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Abstract. As proved by the continuous growth of the number of web
sites which embody recommender systems as a way of personalizing the
experience of users with their content, recommender systems represent
one of the most popular applications of principles and techniques com-
ing from Information Filtering (IF). As IF techniques usually perform a
progressive removal of non-relevant content according to the information
stored in a user profile, recommendation algorithms process information
about user interests - acquired in an explicit (e.g., letting users express
their opinion about items) or implicit (e.g., studying some behavioral
features) way - and exploit these data to generate a list of recommended
items. Although each type of filtering method has its own weaknesses
and strengths, preference handling is one of the core issues in the design
of every recommender system: since these systems aim to guide users in a
personalized way to interesting or useful objects in a large space of possi-
ble options, it is important for them to accurately catch and model user
preferences. The paper provides a general overview of the approaches to
learning preference models in the context of recommender systems.

1 Introduction

How many times did you search something on the Web and you were not able
to find successfully what were you looking for? The existence of a large quantity
of information, in combination with the dynamic and heterogeneous nature of
the Web, makes retrieval a hard task for the average user, who is usually over-
whelmed by the abundant amount of information. In this context (we usually
refer to this as Information Overload problem), the role of user modeling and
personalized information access is becoming crucial: although it is too soon to
deeply understand the long-term effects of this surplus of information in our
habits and in daily life, it is clear that users need a personalized support in sift-
ing through large amounts of available information according to their interests
and preferences.

Information Filtering systems, like Recommender Systems, relying on this
idea, adapt their behavior to individual users by learning their tastes during
the interaction, in order to construct a profile that can be later exploited to
select relevant items. Nowadays these systems represent the main solution to
the information overload problem, because they are able to gather and exploit



heterogeneous information about users, emerging as one of the most useful tools
to achieve a more intelligent information access. In the workflow of a typical rec-
ommendation process, learning user preferences is a primary step: catching and
modeling user interests in an effective way can be a key issue for personalization
goals. Gathering user characteristics, acquired through an explicit (e.g., directly
asking to the user) or implicit process (e.g., observing the user behavior), can
produce a user model to be exploited to enable adaptivity mechanisms during
the interaction with an information system.

The problem of recommending items has been studied extensively, and two
main paradigms have emerged. Content-based recommendation systems try to
recommend items similar to those a given user has liked in the past, whereas
systems designed according to the collaborative recommendation paradigm iden-
tify users whose preferences are similar to those of the given user and recom-
mend items they have liked. Further, in literature we found also other note-
worthy paradigms: demographic recommenders, whose aim is to categorize the
user starting from personal attributes making recommendation based on demo-
graphic classes; knowledge-based systems, which exploit knowledge about how
a particular item meets a particular user need ; hybrid systems, at last, com-
bine different recommendation techniques trying to exploit their advantages and
reducing at the same time their drawbacks. Each of above paradigms has par-
ticular methods to elicit user interests and preferences: most of them are related
to Machine Learning area (probabilistic models, bayesian or neural networks,
decision trees, association rules), but there are also some other techniques (so-
called heuristics) which learn user profiles by exploiting preferences expressed by
similar users (usually referred to as “neighbours”) or processing textual contents
describing the items liked.

The paper provides a general overview of the approaches to learning prefer-
ence models in the context of recommender systems and it is organized as follows.
Section 2 introduce general concepts and terminology about recommender sys-
tems. Preference learning issues in the area of recommender systems is presented
in Section 3, where we also introduce the feedback gathering problem and some
machine learning techniques used to acquire and infer user preferences. Conclu-
sions are drawn in the last section.

2 Basics of Recommender Systems

Nowadays it is very important for people to be supported in their decisions, due
to the exponential increase of available information. Everyday we get advices
from other people: “Hey, check out this Web site”, “I saw this book, you will
like it”, “That restaurant is very good!”. When making a choice in the absence
of decisive first-hand knowledge, choosing as other like-minded people have cho-
sen in the past may be a good strategy. Recommender systems have the same
role as human recommendations: they present information that they perceive to
be useful and worth trying out. These systems are used in several application
domains to support users in taking decisions, to help them in managing the ex-



ponential increase of information and, in general, to provide a more intelligent
form of information access.

