Preference Learning from Qualitative Partial
Derivatives

Jure Zabkar, Martin MoZina, Tadej JaneZ, Ivan Bratko, and Janez Demsar

University of Ljubljana, Faculty of Computer and Information Science
Trzaska 25, SI-1000 Ljubljana, Slovenia
jure.zabkar@fri.uni-1j.si

Abstract. We address the problem of learning preference models from data con-
taining implicit preference information. The information about preferences is ex-
pressed as a result of a decision or action in a given state in context of other
attributes. We propose an algorithm that observes the change of probability of
a target class (desired result) w.r.t. the change in the values of the attribute de-
scribing the decision or action. We generalize the notion of a partial derivative by
defining the probabilistic discrete qualitative partial derivative (PDQ PD). PDQ
PD is a qualitative relation between the target class ¢ and a discrete attribute,
given as a sequence of attribute values a; in the order of P(c|a;) in a local neigh-
bourhood of the reference point. In a two stage learning process we first compute
PDQ PD for all examples in the training data, and then generalize over the entire
data set using an appropriate machine learning algorithm (e.g. a decision tree).
The induced preference model explains the influence of the attribute values on
the target class in different subspaces of the attribute space.

1 Introduction

The typical task of preference learning is to induce models for prediction of preferences,
based on learning data which includes descriptions of examples and their preferences.
Consider, for example, a flight carrier desiring to predict the food preferences of their
passengers. John, a white middle-aged male from Wales, might prefer non-vegetarian
food over vegetarian over snacks over drink-only service. Preference learning general-
izes such cases into models.

Actual data often does not look like this. Passengers, for instance, are not asked
which food they prefer but rather whether they were satisfied with what they were given
or not. We may know that John, a white male from Wales, age 56, who was given veal
and rice topped with a delicate mustard sauce, called it a good meal, while Jack, a white
middle-aged male from Scotland did not appreciate the pretzels and sparkling water he
was provided on his flight. In this paper we present an algorithm for generalizing the
preference relations from this kind of data. We assume the learning examples described
by discrete attributes (gender, age, type of food) and classified into ordered classes
(disliked, OK’d, liked the food). The algorithm can estimate the preferences for each
example with regard to each attribute. For instance, it can tell us that John, the white
middle-aged man from Wales, prefers non-vegetarian over sweets over vegetarian over
drink-only:

drink-only < vegetarian < sweets < non-vegetarian.

Other attributes can also be used to derive the preferences. For instance, we may learn
that white middle-aged inhabitants of Wales who are given vegetarian lunch are more
likely to be satisfied with it if they are female. This is a sex-preference relation for a
certain combination of attributes. Or, for instance, it can tell us that the satisfaction of
white middle-aged men with pretzels does not depend on whether they are Scottish or
Welsh, which can be seen as ethnic preference (or indifference) for a certain kind of
food.

Our venture point in development of the presented algorithm is qualitative mod-
elling. A branch of qualitative modelling considers learning qualitative models from
numerical data [4,25,26]. It is a technique similar to regression modelling, except that
instead of numerical predictions it predicts the direction of change (increase, decrease,
no change) of the target variable. Such models are preferred over regression models
when exact numerical models are difficult to obtain or difficult to use due to unreliable
measurements, and, in particular, when the task is to predict the effect that a change in
input variables will have on the observed variable. For instance, a qualitative model may
describe the conditions under which a decrease of interest rates will stimulate invest-
ments and how will this affect the unemployment rate. While exact numerical models
for this problem are elusive, qualitative relations between these variables may be easier
to describe.

In this paper we extend this type of reasoning to categorical domains. We describe
an algorithm Qube [24] for calculating qualitative preferences, a type of qualitative
models describing the influence of a categorical (e.g. nominal) variable on a target class
probability. Instead of dealing with direction of change, we rank attribute values so
that the probability of the target class increases. By ranking, we drop all numerical
information (probabilities). Finally, as we generalize over the entire data set, the induced
qualitative model describes the conditions under which certain attribute values have
greater/lower influence on the target class probability.

2 Methods

We will first provide a definition of probabilistic discrete qualitative partial derivatives
based on conditional probabilities of the target class given the attribute values. The
computation of these probabilities from data requires selecting proper subsets of ex-
amples, which we will describe next. Finally, we show how to combine the computed
probabilities into partial derivatives and use them to induce qualitative models.

