a special case of Joachims’ Ranking SVM [8] and
related to Herbrich et al.’s SVM approach to ordinal regression [7]. In [3] it has
been suggested to compute the partworth values as the solution of the following
convex quadratic program for l choice measurements

minvi(a),zj

∑n

i=1

∑

a∈Ai
vi(a)2 + c

∑l

j=1 zj

s.t. v(a) − v(b) + zj ≥ 1,
if a � b in the j’th choice measurement.

zj ≥ 0, j = 1, . . . , l

Note that the objective function describes the classical trade-off between model
complexity (the regularization term

∑n
i=1

∑

a∈Ai
vi(a)2) and accuracy on the

training data (the error term
∑l

j=1 zj , where zj is a slack variable for the j’th
choice measurement). It is also interesting to have a closer look at the constraints
v(a) − v(b) + zj ≥ 1 with a, b ∈ A. If we disregard the slack variable zj and
shrink the margin from 1 to 0, then the constraint on the partworth values can
be written as 〈v, χa − χb〉 ≥ 0, where v ∈ R

m, with m =
∏n

i=1 |Ai|, is the vector
of all partworth values, and χa ∈ {0, 1}m is the characteristic vector of a ∈ A,
i.e., χa has entry 1 whenever the corresponding parameter level is present in a
and 0 otherwise. Constraints of the form 〈v, χa − χb〉 ≥ 0 describe halfspaces
with normal vector χa − χb whose bounding hyperplane

〈v, χa − χb〉 = 0 (1)



contains the origin. Note that there are only finitely many normal vectors χa−χb

possible. The arrangement of the corresponding hyperplanes divides R
m into a

finite number of cells, and each of the cells corresponds to a different partial
ordering (ranking) of the elements in A. Note however that not all (partial) or-
derings of A have a representation as a cell of A. We call the (partial) orderings
that correspond to the cells of the arrangement realizable. A solution to the con-
vex quadratic program from above is a point in one of the cells of the hyperplane
arrangement and thus represents a realizable (partial) ordering of A. In general
we cannot interpret this solution as an interval scale as can be seen from the
following dimension analysis: an interval scale for A has n+1 degrees of freedom,
namely, the value of α > 0 and the values for the βi ∈ R. Thus any cell of dimen-
sion larger than n + 1 must contain representatives for different interval scales.
Any such cell is the intersection of halfspaces with normal vectors of the form
χa −χb, and the ordinal measurements that correspond to these normal vectors
cannot satisfy the axioms of the axiomatic theory of conjoint measurement. Nev-
ertheless, the more practical approach towards conjoint analysis of computing a
linear model (which not necessarily provides a unique interval scale) proved to
be successful in practice.

3 Choices between multi-parameter options

3.1 Choice strategies (behavioral)

Psychologists have studied for a long time how individuals choose between multi-
parameter options as we have discussed them in the context of choice based
conjoint analysis. In the light of humans as actors of bounded rationality [12,
5, 11] it is natural to consider the effort-accuracy trade-off that individuals face
when choosing between multi-parameter options, i.e., it might not always pay off
to identify the better (best) option, especially if this requires some effort. One
can distinguish two classes of strategies that individuals may apply in multi-
parameter choice situations:

(1) non-compensatory strategies, and
(2) compensatory strategies.

One possible compensatory strategy is reflected in the additive models of conjoint
analysis, namely an individual could weight the different aspects (parameter
levels) of an option, sum up the weights (linearity assumption) and then choose
the option with the highest weight. In this way a particularly bad aspect (level)
of an important parameter of an option could be outweighed by several other
good aspects of less important parameters. Non-compensatory strategies have
been discussed more extensively in the psychology literature. One of the first
studied non-compensatory strategies is Tversky’s elimination by aspects [13],
which besides being non-compensatory is also randomized. In the elimination by
aspects strategy individuals associate weights with the parameter levels (aspects)
and successively remove (unwanted) levels from the remaining ones at random,



where the probability for a level to be removed is proportional to its weight. The
options are then ranked according to the random ranking of the aspects, i.e.,
the rank of an option is determined by its last eliminated level where ties are
broken accordingly. Note that in that in elimination by aspect the ranking of the
aspects will in general mix levels from different parameters. Hence a restricted
deterministic form of elimination by aspects is first lexicographically ranking the
parameters and then ranking the levels within the parameters. Here we want to
focus on the latter lexicographic strategy and refer to it as strict lexicographic
ranking.

