Learning various classes of models of lexicographic orderings

Richard Booth, Mahasarakham University, Thailand Yann Chevaleyre, LAMSADE, Université Paris-Dauphine Jérôme Lang, LAMSADE, Université Paris-Dauphine Jérôme Mengin, IRIT, Université de Toulouse Chattrakul Sombattheera, Mahasarakham University, Thailand

Topic: learn to order objects of a combinatorial domain

E.g. computers, described by

Type: *d*esktop or *l*aptop

Color: *y*ellow or *b*lack

Dvd-unit: reader or writer ...

Recommender system : learn how a user orders these objects, in order to suggest the "best" ones among those that are available / the user can afford.

If n variables, domains of m values : m^n objects, $!m^n$ orderings

 \Rightarrow need compact representation of the orderings :

- local preferences on each attribute
- extra structure on the set of variables to "aggregate" to global preferences

Lexicographic orderings :

T

C

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ ~ \bullet Type is more important than Colour
 - Prefer laptop to desktop
- $y \succ b$ Prefer yellow to black

Lexicographic orderings :

local preferences over the domains of each variable + *importance ordering* of the variables

$$\begin{array}{ccc} T & l \succ d & lb \succ dy \text{ (decided at node } T) \\ \bullet & & ly \succ lb \text{ (decided at node } C) \\ \hline C & y \succ b \end{array}$$

Lexicographic orderings :

T

C

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ + comparisons in linear time
 - + learning in polynomial time [SM06, DIV07]
- $y \succ b$ very weak expressive power:
 - "prefer yellow for laptops, black for desktops"

Lexicographic orderings :

T

C

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ + comparisons in linear time
 - + learning in polynomial time [SM06, DIV07]
- $y \succ b$ very weak expressive power:
 - "prefer yellow for laptops, black for desktops"

Conditional Preference Networks (CP-nets) : *conditional* local preferences (dependency graph) e.g.: $l: y \succ b$ (for laptops: yellow pref. to black) $d: b \succ y$ $l \succ d$ + *ceteris paribus* comparisons: $ly \succ lb \succ db \succ dy$

Lexicographic orderings :

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ + comparisons in linear time
 - + learning in polynomial time [SM06, DIV07]
- $y \succ b$ very weak expressive power:
 - "prefer yellow for laptops, black for desktops"

Conditional Preference Networks (CP-nets) :

conditional local preferences (dependency graph)

e.g.: $l: y \succ b$ (for laptops: yellow pref. to black) $d: b \succ y$ $l \succ d$

+ ceteris paribus comparisons: $ly \succ lb \succ db \succ dy$

+ very expressive

T

C

- comparisons difficult (NP-complete)
- hard to learn [session on CP-net learning at IJCAI'O9]

Lexicographic orderings :

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ + comparisons in linear time
 - + learning in polynomial time [SM06, DIV07]
- $y \succ b$ very weak expressive power:
 - "prefer yellow for laptops, black for desktops"

Conditional Preference Networks (CP-nets) :

conditional local preferences (dependency graph)

e.g.: $l: y \succ b$ (for laptops: yellow pref. to black) $d: b \succ y$ $l \succ d$

+ ceteris paribus comparisons: $ly \succ lb \succ db \succ dy$

+ very expressive

T

C

- comparisons difficult (NP-complete)
- hard to learn [session on CP-net learning at IJCAI'O9]

(easy classes of CP-nets / examples, incomplete algorithms)

Lexicographic orderings :

local preferences over the domains of each variable + *importance ordering* of the variables

- $l \succ d$ + comparisons in linear time
 - + learning in polynomial time [SM06, DIV07]
- $y \succ b$ very weak expressive power:
 - "prefer yellow for laptops, black for desktops"

Conditional Preference Networks (CP-nets) :

conditional local preferences (dependency graph)

e.g.: $l: y \succ b$ (for laptops: yellow pref. to black) $d: b \succ y$ $l \succ d$