2.1 Probabilistic discrete qualitative partial derivative

Derivative of a function f(z) at a certain point xg, f’(xo), tells us, informally, the
change of the function value corresponding to a certain (small) change of the value of
the function’s argument, i.e.

f(xo 4+ Az) — f(xo) = f'(x0) Az (D

For functions of multiple arguments, e.g. f(x1, z2,...,z,), we compute the derivative
w.r.t. each argument z; separately and denote it by 9 f/dx;.

Qualitative derivatives are similar to ordinary derivatives except that they give only
the direction of change, that is, whether the function will increase or decrease when its
argument increases. Qualitative derivative of a function is positive (negative, zero) if
the continuous derivative is positive (negative, zero),

d0f _ Of

Bor sgn%. 2)

Now consider a multivariate distribution which assigns a probability y to each ele-
ment of Cartesian product of A; X As x. . .xX.A,,. In machine learning, (a1, as,...,a,) €
A1 x Az x ... x A, can be values of discrete attributes Ay, Ao, ..., A, describing an
example (we will call this example a reference example), and y is the probability that
such an example belongs to some target class c,

y =p(clay,az, ... an). 3)

Recall that qualitative derivative of f w.r.t. z; computed at (x1, xa, . . . , x,) tells whether
a certain change of x; will increase or decrease the function value if other argu-
ments remain constant. Let the probabilistic discrete qualitative partial derivative at

(a1, ...,ay) with respect to A; tell whether a change of value of the attribute A; from
a; to a} will increase or decrease the probability of the target class:

0

G) =

1 - Wg 7

+, plelar, ... ai, ... a,) <plclar,...,a;, ... ap) “4)

o, plclar,...,ai,...,an) =p(cla,...,al, ..., an)

=, plelar, ... a5 .., a,) > plclay, ... ak, ... an).

Let us define a partial order on set A;, with respect to fixed values of a; for all j # ¢

a; < a <
< plelar, ..., ai, ..., an) <p(ca,...,al, ... an) 5)

This allows us to rewrite (4) as

0uf ez
alv"'van)_ o, G; =4a

(6)

. /
004; 1 a; — a

The derivative 9, f /0o A; : a; — a), for any pair a; and aj can thus be described by a
partial ordering of attribute values .A;.

2.2 Computation of conditional probabilities

To compute the derivative we have to estimate the conditional probability p(c|ay, . . ., a,)
at a single point (ay,as,...,a,) from data sample. This probability cannot be esti-
mated directly, for instance, by relative frequencies, since there may be only a few or

even no examples in the data which match the condition part. We also cannot use a
naive Bayesian method since it would reduce the PDQ PD to comparison of p(c|a;)
and p(cla}), cancelling out all the terms corresponding to the values of other attributes.
This is easily explained: the naive Bayesian assumption of conditional independence of
attributes given the class implies that the derivative 0, f /0o A; : a; — a; is constant on
the entire attribute space.

The problem requires a semi-naive Bayesian approach. We will replace the condi-
tion in p(clay, ..., a,) with a relaxed condition D C {ay,as,...,a,}, where D will
include only the attribute values which are conditionally dependent on a; given the
class. Ignoring the other, conditionally independent values do not change the computed
derivative (see the proof in Appendix).

To construct the set of conditions D we will use a greedy approach: we start with
an empty set D and iteratively add the most dependent value. Let e; represent an event
that attribute A; on a certain example has a value a;. Let event v represent values of
attribute A; on an example (v € 4;). We need to test the hypothesis that e; and v are
conditionally independent given the class and a set of existing conditions D (that is,
knowing the class of an example and knowing that the example satisfies D, the proba-
bility distribution for values of A; is independent of whether the value of j-th attribute
equals a; or not). In each step of the algorithm we test the dependence between v and
e;, find e; which most strongly violates the independence and add the corresponding
a; to D.

The independence is tested using the standard x? test. Separate tables with 2 x
|A;| cells are constructed for class ¢ and its complement. We compute the expected
absolute frequencies for the first table as n(c, D)p(a;|c, D)p(v|c, D) and n(c, D)(1 —
p(ajle, D))p(v|c, D), where v € A; and n(c, D) is the number of examples in class
¢ which satisfy the conditions D. Frequencies for the complement of ¢ are computed
analogously. The sum of x? statistics for both tables is distributed according to 2
distribution with 2(|.4;| — 1) degrees of freedom.

For each a; we compute its corresponding p-value and select the one with the lowest
value. We stop the selection procedure when the lowest p-value is above the specified
threshold or when the number of examples matching the conditions D falls below the
given minimum. This is needed to ensure the reliability of 2 statistics and of estimated
conditional probabilities. Our use of p-value does not require adjustments for multiple
hypotheses testing since the p-value is used only as a stopping criteria and not to claim
the significance of the alternative hypothesis.

