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Abstract. We consider the problem of learning a user’s ordinal prefegs on
multiattribute domains, assuming that the user’s prefaremay be modelled as

a kind oflexicographicordering. We introduce a general graphical representation
called LP-structureswhich captures various natural classes of such ordering in
which both the order oimportancebetween attributes and ttacal preferences
over each attribute may or may not be conditional on the gadfiether attributes.
For each class we determine the Vapnik-Chernovenkis diimerthe communi-
cation complexity of learning preferences, and the conipleof identifying a
model in the class consistent with some given user-proviaanples.

1 Introduction

In many applications, especially electronic commercs,iinportant to be able to learn
the preferences of a user on a set of alternatives that hashiratorial (or multiat-
tribute) structure: each alternative is a tuple of valuesefach of a given number of
variables (or attributes). Whereas learnmgnericalpreferences ., utility functions)
on multiattribute domains has been considered in varicasagl, learningrdinal pref-
erencesi(e., order relations) on multiattribute domains has been gigsa attention.
Two streams of work are worth mentioning.

First, a series of very recent works focus on the learningrefgoence relations
enjoying some preferential independencies conditionssi?a learning of separable
preferences is considered by Lang & Mengin (2009), whereasipe (resp. active)
learning of acyclic CP-nets is considered by Dimopoubal. (2009) (resp. Koriche
& Zanuttini, 2009).

The second stream of work, on which we focus in this papehdstass ofexico-
graphicpreferences, considered in Schmitt & Martignon (2006); Doet al. (2007);
Yamanet al. (2008). These works only consider very simple classes iédgxaphic
preferences, in which both the importance order of attébaind the local preference re-
lations on the attributes are unconditional. These verpkrexicographic preference
models exclude the possibility to represent some more osmpkt natural, relations
between objects. Suppose for instance that you want to bwyrgpuater at a simple
e-shop. Assuming your cash is not unlimited, the websit¢ disks you to enter the
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maximum price you can afford to pay (for simplicity, we suppdiere that this is not
conditioned by the computer that you may buy). The objeafhe website is to find
the best (according to your preferences) computer you dardaSuppose first that you
always prefer laptops to desktop computers: the distindietween laptop and desktop
makes the most important attribute to order computers daowpito your taste. Now,
there are two other important criteria: the color of the catep and whether it has a
simple DVD-reader or a powerful DVD-writer. The color may fo@re important than
the type of optical drive in the case of a laptop, because yamuldwot want to be seen
at a meeting with the usual bland, black laptop; in fact, yiouags prefer a flashy yel-
low laptop to a black one — whereas it is the opposite with gk because working
long hours in front of a yellow desktop may be a strain for yeyes. Interestingly, this
examples indicates that both the importance of the atergbaind the local preference on
the values of some attributes may be conditioned by the galfisome other attributes:
here, the relative importance of the color and the type oitaptlirive depends on the
type of computer; and the preferred color depends on thedfypemputer as well.

In this paper we go further and consider various classesfdgraphic preference
models, where the importance relation between attributdfoathe local preference on
an attribute may depend on the values of some more importiziiges. In Section 2
we give a general model for lexicographic preference m@tati and define six classes
of lexicographic preference relations, only two of whiclvéalready been considered
from a learning perspective. Then each of the followingisestfocuses on a specific
kind of learning problem: in Section 3 we address the sampieptexity of learning
lexicographic preferences, in Section 4 we consider peefs elicitationa.k.a.active
learning, and in Section 5 we consider passive learning,namick specifically model
identification and approximation. All proofs can be foundBwoothet al. 2009).

2 Lexicographic preference relations: a general model

2.1 Lexicographic preferences structures

We consider a sel of n attributes, also called variables. Each attribiitec A has
an associated finite domaiki. We assume the domains of the various attributes are
disjoint. An attributeX is binary if its domain contains exactly two values, which by
convention are denoted hyandz. If U C A is a subset of the attributes, thénis
the cartesian product of the domains of the attributdg.iAttributes, as well as sets of
attribute, are denoted by upper-case Roman letférsX;, A etc.) and attribute values
by lower-case Roman letters. An outcome is an elemedt, @fe will denote outcomes
using greek lower case Greek lettess g, etc.).

Given a (partial) assignment € U for someU C A, andV C A, we denote by
u(V') the assignment made kyto the attributes i/ NV,

Lexicographic comparison is a general way of ordering amygi@utcomes «, 5}
by looking at the attributes in sequence, until one attebats reached such thatand
G have different values ak: «(X) # ((X); the two outcomes are then ordered ac-
cording to thdocal preferenceelation over the values of this attribute. Such a compar-
ison uses two types of relation: a relationiwfportancebetween attributes, arldcal
preferenceaelations over the domain of each attribute.