3.2 Choice models (empirical)

Choice strategies have their counterparts in choice models. A choice strategy is
a means of choosing between multi-parameter options whereas a choice model
aims at explaining an observed sequence of observed (measured) choices. We
have already discussed linear models of conjoint analysis in the previous section.
Our goal now is to compare linear models with models that rank the options
lexicographically. Kohli and Jedidi [9] observed that both strategies (determin-
istic) elimination by aspects and strict lexicographic ranking, respectively, can
for finite parameter sets always be represented by a linear model. That is, the
class of linear models is not only richer than the class of lexicographic models,
it even contains the latter.
Next we are investigating the following question: given a linear model, how
close is it to a lexicographic model, and how can a close lexicographic model
be computed.

4 Deriving lexicographic models from linear models

We want to derive from a given linear model, e.g. one computed from from choice
measurements as described in Section 2, a “close” lexicographic model (which
by the observation of Kohli and Jedidi [9] can be expressed again as a linear
model).
Note that a linear model always specifies a ranking of the levels within every
parameter set. Hence the task to determine a close strict lexicographic model
reduces to determining a suited ranking of the parameter sets. There is no unique
or obvious method to compute such a ranking on the parameter sets but certain
requirements should be satisfied by any such method, namely

(1) the method should actually compute a ranking, i.e., a (partial) order, and
(2) the result of the method should be independent of the choice of representative

for equivalent linear models.

Here we consider two linear models equivalent if and only if they encode the
same (partial) order information. Remember that a linear model is represented
by a point in R

m (see Section 2), and observe that two linear models are equiv-
alent if they (viewed as points in R

m) fall into the same cell of the hyperplane
arrangement given by Equations 1.



In the following we discuss four methods to compute a ranking of parameter sets
from a linear model.

4.1 Max-min partworth difference

The leading conjoint analysis software company Sawtooth Software Inc. [1] is
using the following technique to assess the relative importance of the parameter
sets in their adaptive conjoint analysis software ACA: respondents in a conjoint
study are asked to rate on scale with four levels how important it is for a given
parameter set to improve from the worst to the best level. That is, essentially
they are asked for a quantization (into four levels) of the difference of the part-
worth values of the best and the worst parameter level. Weighting the parameter
sets with the latter differences immediately provides a (partial—in the presence
of ties) order on the parameter sets, thus satisfying Requirement 1. The derived
ranking also satisfies Requirement 2: assume to the contrary that it does not,
i.e., there exist parameter sets Ai and Aj such that there are equivalent part-
worth value functions vi, vj and v̂i, v̂j satisfying the following relations for the
best levels bi ∈ Ai, bj ∈ Aj and the worst levels wi ∈ Ai, wj ∈ Aj :

vi(bi) ≥ vi(wi), vj(bj) ≥ vj(wj), v̂i(bi) ≥ v̂i(wi), and v̂j(bj) ≥ v̂j(wj),

which implies by using the assumption that Requirement 2 is violated

vi(bi) − vi(wi) ≥ vj(bj) − vj(wj), and v̂j(bj) − v̂j(wj) ≥ v̂i(bi) − v̂i(wi).

Then by the linearity of value functions

v(. . . , bi, . . . , wj , . . .) ≥ v(. . . , wi, . . . , bj, . . .),

but
v̂(. . . , wi, . . . , bj, . . .) ≥ v̂(. . . , bi, . . . , wj , . . .).

Hence v and v̂ cannot be equivalent in contradiction to the assumed equivalence
of the partworth value functions vi and v̂i, and vj and v̂j , respectively.