After choosing a set of conditions D, we compute p(c|v, D) for all v € A; using
relative frequency, Laplace estimate or m-estimate [6] on examples matching D.

Note that the x? test is performed over all values of A; and not only a; and a’. This
lets us use the same set of conditions D for all derivatives with respect to A; at a certain
reference example and ensures that probabilities p(clas, . . ., a;, . .., ay,) forall a; € A;
are comparable and thus useful for defining a partial ordering of a;.

For another interpretation of this procedure, consider the definition of partial deriva-
tive of a continuous function:

of . i+ hyxo, .) — (o, @0,)
——(z1,...,2,) = lim .
3x1 h—0 h

)

When computing the derivative w.r.t. x1, we subtract the function value in two points
where all arguments except x; are the same. If the function value at point (z1, ..., z,)
does not depend on, say, x2, we could use different value of x5 in the two terms. Omit-
ting the values from (4) is similar to that: the x? test is used to determine whether
ignoring the difference between a; and other values of the attribute A; will affect the
computation or not.

The proposed greedy procedure may seem naive, yet it works well in practice. We
must also keep in mind that the selection of attributes needs to be fast since we have to
run it for each point in which we compute the derivative, which rules out any advanced
search for sets of dependent values.

2.3 Computation of derivatives

The partial order of .4; is determined by the order of the corresponding probabilities
as defined in (4). To handle noisy data we will however treat two probabilities (and
the corresponding values of A;) as equal if they differ for less than a user-provided
threshold.

For this we use hierarchical clustering of values with average linkage [23] using
the difference of probabilities as distances. The clustering is stopped when the distance
between the closest clusters is greater than 0.2.

For example, let A; be a five-valued attribute with values v; to vs. Probabilities
p(c|v;, D) for these values equal 0.1, 0.2, 0.3, 0.5 and 0.6, respectively. Let the merging
threshold be 0.2. We recognize v; and vy as equivalent and assign them the average
probability of (0.1 + 0.2)/2 = 0.15. Next we merge v4 and vs, the average probability
is 0.5 + 0.6 = 0.55. Finally, we merge v; and vy with vs; the average probability is
(0.1 4 0.2+ 0.3)/3 = 0.2. We then stop since the difference between p = 0.2 (v to
vg) and p = 0.55 (v4 to v5) exceeds the threshold of 0.2. The resulting partial ordering
OfAi ISV = vy = V3 < Vg = VUs.

2.4 Induction of preference models

To induce a preference model with respect to a certain attribute A;, we first compute the
PDQ PD for the entire learning set: for each example, we compute the set of dependent
values D and find the total ordering of attribute values A; as explained in the previous
two sections. We replace the original class labels with partial derivatives (that is, the
total ordering) and induce a model for predicting the ordering. In principle, any learning
algorithm can be used for this task.

3 Experiments

We will first show a toy experiment on the Titanic data set from UCI [13] repository.
The second, more complex experiment will be conducted on a data set obtained from a
billiards simulator.

Conditional probabilities for both are estimated using the m-estimate [6] with m =
2. We use a threshold of 0.2 for merging attribute values. Our reimplementation of the

C4.5 algorithm [9] is used to obtain qualitative models describing the relation between
the target class and each attribute separately.

3.1 Titanic

Titanic data set consists of 2201 examples described by three attributes, status (first,
second, third, crew), age (child, adult) and sex (male, female), and a class survived
(ves, no). We selected target class survived = yes and for each passenger computed
the preference (with respect to survival) regarding the status. Finally, we used C4.5 to
learn the preference model over the entire data set. Each passenger’s status preferences
express the ordering of the attribute values in which the probability of surviving is
increasing.

For adult males, the probability of survival does not depend upon their status, there-
fore there is no status preference with respect to survival. For others, the probability is
the smallest in the third, and thus “unpreferred” class. For women and boys, there is
no difference between the other classes, while girls were more likely to survive in the
second than in the first class, and should thus prefer the former. Based on the model, if
the goal is to survive the sinking, the passenger’s preference should be not to travel in
the third class, and girls should, specifically, prefer the second class.

female male

adult child adult child
third<crew=ﬁrst=second| | third<first<second | | crew=first=second=third | |third<ﬁrst=second

Fig. 1: Preference model for surviving induced from Titanic data set.

