Towards Preference Relations in Recommender
Systems

Armelle Brun!, Ahmad Hamad?, Olivier Buffet®, and Anne Boyer!

! LORIA-Nancy Université
{armelle.brun, anne.boyer}@loria.fr,
2 Sailendra SAS
ahmad.hamad@loria.fr
* LORIA - INRIA
olivier.buffet@inria.fr
615, avenue du jardin botanique, 54506 Vandoeuvre les Nancy

Abstract. Collaborative filtering-based recommender systems exploit
user preferences about items to provide them with recommendations.
These preferences are generally ratings. However, choosing a rating is no
easy task for any user; the rating scale is usually reduced and the rating
values given by the users may be influenced by many factors. The rat-
ings are thus not completely trustworthy. This paper is a first attempt
at studying the expression of preferences in collaborative filtering under
the form of preference relations instead of ratings. When using preference
relations, users are asked to compare pairs of resources. We propose new
measures to compute recommendations using preference relations. First
experiments have been conducted on a state of the art corpus of the rec-
ommender systems domain and show that this new approach compares
with, and in some cases improves the classical one.

Keywords: Preference relations, Recommender systems, Collaborative
filtering

1 Introduction

The democratization of the Internet and network technologies has resulted in a
large increase in the volume of information easily accessible to everybody. This
increase has been an advantage during its first years as the information access
became generalized. However, this volume of information is now so huge that
users cannot get easily the information they search, they are drowned in the mass
of resources. This irrefutable overabundance has thus the consequence to lead
to unsatisfied users. Thus a critical issue of the current Web applications is the
incorporation of mechanisms for delivering information that fits users’ attempts.

Recommender systems (RS) are such a mechanism, they aim at recommend-
ing items to users. These items are linked to the users’ expectations and tastes.
The use of recommender systems results in a decrease of the time spent by
users in their search. Moreover, recommender systems suggest users pertinent

II

items that they would not consult on their own initiative (they may not know of
the existence of such items). Users’ satisfaction is thus increased. An item (also
called a resource) can for example be a web page, a book, a movie, music, etc.
Many websites have already integrated recommender systems, such as amazon *
(books), or last.fm ® (music).

To recommend items to a given user, the system uses the user’s profile, which
represents his preferences. To build such a profile, the system has to collect
information about the user, either directly (e.g. by using a form) or indirectly
(by analyzing traces) [9, 10].

Recommender systems generally fall into three categories, based on the in-
formation they use to perform recommendations: content-based systems [15],
that use the semantic content of data, knowledge-based systems [4], that use
knowledge about the active user (for example demographic information [16])
and pre-established heuristics, and collaborative-filtering systems [11], that ana-
lyze user opinions about the items they have consulted. Hybrid recommendation
techniques have also been proposed to take advantage of several of the previ-
ous approaches [16, 3]. The popularity of the collaborative filtering approach has
increased over the last few years.

In this paper we are interested in the collaborative filtering approach. In this
framework, the preferences of users U about items I are known, a preference
being broadly defined as “an ordering relation between two or more items to
characterize which, among a set of possible choices, is the one that best fits
user tastes” [1]. However, these preferences are partially known, as they are
the preferences the users have given to the system; some preferences are thus
missing. Collaborative filtering aims at guessing these missing preferences. In
collaborative filtering, the most common representation of preferences is under
the form of wutilities, i.e. quantitative votes (/ratings) provided by users about
the items. The recommender estimates the votes of the users on the items they
have not seen. We assume in this paper that using votes has several drawbacks
such as impreciseness, lack of robustness. This paper is a first attempt to cope
with these limitations.

We propose to replace utilities by their qualitative counterpart: preference
relations. Instead of expressing a quantitative interest about resources (utilities),
the users express qualitatively their interest about resources. In this preliminary
study, we mainly focus on the decrease in quality of the recommendations when
exploiting preference relations, due to the loss of the quantitative aspect. This
paper presents not only a theoretical but also a first experimental comparative
study of the classical and the preference relations based approaches.

Section 2 presents the classical collaborative filtering approach — based on
utilities — through its three main steps. The following section then discusses
the pros and cons of this approach and introduces preference relations. Then,
Section 4 presents our propositions and adaptations to exploit preference rela-
tions in a collaborative filtering-based recommender system. The next section

4 http://www.amazon.com
% http://last.fm

11T

is an experimental validation of the proposed approach. Last, we conclude and
present perspectives.