4.2 Partworth variance

The max-min partworth difference method to rank parameter sets satisfies both
of our requirements but is using only limited information from the underlying
linear model, namely the partworth values of two levels for every parameter set.
Weighting the parameter sets Ai by the variance

Var(Ai) =
1

|Ai| − 1

∑

a∈Ai

(

vi(a) −
1

|Ai|

∑

a∈Ai

vi(a)

)2

of their partworth values takes more information into account and obviously
also satisfies Requirement 1. Weighting the parameter sets by the variance of



their partworth values has been commonly used to rank parameter sets, but
unfortunately Requirement 2 need not be satisfied by this ranking scheme as
can be seen from the following example: given two parameter sets A1 and A2

with six levels each, i.e., n = 2 and m1 = m2 = 3. The following two partworth
value vectors

v1(A1) = (260, 50,−310) and v2(A2) = (310,−20,−290)
v̂1(A1) = (229, 112,−341) and v̂2(A2) = (310,−20,−290)

encode equivalent linear models, i.e., they induce the same order on the set
A = A1 × A2, but Var(A1) < Var(A2) for the partworth vectors v1, v2, and
Var(A1) > Var(A2) for the partworth vectors v̂1, v̂2. A contradiction.

4.3 Trade-offs

In marketing applications conjoint analysis is mainly used to study how con-
sumers trade-off different parameters (attributes) of a product against each
other. For example consider a very simple model of cars with two attributes
maximum speed and fuel efficiency. For technical reasons it is not possible to
build a car that optimizes both attributes, i.e., fast cars cannot be fuel effi-
cient. For a population of potential car buyers it is interesting to study how they
trade-off the two parameters. This can be the basis for a market share prediction
for, e.g., sport cars (speed wins the trade-off), family cars (compromise between
speed and efficiency) and economic cars (efficiency wins the trade-off). Note that
trade-offs are related to ranking the different parameters.
Given a linear model one could try to use trade-offs to rank the parameter
sets. A linear model provides a ranking of the levels within each parameter set,
i.e., just ranking the levels according to their partworth values. Consider now
two parameter sets A1 and A2 whose levels {a11, . . . , a1m1

} and {a21, . . . , a2m2
}

are ordered decreasingly according to their partworth values. A trade-off is a
comparison of the form

(a1i, a2j) vs. (a1l, a2k)

with i > l, i, l ∈ {1, . . . , m1} and j < k, j, k ∈ {1, . . . , m2}. If

v1(a1i) + v2(a2j) ≥ v1(a1l) + v2(a2k),

then we say that A1 wins this trade-off against A2, and otherwise A2 wins the
trade-off against A1. If A1 wins more trade-offs than A2, then A1 is ranked higher
as a set than A2, otherwise A2 is ranked higher than A1. Obviously, this ranking
satisfies Requirement 2, but it does not satisfy Requirement 1 in general. In fact,
we claim that the trade-off relation is transitive for A = A1×. . .×An with |Ai| ≤
3 for 1 ≤ i ≤ n but not transitive in general. Consider the following example.
Let A = A1 ×A2 ×A3 and let A1 = {a11, a12, a13}, A2 = {a21, a22, a23, a24} and
A3 = {a31, a32, a33}. Let the partworth values be as follows:

v1(a11) = 16, v1(a12) = 2, and v1(a13) = 1,
v2(a21) = 22, v2(a22) = 14, v2(a23) = 11, and v2(a24) = 1,
v3(a31) = 17, v3(a32) = 8, and v3(a33) = 1.



Then, it follows that A1 wins 10 : 8 against A2, and A2 wins 10 : 8 against
A3 but A3 wins 5 : 4 against A1, hence proving that the trade-off relation is
not transitive in the general case. A simple calculation shows that the trade-off
relation for |Ai| ≤ 3 for 1 ≤ i ≤ n coincides with the max-min relation and
hence is transitive for this special case.

