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 Introduction to the UTA method
◦ Not well known in Preference Learning community 

(according to one reviewer)

 Motivation for the non-monotonic extension

 Illustrative Example

 Limitations and further work



 g1 looks,  g2 wittiness,   g3 sport attitude

 Alternatives a1… a5

 The DM preferences:

Name Look Wittiness Sport

John 4 2 1

Ashley 2 1 2

Peter 3 3 3

Martin 2 4 4

Stan 2 4 5

Stated

Preference

1.

2.

3.

4.

5.

Legend: 1(Low) … 5 (High)



• UTA Method is a linear-programming method for
disaggregation-aggregation analysis of preferences. 

• Input for the method are implicit preferences in the form of
the order of alternatives. E.g. a1 > a2 ~ a3 > a4 > a5

• Alternatives are described by a set of criteria g1,…,gn

• The utility from an alternative is given by the sum of utilities
from the criteria:

u(John) = ulooks(4) + uwittines(2) + usport(1)
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Name Look Wittiness Sport

John 4 2 1



• The value at breakpoints of partial utility function is given by 
the sum of marginal utilities

• Partial utility functions in traditional UTA methods are monotonic

• UTA finds values of marginal utility variables     that generate the 
most similar ranking to the reference ranking
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 Introduce two errors σ+ and σ− for each alternative
 Susbtract utilities of consecutive alternatives:

 Objective function minimizes the sum of errors σ+ and σ−
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Since Rank(John) = 1 and Rank(Ashley)=2 then 

Errors σ+ and σ− allow UTA to find imperfect 

solutions 
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Looks Wittiness Attitude to sport

 Explanation for stated order

◦ a1>a2 > a3>a4 > a5

By applying the model back to data we get:

a1 > a2 = a3 = a4 = a5

The discovered solution does not fully comply 

with the stated order of the alternatives

Pref Name Look Wittiness Sport

1 John 4 2 1

2 Ashley 2 1 2

3 Peter 3 3 3

4 Martin 2 4 4

5 Stan 2 4 5



 In the example, a fully fitting model was not found because
the preferences of the DM were actually non-monotonic in 
criterion „g3: Sport“

 UTA assumes monotonic preferences

 The only non monotonic UTA algorithm (Despotis, Zopounidis
93) has following limitations

◦ The exact utility function shape need to be known beforehand

◦ There is maximum one change of shape per utility function

◦ Proposed fully non-monotonic version: UTA-NM



 Inspired by UTA

 Relaxes the monotonicity assumption (by allowing negative 
marginal utility)

 Problem: solutions have many 
changes of shape in partial utility 
functions 

 overfitting

 not interpretable
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 Inspired by UTA

 Relaxes the monotonicity assumption (by allowing negative 
marginal utility)

 Problem: solutions have many 
changes of shape in partial utility 
functions 

 overfitting

 not interpretable

 UTA - NM simultaneously minimizes the sum of errors σ+ and 
σ− and the complexity of the model expressed by the number
of changes in shape of partial utility functions.

 Challenge: Keep the problem linear
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 It is simple to count the number of changes in 
the shape if we can use nonlinear funcions
such as if or abs.

 The work on linearized UTA-NM was preceded
by experiments with non-linear methods
Branch&Bound/GRG Solver

 Interval Global Solver – found optimal solution
in (4h)

 Genetic algorithms
 These experiments were not successful. Best

result Branch&Bound/GRG Solver initialized
with UTA Star







 UTA

 UTA NM

More details in the paper



 The value of the objective function is increased for each
point in which the partial utility function changes its shape

 The change of shape is detected from signs of marginal
utilities and and is saved to binary variable
◦ is nearest previous non-zero marginal utility

 Penalization element: 
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Sign of marginal utility variable is expressed 
by the binary variables  pi

r, yi
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 Partner selection

 Explicit preferences : 
◦ the DM prefers middle value of sport endorsement

 Software used:
◦ Frontline Premium Solver (commercial solver)

◦ LP Solve (Open source solver)

◦ Visual UTA 1.0 (Academic UTA Star 
implementation)



Information supplied

Higher values are better

In all criteria

Higher values are better 

in u1 and u2, maximum of 

u3 is in u3(3)

None

The worst value 

(nonexclusive) is at the 

first breakpoint



• Model found with UTA-NM was the only one to fully match
the stated order (Pearson coefficient equal to 1)

• The deviation from the explicitly expressed preferences is
also small

• Performace-wise, UTA-NM was slowest with 40/20 seconds
(LPSolve on T1/ RiskSolver on T2) compared to less than 1 
sec for other methods.

Method Final rank
Error

sum

Pearson

Coefficient

Local

Extremes

Explicit 

preferences

DM a1>a2>a3>a4>a5 NA NA NA NA

UTA Star a1>a2=a3=a4=a5 0,15 0,73 0 no

Despotis a1>a2=a3=a4>a5 0,1 0,96 1 yes/NA

NM T1 a1>a2>a3>a4>a5 0 1 0 No

NM T2 a1>a2>a3>a4>a5 0 1 1 Partially



 UTA Star was generalized to work with non-monotonic
preferences

 If  there is a monotonic solution fully complaint with 
stated preferences exists, UTA-NM outputs it

 UTA-NM has means to prevent overfitting

 Expert can input prior knowledge about the shape of
the utility functions, these are used to weight 
contribution of changes in shape to the objective f.

 Resulting problem is linear and convex and hence 
processable with standard LP solvers

 Further work needs to focus on performance 
optimisations



◦ The method is general but suffers from severe 
performance issues

◦ Even for very small toy problems tens of binary variables

◦ Real-world problems computationally infeasible

 Linearization with less binary variables

 Simplification (1 change of shape within criterion)

 Run as many Despotis UTA as there are positions 
in which the change of shape may occur


