UTA-NM: Explaining Stated Preferences with Additive Minimum Non-Monotonic Utility Functions

Tomáš Kliegr

Department of Information and Knowledge Engineering, University of Economics, Prague, Czech Republic

Outline

- Introduction to the UTA method
 - Not well known in Preference Learning community (according to one reviewer)
- Motivation for the non-monotonic extension
- Illustrative Example
- Limitations and further work

Example

- ▶ g₁ looks, g₂ wittiness, g₃ sport attitude
- Alternatives a₁... a₅
- The DM preferences:

Stated Preference	Name	Look	Wittiness	Sport
1.	John	4	2	1
2.	Ashley	2	1	2
3.	Peter	3	3	3
4.	Martin	2	4	4
5.	Stan	2	4	5

Legend: 1(Low) ... 5 (High)

UTA Method

- UTA Method is a linear-programming method for disaggregation-aggregation analysis of preferences.
- Input for the method are implicit preferences in the form of the order of alternatives. E.g. $a_1 > a_2 \sim a_3 > a_4 > a_5$
- Alternatives are described by a set of criteria g1,...,gn
- The utility from an alternative is given by the sum of utilities from the criteria: $u(a) = \sum_{i=1}^{n} u_i(g_i(a))$

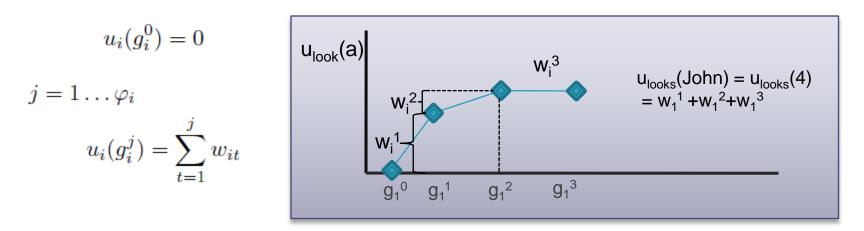
$$u(a) = \sum_{i=1}^{n} u_i(g_i(a))$$

Name	Look	Wittiness	Sport
John	4	2	1

$$u(John) = u_{looks}(4) + u_{wittines}(2) + u_{sport}(1)$$

Partial Utility Function

• The value at breakpoints of partial utility function u_i is given by the sum of marginal utilities w_i^j



- Partial utility functions in traditional UTA methods are monotonic
- UTA finds values of marginal utility variables w^j_i that generate the most similar ranking to the reference ranking

Infering marginal utilities from the ranking

- Introduce two errors σ^+ and σ^- for each alternative
- Susbtract utilities of consecutive alternatives:

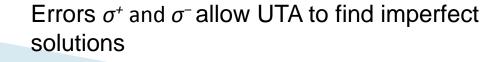
$$\Delta(a_{k}, a_{k+1}) = u[\mathbf{g}(a_{k})] - \sigma^{+}(a_{k}) + \sigma^{-}(a_{k}) - u[\mathbf{g}(a_{k+1})] + \sigma^{+}(a_{k+1}) - \sigma^{-}(a_{k+1})$$

$$k = 1, 2, \dots K - 1 \begin{cases} \Delta(a_{k}, a_{k+1}) > \delta & \text{if } a_{k} > a_{k+1} \\ \Delta(a_{k}, a_{k+1}) = 0 & \text{if } a_{k} \sim a_{k+1} \\ \sigma^{+}(a_{k}), \sigma^{-}(a_{k}) \ge 0 \end{cases}$$

• Objective function minimizes the sum of errors σ^+ and σ^- A1: u(John) = w₁¹ + w₁² + w₁³ + w₂¹ A2: u(Ashley) = w₁¹ + w₃¹