4.4 Metrically closest lexicographic model

The trade-off method is in contrast to the max-min and the variance methods
of combinatorial nature. A more direct combinatorial method is to compute
the closest lexicographic model in terms of a metric on the permutation group
Sm, where m =

∏n

i=1 |Ai|. That is, we minimize the distance of the order on
A = A1 × . . . × An induced by the linear model and the order given by a strict
lexicographic model. To do so we need to test n! strict lexicographic models—
remember that the order within the parameter sets is already fixed by the linear
model. Any such method automatically satisfies Requirements 1 and 2. There
are several metrics on permutations group known and we will discuss four of
them briefly. Let always π and σ be two permutations on Sm.

Hamming distance The Hamming distance is defined as

H(π, σ) = |{i ∈ {1, . . . , m} |π(i) 6= σ(i)}| .

The Hamming distance though it is a metric on Sm is not particularly well suited
for our application: the Hamming distance of a permutation π ∈ Sm to the one
that is obtained from π by swapping the elements of rank i in π with the ones
of rank i + 1, for i = 2k − 1, k = 1, . . . , ⌊m/2⌋ is maximal, but in terms of
preferences both permutations are actually very close since the maximum rank
difference of any element is one. This demonstrates that just being a metric on
Sm is not sufficient. Metrics on Sm that are frequently used in the context of
preference orderings are Spearman’s footrule and rank correlation metrics, and
Kendall’s tau metric, see [2] for more details.

Spearman’s footrule metric Spearman’s footrule metric is defined as

F (π, σ) =
m
∑

i=1

|π(i) − σ(i)|.

Its mean is (m2 − 1)/3, its variance is (m + 1)(2m2 + 7)/45, and the maximum
possible distance is m(m − 1)/2. Spearman’s footrule metric is closely related
to Kendall’s tau metric K(π, σ), i.e., the minimum number of pairwise adjacent
transpositions taking π−1 to σ−1. Both metrics are related as follows, K ≤ F ≤
2K.



Spearman’s rank correlation metric Spearman’s rank correlation metric is de-
fined as

R(π, σ) =
m
∑

i=1

(π(i) − σ(i))2.

Its mean is (m3−m)/6, its variance is m2(m−1)(m+1)2/36, and the maximum
possible distance is (m3−m)/3. Spearman’s rank correlation metric is also often
referred to as Spearman’s rho.

4.5 Computational costs

The computational cost of deriving a lexicographical model from a linear model
is:

1. O (
∑

i=1 |Ai| + n logn) for the max-min partworth difference and the part-
worth variance methods.

2. O
(

(maxi=1,...,n |Ai|
2)n log n

)

for the trade-offs method.

3. Ω(n!) for computing the metrically closest model (if we need to compare to
every permutation of the attributes). Note though that in many cases n is
fairly small (e.g., five in both of our examples, see Section 6).

5 Measuring a lexicographic bias

So far we have discussed methods to compute a strict lexicographic model from
a linear model. Next we want to use such a derived strict lexicographic model
to measure a lexicographic bias in the underlying linear model. To this end we
also use the metrics on permutation groups introduced in Subsection 4.4 and
measure the distance of the order induced by the linear model and the order
given by the derived strict lexicographic model. Intuitively, there is a strong
lexicographic bias if this distance is small. This leaves us with the problem to
judge what it means for a distance to be small. A natural option is to compare
the distance to either the maximum possible distance or to the mean of a metric
(see Subsection 4.4 for these measures for the Spearman metrics). But these yard
sticks (mean or maximum possible distance) are problematic in the sense that
the permutations induced by linear models (realizable permutations/orderings)
are only a subset of the permutation group, and so far we are lacking a good
understanding of how these realizable permutations are distributed in the whole
permutation group. Here we choose to take a practical approach to mitigate this
problem and randomly generate instances of a linear model for which we derive
a strict lexicographic model each using one of the four techniques from Section 4.
The empirical distribution of these distances provides a better yard stick than
the aforementioned measures, see Figures 1 to 13.
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Fig. 1. Distance distribution to the opti-
mal lexicographic model with respect to
Spearman’s footrule metric.
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Fig. 2. Distance distribution to lexico-
graphic model computed by the trade-off
method.
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Fig. 3. Distance distribution to lexico-
graphic model computed by the variance
method.
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Fig. 4. Distance distribution to lexico-
graphic model computed by the max-min
method.