2 Classical Collaborative Filtering

Collaborative filtering uses the preferences of a given user v and the preferences
of other users to estimate the unknown preferences of v and thus recommend
resources he/she does not know [2]. These preferences are classically expressed
under the form of votes.

These votes can be viewed as “quantitative” preferences [14] and can be
represented by a wutility function ut : I — R. The resource j is preferred to the
resource ¢ with respect to the utility function ut (noted i <, 7) iff ut(i) < ut(j).

Figure 1-a shows two users’ (u; and wug) utility functions on eight items

{a’aba ¢, daevf7g7h}'

7 U1 U2 7 U U2
al5 5 af - -
b|1 2 b|1 —
cl3 4 cl3 4
dl2 3 dl— 3
el5 5 el— 5
f13 4 fl13 4
g3 4 g3 -
hl1l 2 hi1l 2
a- Two utility functions b- Two utility profiles

Fig. 1. Two utility functions and possible corresponding profiles

In collaborative filtering, the known part of a user’s preferences — which is
generally small — is called the user profile. Figure 1-b shows two utility profiles
corresponding to the utility functions from Figure 1-a. Dashes indicate missing
pieces of information.

To estimate the unknown preferences of a user, two approaches can be used:

— memory-based approach, also called non parametric approach. It exploits
similarities (of preferences) between users [18]. The input of the system is
not pre-processed, the model is made up of the data as it is. This technique
has the advantage to exploit up-to-date information, including the last in-
formation about the user acquired by the system. However, this technique
is well-known to face scalability problems.

— model-based approach, also called parametric approach. In this approach,
the data is pre-processed to build a model [10]. The resulting model not only
requires less memory but is also generally less complex in terms of running
time. However, as the model is pre-computed, this one is less up-to-date than
the one of the memory-based approach.

v

The memory-based approach is the one we focus on.
The memory-based classical collaborative filtering process is divided into the
three following steps:

2.1 Collecting User Profiles

Collecting a user’s profile comes down to asking a user to vote for some resources.
The votes are usually a positive integer value. A resource not voted by the user
can have an implicit null value. These resources can be either proposed by the
system (this selection is called gauge set [12]) or chosen by the user u, for example
during his/her navigation. The resulting information is the user profile.

The system can also automatically estimate the interest of u for the resources
u has seen when navigating (according to the time spent on the pages, if the
user prints the page, the links followed, etc.). This indirect estimation task is
however harder to carry out.

2.2 Computing Similarities Between Users

Once the user profiles are built, the second step computes the similarities sim(u, u’)
between all pairs of users using the users’ profiles. The similarity measures we
consider here have the following properties, for all u,v € U:

— sim(u,v) € [0;1];

— sim(u,v) = sim(v,u);

— sim(u,v) = 1 if and only if v and v have the same preferences on common
items;

— sim(u,v) = 0 if v and v have no common items or have opposite preferences
on common items.

Let u; and us be two users with profiles on two subsets I; C I and I, C I.
Several measures can be used to compute similarities between users [5]. We
choose here the well-known cosine measure [19], that is computed by:

Zie]lﬂlz Uy, (Z> Uty (2)

- Vo ien (02 [e, b (i)

(1)

COSyt (Uty, , Uy,

This measure takes into account:

— the proportion of items present in both profiles, and
— the distribution of the votes on the items.

In this case two users u; and us will be considered as having identical profiles if
and only if they are “co-linear”, which means that

- 11 = IQ and
— there exists a constant k& € R such that, for all i € I, ut,, (1) = k - uty, (7).

2.3 Recommending to a User

To estimate the utility of a resource i for a user u, the classical approach simply
computes the weighted average of the utilities of this resource among the neigh-
boring users (those highly similar to u). In this average, the vote of each user u’
is weighted by the similarity between u and u':

~ weu. . stm(u,u') - uty (1)
uty (i) = 2 Ui : 7 (2)
Zu’eUi,u,k sim(u, u')

where U; ,, 1 is u’s k nearest users that have a known preference for ¢. In this
paper, the similarity measure is instantiated by the cosine measure (see sec-
tion 2.2).