+ ceteris paribus comparisons: $ly \succ lb \succ db \succ dy$

+ very expressive

T

C

- comparisons difficult (NP-complete)
- hard to learn [session on CP-net learning at IJCAI'O9]
- \Rightarrow find something in between the two formalisms

Contribution of this paper:

it is possible to add conditionality in lexicographic prefence models without increasing the complexity of reasoning / learning

Sample complexity: VC dim = n (when n variables, all binary)

Sample complexity: VC dim = n (when n variables, all binary)

Active learning: a learner asks "user" queries of the form "What is preferred between ly and bd ?" Goal : identify preference model of the user \Rightarrow If local pref. fixed, need $\log(!n)$ queries (worst case) [DIV07]

 \Rightarrow If local pref. to be learnt, need $n + \log(!n)$ queries

Sample complexity: VC dim = n (when n variables, all binary)

Active learning: a learner asks "user" queries of the form "What is preferred between ly and bd?" Goal : identify preference model of the user

⇒ If local pref. fixed, need log(!n) queries (worst case) [DIV07] ⇒ If local pref. to be learnt, need n + log(!n) queries

Passive learning: given set of examples e.g. $\mathcal{E} = \{lb \succ db, ...\}$ Goal: output preference struct. consistent with the examples

Sample complexity: VC dim = n (when n variables, all binary)

Active learning: a learner asks "user" queries of the form "What is preferred between ly and bd?"

Goal : identify preference model of the user

⇒ If local pref. fixed, need log(!n) queries (worst case) [DIV07] ⇒ If local pref. to be learnt, need n + log(!n) queries

Passive learning: given set of examples e.g. $\mathcal{E} = \{lb \succ db, \ldots\}$ Goal: output preference struct. consistent with the examples Greedy algorithm [DIV07] (return failure if not possible) \Rightarrow passive learning with fixed local pref. in P [DIV07] \Rightarrow passive learning with unknown local pref. in P

Sample complexity: VC dim = n (when n variables, all binary)

Active learning: a learner asks "user" queries of the form "What is preferred between ly and bd?"

Goal : identify preference model of the user

⇒ If local pref. fixed, need log(!n) queries (worst case) [DIV07] ⇒ If local pref. to be learnt, need n + log(!n) queries

Passive learning: given set of examples e.g. $\mathcal{E} = \{lb \succ db, \ldots\}$ Goal: output preference struct. consistent with the examples Greedy algorithm [DIV07] (return failure if not possible) \Rightarrow passive learning with fixed local pref. in P [DIV07] \Rightarrow passive learning with unknown local pref. in P

Model optimization (less than k errors)

- \Rightarrow NP-complete with fixed local pref. [SM06]
- \Rightarrow NP-complete with unknown local pref.

Greedy algorithm [DIV07]

- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a)choose a variable and local pref. that does not wrongly order the remaining examples
 - (b)remove examples ordered with this variable

 $\mathcal{E} = \{lbr \succ dyr, \ lyr \succ lbw, \ dyw \succ dbr\}$

Greedy algorithm [DIV07]

- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a) choose a variable and local pref. that does not wrongly

order the remaining examples

$$\mathcal{E} = \{lbr \succ dyr, \ lyr \succ lbw, \ dyw \succ dbr\}$$
?

Greedy algorithm [DIV07]

- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a) choose a variable and local pref. that does not wrongly

order the remaining examples

$$\mathcal{E} = \{lbr \succ dyr, \ lyr \succ lbw, \ dyw \succ dbr\}$$
$$T \qquad l \succ d$$

Greedy algorithm [DIV07]

- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a)choose a variable and local pref. that does not wrongly order the remaining examples

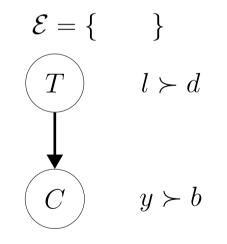
$$\mathcal{E} = \{ \qquad lyr \succ lbw, \ dyw \succ dbr \}$$

$$T \qquad l \succ d$$

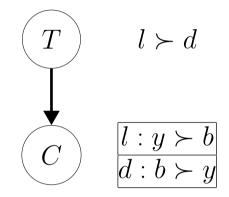
$$?$$

Greedy algorithm [DIV07]