Both the importance between attributes and the local pgafers may be condi-
tional. In the introductory example, if two computers shidwe valuel (for laptop) for
the attributeT" (type), thenC' (color) is more important tha® (the type of optical
Drive), andy (yellow) is preferred ta (black); whereas when comparing computers
of type d (desktops),D is more important thaid', andb is preferred toy. Note that
the condition on the type of computer assumes here that thelyjects have the same
value for this attribute. In this paper, we will only considkis simple type of condi-
tions, which implies that the attributes that appear in thedition (I” on the example)
must be more important than the attribute over which a looalgpence is expressed
(O) or the attributes, the importance of which is compa@aadD). 4

Importance between attributes is capturedittyibute Importance Trees:

Definition 1. An Attribute Importance Treor Al-tree for short) over set of attributes
A is atree whose nodes are labelled with attributes, suchrtbatttribute appears twice
on the same branch, and such that the edges between a namslgad, labelled with
attribute X, and its children are labelled with disjoint sets of valuéska An Al-tree is
completef every attribute appears in every one of its branches.

For the sake of clarity, if one edge is labelled with the entiomain of an attribute
X, we can omit this label (the labels on the edges are therestmsehhow to descend the
tree according to the values of the attribute, and an edgsléabwith the full domain
of an attribute means there is no choice — note that there ather “sibling” edge in
this case since labels of different edges must be disjolisp, if an edge is labelled
with a singleton{z}, we will often refer to the label by the valueitself.

We will denote byAnc(n) the set of ancestors of nodg that is the nodes on the
path from the root to the parent af We will often identify Anc(n) with the set of
attributes that label the ancestor nodes o¥Ve will denote byn the cartesian product
of the labels of the edges on the path from the roet.to

Let us now turn to the representation of the local prefereruoe each attribute.
When we want to compare two outcomesind 8 using a lexicographic ordering, we
go down the tree until we reach a node labelled with an ateiBlithat has different
values ina andg: at this stage, we must be able to choose between the twornetco
according to some ordering Ovr.

Definition 2. A Local Preference Rul@or attribute X, over set of attributesl) is an
expressionX,u :> whereu € U for someU C A, X € A — U, and> is a total
linear order overX. A Local Preference Tabl@ver set of attributesd) is a set of
local preference rules.

4 Exploring the possibility to have the local preference orattribute domain depend on the
value of a less important attribute is an interesting rededirection, but it leads to many
problems, starting from the fact that it may fail to be fullgfihed: takex = =122, 5 = T1z2,

X5 being more important thai¥;, and assume we have this local preference relatioXfor

xo is preferred tars if X1 = z; andzs is preferred tar, if X1 = Z1. The most important
attribute on whichw andg differ is X2, however the values oX; in o andg differ, therefore
the local preference rules do not allow to ordesind3. In other cases, preference cycles may
appear.



So far, importance trees and local preference tables hawe thefined indepen-
dently. Now, as we said above, we require that the local peafe relation for an at-
tribute depends only on the values of more important attedu~or this we need the
following definition:

Definition 3. LetT be an Al-treen a node off’, and P a local preference table. A
rule X, v :> of P is said to beapplicable at node given assignment € n if (&) n is
labelled byX and (b)v C u. P is unambiguous w.r.tl" (resp.complete w.r.tT") if for
any noden of T and anyu € n, there is at most one (resp. exactly one) rule applicable
atn givenu.

Definition 4. A Lexicographic Preference Structyi@ LP-structure) is a pai(T, P)
whereT is an attribute importance tree anft an unambiguous local preference ta-
ble w.r.t. T. If furthermoreT is complete and® is complete w.r.tT', then(T, P) is a
Complete Lexicographic Preference Structure

}J%\ D,T:w>r
T, T:l>d

C,d:b>y
Cil:y>b

©  ©

Fig. 1. Graphical representation of lexicographic orderings fxarple 1

Example 1.Consider three attribute§'(olor) with two valuesy(ellow) and b(lack),
D(vd device) with two values(riter) andr(ead-only), and"(ype) with valueg(aptop)
andd(deskop). The LP-structuredepicted on Fig. 1 is a model for preferences about
computers, where the type of computer is the most importdtetria, with laptops al-
ways preferred to desktops, and where the second criteswolor in the case of lap-
tops, with yellow laptops preferred to black ones, wherbassecond criterium is the
type of optical drive in the case of desktops. In any case jt@ws always preferred to
aread-only drive. The color is third criteria for desktopith black preferred to yellow

in this case.