Since Rank(John) = 1 and Rank(Ashley)=2 then

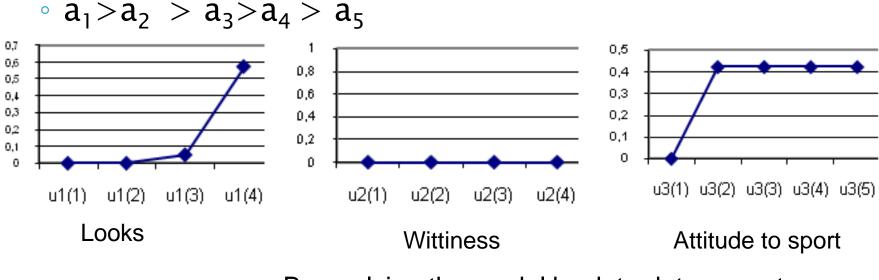
$$d(A1,A2) = w_1^{2} + w_1^{3} + w_2^{1} + w_3^{1} - \sigma_1^{+} + \sigma_1^{-} + \sigma_2^{+} - \sigma_2^{-} > \delta, \, \delta = 0.05$$



Example

Pref	Name	Look	Wittiness	Sport
1	John	4	2	1
2	Ashley	2	1	2
3	Peter	3	3	3
4	Martin	2	4	4
5	Stan	2	4	5

Explanation for stated order



By applying the model back to data we get:

 $a_1 > a_2 = a_3 = a_4 = a_5$

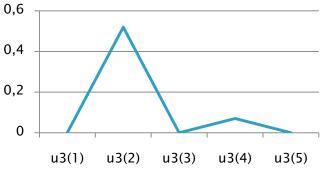
The discovered solution does not fully comply with the stated order of the alternatives

Motivation for non-monotonic UTA

- In the example, a fully fitting model was not found because the preferences of the DM were actually non-monotonic in criterion "g3: Sport"
- UTA assumes monotonic preferences
- The only non monotonic UTA algorithm (Despotis, Zopounidis 93) has following limitations
 - The exact utility function shape need to be known beforehand
 - There is maximum one change of shape per utility function
 - Proposed fully non-monotonic version: UTA-NM

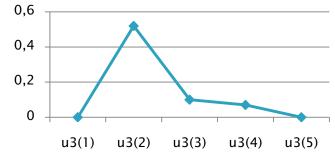
UTA – NM

- Inspired by UTA
- Relaxes the monotonicity assumption (by allowing negative marginal utility)
- Problem: solutions have many changes of shape in partial utility functions
 - overfitting
 - not interpretable



UTA – NM

- Inspired by UTA
- Relaxes the monotonicity assumption (by allowing negative marginal utility)
- Problem: solutions have many changes of shape in partial utility functions
 - overfitting
 - not interpretable



- UTA NM simultaneously minimizes the sum of errors σ⁺ and σ⁻ and the complexity of the model expressed by the number of changes in shape of partial utility functions.
- Challenge: Keep the problem linear

First approach: non-linear model, non-linear methods

- It is simple to count the number of changes in the shape if we can use nonlinear funcions such as *if* or *abs*.
- The work on linearized UTA-NM was preceded by experiments with non-linear methods Branch&Bound/GRG Solver
- Interval Global Solver found optimal solution in (4h)
- Genetic algorithms
- These experiments were not successful. Best result Branch&Bound/GRG Solver initialized with UTA Star

LP program outline

$$[min] \ z = \sum_{a \in A_R} \sigma^+(a) - \sigma^-(a) + E$$

s.t.

$$k = 1, 2, \dots K - 1 \begin{cases} \Delta(a_k, a_{k+1}) > \delta & \text{if } a_k > a_{k+1} \\ \Delta(a_k, a_{k+1}) = 0 & \text{if } a_k \sim a_{k+1} \\ \sigma^+(a_k), \sigma^-(a_k) \ge 0 \end{cases}$$

$$\begin{aligned} \forall i: \min(u_i(g_i^0), u_i(g_i^1), \dots u_i(g_i^j), \dots, u_i(g_i^{\gamma_i})) &= 0 \\ \sum_{i=1}^n \max(u_i(g_i^0), u_i(g_i^1), \dots u_i(g_i^j), \dots, u_i(g_i^{\gamma_i})) &= 1 \end{aligned}$$

