
Decision Rule-based Algorithm for Ordinal
Classification based on Rank Loss Minimization

Krzysztof Dembczyński1 and Wojciech Kot lowski1,2

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

kdembczynski@cs.put.poznan.pl
2 Centrum Wiskunde & Informatica, NL-1097 CA Amsterdam, The Netherlands

kotlowsk@cwi.nl

Abstract. Many classification problems have in fact an ordinal nature,
i.e., the class labels are ordered. We introduce a decision rule algorithm,
called RankRules, tailored for this type of problems, that is based on
minimization of the rank loss. In general, the complexity of the rank loss
minimization is quadratic with respect to the number of training exam-
ples, however, we show that the introduced algorithm works in linear
time (plus sorting time of attribute values that is performed once in the
pre-processing phase). The rules are built using a boosting approach.
The impurity measure used for building single rules is derived using one
of four minimization techniques often encountered in boosting. We ana-
lyze these techniques focusing on the trade-off between misclassification
and coverage of the rule. RankRules is verified in the computational
experiment showing its competitiveness to other algorithms.

1 Introduction

Given an object described by attribute values x = (x1, x2, . . . , xn), the goal in
ordinal classification consists in predicting an unknown class label y taken from
an ordered set K = {1, . . . ,K}. We assume that there is a meaningful order
between classes which corresponds to the natural order between class labels.

This type of problem is very common in real applications, mainly in the areas
related to exploiting user’s preferences. For example, in recommender systems,
users are asked to rate items on finite value scale, e.g. one to five “stars”. The
task is to predict users’ rates. Another example is classification of emails to
groups like: “very important”, “important”, “normal”, and “later”.

There are two recently introduced approaches to ordinal classification that
gain the main attention. The first one consists in constructing a scoring function
that properly orders the training examples. This is done by minimization of the
so-called rank loss [1]. The classes are then determined by thresholds defined
on the range of the scoring function. The construction of the scoring function
requires, however, that all examples are compared pairwise. Thus, the complexity
of this approach is in general quadratic with respect to the number N of training
examples. In order to reduce the complexity, the approach based on threshold

loss has been introduced [2, 3]. The scoring function is computed simultaneously
with thresholds in such a way that training examples are compared to thresholds
only. In the following, however, we focus on the former approach despite of its
complexity, introducing an algorithm that works in linear time.

We consider a classifier in which the scoring function is a rule ensemble, i.e.,
linear combination of decision rules being logical patterns of the form: if [condi-
tion] then [decision]. Such a rule can be treated as a simple classifier that gives a
constant response to examples satisfying the condition part, and abstains from
the response for all other examples. The main advantage of rules is their sim-
plicity and human-readable form. The introduced algorithm, called RankRules,
builds the rule ensemble by using the boosting approach in which the exponential
rank loss is greedily minimized.

The contribution of the paper can be seen from two perspectives. On the one
hand, we thoroughly analyze a boosting algorithm applied with a specific base
classifier – decision rule. In this context our algorithm is similar to RankBoost [4]
that was already analyzed in ordinal classification settings [3]. However, the
main conclusion in [3] is that an approach based on the rank loss performs worse
than an approach based on the threshold loss. We have obtained an opposite
result which states that both approaches are competitive. We also show that
the complexity of the rank loss minimization can be linear in the number of
training examples in the ordinal classification settings, similarly as in the case
of threshold loss minimization (assuming that the attribute values are already
sorted). This extends results obtained for two-class problems. It was shown that
RankBoost [4] scales linearly. In the case of SVM with linear kernel function,
the rank loss minimization scales with N logN [5].

From the other perspective, RankRules can be seen as a novel approach
to rule generation. The classical algorithms were mainly based on the sequential
covering procedure [6]. Recently, several algorithms based on boosting have been
introduced that can be seen as generalization of the sequential covering [7–9].
RankRules is distinguished by the fact that it minimizes the rank loss. In the
case of binary classification, this is closely related to maximization of the so-
called AUC (area under the ROC curve) criterion. Thus, RankRules for two-
class problems can be treated as an efficient decision rule algorithm maximizing
AUC. From this point of view, it is related to [10].