The creation and management of personalized recommendations require mainly
three distinct and important components: a user profile, an algorithm to update
the profile given usage/input information, and an adaptive tool that exploits
the profile in order to provide personalization. First, the system needs to be
able to store relevant information about users that will be used to infer their
preferences and needs. Such information are stored in an individual user profile.
Second, if the system has to adapt with the user over time, some mechanism is
needed to keep the profile up-to-date. This could happen through explicit data
input or implicit recording of user behavior as she interacts with the system, or
a combination of them. Third, the system needs some way to exploit the current
profile data in making recommendations to the user. The types of information
stored in the profile will depend on the goals of the system and the algorithms
it employs in order to provide recommendations. Different approaches to recom-
mendation will require different pieces of information about the user, thus the
profile structure will differ from system to system.

In this section we will provide an overview of the main recommendation
approaches and their benefits and weaknesses.

2.1 Collaborative Recommender Systems

In Collaborative Filtering (CF) systems recommendations are based on evalu-
ations of users who share similar interests among them. The idea behind these
systems is that a set of users which liked the same items in the past probably
share the same preferences. Thus, picking a user from this set, we can suggest her
all the unseen items which other users with similar tastes showed to like in the
past. Opinions on items can be expressed as explicit user ratings on some scale
ranging from bad to good, or as implicit ratings given by logging user actions.
As an example of the latter, viewing or skipping items could be interpreted as
positive and negative ratings respectively. CF systems analyze opinions of other
users on items, thus they provide a liking degree not based on the nature of the
item, but on human judgment.

The main advantage of collaborative methods is that items in different prod-
uct categories can be recommended. Movies, images, art and text items are all
represented by opinions of users and thus they can be recommended by the same
system. In CF, a user profile simply consists of the data the user has specified.
These data are compared to those of other users to find overlaps in interests
among users. For example, the nearest neighbor approach, used in some collab-
orative recommender system [20], represents the preferences by the items rated
(or purchased) by the user. The profile is represented by the user-item matrix
[22] where for each cell (u,i) we have the rate of the user u on the item i. The
recommender algorithm performs three tasks: it finds similar users, creates the
nearest neighbors set for each user, infers the like degree for an unseen item
based on the nearest neighbors behavior.



Terveen and Hill [38] claim three essentials are needed to support CF: many
people must participate (increasing the likelihood that any one person will find
other users with similar preferences), there must be an easy way to represent the
user interests in the system, and the algorithms must be able to match people
with similar interests. These three elements are not that easy to develop, and
produce the main shortcoming of CF systems. Following the main limitations of
collaborative systems [4, 18].

– New user problem - In order to make accurate recommendations, the
system must first learn the preferences of the user from her ratings.

– New item problem (early rater) - Until new items are rated by a
substantial number of users, the recommender system would not be able to
recommend them.

– Sparsity problem - The number of ratings obtained is usually very small
compared to the number of ratings to be predicted and the success of the
collaborative recommender system depends on the availability of a critical
mass of users. One way to overcome the problem of rating sparsity is to
use user profile information when calculating user similarity. That is, two
users could be considered similar not only if they similarly rated the same
items, but also if they belong to the same demographic segment. For example,
Pazzani uses gender, age, area code, education, and employment information
of users in the restaurant recommendation application [25].

– Grey sheep problem (unusual user) - In a small or even medium com-
munity of users, there are individuals who would not benefit from pure CF
systems because their opinions do not consistently agree or disagree with
any group of people. These individuals will rarely, if ever, receive accurate
predictions, even after the initial start up phase for the user and the sys-
tem [11]. The majority of users falls into the class of the so-called “white
sheep”, those who have high correlation with many other users and who will
therefore, in theory, be easy to find recommendations for. The opposite type
of people are the “black sheep”, those for whom there are no or few people
who they correlate with. This makes it very difficult to make recommenda-
tions for them. On the positive side, for statistical reasons, as the number of
users of a system increases the chance of finding other people with similar
tastes increases and so better recommendations can be provided.

– Scalability problem - CF systems require data from a large number of
users before being effective as well as requiring a large amount of data from
each user. Therefore, the required computational resources become a critical
issue to find users with similar tastes.

– Lack of transparency problem - Collaborative systems today are black
boxes, computerized oracles which give advice but cannot be questioned. A
user is given no indicators to consult in order to decide when to trust a
recommendation and when to doubt one. These problems have prevented
acceptance of collaborative systems in all but low-risk content domains since
they are untrustworthy for high-risk content domains.