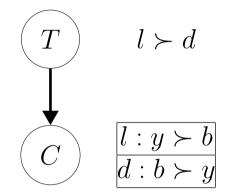
- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a)choose a variable and local pref. that does not wrongly order the remaining examples


$$\mathcal{E} = \{ \qquad lyr \succ lbw, \ dyw \succ dbr \}$$

$$T \qquad l \succ d$$


$$C \qquad y \succ b$$

Greedy algorithm [DIV07]

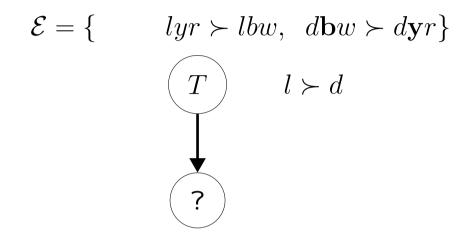

- 1. initialize seq. of var. with empty sequence;
- 2.while there remains some unused variable:
 - (a)choose a variable and local pref. that does not wrongly order the remaining examples
 - (b)remove examples ordered with this variable

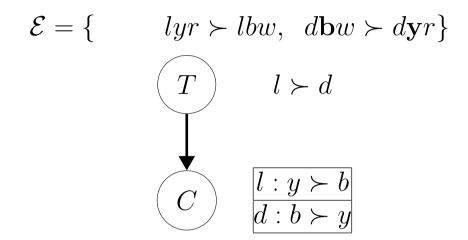
"I always prefer laptops to desktops" "For desktops, I prefer black to yellow" "For laptops, I prefer yellow to black"

"I always prefer laptops to desktops" "For desktops, I prefer black to yellow" "For laptops, I prefer yellow to black"

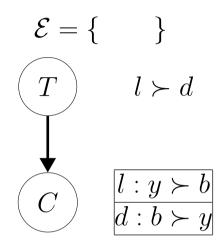
Sample complexity : VC dim = $2^n - 1$

Active learning : $2^n - 1 + \log(!n)$ queries needed (worst case)

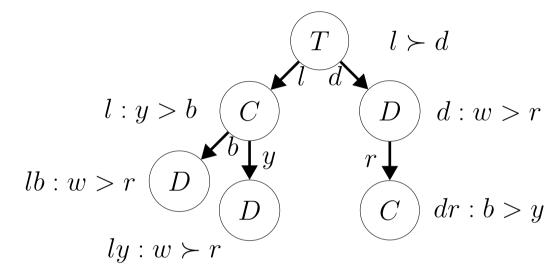

Passive learning : in P (Greedy algorithm still works)


Model optimization : NP-hard

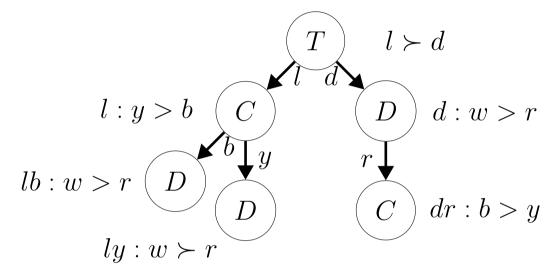
$$\mathcal{E} = \{ lbr \succ dyr, \ lyr \succ lbw, \ d\mathbf{b}w \succ d\mathbf{y}r \}$$


$$\mathcal{E} = \{lbr \succ dyr, \ lyr \succ lbw, \ d\mathbf{b}w \succ d\mathbf{y}r\}$$
?

$$\mathcal{E} = \{lbr \succ dyr, \ lyr \succ lbw, \ d\mathbf{b}w \succ d\mathbf{y}r\}$$
$$T \qquad l \succ d$$