Once these estimates are computed, the resources that have the highest esti-
mates are recommended to u. We can fix a priori either the number of resources
to recommend, for example 10 resources, or the minimal utility value for a re-
source: a resource with a utility value above this threshold will be recommended.

3 From Utilities to Preference Relations

3.1 From Utilities

The possible values for a vote (utility) in classical collaborative filtering are
positive integer values, and the scale of possible votes is generally reduced, thus
imprecise (the scale of possible values may vary depending on the application
[13]). Moreover, a user may prefer one item over an other item, but may have
no choice but to give the same vote due to the limited rating scale. For example,
let a user who has liked an item and has assigned the maximal value to this
item. This user then wants to rate a second item that he has preferred over the
first one. This user has no choice but to also give the maximal rating value.
In addition, the context, the previously rated resources, etc. may influence the
choice of the rating. A user in a bad mood tend to lower ratings compared to
users in a good mood.

The resulting votes may thus be imprecise and not reliable, which limits the
quality of the computed similarities and therefore the quality of the recommen-
dations.

Let us notice that the objective of a recommender system is to provide a
user with a list of items this user does not know yet, the items being ordered
according to the expected preferences of the user. In other words, the objective
is to complete the top of the user’s preference relation. Thus there is no explicit
need to estimate quantitative information as provided by classical approaches
through the estimated utilities.

3.2 To Preference Relations

Based on the drawbacks resulting from the use of votes to express user pref-
erences, we propose here to replace utility functions by preference relations. In

VI

this case, the user is not asked to vote for resources but to express a qualitative
interest about the resources he/she has already seen. For example, the user will
say “I prefer resource j to resource ¢’ rather than “I like this item and I give it
ad”.

We put forward the idea that a preference relation can be more appropriate
than votes:

— First, in a preference relation the discretization problem is avoided. Indeed,
choosing a vote value for a resource among a reduced set of integer values is a
delicate task; in the contrary comparing two resources is a more robust task.
We can ask here about the case of items not directly comparable. We suppose
here that this case never happens. First, we focus on systems that deal with
items belonging to the same category (e.g. movies, music, books, etc.), this
comparability problem is thus mainly avoided. Second, this question can also
be asked when assigning utilities about items that do not belong to the same
category. In that case, the two rating scales are different, but are considered
as if they were identical.

— Second, [7] shows that making preference judgements is faster than absolute
judgements (ratings). We can thus hope that using preference relations will
lead to a higher participation rate of the users.

— Third, this approach will allow to consider two users as similar when they
order resources in the same way even if they do not rate these resources
identically or co-linearly.

However, one of the drawbacks of using preference relations is the polynomial
increase in the number of comparisons needed in a test collection [6]: placing a
resource here requires comparing it to numerous other resources, whereas rating
one resource was enough. Moreover, even if recommandation only asks for a
qualitative result, it is presumably better to use utility functions as input —
rather than preference relations — as it theoretically contains more information,
that is, assuming the ratings are reliable. Nevertheless, as previously mentioned,
it is more difficult for a user to provide ratings than comparisons. Moreover,
these ratings may be unreliable. In a view to make the user task easier, it thus
seems pertinent to investigate the use of preference relations for recommender
systems.

3.3 Preference Relations in Detalils

Let us now formally define preference relations before introducing their use for
collaborative filtering.
A preference relation is a binary relation ¢ < j on I that is:

— reflexive: Vi € I, i < ;
— transitive: Vi, j,k € I, i 2 j)AN (G 2k) = (i 2 k);
— total/complete: Vi, j € I, (i <j)V (j =21).

We can notice that, with this definition:

VII

— “j is strictly preferred to i” is written (i < j) A —=(j < i) and is noted i < j.
— “ and j are equivalent” or “the user does not mind between ¢ and j” is
written (i < j) A (j = i) and is noted i ~ j.

Given two elements i, j there will be three possibilities: i < j, j < 4, i ~ j
and exactly one of them has to be true (the relation being total).

It is important to notice that all the resource pairs (4,j) are comparable.
There is no non-determinism. If all the resource pairs are supposed to be com-
parable by a given user, this does not mean that the user knows these resources
and knows which one he/she prefers. In other terms, even though the relation
is total, the user (and the system) only has an incomplete view of it: the user
profile. However, this means that, if the user knows all the resources, he/she
knows which one is preferred.