6 Results

We compare the different methods to compute a strict lexicographic model from
a linear model on preference data that originated from two larger user studies.
The first study measured the perceived quality in a visualization task [4] and
the second study measured the importance of various skills for IT professionals.
When computing the partworth values with the convex quadratic program from
Section 2 we optimized the regularization parameter c using cross validation.

6.1 Visualization study

Let us first provide briefly the background of the visualization study: the purpose
of volume visualization is to turn 3D volume data into images that allow a
user to gain insight into the data. Turning volume data into images is a highly
parameterized process among the many parameters are for example:

(a) The choice of color scheme: often there is no natural color scheme for the
data, but even when it exists it need not best



 0

 500

 1000

 1500

 2000

 2500

0 25 50 75 100

random engine rho global minimal

ξ

Fig. 5. Distance distribution to the opti-
mal lexicographic model with respect to
Spearman’s rank correlation metric.
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Fig. 6. Distance distribution to lexico-
graphic model computed by the trade-off
method.
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Fig. 7. Distance distribution to lexico-
graphic model computed by the variance
method.
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Fig. 8. Distance distribution to lexico-
graphic model computed by the max-min
method.

(b) The viewpoint: an image is a 2D projection of the 3D data, but not all such
projections are equally valuable in providing insights.

(c) Other parameters like image resolution or shading schemes.

In our study [4] we were considering five parameters (with 2 to 15 levels each)
for two data sets (foot and engine) giving rise to 2250 (foot) or 2700 (engine) op-
tions, respectively. Note that options here are images, i.e., different renderings of
the data sets. On these data sets we were measuring preferences by either asking
for the better liked image (aesthetics), or for the image that shows more detail
(detail). That is, in total we conducted four studies (foot-detail, foot-aesthetics,
engine-detail, and engine-aesthetics).

To quantify a lexicographic bias we compute linear conjoint analysis models
for the four studies using the optimization method described in Section 2 from
which we derive four strict lexicographic models, namely the ones computed
by the max-min, variance, trade-off, and metric (Spearman footrule and rho,
respectively) methods from Section 4.



In Figures 1 to 4 we show histograms of Spearman’s footrule distances between
randomly generated instances of a linear model (having the same structure as the
corresponding model in the visualization study) to a derived lexicographic model
using one of our four methods from Section 4. The random instances are random
partworth value vectors, where we make sure that we only take one vector for
each cell of the arrangement generated by Inequalities 1, i.e., at most one for each
realizable ordering. In these figures ξ denotes the distance of the linear model
computed for the engine-aesthetics study data to the derived strict lexicographic
model.1 More specifically, each histogram shows the distance of 4000 randomly
chosen linear models in % to its derived strict lexicographic model, where a
distance of 0% means a strict lexicographic ordering and a distance of 100% is the
theoretical upper bound among all orderings that however need not be realizable
by a linear model as we pointed out earlier. Among these 4000 random instances
less than 0.1% have a smaller distance to their derived strictly lexicographic
ordering than the linear model computed for the engine-aesthetics study data
has to its derived strict lexicographic models.
In similar histograms (Figures 5 to 8) of distances using Spearman’s rank corre-
lation (rho) metric (instead of the footrule metric) of randomly generated linear
models to their derived strict lexicographic models we observe that the engine-
aesthetics, engine-details results are even a bit more to the left, i.e., relatively,
even closer to a strict lexicographic ordering.
All histograms indicate that the linear models for all four studies indeed have a
strong lexicographic bias. We can test this further by comparing the predictive
power of the linear models and their corresponding derived lexicographic models
on hold out data. The average correct prediction of strict lexicographic models
is shown in Table 1 and compared to the predictions of the linear model. Note
the difference between the detail and the aesthetics studies: for the two detail
studies the strict lexicographic models achieve a correct prediction rate that
is only about 1.7% worse than the underlying linear model, and for the two
aesthetics studies the lexicographic models achieve a prediction rate that is about
3.9% worse than the underlying linear model. That is, the lexicographic bias is
stronger for the detail studies.