3.2 Billiards

Billiards is a common name for table games played with a stick and a set of balls, such
as snooker or pool and their variants. The goals of the games vary, but the main idea is
common to all: the player uses the stick to stroke the cue ball aiming at another ball to
achieve the desired effect. The friction between the table and the balls, the spin of the
cue ball and the collision of the balls combine into a very complex physical system [1].
However, despite of its complexity, an amateur player can still learn the basic principles
of how to stroke the cue ball without knowing much about the physics behind it. In this
case study we will use our method to induce a simple model, which could be used by a
human player, for ranking shot types in different billiards positions.

o - 3
* O *
. ® .
©
. - o
\ * * * * * *)

Fig. 2: Blocking the strokes. Ball S blocks a direct shot while balls L and R block left and right
shots respectively.

Our goal is to learn shot preferences in different circumstances from simulated data.
Although it is possible to pocket the black ball with several different type of shots, some
shots are more appropriate than others thus increasing the probability of a successful
shot. For example, if a hole, a black ball and a cue ball are collinear, a direct shot is
preferred over hitting a rail first because it is much more difficult to correctly estimate
the reflection angles so that the black ball would pocket. However, in the presence of
other balls which may present an obstacle for a direct shot, a rail-first shot may be
preferred.

We consider billiards positions with a cue ball (white colour), a black ball and three
optional balls (L, S, and R) that may present an obstacle. The balls positions are fixed
as shown in Figure 2.

There are several different types of shots in the game of billiards [1]. For the sake of
simplicity, we will only consider direct shots and rail-first shots. In the former, the cue
ball directly hits the black ball, without hitting anything else in between. In the latter,
the cue ball first hits the rail (also called cushion) and only then the black ball. In our
study, we defined 4 possible actions a player can make: strong direct shot, weak direct
shot, left rail-first shot and right rail-first shot. Strong and weak direct shots (Figure 4a)
differ in the force applied by the player, which affects the initial velocity of the cue ball.
The difference between left and right rail-first shots is shown in Figures 4b and 4c. In
the left-rail-first shot, the white ball will pass the black ball on the left, hit the rail, and
then hit the black ball. Similarly, in the right-rail-first shot, the white ball will first pass
the black ball on the right, hit the rail, and then hit the black ball.

We created a data set of 1000 shots (i.e. learning examples), where each example is
described by the following four attributes:

S
/ yes
L L

rRail < IRail < wDir < sDir IRail = rRail < wDir < sDir R rRail = IRail = wDir = sDir

N

sDir = wDir < rRail < 1Rail rRail = sDir = wDir < 1Rail

Fig. 3: The induced preference model suggesting the player the best action regarding the situation
of the balls on the table.

S: whether the ball S blocking a straight shot was present (values:yes/no),
L: whether the ball L blocking a left shot was present(values:yes/no),

R: whether the ball R blocking a right shot was present(values:yes/no),
ShotType: the shot type (values:sDir,wDir,IRail,rRail),

and the class variable black in pocket with values yes and no. The goal (target class)
in our method is thus ’black in pocket = yes’, namely, whether the shot forced the
black ball into a pocket. The attribute values of each single example were randomly
selected, while the value of the class was determined using the billiards simulator [22].
Each shot in the simulator is defined by: shot direction, stick elevation, shot velocity
and shot follow. The most important property of a shot is its direction, as it has the
dominant effect on the direction of the black ball after it is hit by the white ball. First, we
computed the optimal stroke direction opAng that results in pocketing the black ball.
However, to account for human imprecision, we added uniform noise in the interval
[—0.2 deg, 0.2 deg]. Therefore, the value of stroke direction in the simulator is set to a
random value selected from the interval [opAng — 0.2, opAng + 0.2]. We would expect
that more difficult shots are more prone to changes in the optimal setting. Similarly,
other properties of the shot were randomly chosen from specified intervals. The stick
elevation was from [0, 5] and the shot follow from [-0.1, 0.1]. The shot velocity was
chosen from [.1, 2] for weak shots and from [3, 4] for strong shots.

We again used the C4.5 algorithm to obtain a qualitative model. The induced pref-
erence model is shown in Fig. 3. The interpretations of leaves of the tree are as follows:

— S =no A L = no: Balls S and L are not on the table. In this case, strong direct
shot is preferred over weak direct shot since the velocity of the black ball may not
be sufficient for the black ball to reach the pocket using the weak shot. A weak
shot is preferred over left rail-first shot which is preferred over right rail-first shot.
In general, rail-first shots are less successful than direct shots due to distortions
caused by cue ball hitting the rail. However, left rail-first shot is usually better since
the path of the ball is shorter than the path in the right rail-first shot. It is irrelevant
whether ball R is present or not because it can only block the right rail-first shot
which has the lowest preference in any case.