Given all these properties, a preference relation can be represented in a sim-
plified way (we do not consider the relations that can be deduced by transitivity)
under the form of a strictly ordered chain of equivalence classes.

When dealing with a user profile, an unknown information will be noted
(17, 7) in the case of a “preference relation” profile, and ut, (i) =? in the case
of a “utility” profile.

Figure 2-a shows a preference relation. Figure 2-b shows a profile compatible
with this preference relation. Let us notice that, in Figure 2-b, (1) the resource g
is not comparable neither to a, nor to e, nor to ¢, and (2) there is no information
regarding f and h.

(a~e) (a~e)
! !
(c=fx~g) (@ (9)
1 NS
(d) (d)
1 7
(b~h) (b)
a- A preference relation b- A compatible profile

Fig. 2. A preference relation and one possible corresponding profile (an arrow means
“strictly preferred to”)

Given a user u € U, his/her preferences will be noted ¢ <,, j if a preference
relation is used, and wt, (¢) if a utility function is used. We can notice here that
a utility function corresponds to a unique preference relation. In the contrary, a
preference relation < can correspond to several utility functions. Let us suppose
for example that ut “matches” < and that f : R — R is strictly monotonic,
then f(ut) also matches <. So, two users can have different utility functions
but can agree with each other about the resources they prefer. They will thus
have similar preference relations. This is an advantage of the representation with

VIII

preference relations. An example of such a case is presented in Figure 2-a where
the preference relation corresponds to the two utility functions from Figure 1-a.

Some works on recommender systems have exploited preference relations, as
in content-based recommender systems for example. Preference relations have
been used to compute unknown preferences (by using the properties of preference
relations) when content-based approaches could not compute them [17]. In the
frame of collaborative filtering [8] is interested in combining a set of preference
functions (as ratings). This combination results in an ordered set of objects: no
utility value is deduced from this combination step; the result is a preference
relation.

4 Collaborative Filtering using Preference Relations

We focus now on how to exploit preference relations in a collaborative filtering
approach. We choose to exploit the same three steps as in classical collaborative
filtering and to adapt them to exploit preference relations. We now present these
three adapted steps:

4.1 Collecting User Profiles

When preference relations are employed, a user’s profile can also be collected
through question answering. In this case, the system presents resource pairs (i, j)
and then asks which resource the user prefers. There are four possible answers:

— 1 < j item j is preferred over ¢

— j <1 item 1 is preferred over j

— ¢ ~ j the user does not mind between the two items
— 177 the user does not know

Collecting the profile of a user as a preference relation is not restricted to
a predefined number of equivalence classes. A user’s preferences are thus repre-
sented more precisely than with most rating scales.

One problem is the number of questions required to get a full profile. If the
profile contains n equivalence classes, a dichotomic procedure will require, in
the worst case, [logy(n)] questions to add a new resource. Obviously, so many
questions cannot be asked to the users and one may decide to ask a subset of
questions. The resulting profile will be partial but may be sufficient. Choosing the
appropriate questions to ask — each new question depending on the preceding
answers — is a challenging problem.

4.2 Computing Similarities Between Users

Let Z,, be the set of resource pairs (i,j) present in the profile of user u. Let us
also define the function fy, ., (7, j) indicating whether two users u; and us agree
about their preference on the two resources i and j. Given an item pair (i, j), the
value of this function is 1 if the two users u; and us have the same preference

IX

about ¢ and j (the same order) and 0 otherwise. We thus define a cosine similarity
measure adapted to preference relations, this similarity measure is presented in
Equation 3.

cos< (u1,uz)

= > (i)eTinTs Juruz (69)
Ve Funniod) Sy, Fuas ()

_ 2jening, funua(i,7)

N VI |

In this Equation, the numerator represents the number of pairs of resources
where both users u; and uy agree about their preference. The denominator is
the normalization factor.

As for utilities, this definition accounts for:

— the proportion of resource pairs present in both profiles, and
— the distribution of the preferences on the resource pairs.

4.3 Recommending to a User

Recommending resources when using preference relations will rely on two sub-
steps: first completing the preference relation of u, second recommending him
some resources. The completion of the preference relation is a difficult step.