The semantics of LP-structures is defined by the associatéetings over out-
comes:

Definition 5. LP-structurec = (7', P) defines a partial strict order-, over the set
of outcomes as follows: given any pair of outcorfies/3}, go down the tree, starting
at the root, following edges that correspond to assignmerade ina and 3, until the



first noden is reached that is labelled with attribut¥ such thatow(X) # 5(X); we
say thatn decides{«, 8}. If there is a ruleX, v :> in P that is applicable at: given
u = a(Anc(n)) = B(Anc(n)), thena >, gifand only ifa(X) > G(X). If there is no
rule that is applicable at givenu, or if no node that decidegy, 3} is reached¢ and
(3 are g-incomparable.

Example 1 (continued)According too, the most preferred computers are yellow lap-
tops with a DVD-writer, becausgw! >, « for any other outcome: # ywl; for any

x € Candanyz € D zzl >, xzd, that is, any laptop is preferred to any desktop
computer. Andywd >, brd, thatis, a yellow deskop with DVD-writer is preferred to a
black one with DVD-reader because, although for desktopadik preferred to yellow,
the type of optical reader is more important than the coloudésktop computers.

Proposition 1. Given a LP-structurer = (T, P), the relation>, is irreflexive and
transitive. It is also modular, i.eq >, 8 implies either >, v or v >, 3. Moreover,
if o is complete, thep-,, is a linear order.

The above proposition is saying, is a modular strict partial order. Every such
order can be seen as the strict version of a total preordés.rmeans that even when
>, IS not a linear order, it may still be viewed as “ranking” thi§etent outcomes,
with outcomes which are-incomparable given the same rank. (To be more precise,
the relation>, defined bya >, g iff[a >, 3 or «, 8 arec-incomparable] is a total
preorder.)

2.2 Classes of lexicographic preference structures

Classes of LP-structures with conditional preferencest should be clear that any LP-
structures is equivalent to a LP-structur€ where each edge corresponds to exactly
one value of its parent node, and where each preferenceppliesto exactly one node:

¢’ can be obtained fromr by multiplying the edges that correspond to more than one
value; and by multiplying the preference rules that applgnate than one node. This
structures’ can be seen as a canonical representation,ofThis leads to the following
defnition:

Definition 6. A CP&I LP-structure, or structure with conditional local preferges and
conditional attribute importance, is a structure in whicioh edge of the tree is labelled
with a singleton value, and such that for each negl¢hat corresponds to exactly one
partial assignment:, the preference table contains one rule of the fo¥in. :> where
X is the attribute that labels.

CP&I LP-structures are particular cases of Wilson's “Prel€d Search Trees” (or
POST) (2006): in POSTs, the preference relation at everemmash be a non strict
relation.

Example 1 (continued)A CP&I structure equivalent to the LP-structure depicted on
Fig. 1 for Example 1 is depicted on Fig. 2. Note that when wendaaCP&I LP-
structure, since local preferences at a given node can apgrt on attributes above
that node, we can represent the local preference relativesmonding to a node inside
the node itself.



’D,ly:w>rHD,lb:w>T‘ ’C,dr:b>yHC,dw:b>y‘

Fig. 2. A CP&lI structure equivalent to that of Example 1

Anotherinteresting class is that of structures with canddl preferences buincon-
ditional attribute importance:

Definition 7. A CP-UI LP-structure, or structure with conditional local preferees
and unconditional attribute importance, is a structure in whidfettree is linear, with
each edge labelled with the full domain of the attribute & frarent node, and such
that for each node, for each partial assignment € n, the preference table contains
one rule of the fornX, u :> whereX is the attribute that labels.

Classes of LP-structures with unconditional preferencesWe now turn to lexico-
graphic preferences with unconditional preferencestlikeones studied by e.g. Schmitt
& Martignon (2006); Dombet al. (2007); Yamaret al. (2008):

Definition 8. UP&I LP-structures, or structures withinconditional local preferences
andunconditional attribute importance, are structures whosgilbtite importance tree
is linear, each edge being labelled with the full domain af #itribute at the parent
node, and whose preference table contains one unconditioleeof the formX, T :>
for each attributeX that appears in the tree. UP-CI LP-structures, or structuveth
unconditional local preferences and conditional attributagortance, are structures
in which each edge of the tree is labelled with a singletorue@ako that each node
corresponds to exactly one partial assignment, but such fivaeach attribute that
appears in the tree, the local preference table containg onke unconditional rule of
the formX, T :>.