S = no A L = yes: Ball L is blocking the left rail-first shot which makes both
direct shots preferred over the rail-first shots. The preference of direct shots is the
same as above while both rail-first shots are equally preferred.

S =yes AL =noA R = no: Ball S is blocking direct shots which makes both
rail-first shots preferable and both direct shots equally bad. Left rail-first shot is
preferred over the right one for the same reason as above.

- S =yes ANL =noA R = yes: Balls S and R are blocking the shots. The left
rail-first shot is preferred over all other shots since it is the only open shot.

S =yes A L = yes: Balls S and L are blocking both direct and left rail-first shots.
There are no shot preferences since all shots are equally difficult.

The induced model conforms with the expert opinion and common sense.

4 Related work

Preference learning [10,16,3] considers the problem of learning a preference model
given learning examples as well as the preferences [2,7,5]. Our approach starts earlier
and calculates the preferences for each learning example from data. While one could
continue by using standard preference learning approaches [7,5], we use simple ma-
chine learning algorithms and treat preferences as values of a new class variable. Theo-
retically, it is possible that the number of class values exceeds a reasonable amount but
it can be practically very well controlled by setting the threshold parameter (for join-
ing the values) and the size of the neighbourhood of the reference example (a kind of
smoothing the data).

The motivation for our work comes from the field of qualitative reasoning where
Qube can be used for learning qualitative models from categorical data. Qualitative
reasoning has been mostly concerned with qualitative physics [8,19,20,12,11]. In these
works the model was provided by an expert and then used in qualitative simulations.
There are only a few algorithms for automated induction of such models [17] and even
these are limited to learning from numerical data [4,25]. There are, to the best of our
knowledge, no algorithms for learning qualitative models from categorical data.

An important part of our method deals with relaxing the strong independence as-
sumption of naive Bayesian approach. There exist a number of methods for this purpose,
yet none fits our context. Kononenko introduced semi-naive Bayes [18] and Langley
and Sage [21] proposed Selective Bayesian Classifier, a variant of the naive method
that uses only a subset of the attributes in making predictions. Since their algorithm is
only searching for subset of attributes that yields highest classification accuracy, it can
not reveal attribute dependencies. Friedman and Goldszmidt introduced tree augmented
naive Bayes (TAN) [15] which allows for attributes having another attribute as a parent
in the bayesian network representation.

A lazy algorithm, named Locally Weighted Naive Bayes (LWNB) is proposed in [14].
LWNB relaxes the independence assumption by learning local models at prediction
time. The models are learned on weighted set of training instances in the neighbour-
hood of the test instance. In LWNB, the test example neighbourhood is chosen using
the k-nearest neighbours algorithm. A step further is the Lazy Bayesian Rules (LBR)
algorithm [27]. LBR search of the local neighbourhood is not based on a global metric.

Instead, for each test example, LBR uses a greedy search to generate a Bayesian rule
with an antecedent that matches the test example. The basic difference between these
approaches and ours is that these methods are concerned with optimizing the accuracy
of predictions and not with estimations of the chosen attribute’s influence on the target
class probability.

5 Conclusion

We have presented a novel approach to learning preference models. Its specific is that
it learns the preference of values of an attribute, which leads to the preferred class in
the context of other attributes. That is, in a given situation (as described by values of
attributes) it tells which value of a particular attribute should increase the probability of
the preferred class, where the preference of classes is known, e.g. to survive or to reach
the goal of the game.

We demonstrated the method on the standard toy data set about Titanic and a larger
size problem of choosing the optimal shot in the game of billiards. While not offering
(and not expected to offer) any great new insights into the game, the method resulted in
a model which is intuitively obvious and correct.

This work was supported by the Slovenian research agency ARRS (J2-2194, P2-
0209).

Appendix

We need to prove that the ordering of probabilities p(c|ai, ..., a;,...,a,) does not
change if we omit from the conditional part the values which are conditionally inde-
pendent from a; given the class c. Let us first redefine the PDQ PD using conditional
log odds ratios.

9o f

m(al,...,an) =

®)

_lnp(c\al, ce Uy ay)/p(Elag, .. ag, . ,an))
plclay,...,al,...,a,)/p(Clay, ... a5 ... an)"

where ¢ is the complement of the target class c. It is easy to see that (8) is equivalent

to (4).