Utility calculation

$$g_{i}: A \to [g_{i^{*}}, g_{i}^{*}], g_{i}(a)$$

$$u(a) = \sum_{i=1}^{n} u_{i} (g_{i}(a))$$

$$[g_{i}^{0}, g_{i}^{1}], \dots, [g_{i}^{\gamma_{i-1}}, g_{i}^{\gamma_{i}}], g_{i}^{*} = g_{i}^{\gamma_{i}}$$

$$w_{i}^{k} = u_{i} (g_{i}^{k}) - u_{i} (g_{i}^{k-1})$$

$$u_{i} (g_{i}^{j}) = \sum_{k=0}^{j} w_{i}^{k} \ w_{i}^{j}, j = 0, \dots \gamma_{i}$$

$$u'(a) = \sum_{i=1}^{n} u_{i} (g_{i}(a)) + \sigma^{+}(a) - \sigma^{-}(a)$$

Normalization

UTA

$$u_i(g_i^0) = u_i(g_{i^*}) = w_i^0 = 0,$$

$$\sum_{i=1}^n u_i(g_i^{\gamma_i}) = \sum_{i=1}^n u_i(g_i^*) = 1$$

UTA NM

$$min(u_i(g_i^0), u_i(g_i^1), \dots u_i(g_i^j), \dots, u_i(g_i^{\gamma_i})) = 0$$

$$\sum_{i=1}^{n} \max(u_i(g_i^0), u_i(g_i^1), \dots, u_i(g_i^j), \dots, u_i(g_i^{\gamma_i})) = 1$$

More details in the paper

Penalization

Penalization element:

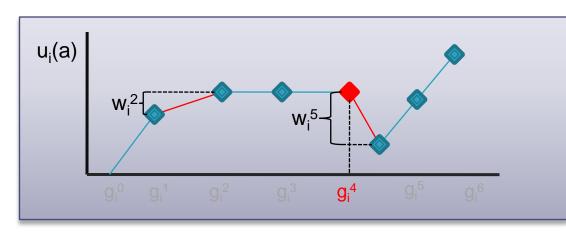
The value of the objective function is increased for each point in which the partial utility function u_i changes its shape

 $n \gamma_i - 1$

The change of shape is detected from signs of marginal utilities w^l_i and w^{j+1}_i and is saved to binary variable e^j_i

E =

• w_i^l is nearest previous non-zero marginal utility



sign (w _i l)	sign (w _i l+1)	e _{ij}
-1	-1	0
-1	0	0
-1	+1	1
0	-1	0
0	0	0
0	+1	0
1	-1	1
+1	0	0
+1	+1	0

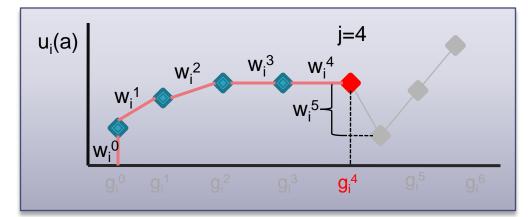
Locating the nearest previous nonzero w¹

For g_i^4 (j=4) we search the nearest previous *nonzero* marginal utility w_i^1 .

$$q = j, j - 1, \dots, 0 \begin{cases} \sum_{r=q}^{j} p_{i}^{r} + \sum_{r=q}^{j} n_{i}^{r} - \sum_{r=q}^{j} {}^{r}k_{i}^{j} \ge 0 \\ p_{i}^{q} + n_{i}^{q} - \sum_{r=q}^{j} {}^{r}k_{i}^{j} \le 0 \end{cases}$$
$$\sum_{r=0}^{j} {}^{r}k_{i}^{j} \le 1$$

sign(w _i)	p _i r	y _i r
+	1	0
-	0	1
0	0	0

Sign of marginal utility variable is expressed by the binary variables p_i^r, y_i^r .