To complete a preference relation, we propose an approach that estimates
the position of a resource in the preference relation of a user u. As in the clas-
sical collaborative filtering approach, similar users (neighbors) u’ are used, the
completion is thus collaborative. We first compute the position of an item 7 in
each neighbor’s profile. Second we estimate the position of ¢ in the profile of u
as the weighted average of the positions of i in the profiles of users u’.

The profile of a user v’ being generally partial, we propose to measure the
position of a resource 7 in the profile of u’ by counting:

31- the number of resources that are strictly preferred to i;
#5; the number of resources (other than i) that are equally preferred to ;
?, , the number of resources that are strictly less preferred than i.

Let us notice that, because a profile is typically incomplete, some resources are
not comparable to ¢, and thus are not integrated into the formulas.
The position of 4 in the profile of ' is thus:

(7] S]
’L/L\t (Z) o _#u’,i + #u’7i
u’ = = .
?,i + #D,i + #?’,i

This formula has several interesting features:

@t (i) € [~1;+1];

— by (i) =0 & #5 = #5;
— uty (i) = +1 < i is the preferred resource of u’;

— uty (i) = —1 < i is the less preferred resource of u’.

We can now use the classical prediction formula (from section 2.3) by ex-

~

ploiting the position of the resource i in the profile of neighbor users u’ (ut,(i)),
instead of their vote on the resource i (ut,(%)):

() — oDy L) it ()
uty (i) = ot :
“ Zulegiyuyk sim(u, u') ’

where U ,, 1 is the set of users v’ in U:

— that have ¢ in their profile, and
— that belong to the set of u’s k nearest neighbors.

Let us notice that the higher the position of a resource, the better its recom-
mendation to the user. Once the positions of resources ¢ have been computed,
the resources with the highest estimated positions are recommended to the user
by following the same principle as in Section 2.3.

5 Experiments

5.1 Experimental Data

Ideally, an experimental comparison between both approaches — “preference
relation” and “utility” — should compare both recommendation processes on
the whole process: collecting user profiles, computing similarity between users
and recommending resources. However, no dataset exists that contains user pref-
erences both under the form of preference relations and utilities. Building such
a dataset is a tedious task that we have not yet carried out. We can thus not
directly compare both approaches.

The classical datasets used in collaborative filtering contain utilities (rat-
ings). We thus decide to use such a dataset to compute recommendations by
using utilities and preference relations. To get the users’ preference relations, we
transform the utilities of the dataset under the form of preference relations. For
each pair of resources ¢ and j rated by a user u, three cases may be encountered:

— the rating of ¢ is lower than the rating of j. In the resulting preference
relation, j will be represented as being preferred over 1.

— the rating of i is greater than the rating of j. In the resulting preference
relation, ¢ will be represented as being preferred over j.

— the rating of i is equal to the rating of j. In the resulting preference relation,
i will be represented in the same equivalence class than j.

XI

Let us notice that when a resource has not been rated, it is not represented in
the preference relation neither.

In that case, we are in the worst experimental conditions to quantify the
contribution of our approach: not only imprecise data is used, as they come
from utilities; but also part of the information is lost when turning them into
preference relations: quantitative information has been transformed to qualita-
tive information. Conducting experiments in these conditions, we do not expect
to increase the quality of the recommendations. However, as presented in the
introduction, we only aim at evaluating the loss in performance when exploiting
only qualitative information to determine if this new approach is promising.

We choose to work on the well-known Movielens® state of the art corpus. This
dataset is made up of a set of user preferences about movies. These preferences
are utilities (votes) that are integer values between 1 (dislike) and 5 (like). The
dataset contains 1682 users, 943 items and 100k preferences. The dataset is
divided into 2 parts, 80% of the data is used to train the recommender system
(the training set) and the 20% left are used to evaluate the approach (the test
set). After the data is converted into preference relations, we can notice that
each resulting preference relation contains at most 5 equivalence classes.

5.2 Similarity Between Users

This section is dedicated to a first evaluation of the interest of exploiting prefer-
ence relations instead of utilities. The figures about the use of utility functions
presented hereafter are considered as state of the art figures and are compared
to those related to the use of preference relations.