We can also define classes of LP-structures with unconaditifired preferences:
Definition 9. Given a non ambiguous s&tof preferences rules, FP-UP) is the class

of UP&I structures that have® for preference table. Similarly, FP-CP) is the class
of UP-CI structures that hav® for preference table.



3 Sample complexity of some classes of LP-structures

Our aim in this paper is to study how we can learn a LP-stracthat fits well some
examples of comparison. We assume afsef examples, that is, of pairs of outcomes
over.A: we would like to find a LP-structure that is “consistent” wthe examples in
the following sense:

Definition 10. LP-structures is said to beconsistenwith example(a, ) € A? if
«a >, (; o is consistent with set of exampl@4f it consistent with every example &f

The problem of learning a structure that orders “well” thamples can be seen as a
problem of classification: givem we can define another binary relatisiy over.A? as
follows:

a <, pifandonlyif 8 >, aor (a }, fandfg %, «).

Because>, is modular,<, defined in this way is a total preorder ovgr (i.e. the
relation is reflexive, transitive, and for everys € A, atleastone o <, forg <, «
holds), and{<,, >,} is a partition of A*. In particular, we can define the Vapnik-
Chernovenkis dimension of a class of LP-structures as tieesdithe biggest set of pairs
(«, B) that can be “classified” correctly by some LP-structure mdlass, whatever the
labels (> or <) associated with each pair. In general, the higher this d#ioa, the
more examples will be needed to correctly identify a LP-¢dtite.

Proposition 2. The VC dimension of any class of transitive relations oveetao$ bi-
nary attributes is strictly less tha2r.

Proof (Sketch).Follows from the fact that any graph witi* vertices and2™ edges
contains at least one cycle, so that no class of transitivarpirelations can shatter a
set of2™ examples oveH.

Proposition 3. The VC dimension of both classes of CP&I LP-structures ar@iReiJl
structures over binaryattributes, is equal t@™ — 1.

Proof (Sketch) It is possible to build an Al tree over attributes with2* nodes at the

k — thlevel, for0 < i < n — 1, with |n| = 1 for every node: this is a tree for CP&I
structures, it ha8™ — 1 nodes. Such a tree can shatter a s€t’of 1: take one example
for each node, the local preference relation that is apiplécat each node can be used to
give both labels to the corresponding example. The uppendb@nllows from Prop. 2.

This result is rather negative, since it indicates that achagmber of examples
would in general be necessary to have a good chance of clapphlpximating an un-
known target relation. This important number of necessgayrmples also means that it
would not be possible to learn in reasonable - that is, patyiab- time. However, learn-
ing CP&I LP-structures is not hopeless in practice: deaisiees have a VC dimension
of the same order of magnitude, yet learning them has hadgireeess experimentally.

As for structures with unconditional preferences, Sch&Martignon (2006) have
shown that hhe VC dimension of UP&I structures oxdrinary attributes is exactly..
Since every UP&I structure is equivalent to a CP-Ul one, tiizdimension of UP&I
structures oven binary attributes is at least.



4 Preference elicitation/active learning

We now turn to a thective learningof preferences. The setting is as follows: there is
some unknown target preference relatiopand alearnerwants to learn a representa-
tion of it by means of a Lexicographic Preference structiihere is @eacher a kind

of oracle to which the learner can submit queries of the féoms} wherea and 5

are two outcomes: the teacher will then reply wethes 5 or § > « is the case. An
important question in this setting is: how many queries doe$earner need in order to
completely identify the target relation? More precisely, we want to find the commu-
nication complexity of preference elicitation, i.e., therat-case number of requests to
the teacher to ask so as to be able to elicit the prefereratiorecompletely, assuming
the target can be represented by a model in a given class.ugsion has already been
answered in Dombeét al. (2007) for the FP-UI case. Here we identify the communi-
cation complexity of eliciting lexicographic preferenctructures in all 5 other cases,
when all attributes are binary. (We restrict to the case pébyi attributes for the sake
of simplicity. The results for nonbinary attributes would similar.) We know that a
lower bound of the communication complexity is tlhg of the number of preference
relations in the class. In fact, this lower bound is reacinealli6 cases:

Proposition 4. The communication complexities of the six problems aboyasifol-
lows,when all attributes are binary

FP Up cP
log(n!) Dombiet al. (2007)n + log(n!)|2"™ — 1 + log(n!)