2.2 Content-based Recommender Systems

Unlike CF systems, where user opinions were a key element to learn user pref-
erences and finding items to suggest, in content-based (CB) recommenders the
ratings expressed by a single user have no role in recommendations provided to
other users. The core of this approach is the processing of the contents describ-
ing the items to be recommended. The items can be very different depending
on the number and type of attributes used to describe them. Each item can be
described by the same small number of attributes with known set of values, but
this is not appropriate for items, such as Web pages, news or documents, de-
scribed by means of unstructured text. In this case there are no attributes with
well-defined values and the use of document modeling techniques with roots in
Information Retrieval [30, 3] and Information Filtering [5] research is desirable.

A method to represent unstructured data is the Vector Space Model (VSM).
The VSM [34] is a spatial representation of text documents. In this model,
each document is represented by a vector in a n-dimensional space, where each
dimension corresponds to a term from the overall vocabulary of a given document
collection. Formally, every document is represented as a vector of term weights,
where each weight indicates the degree of association between the document and
the term. The CB approach can be applied only in the domains where we can
provide some textual metadata describing the items.

A CB recommender learns a profile of the user interests based on some fea-
tures of the objects the user rated. Afterwards the system exploits the user profile
to suggest relevant items by matching the profile representation against that of
items to be recommended. The result of this matching is a binary or continuous
relevance judgment, the latter case resulting in a ranked list of potentially inter-
esting items. If data are represented by the VSM, the matching might be realized
by computing the cosine similarity between the prototype vector and the item
vectors. Many systems ask users for feedback on the recommended items so that
the matching can be performed according the relevance feedback.

The CB paradigm has several advantages when compared to the CF one:

– User independence - CB recommenders exploit solely ratings provided by
the active user to build her own profile.

– Transparency - Explanations of recommendations can be provided by list-
ing content features or descriptions that caused an item to be recommended.

– New item - CB recommenders are capable of recommending items not yet
rated by any user.

On the other hand, CB systems have several shortcomings:

– Limited content analysis - CB techniques are limited by the features
that are associated either automatically or manually with the items. No CB
system can provide good suggestions if the content does not contain enough
information to distinguish items the user likes from items the user does not
like. Some representations capture only certain aspects of the content, but
there are many others that would influence a user’s experience. For instance,



there often is not enough information in the word frequency to model the
user interests in jokes or poems, while techniques for affective computing
would be most appropriate. Again, for Web pages, feature extraction by using
techniques for text representation completely ignores aesthetic qualities and
multimedia information.

– Over-specialization - CB recommenders have no inherent method for
finding something unexpected. The system recommends only items scoring
highly against the user profile, i.e. items similar to those already rated. This
drawback is also called serendipity problem.

– New user - Enough ratings have to be collected before a CB system can
really understand user preferences and provide accurate recommendations.
Therefore, when few ratings are available, such as for a new user, the system
would not be able to provide reliable recommendations.

2.3 Other Approaches

– Demographic Recommender Systems
These systems aim to categorize the user starting from personal attributes
making recommendation based on demographic classes. Grundy [32], for ex-
ample, recommends books by gathering personal information through an
interactive dialogue matching users responses against a library of manually
assembled user stereotypes. Pazzani [25] uses machine learning techniques
to obtain a classifier based on demographic data. The representation of de-
mographic information in a user model can vary greatly. Grundy system
uses hand-crafted attributes with numeric confidence values, while Pazzani
extracts features from users’ home pages.
The benefit of a demographic approach is that it may not require a history
of user ratings of the type needed by collaborative and content-based tech-
niques. However, up to our knowledge, there are not many recommender
systems using demographic data because this form of information is diffi-
cult to collect: till some years ago, indeed, users were reluctant to share a
big amount of personal information with a system. Nowadays with the ex-
ponential growth of social network and the continuous expansion of Web
2.0 platforms , the situation is changed towards a more open perspective,
with users more trustful to sharing of information. Despite this, still today
demographic approaches notice less success than others.