In collaborative filtering, the recommender classically estimates missing util-
ities. These estimates are then compared to the utilities (votes) in the test set.
The system accuracy is thus usually evaluated in terms of MAE (Mean Absolute
Error). The lower the MAE value, the better the accuracy.

In this section, preference relations are used only in the first and second step:
the profile collection and the computation of the similarity between users. We
will thus evaluate the quality of the similarity measure when using preference
relations. The classical recommendation step — based on ratings — is used
(Equation 2). It is executed by instanciating sim(u, ') either (1) by cos,;(u,u’)
(the similarity on utilities) or (2) by cos<(u,u’) (the similarity on preference
relations).

The evaluation can be made in terms of MAE as the votes of the test data
are available. The impact of the preference relations on the similarity measure
can be quantified. The accuracies are presented in Table 1.

As expected, the mean error is higher when using preference relations com-
pared to using utilities. However, this increase is lower than 3%. It is thus not
significant. As stated earlier, an increase was predictable as the preference re-
lation profiles are derived from utility profiles by removing (quantitative) infor-

5 http://movielens.org

XII

Table 1. MAE according to the approach used to compute the similarity value

Approach MAE
Utility functions | 0.71
Preference relations| 0.73

mation. The experimental conditions are thus biased. The small loss in accuracy
shows the potential of this new approach.

5.3 Recommending to a User

When using preference relations, no vote should be used, so the recommender
cannot compute or estimate missing votes. The accuracy of the complete system
cannot be evaluated in terms of MAE.

Thus we propose in this section to evaluate the accuracy of the system by
using the precision measure. Precision compares the list of the preferred items
of each user (from the test data) to the ordered list of preferred items computed
by the recommender. Concretely, it computes the ratio between the number
of resources the system judged as being preferred divided by the number of
resources actually preferred by the user.

In this section we exploit preference relations in the whole recommendation
process: when collecting users’ profiles, computing similarity measures and com-
puting recommendations so as to evaluate the accuracy of our approach.

We thus measure, among the user’s preferred resources, the number of re-
sources that are evaluated as preferred by the recommender. This measure is
computed twice: when using utilities and when using preference relations.

The items we consider here to be preferred by a user are the highly rated
ones. On the MovieLens corpus, those preferred resources are rated 4 or 5. We
thus evaluate the precision of our approach on two sets of resources: those rated
5 and those rated 4 or 5. The corresponding precisions are presented in Table 2.

Table 2. Precision of the two approaches

Approach rated 5|rated 4 or 5
Utility functions | 0.52 0.75
Preference relations| 0.51 0.77

From Table 2 we can notice that, on these two sets of resources, both ap-
proaches have similar precisions (the differences are not significant). On the one
hand, the utility approach has a slightly greated precision on the set of resources
rated 5. On the other hand, the preference relation approach is slightly better
on the set of resources rated 4 or 5. No significant loss is observed with this new
approach.

XIII

We can conclude that exploiting preference relations in the whole process does
surprisingly not lead to a decrease in the quality of predictions, although a loss
in information has been obtained when transforming rating data in preference
relations.

To refine our experimentations, we also evaluate the preference relations ap-
proach in terms of ranks. As we are only interested in the ranking quality about
the resources preferred by users, it is not pertinent to use rank correlation mea-
sures such as Kendall Tau. Moreover, in our experiments the resources preferred
by users are equally preferred (they all have a vote equal to 5), no difference
in terms of preference can be made between them, thus classical ranking tests
cannot be used. Thus we propose to evaluate the quality of the ranking in terms
of mean rank. This evaluation will quantify the quality of the recommendation
on the whole set of resources that the users preferred. Let us recall that our
approach is a “position-based” approach. The evaluation in terms of mean rank
is also an evaluation in terms of position, this measure is thus adapted to our
approach. We have computed the mean rank on the set of resources rated 5
by the users in the test set. The study of the mean rank shows that, when us-
ing preference relations, it is 9% lower than with the utility-based approach.
This improvement is significant. The items are thus better ordered. We can thus
conclude that, in term of mean rank, the recommendations computed when us-
ing preference relations are more accurate than the ones from the utility-based
approach.