U
Cllg(n) = :Z;:: 2" log(n — k) | n+g(n) | 2" — 1+ g(n)

Proof (Sketch).In the four cases FP-UI, UP&I, FP-CI and UP-CTl,and P are inde-
pendentj.e., any P is compatible with anyi". There aren! unconditional importance
trees, anq_[z;é(n —k+ 1)2k conditional ones. Moreover, when preferences are not
fixed, there ar@™ possible unconditional preference tables. For the CP-&#,Gacom-
plete conditional importance tree conta@ﬁz;é 2% = 2" — 1 nodes, and at each node
there are two possible conditional preference rules. Ttidliat these lower bounds are
reached (in all 5 cases for which this has not been proved bgtidet al., 2007), we
can explicit an elicitation protocol that guarantees taniifiy the preference structure.

5 Model identifiability

We now turn to the problem of identifying a model of a giverssig, given a sef of
examples: each example is a p@it 3), for which we know thatv > ( for some target
preference relation-. The aim of the learner is to find some LP-structari C such
thata >, ( forevery(a, 8) € €.

Dombiet al. (2007) have shown that the corresponding decision probterthé
class of binary LP-structures with unconditional impogaand unconditional, fixed lo-
cal preferences can be solved in polynomial time: given afsetample€ and a sef”
of unconditional local preferences for all attributeshisre a structure if'P — UI(P)



Algorithm 1 GenerateLPStructure
INPUT: A: set of attributesE: set of examples oved;

P: set of local preference rules: initially empty,

or contains a set of unconditional preference rules foFihe cases;
OuTPUT: LP-structure consistent witi, that containg?, or FAILURE;

1. T «— {unlabelled root nodg
2. while T contains some unlabelled node:

(&) choose unlabelled nodeof T;

(b) (X, newRules) < chooseAttribute(€(n), Anc(n), P);

(c) if X = FAILURE then STOP and returfAILURE;

(d) labeln with X;

(e) P «— P U newRules;

() L < generateLabels(E(n), X); (Create set of labels for edges belay

(g) foreach € L:

add new unlabelled node 1, attached to: with edge labelled witls;

3. return(T, P).

that is consistent witl€ ? In order to prove this, they exhibit a simple greedy algo-
rithm. We will prove in this section that the result still dslfor most of our classes of
LP-structures, except one.

5.1 A greedy algorithm

In order to prove this, we will prove that the greedy Algoniti, when given a set of
example<, returns a LP-structure that satisfies the examples if oigtseX he algo-
rithm recursively constructs the Al-tree from the root te thaves. At a given currently
unlabelled node:, step 2b considers the séfn) = {(«,3) € £ | a(Anc(n)) =
B(Anc(n)) € n} of examples that correspond to the assignments made inahetbso
far and that are still undecided: it looks for some attribkite¢¢ Anc(n) that can be used
to order well examples ifi(n) that can be ordered with : there must be a set of local
preferences rules of the for, w :> that is not ambiguous when put together with the
current set of rules, and such that for evety 3) € £(n), if «(X) # 3(X) then there
isaruleX,w :>withw C «(U) = g(U) anda(X) > §(X). The attributeX can then
be chosen for the label af, and the set of rules added £b Step 2f then considers the
values ofX that correspond to still undecided examples, and prephetdghat will be
used for the edges fromto its children.P is initially empty except in the case where
the local preferences are known in advance, with only therod importance to be
learned. Note that this aproach cannot work in the case dittonal importance and
unconditional preferences, as will be proved in Corollary 1

Let us briefly describe the helper functions that appeareratgorithm:

generatelabels should return a set of disjoint subsets of the domain of ttrébate at
the current node; it takes as parameters a set of exafiptgsand the attributel
at the current node: we require that for each exarpl®) € £(n) that cannot be



decided at: becausex(X) = 5(X), there is one label returned lggneratelLabels
that containgy(X).

We will use two particular instances of the functigeneratelabels:

generateCondLabels(€, X) =
{{z} | z € X and there igc, §) € &€ such tha(X) = §(X) = z}:
in the case of conditional importance, each branch corredgptm one value ok .

generateUncondlLabel(€, X) = {X}: in the case of unconditional importance, one
branchis created, except that if there iSnos) € £ suchthaty(X) = 6(X) = =,
thengenerateUncondLabel(&, X) = ().

chooseAttribute takes as parameters the set of examgles) that correspond to the
node being treated, the set of attribufes:(n) that already appear on the current
branch, and the current set of preference rufest returns an attributeX not
already on the branch te and a setvewRules of local preference rules ovex:
the attribute and the rules should be chosen so that theydeside well some
examples of (n). More precisely, we will require thfX, newRules) is choosable
with respect t&€ (n), Anc(n), P in the following sense:

Definition 11. Given a set of examples over attributesA, a set of attributed/ C
A and a set of local preference rulé3, (X, newRules) is choosable with respect to
E,U,Pif X € A— U, newRules is a set of local preference rules fof, and:

— P U newRules is not ambiguous;
— for every(a, §) € &, if a(X) # B(X) then there is a (unique) rul&, v :> in
P U newRules such that C «(U), anda(X) > G(X).