– Knowledge-based Recommender Systems
These systems uses a knowledge-based (KB) approach to generate recom-
mendations. All recommendation techniques make some kind of inference.
KB approaches are distinguished in that they have functional knowledge:
they have knowledge about how a particular item meets a particular user
need, and can therefore reason about the relationship between a need and a
possible recommendation [9]. The user profile can be any knowledge struc-
ture that supports this inference. In the simplest case, as in Google, it may
simply be the query that the user has formulated. In others, it may be a
more detailed representation of the user needs [39].



A particular kind of KB systems implement the case-based reasoning (CBR).
This recommender solves a new problem looking up a similar past solved
one. In [21], four main steps of a CBR recommender are identified: retrieve,
reuse, adaptation, and retain. The first step looks in the knowledge-base for
a case similar to the new problem, then reuse the retrieved solution (making
some adaptation, if necessary). Finally the new adapted case is stored in the
case-library. In this system there is not a user preference elicitation because
the main task of the recommendation algorithm is to retrieve the case most
similar to the problem to solve.
The KB systems do not have a ramp-up problem (“early rater” problem and
the “sparse ratings” problem) since its recommendations do not depend on a
base of user ratings. Therefore KB approach is complementary to others [8].

– Hybrid Recommender Systems
They combine two or more recommender algorithms (the more frequent ap-
proach is to combine CF and CB) in order to emphasize their strengths and
to level out their corresponding weaknesses. Robin Burke proposed a very
analytical classification of hybrid systems [9], listing a number of hybridiza-
tion methods to combine pairs of recommender algorithms.

• Weighted - The score (or votes) of a recommended item is computed
from the results of all of the available recommendation techniques present
in the system. The simplest combined hybrid would be a linear combi-
nation of recommendation scores.

• Switching - A switching hybrid uses some criterion to switch between
recommendation techniques. Switching hybrids introduce additional com-
plexity into the recommendation process since the switching criteria must
be determined, and this introduces another level of parameterization.

• Mixed - Recommendations from several different recommenders are pre-
sented at the same time. This may be possible where it is practical to
make large number of recommendations simultaneously.

• Feature Combination - Features from different recommendation sources
are thrown together into a single recommendation algorithm. For exam-
ple CF and CB techniques might be merged treating collaborative infor-
mation as simply additional feature data associated with each example
and using content-based techniques over this augmented data set.

• Cascade - The cascade hybrid involves a staged process because one
recommender refines the recommendations given by another one.

• Feature Augmentation - Output from one technique is used as an
input feature to another. This means that one technique is employed to
produce a rating or classification of an item and that information is then
incorporated into the processing of the next recommendation technique.

• Meta-level - The model learned by one recommender is used as input
to another. This differs from feature augmentation: in an augmentation
hybrid, we use a learned model to generate features for input to a second
algorithm; in a meta-level hybrid, the entire model becomes the input.



3 Learning User Preferences in Recommender Systems

As stated by [7], a preference is an ordering relation between two or more items to
characterize which, among a set of possible choices, is the one that best fits user
tastes. Preferences are something able to guide our choices, discriminating items
we like from those we don’t like (or we like the least). In other terms, learning
user preferences is a way to find the solution of a research (or optimization, in
some case) problem whose space of possible solutions is represented by the set of
the items the user can enjoy (namely, in recommender systems, the set of items
that can be recommended). Although the semantics of the concept of preference
is pretty clear, acquiring user preferences and working with them is a more
difficult task. Indeed, the complexity of the problem of preference learning is
strictly related to the number of dimensions used to represent the set of possible
choices. So, in order to generate a user profile we need to gather user feedbacks in
order to catch information about user prefences and model them using a specific
representation. Next, this information can be processed (e.g. through Machine
Learning-related approaches) in order to learn user profiles to be exploited in
the recommendation process.

3.1 Feedback Gathering

The information filtering and information retrieval systems rely on relevance
feedback (RF) to capture an appropriate snapshot of user information needs in
order to allow the user to directly express her notion of relevance with respect to
individual documents [5]. RF has been employed in several classes of personaliza-
tion systems. Driven by the need for better representation of information needs,
RF was initially introduced to support basic query expansion [33]. However, its
success in inferring the user’s notion of relevance on a per-document basis has
lead to a subsequent adoption by information filtering and recommendation sys-
tems. RF approaches are based on a feedback gathering scheme, either explicit or
implicit. In the former, object ratings of predefined scale are provided explicitly
by users, while implicit feedback gathering techniques infer object relevance in
a transparent fashion, by monitoring user interaction with the system.