Let us without loss of generality assume that values a; to ay, k < 7 are conditionally
independent of values a4 to a,, given the class. Applying Bayesian rule, using the
independence assumption, cancelling the identical terms and reapplying the Bayesian
rule turns (8) into

9o f

sgn(

Bohs 0 a] e an) =
1 - 7
) i ©)
sen(—In p(clak4q, .- ., a;-, ooy an)/p(Claksa, - - ,a}-, cey))
ple|apsty - sy an)/p(Claks1y . as, ... an)
This is equivalent to (4) without values a; to ay. Therefore, p(clay, ..., a;, ... a,) <

plclar, ..., ak, ... an) <= p(claks1, -y Qiyeeoyn) < D(C|Ahit, - Al ey an).

References

AW

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

. Alciatore, D.G.: The Illustrated Principles of Pool and Billiards. Sterling; 1st edition (August

2004)

Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intel-
ligence Research 21, 2004 (2003)

. Brafman, R.I.: Preferences, planning and control. In: KR. pp. 2-5 (2008)
. Bratko, I., guc, D.: Learning qualitative models. Al Magazine 24(4), 107-119 (2003)
. Brochu, E., de Freitas, N., Ghosh, A.: Active preference learning with discrete choice data.

In: Advances in Neural Information Processing Systems (2007)

. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: ECAI pp. 147—

149 (1990)

. Chu, W., Ghahramani, Z.: Preference learning with gaussian processes. In: ICML *05: Pro-

ceedings of the 22nd international conference on Machine learning. pp. 137-144. ACM, New
York, NY, USA (2005)

. de Kleer, J., Brown, J.: A qualitative physics based on confluences. Artificial Intelligence 24,

7-83 (1984)

. DemSar, J., Zupan, B., Leban, G., Curk, T.: Orange: From experimental machine learning to

interactive data mining. In: PKDD. pp. 537-539 (2004)

Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111-136 (2004)
Forbus, K.: Qualitative process theory. Artificial Intelligence 24, 85-168 (1984)

Forbus, K.: Qualitative reasoning. CRC Press (1997)

Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

Frank, E., Hall, M., Pfahringer, B.: Locally weighted naive Bayes. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI 2003) (2003)

Friedman, N., Goldszmidt, M.: Building classifiers using Bayesian networks. In: Proceedings
of the thirteenth national conference on artificial intelligence. pp. 1277-1284. AAAI Press
(1996)

Fiirnkranz, J., Hiillermeier, E.: Preference learning. KI 19(1) (2005)

Klenk, M., Forbus, K.: Analogical model formulation for transfer learning in AP physics.
Artificial Intelligence 173(18), 1615-1638 (2009)

Kononenko, I.: Semi-naive bayesian classifier. In: EWSL. pp. 206-219 (1991)

Kuipers, B.: Qualitative simulation. Artificial Intelligence 29, 289-338 (1986)

Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
MIT Press, Massachusetts (1994)

Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence. pp. 399—406. Morgan Kaufmann (1994)
Papavasiliou, D.: Billiards manual. Tech. rep. (2009), http://www.nongnu.org/billiards/
Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships.
University of Kansas Scientific Bulletin 28, 1409—1438 (1958)

Zabkar, J., , MoZina, M., Bratko, I., Demsar, J.: Learning qualitative relations from categor-
ical data. In: Proc. of the 24th International Workshop on Qualitative Reasoning. Portland,
USA (2010)

Zabkar, J., Bratko, 1., Demgar, J.: Learning qualitative models through partial derivatives by
Padé. In: Proc. of the 21th International Workshop on Qualitative Reasoning. Aberystwyth,
U.K. (2007)

Zabkar, J., Mozina, M., Bratko, 1., Demsar, J.: Discovering monotone relations with padé.
In: ECML 2009 workshop: Learning Monotone Models From Data (2009)

27. Zheng, Z., Webb, G.1,, Ting, K.M.: Lazy Bayesian rules: a lazy semi-naive Bayesian learn-
ing technique competitive to boosting decision trees. In: Proc. 16th International Conf. on
Machine Learning. pp. 493-502. Morgan Kaufmann, San Francisco, CA (1999)

.

(a) Direct shot.

[- 9
Y
/ "I:
. % .
0
(b) Left rail-first shot.

. . . . - .

(c) Right rail-first shot.

Fig. 4: Examples of different type of shots used in our case study.