Moreover, we will say thatX, newRules) is:

UP-choosable if it is choosable andiew Rules if of the form{ X, T :>} (it contains a
single unconditional rule);

CP-choosable if it is choosable anchew Rules contains one ruleX, v :> for every
u € U such that there exisigy, 5) € £ with o(U) = 5(U) = u.

5.2 Some examples deenerateLPStructure

In these examples we assume three binary attribdteg3, C'. Throughout this sub-
section we assume the algorithm checks the attributes foogability in the order
A — B — C. Furthermore we assume we are not in the FP case, i.e., thethig
initialises with an empty local preference talfte= §).

Example 2.Suppose consists of the following five examples:
1. (abc, abc) 2. (abe, abc) 3. (abé, abé) 4. (abe, abe) 5. (abe, abe)

Let’s try using the algorithm to construct a UP&I structuomsistent with€. At the root
nodeng of the Al-tree we first check if A, newRules) is UP-choosable w.r.£, (), 0.
By the definition of UP-choosabilitypewRules must be of the form{ A, T :>} for
some total order> of {a,a}. Now sincea(A4) = 3(A) for all (o, 3) € E(ng) = &,

10



(A,{A, T :>})is choosable foany>. Thus we labeh, with A and add&{ A, T : a?a}
to P, where “?” is some arbitrary orde&(or >) over{a,a}. Since we are working in
the UP-case the algorithm then caliserateUncondLabel(£, A) = {a,a} and gener-
ates a single edge fromy labelled with{a, a} and leading to a new unlabelled node
The example€ (n;) corresponding to the next node will be jysty, 5) € £ | a(A) =
B(A)} = &€ (i.e., no examples i& are removed)® At the next node:;, with A now
taken care of, we check {fB, newRules) is UP-choosable w.r.€(n;), {A}, P. We
see that it is not UP-choosable, owing to the opposing peatess ove3 exhibited for
instance in examples 1,2 6f However(C, {C, T : ¢ > ¢}) is UP-choosable, thus the
algorithm labels:; with C and adds”, T : ¢ > ¢ to P. At the next nodew, we have
Ena) = {(o, B) | al{A,C}) = B({A,C}H} = {1,2,3,4}. But the only remaining
attribute B is not UP-choosable w.r.&(ns), {A, C'}, P (because for instance we still
have 1,2 £(n32)). Thus the sub-algorithrthooseAttribute(E(n2), {A, C'}, P) returns
FAILURE and so doe&eneratelLPStructure in this case (see the left-hand side of Fig.
3). Hence there is no UP&I structure consistent with

However the algorithmdoessuccessfully return @P-Ul structure. This is because,
at nodeny, even though B, newRules)is not UP-choosable w.r.&(n,), Anc(ny), P
for any appropriate choice afewRules (i.e., of the formB, T :> in the UP-case), ifs
CP-choosable. Recall that to be CP-choosale,Rules must contain a rulés, v :>
for eachu € ny; = {a,a}, and in this case we may takewRules = {B,a : b >
b,B,a : b > b}. After this, since there is nfr, 3) € £(n1) such thatn(B) = B(B),
generateUncondLabel(€(n4 ), B) generates no labels and the algorithm terminates with
the CP-UI structure on the right-hand side of Fig. 3.

° ° AT :a%

Failure!

]

S
el

Ql

L= ] R o

Fig. 3. Output structures for Example Reft: The output is failure for UP&I structureRight:
The output CP-UlI structure.