Explicit Ratings. The use of explicit ratings is common in everyday life; rang-
ing from grading students’ work to assessing competing consumer goods (see
Alton-Scheidl et al. [2] for a review). Although some forms of rating are made in
free text form (e.g. book reviews), it is frequently the case that ratings are made
on an agreed discrete scale (e.g. star ratings for restaurants, marks out of ten for
films, etc). Ratings made on these scales allow these judgments to be processed
statistically to provide averages, ranges, distributions, etc. A central feature of
explicit ratings is that the evaluator has to examine an item and assign it a value
on the rating scale. This imposes a cognitive cost on the evaluator to assess the
performance of an object [24]. Indeed, the act of rating alters the user behavior



from her normal interaction pattern and, consequently, even less noticeable ex-
plicit feedback approaches are considered expensive. Since the results may not
become immediately apparent, users tend to skip the rating task [15].

Also, explicit RF techniques disregard user knowledge on the current topic.
Users are often unclear about their search interests. They browse for more in-
formation to clarify their need and re-formulate their query accordingly. The
uncertainty in their search episodes increases the cognitive load during explicit
RF, as users must decide on the relevance of an item with a lack of confidence.

Finally, the use of explicit ratings imposes privacy issues that have to be
resolved [16]. Irrespective of the underlying reason, users are not always com-
fortable in providing direct indications of their interests. Due to the obtrusive
nature of explicit ratings, not many users are willing to provide them. Hence,
the performance of profile capturing and recommendation algorithms of such
systems degrades, due to the dearth of ratings. In CF systems based on explicit
feedback gathering policies, the sparsity of RF judgments can often render such
systems unusable, since there are few previous assessments to learn from.

Explicit RF can relying also on critiquing examples. For instance, Smart-
Client [27] allows to plan travel arrangements. Users are required to critique
examples of possible solutions. For instance, “the arrival time of this flight leg is
too late.” The interaction is cyclical: (1) the system provides example solutions,
(2) the user examines any of them and may state a critique on any aspect of it,
(3) the critique becomes an additional preference in the model, and (4) the sys-
tem refines the solution set. Ricci and Nguyen [31] propose a similar critiquing
interaction to provide recommendations of restaurants in a mobile context.

As discussed in Pu and Chen [26], the motivation for this methodology is
that people usually cannot state preferences in advance but construct their pref-
erences as they see the available options. However, because the critiques come
from the user in response to the shown examples, the current solutions can
hinder the user from refocusing the search in another direction (the anchoring
effect). A complete preference model can be acquired only if the system is able
to stimulate the user by showing diverse examples.

Implicit Ratings. Implicit RF gathering techniques are proposed as unob-
trusive alternative or supplement to explicit ratings in order to state (indirect)
assessment about usefulness of any individual item. Such techniques passively
monitor user interactions with the system in order to estimate user interests [23].
Click-throughs, time spent viewing a document and mouse gestures are among
the possible sources of implicit feedback [17]. The main benefits of implicit feed-
back, over explicit ratings, are that they remove the cognitive cost of providing
relevance judgments explicitly and they can be gathered in large quantities and
aggregated to infer item relevance. Since implicit judgments are derived trans-
parently, they contain less indicative value than explicit ratings. Although the
accuracy of implicit approaches has been questioned [24], recent studies have
shown that they can be effectively adopted to state relevance feedback [40].



There are several types of feedback that can be implicitly captured. Nichols
[24] presented a list of potential types of user behaviors that could be exploited
as sources for implicit feedback. Kelly & Teevan [17] extended a classification
of observable feedback behaviors according to two axes, Behavior Category1

and Minimum Scope2 to categorize actions that can be observed during user
information seeking episodes. Their work has also focused on classifying existing
scientific literature on implicit feedback according to Behavior Category and
Minimum Scope. Unsurprising, a lot of analyzed works concerns examination
with object scope, i.e. click-through or scrolling measures are largely investigated
and exhibit a strong positive correlation with the explicit ratings. Such data can
be easily captured in realtime at no considerable computational cost, while user
behaviors that fall in the “Reference”, “Annotate” and “Create” require a more
precise control over individual services and applications and, thus, are hard to
capture and benefits for estimating user interests are not fully clear.