6.2 IT skills study

In our second study (IT-skills) we have assessed the importance of five different
skill groups for IT professionals (soft skills, domain expertise, package imple-
mentation, application development, and architecture). For this study about 70
representatives of IT consulting firms were polled at the CeBit 2009 fair in Han-
nover. Every participant of the study was shown two skill profiles (each skill
group represented by a score between one and four) of two potential job candi-
dates. The participants had to choose the one with the better chances on the IT
job market, see Figure 9.

1 In similar histograms for the engine-detail study ξ is even a bit more to the left, so
even closer to a strict lexicographic ordering.



Fig. 9. Web interface for paired comparison of IT skills profiles. The two profiles A and
B are presented visually using one to four stars for every skill level. A study participant
had to indicate the profile with better job market chances by pressing the corresponding
button.

As can be seen in the histograms (Figures 10 to 13) we detected a lack of a
strong lexicographic bias (using Spearman’s footrule metric). Our observation is
supported by the prediction rate of the derived lexicographic models which is at
least 7.9% worse than for the linear model, see also Table 1.

engine-details engine-aesthetics foot-details foot-aesthetics it-skills

linear 0.8337(21) 0.7517(7) 0.7085(15) 0.6590(9) 0.7957(41)
lex. 1 0.8177(10) 0.7190(3) 0.6917(10) 0.6105(23) 0.7167(15)
lex. 2 0.8191(6) 0.7191(1) 0.6919(9) 0.6100(23) 0.7170(31)
lex. 3 0.8060(184) 0.6765(245) 0.6800(67) 0.5830(128) 0.6912(144)

Table 1. Average percentage of correct predictions for the four visualization studies
and the IT skills study. Shown is the mean for k = 10 strata and the estimated standard
deviation in brackets. lex. 1 refers to the strict lexicographical model that minimizes
Spearman’s footrule distance, lex. 2 refers to the strict lexicographical model that
minimizes Spearman’s rho distance and lex. 3 refers to the lexicographical model that
minimizes Kendall’s tau metric.
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Fig. 10. Distance distribution to the op-
timal lexicographic model with respect to
Spearman’s footrule metric.
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Fig. 11. Distance distribution to lexico-
graphic model computed by the trade-off
method.
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Fig. 12. Distance distribution to lexico-
graphic model computed by the variance
method.
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Fig. 13. Distance distribution to lexico-
graphic model computed by the max-min
method.

6.3 Discussion

In the visualization studies where we observe a strong lexicographic bias some of
the parameters are consequently of lesser importance. One of the lesser param-
eters, especially for the foot dataset studies, is the screen resolution in pixels of
the rendered image. Hence, it does not pay off in terms of perceived quality of
rendered image to optimize (increase) resolution. This is a relevant insight since
increasing the resolution is costly in terms of processing time and memory.
For the IT skills study we do not observe a strong lexicographic bias. This can
be interpreted as none of the five different skills categories should be neglected,
i.e., all these categories can be important for professional success or at least offer
interesting professional opportunities.

7 Conclusion

We have developed methods to measure a lexicographic bias in linear conjoint
analysis models and we also showed how to derive strict lexicographic preference



models from linear conjoint analysis models. There is some resemblance with
general dimension reduction techniques, like principal component analysis. In a
sense our methods detect “principal parameters”.
We proved the applicability of our methods on data from two user studies. In
the data sets from our first study that we had assessed to measure perceived
quality of volume rendering algorithms our methods predicted a strong lexico-
graphic bias. This observation was confirmed by the fact that the strict lexi-
cographic models fared not much worse than their underlying linear conjoint
analysis model on these data sets. In our second study our methods observed
a lack of lexicographic bias (all parameters need to be considered “principal”).
This was confirmed by the poor prediction rate of the derived strict lexicographic
models compared to the linear conjoint analysis model.
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