5 Note in factA is really a completely uninformative choice here, sinceoiésinot decide any
of the examples. A sensible heuristic for the algorithm -east in the UP case - would be to
disallow choosing any attribut& such thaiw(X) = (X)) for all examples. Such heuristics
will be addressed in future work.
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Example 3.Consider the following examples:
1. (abe, abc) 2. (abe, abe) 3. (abé, abé) 4. (abe, abe) 5. (abe, abe)

We will now use the algorithm to check if there is a CP&l sturet consistent with
these examples. We start at the root negde and check whethefA, newRules) is
CP-choosable w.r.€, 0, 0. As in the previous example, sinegA) = 5(A) for all
(o, B) € £, we may labeh with A, and add preference rulg T : a?a to P, where 7"

is some arbitrary preference betweem. Since we are now in the Cl-case, algorithm
generateCondLabels(&, A) is called, which generates an edge-label for each valfe

A such thata(A) = B(A) = x for some(w, 3) € €&, in this case both (see, e.g.,
example 1 inf) anda (see, e.g., example 4). Thus two edges frognare created,
labelled witha, a resp., leading to two new unlabelled nodgsandm; .

Following the right-hand branch leadingte, first (see Fig. 4), we hav&(m,) =
{(a, 8) € £ | a(A) = B(A) = a} = {4, 5}. Here we first check it B, newRules) is
CP-choosable w.r.€(m;), {A}, P. By definition of CP-choosablecwRules must be
of the form{B, a :>}. However due to the opposing preferences on their restmi¢ti
B exhibited by 4,5, we see there is no possible choice-foere. Thus we have to con-
siderC' instead. Here we sg€’, {C,a : ¢ > ¢}) is CP-choosable, thus; is labelled
with C, andC,a : ¢ > ¢ is added taP. SincegenerateCondLabel(£(my), C) = 0, no
new nodes are created on this branch.

Now, moving back taq, and following the left-hand branch to nodg, we have
Eni) = {(a,B) € €| a(4) = B(A) = a} = {1,2,3}. CheckingB for CP-
choosability first, we se@3, {B,a : b > b}) is CP-choosable w.r£(n,), { A}, P, thus
ny is labelled withB and B, a : b > b added toP; generateCondLabel(E(n;), B) =
{{b}}.thus one edge is generated, labelled Witleading to new node, with £(n2) =
{(a, 8) € & | a({4, B}) = B({A, B}) = ab} = {1}. For the last remaining attribute
C on this branch we havg”, {C, ab : ¢ > ¢}) is CP-choosable w.r&(ns), {A, B}, P.
Thus the algorithm successfully terminates here, lalgelinwith C and adding”, ab :
¢ > cto P. The constructed CP&I structure in Fig. 4 is thus consistétit £.

Fig. 4. Output CP&lI structure for Example 3.
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5.3 Complexity of model identification

The table in Fig. 5 gives the parameters for the greedy dlguarihat solve five learning
problems. In fact, the only problem that cannot be solvedth wits algorithm, as will
be shown below, is the learning of a UP-CI structure withaittal knwoldge of the
preferences.

Proposition 5. Using the right type of labels and the right choosability déon and
the right initial preference table, the algorithm returnveghen called on a given sétof
examples, a structure of the expected type, as describbd talble of Fig. 5, consistent
with &, if such a structure exists

|learning problerh choosability] labels | initial P [structure typp

CP&l CP-choosableonditiona] 0 CP&l
CP-UI CP-choosable uncond. 0 CP-UI
UP&l UP-choosable uncond 0 UP&I

FP-CI UP-choosablgonditiona|1 rule/attr UP-CI
FP-UI UP-choosabI|e uncond |1 rule/attr UP-CI

Fig. 5. Parameters of the greedy algorithm for five learning proklem

Proof (Sketch).The fact that the structure returned by the algorithm hasitfn type,
depending on the parameters, and that it is consistent hatlset of examples is quite
straightforward. We now give the main steps of the proof efftict that the algorithm
will not return failure when there exists a structure of aegitype consistent with.

Note first that given any node of some LP-structuréT’, P), labelled with X, if
Px denotes the set of rules that are applicable atith respect to any: € n, then
(X, Px) is clearly choosable with respectd&@n), Anc(n) and P’ the set of rules that
are applicable at some node not in the subtree beldo if we know in advance some
LP-structure(T, P) consistent with a sef of examples, we can always construct it
using the greedy algorithm, by choosing the "right” lab¢lsach step.

Importantly, it can also be proved that if at some nadee choose another attribute
X thatis choosable, then there is some other LP-stru¢fiireP’), of the same type as
(T, P), that is consistent wit and extends the current one; more precis@y, P’)
is obtained by modifying the subtree frooted atn, taking upX to the root of this
subtree. Hence the algorithm cannot run into a dead end.ddgs not work in the
UP-CI case, because taking an attribute upwards in the tage@quire using a distinct
preference rule, which may not be correct in other branchtsedAl tree.