3.2 Modeling User Preferences

Feedback gathering techniques allow to collect information about user tastes and
interests. However, before this information can be exploited as input to learn
preferences models, this data need to be modeled following a specific representa-
tion. Techniques for modeling information (we usually refer to this as items, in
recommender systems) can be split depending on the kind of data which will be
stored in the user profile. If we have to handle unstructured data (the ones usually
exploited by CB recommenders) it is necessary to process them through some
Information Retrieval-related techniques (such as stemming, lemmatization, in-
dexing, and so on) which let us to shift from a textual source to a structured
one. For structured data, like generic ratings or some well-defined attribute-value
pairs (e.g. demographic data), instead, it is possible to represent them through
a matrix, how usually happens in CF systems. In both cases all the information
provided by the user, apart from their nature, can be also represented in a more
complex way (semantic or neural networks, probabilistic models, etc.) so that
we can use them as input for learning user profiles.

In the next section we will survey several Machine Learning techniques for
learning user profiles in different recommender systems.

3.3 Techniques for Learning User Profiles

According to [1], recommendations techniques can be grouped into two general
classes: model-based and memory/heuristic based. The same classification can
be made for techniques for learning user profiles: offline learning techniques (used
in model-based recommender systems) and online learning techniques (used in

1 The Behavior Category (Examine, Retain, Reference, Annotate and Create), refers
to the underlying purpose of the observed behavior.

2 Minimum Scope (Segment, Object and Class), refers to the smallest possible scope
of the item being acted upon.



memory-based recommender systems). Most systems learn user profiles using
an online learning approach, building and updating the model in order to make
recommendations in real-time. Offline learning methods, instead, fit better in
domains where, as stated in [22], user preferences change slowly with respect to
the time needed to build the model.

The application of Machine Learning techniques is a typical way to fulfil the
task of learning user profiles in model-based recommender systems. A common
approach is to learn the user profile by building a classifier, e.g. a model able
to assign a category to a specific input [22]. The classifier is learned by an
inductive process from a training set, i.e. a collection of items labeled with the
categories they belong to. In this approach the problem of learning user profiles
is considered as a binary categorization task: each item has to be classified as
interesting or not with respect to the user preferences. Therefore, the set of
categories is C = {c+, c−}, where c+ is the positive class (user-likes) and c− the
negative one (user-dislikes). Classifiers may be implemented using many different
machine learning strategies including probabilistic approaches, neural networks,
decision trees, association rules and Bayesian networks. In this section we will
provide a general overview of these techniques.

Näıve Bayes. It is the most used probabilistic algorithm and belongs to the
general class of Bayesian classifiers. These approaches generate a probabilistic
model based on previously observed data. It is usually used in CB systems where
the items to recommend are represented by textual documents. Thus, the model
estimates the a posteriori probability, P (c|d), of document d belonging to class
c. This estimation is based on the a priori probability, P (c), the probability
of observing a document in class c, P (d|c), the probability of observing the
document d given c and, P (d), the probability of observing the instance d. Using
these probabilities, the Bayes theorem is applied to calculate P (c|d):

P (c|d) =
P (c)P (d|c)

P (d)
(1)

To classify the document d, the class with the highest probability is chosen:

c = argmaxcj

P (cj)P (d|cj)
P (d)

P (d) is generally removed as it is equal for all cj . As we do not know the
value for P (d|c) and P (c), we estimate them by observing the training data.
However, estimating P (d|c) in this way is problematic, as it is very unlikely
to see the same document more than once: the observed data is generally not
enough to be able to generate good probabilities. The näıve Bayes classifier
overcomes this problem by simplifying the model by making the independence
assumption: all the words or tokens in the observed document d are conditionally
independent of each other given the class. Individual probabilities for the words
in a document are estimated one by one rather than the complete document as a
whole. The conditional independence assumption is clearly violated in real-world



data, however, despite these violations, empirically the näıve Bayes classifier does
a good job of classifying text documents [19, 6].

Although näıve Bayes performances are not as good as some other statistical
learning methods such as nearest-neighbor classifiers or support vector machines,
it has been shown that it can perform surprisingly well in the classification tasks
where the computed probability is not important [14]. Another advantage of the
näıve Bayes approach is that it is very efficient and easy to implement compared
to other learning methods.