6 Conclusion and Future Work

This paper presents a new approach to represent preferences in a collabora-
tive filtering-based recommender system. We propose to use preference relations
instead of the classically used ratings (utilities). We have first recalled the utility-
based approach, before discussing why switching to preference relations could be
a good idea. We have then proposed an adaptation of the classical collaborative
filtering in order to exploit preference relations. Preference relations are qualita-
tive preferences whereas utilities are quantitative, thus more informative. Thus,
in this paper we focused on the resulting loss in quality of recommendations, due
to the qualitative preferences. This approach has been evaluated on a state of
the art corpus that has been transformed under the form of preference relations.
It compares with the classical approach (based on utilities) and even improves
significantly performance in terms of mean rank. Exploiting preference relations
to acquire users’ preference is thus a highly promising approach that we will
further investigate.

In a future work, we will first test the hypothesis about robustness and sta-
bility of the preference relations compared to ratings. This test has started, we
are collecting user preferences and votes in various contexts. Second, we will
study the robustness of this new approach by removing some pieces of informa-
tion in the preference relations (Figures 1-b and Figure 2-b) in order to measure

XIV

the evolution of the accuracy and to find the minimal quantity of information
required to perform accurate recommendations.

We will also implement a complete recommendation system, that includes

the tedious task of collecting the users’ preferences under the form of preference
relations. The resulting corpus will allow us to evaluate the actual performance
of our approach.

References

10.

11.

12.

13.

14.

15.

. Brafman, R., Domshlak, C.: Preference handling - an introductory tutorial. Al

Magazine 30(1), 58-86 (2009)

Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the 14th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-98). pp. 43-52. Morgan Kaufmann, San
Francisco, CA (1998)

Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction 12(4), 331-370 (2002)

Burke, R., Hammond, K., Cooper, E.: Knowledge-based navigation of complex
information spaces. In: Proceedings of the 13th National Conference on Artificial
Intelligence (AAAT’96). pp. 462-468. Menlo Park, Canada (1996)

Candillier, L., Meyer, F., Boullé, M.: Comparing state-of-the-art collaborative fil-
tering systems. In: Proceedings of 5th International Conference on Machine Learn-
ing and Data Mining in Pattern Recognition, MLMD’07. pp. 548-562 (2007)
Carterette, B., Bennett, P.: Evaluation measures for preference judgments. In:
Proceedings of the Annual ACM SIGIR Conference. pp. 685-686 (2008)
Carterette, B., Bennett, P., Chickering, D., Dumais, S.: Here or there; preference
judgments for relevance. In: Proceedings of the Annual European Conference on
Information Retrieval (ECIR). pp. 16-27 (2008)

Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4, 933-969 (2003)
Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: The Adaptive Web:
Methods and Strategies of Web Personalization, chap. User Profiles for Personal-
ized Information Access, pp. 54-89. Springer-Verlag Berlin Heidelberg (2007)

de Gemmis, M., Taquinta, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.:
Preference learning in recommender systems. In: ECML/PKDD-09 Workshop on
Preference Learning (PL 09) (2009)

Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave
an information tapestry. Communications of the ACM 35(12), 61-70 (1992)
Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time col-
laborative filtering algorithm. Information Retrieval Journal 4(2), 133-151 (2001)
Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems (TOIS) 22(1),
5-53 (2004)

Mukherjee, R., Sajja, N., Sen, S.: A movie recommendation system - an application
of voting theory in user modeling. User Modeling and User-Adapted Interaction
13, 5-33 (2003)

Pazzani, M., Billsus, D.: The Adaptive Web, chap. Content-Based Recommenda-
tion Systems, pp. 325-341. Springer Berlin / Heidelberg (2007)

16.

17.

18.

19.

XV

Pazzani, M.J.: A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review 13(5-6), 393-408 (1999), cite-
seer.ist.psu.edu/pazzani99framework.html

Perez, L., Barranco, M., Martinez, L.: Building user profiles for recommender sys-
tems from incomplete preference relations. In: Proc. of the Fuzzy Systems Confer-
ence (2007)

Resnick, P., Tacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: An
open architecture for collaborative filtering of netnews. In: Proceedings of ACM
1994 Conference on Computer Supported Cooperative Work. pp. 175-186. ACM,
Chapel Hill, North Carolina (1994), citeseer.ist.psu.edu/resnick94grouplens.html
Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating
”word of mouth”. In: Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’95). vol. 1, pp. 210-217 (1995)