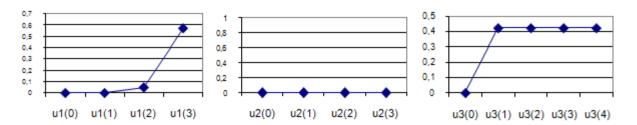


q	4	3	2	1	0
p _i q	0	0	1	1	1
У _i q	0	0	0	0	0
k _i q	0	0	1	0	0
$\sum\nolimits_{r=q}^{j=4}{^{r}k_{i}^{\;j}}$	0	0	1	1	1

Variable ${}^{r}k_{i}{}^{q}$ is set to 1 only iff $w_{i}{}^{q}$ is the nearest previous nonzero utility to $g_{i}{}^{j}$

Example

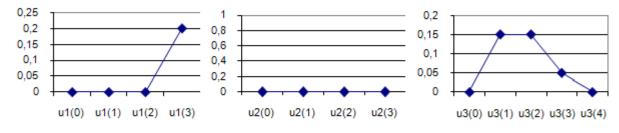
- Partner selection
- Explicit preferences :
 - the DM prefers middle value of sport endorsement
- Software used:
 - Frontline Premium Solver (commercial solver)
 - LP Solve (Open source solver)
 - Visual UTA 1.0 (Academic UTA Star implementation)



Information supplied

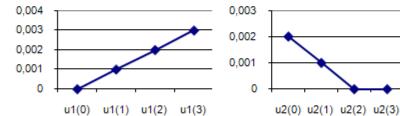
Higher values are better In all criteria

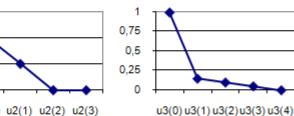
Utility functions found by UTA Star



Higher values are better in u1 and u2, maximum of u3 is in u3(3)

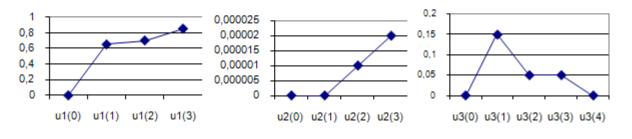
Utility functions found by Despotis Method





None

Utility functions found by UTA-NM



The worst value (nonexclusive) is at the first breakpoint

Utility functions found by UTA-NM with $w_i^0 = 0$

Experimental results

- Model found with UTA-NM was the only one to fully match the stated order (Pearson coefficient equal to 1)
- The deviation from the explicitly expressed preferences is also small
- Performace-wise, UTA-NM was slowest with 40/20 seconds (LPSolve on T1 / RiskSolver on T2) compared to less than 1 sec for other methods.

Method	Final rank	Error sum	Pearson Coefficient	Local Extremes	Explicit preferences
DM	a1>a2>a3>a4>a5	NA	NA	NA	NA
UTA Star	a1>a2=a3=a4=a5	0,15	0,73	0	no
Despotis	a1>a2=a3=a4>a5	0,1	0,96	1	yes/NA
NM T1	a1>a2>a3>a4>a5	0	1	0	No
NM T2	a1>a2>a3>a4>a5	0	1	1	Partially

Conclusion

- UTA Star was generalized to work with non-monotonic preferences
- If there is a monotonic solution fully complaint with stated preferences exists, UTA-NM outputs it
- UTA-NM has means to prevent overfitting
- Expert can input prior knowledge about the shape of the utility functions, these are used to weight contribution of changes in shape to the objective f.
- Resulting problem is linear and convex and hence processable with standard LP solvers
- Further work needs to focus on performance optimisations

Direction of further research

- The method is general but suffers from severe performance issues
- Even for very small toy problems tens of binary variables
- Real-world problems computationally infeasible
- Linearization with less binary variables
- Simplification (1 change of shape within criterion)
- Run as many Despotis UTA as there are positions in which the change of shape may occur