Rocchio’s method. Some linear classifiers consist of an explicit profile (or
prototypical document) of the category [37]. The Rocchio’s method is used for
inducing linear, profile-style classifiers. It relies on an adaptation to text cat-
egorization of the well-known Rocchio’s formula for relevance feedback in the
VSM [33]. This algorithm represents documents as vectors so that documents
with similar content have similar vectors. Each component of such a vector cor-
responds to a term in the document . The weight of each component is computed
using the tf-idf [35] term weighting scheme. Learning is achieved by combining
document vectors (of positive and negative examples) into a prototype vector
for each class in the set of classes C. To classify a new document d, the sim-
ilarity between the prototype vectors and the corresponding document vector
representing d are calculated for each class (for example by using the cosine sim-
ilarity measure), then d is assigned to the class with which its document vector
has the highest similarity value. More formally, Rocchio’s method computes a
classifier −→ci = 〈ω1i, . . . , ω|T |i〉 for category ci (T is the vocabulary, that is the set
of distinct terms in the training set) by means of the formula:

ωki = β ·
∑

{dj∈POSi}

ωkj

|POSi|
− γ ·

∑
{dj∈NEGi}

ωkj

|NEGi|
(2)

where ωkj is the tf-idf weight of the term tk in document dj , POSi and NEGi

are the set of positive and negative examples in the training set for the specific
class cj , β and γ are control parameters that allow setting the relative importance
of all positive and negative examples. To assign a class c̃ to a document dj ,
the similarity between each prototype vector −→ci and the document vector −→dj is
computed and c̃ will be the ci with the highest value of similarity.

Decision trees learners. Decision trees are trees in which internal nodes are
labeled by terms, branches departing from them are labeled by tests on the
weight that the term has in the test document, and leafs are labeled by categories.
Decision trees are built by recursively partitioning training data, that is text
documents, into subgroups, until those subgroups contain only instances of a
single class. The test for partitioning data is run on the weights that the terms
labeling the internal nodes have in the document. The choice of the term on
which to operate the partition is generally made according to an information
gain or entropy criterion [41]. The most widely-used decision tree learner applied
to profiling is ID3 [28].



Decision rule classifiers. Are similar to decision trees, because they operates
in a similar way to the recursive data partitioning approach described above.
An advantage of rule learners is that they tend to generate more compact clas-
sifiers than decision trees learners. Rule learning methods usually attempt to
select from all the possible covering rules (i.e. rules that correctly classify all the
training examples) the “best” one according to some minimality criterion. Some
examples of inductive learning techniques are Ripper [12], Slipper [13], CN2 [10]
and C4.5rules [29].

Neural networks. Neural networks model complex relationships between input
and output cells. The user interests are represented by the output cells and each
of them are achievable by a specific pattern in the network. When an error
occurs, there is a backward propagation until the responsible cell is achieved, so
the cell parameters are adjusted.

Bayesian network. It represents a probability distribution by a direct acyclic
graph. There are random variables (nodes) and relations among them (arcs). The
nodes represent attributes and the arcs represent probability correlations. In [36]
a method integrating Case Based Reasoning and Bayesian Network for the user
profiling task is shown. Bayesian Network is employed to model quantitative and
qualitative relationships between items that users have liked. Bayesian Network
is generally used in those situations where user interests change slowly.

Nearest neighbor algorithms. These algorithms, also called lazy learners,
simply store training data in memory, and classify a new unseen item by compar-
ing it to all stored items by using a similarity function. The “nearest neighbor”
or the “k -nearest neighbors” items are determined, and the class label for the
unclassified item is derived from the class labels of the nearest neighbors. A sim-
ilarity function is needed, for example the cosine similarity measure is adopted
when items are represented using the VSM. Nearest neighbor algorithms are
quite effective, albeit the most important drawback is their inefficiency at clas-
sification time, since they do not have a true training phase and thus defer all
the computation to classification time.

4 Conclusions

In this paper we surveyed the methods for learning user profiles in recommender
systems. Firstly, we introduced the basics of recommender systems by describing
the main approaches presented in literature, namely the content-based and the
collaborative one. We also introduced other important approaches, such as the
demographic and the knowledge-based one, and some hybrid systems combining
different types of recommendation strategies. In the second part of the chapter we
focused our attention on the process of learning user preferences, by describing 1)
the techniques to get implicit or explicit user feedback and 2) the most successful



and widely used machine learning methods to learn user profiles in recommender
systems.
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