Corollary 1. The problems of deciding if there exists a LP-structure ofv@mg class
consistent with a given set of examples over binary atteibintave the following com-
plexities:

FLP ULP CLP
Ul|P(Dombiet al., 2007 P P
Cl P NP-complet¢ P
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Proof (Sketch)For the CP&I, CP-Ul, FP-CI, FP-Ul and UP&I cases, the aldomit
runs in polynomial time because it does not have more thafeaves, and each leaf
cannot be at depth greater thanand every step of the loop except (2b) is executed in
linear time, whereas in order to choose an attribute, wefoapach remaining attribute
X, consider the relatiof(a(X), 5(X)) | (o, 8) € E(n)} on X: we can check in
polynomial time if it has cycles, and, if not, extend it to #alcstrict relation overX.

For the UP-CI case, one can guess a set of unconditionalpoetdrence rule®,
of size linear inn, and then check in polynomial time (FP-CI) case if there texés
attribute importance tre€ such that(T', P) is consistant with€; thus the problem in
NP. Hardness comes from a reduction fremEAK SEPARABILITY — the problem of
checking if there is a CP-net without dependenegieskly consistenwith a given set
of examples — shown to BiéP-complete by Lang & Mengin (2009).

5.4 Complexity of model approximation

In practice, a general problem in machine learning is thexigtlis often no structure of a
given type that is consistent with all the examples at thesstimme. It is then interesting
to find a structure that is consistent with the most exam@edmitt & Martignon
(2006) have shown that finding a UI&LP-structure, with a fisetiof local preferences,
that satisfies as many examples from a given set as possihle;Gomplete, in the case
where all attributes are binary. We extend these results her

Proposition 6. The complexities of finding a LP-structure in a given classhictv
wrongly classifies at most examples of a given sét of examples ovebinary at-
tributes, for a giverk, are as follows:

FLP | ULP CLP
UI|NP-completeSchmitt & Martignon (Zoqﬂi;P-compIete NP-hard
Cl NP-complete |NP-compIet$N P-complete

Proof (Sketch).These problems are in NP because in each case a witness i®the L
structure that has the right property, and such a strucesd not have more nodes than
there are examples. For the UP-CI case, the problem is glidéBecomplete fok = 0,

so itis NP-hard. NP-hardness of the other cases follow frarnessive reductions from
the case proved by Schmitt & Martignon (2006).

6 Conclusion and future work

We have proposed a general, lexicographic type of modelgfwesenting a large fam-
ily of preference relations. We have defined six interestiagses of models where the
attribute importance as well as the local preferences cabditional, or not. Two of
these classes correspond to the usual unconditional gnépbic orderings, and to a
variant of Wilson’s “Pre-Order Search Trees” (or POST) @00nterestingly, classes
where preferences are conditional have an exponentionaivénsion.

We have calculated the cardinality of five of these six clgsaad proved that the
communication complexity for each class is not greater thaiog of this cardinality,
thereby generalizing a previous result by Dorabal. (2007).
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As for passive learning, we have proved that a greedy algurlike the ones pro-
posed by Schmitt & Martignon (2006); Domeéi al. (2007) for the class of uncondi-
tional preferences can identify a model in another foursgasthereby showing that
the model identification problem is polynomial for thesesskss. We have also proved
that the problem is NP-complete for the class of models watiditional attribute im-
portance but unconditional local preferences. On the dihed, finding a model that
minimizes the number of mistakes turns out to be NP-compted## cases.

Our LP-structures are closely connected to decision thedact, one can prove that
the problem of learning a decision tree consistent with aetxamples can be reduced
to a problem of learning a CP-CI LP structure. There remairsge if CP-Cl structures
can be as efficiently learnt in practice as decision trees.

In the context of machine learning, usually the set of exas learn from is not
free of errors in the data. Our greedy algorithm is quite resemsitive and therefore
not robust in this sense; it will even fail in the case of aapdled version space. Ro-
bustness toward errors in the training data is clearly amitapt property of real world
applications.

As future work, we intend to test our algorithms, with apprafe heuristics to guide
the choice of variables a each stage. A possible heuristicgddbe the mistake rate if
some unconditional structure is built below a given nodei¢ivitan be very quickly
done). Another interesting aspect would be to study migtofeeonditional and uncon-
ditional structures, with e.g. the first two levels of thausture being conditional ones,
the remaining ones being unconditional (since it is welhkn that learning decision
trees with only few levels can be as good as learning tredsmiire levels).

AcknowledgementsVe thank the reviewers for helpful comments. We even bordowe
from them some of the sentences in this concluding section.
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