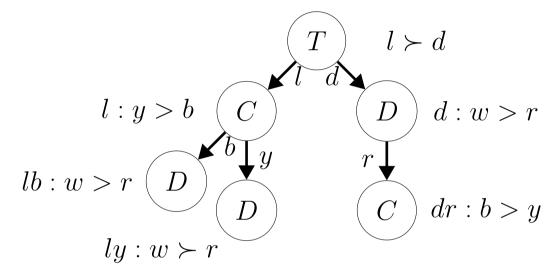


Greedy algorithm:

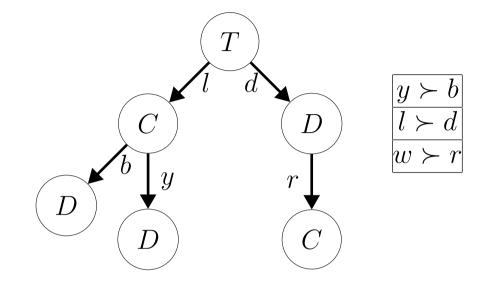


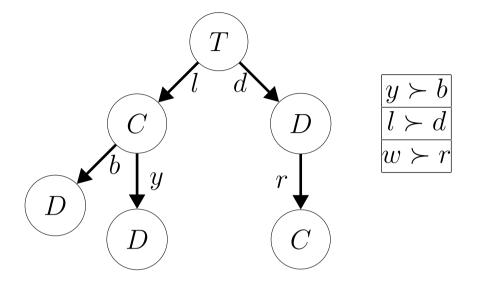
success !

"For desktops, Dvd-unit (read/write) more important than color" "For laptops, color is more important than the type of Dvd unit"

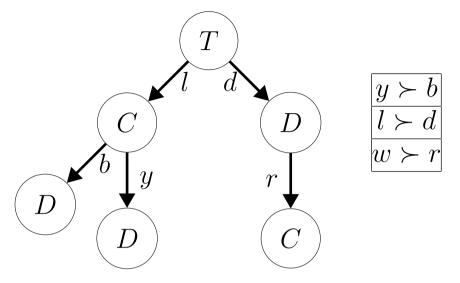


"For desktops, Dvd-unit (read/write) more important than color" "For laptops, color is more important than the type of Dvd unit"




- \Rightarrow variable importance tree
- + conditional local preference tables
- Note : tree need not be complete (but then partial ordering)

"For desktops, Dvd-unit (read/write) more important than color" "For laptops, color is more important than the type of Dvd unit"



Sample complexity: VC dim $= 2^n - 1$ Active learning: $2^n - 1 + \sum_{k=0}^{n-1} 2^k \log(n-k)$ queries needed Passive learning: in P (Greedy algorithm still works) Model optimization: NP-complete

- \Rightarrow variable importance tree
- + unconditional local preference table

Sample complexity: ?

Active learning:

 $n + \sum_{k=0}^{n-1} 2^k \log(n-k) \text{ queries needed (unknown pref.)}$ $\sum_{k=0}^{n-1} 2^k \log(n-k) \text{ queries needed (fixed pref.)}$

Passive learning: NP-complete !! (Greedy algorithm still works) **Model optimization:** NP-complete

Quick recap

	VC-dim	active I.	passive I.	approx
UI - FLP		log(!n)	Р	NP-C
UI - ULP	n	n + log(!n)	Р	NP-C
UI - CLP	$2^{n} - 1$	$2^n - 1 + \log(!n)$	Р	NP-hard
CI - FLP		g(n)	Р	NP-C
CI - ULP	$\geq n$	n+g(n)	NP-C	NP-C
CI - CLP	$2^{n} - 1$	$2^n - 1 + g(n)$	Р	NP-C

$$g(n) = \sum_{k=0}^{n-1} 2^k \log(n-k)$$

Related and future work

- Conditional lexic. orderings introduced by [Wilson, ECAI'06]
 ⇒ approximate CP-nets
- Need to explore heuristics to choose variables during execution of the greedy algorithm
- Problem if tree not complete : the ordering is only partial
 ⇒ Need to explore mixtures of conditional / unconditional
 structures
- Need to test algorithms on real / generated data \Rightarrow How to deal with noisy date ?