In rule induction, we need to specify the impurity measure that controls the
procedure constructing a single rule. In the introduced approach, the impurity
measure is naturally derived from the empirical risk formula using one of four
minimization techniques. Since the rule can abstain from classification, we ana-
lyze the impurity measures in the context of a trade-off between misclassification
and coverage (i.e., the number of covered training examples) of the rule. We show
how the minimization techniques influence this trade-off. A similar analysis has
already been performed for the rule ensembles in binary classification case [11],
for margin loss functions. This is also related to [12] in which the trade-off is
discussed for some classic rule impurity measures.

The paper is organized in the following way. Section 2 states the ordinal clas-
sification problem. Section 3 describes and analyzes the RankRules algorithm.
Section 4 reports the experiments on artificial and benchmark data sets. The
last section concludes the paper.

2 Ordinal Classification

In order to solve the ordinal classification problem one has to construct a func-
tion F (x) using a set of training examples {yi,xi}N1 that predicts accurately an
ordered label y. Since y is discrete, for a given x it obeys a multinomial dis-
tribution, pk(x), k = 1, . . . ,K, where pk(x) = Pr(y = k|x). Thus, the optimal
function is clearly given by:

F ∗(x) = arg min
F (x)

K∑
k=1

pk(x)L(y, F (x)),

where L(y, F (x)) is the loss function which gives the penalty for predicting F (x)
when the actual value is y. We define the loss function L(y, F (x)) as matrix:

L(y, ŷ) = (ly,ŷ)K×K (1)

where ŷ is a prediction made by F (x) (i.e., ŷ = F (x)). It is assumed that the
matrix satisfies ly,ŷ = 0, for y = ŷ, and ly,ŷ > 0, otherwise. Moreover, since we
want loss matrix to be consistent with the labels’ order, each row of L has to be
v-shaped : ly,ŷ−1 ≥ ly,ŷ, if ŷ ≤ y and ly,ŷ ≤ ly,ŷ+1, for ŷ ≥ y (larger deviation of
predicted label ŷ from observed label y is more penalized). A natural choice is
the absolute-error loss for which ly,ŷ = |y− ŷ|, since the optimal function in this
case is median over class distribution:

F ∗(x) = medianpk(x)(y).

Median does not depend on a distance between class labels, so the scale of the
decision attribute does not matter, only the order is taken into account.

We can conclude that in order to solve the ordinal classification problem with
loss matrix L, one can first estimate pk(x), k ∈ K. A final prediction then can
be computed as median over estimated probabilities.

As it was observed in [13], any loss matrix (1) can be decomposed into an
aggregation of margin 0-1 loss functions (defined as L0−1(f) = Jf < 0K). 3 Let
yk be an auxiliary class label, k = 1, . . . ,K − 1, such that yk = 1, if y > k, and
yk = −1, otherwise. Moreover, let fk(x) ∈ R be a function such that fk(x) > 0,
if F (x) > k, and fk(x) < 0, otherwise. Then, the following decomposition holds:

ly,ŷ =
K−1∑
k=1

|ly,k+1 − ly,k|L0−1(ykfk(x)).

3 JπK is the Boolean test, equal to 1 if predicate π is true, and 0 otherwise.

For the absolute-error we have |ly,k+1 − ly,k| = 1. It is usually desired to recon-
struct F (x) by monotonic fk(x):

fk(x) ≥ fk+1(x), for k = 1, . . . ,K − 1. (2)

In order to satisfy (2), one can use function f(x) and introduce thresholds
θ = (θ0, . . . , θK) such that

θ0 = −∞ ≤ θ1 ≤ . . . ≤ θK−1 ≤ θK =∞. (3)

In this case, we have that fk(x) = f(x)− θk.
Function f(x) can be constructed simultaneously with estimation of thresh-

olds θ by minimizing the so-called threshold loss [2, 13]:

L(y, f(x),θ) =
K−1∑
k=1

L(yk(f(x)− θk)), (4)

where L(f) is a typical margin loss function used in binary classification prob-
lems, like the 0-1 loss, exponential loss, Lexp(f) = exp(−f), or logit loss, Llog(f) =
log(1+exp(−f)). In general, this approach yields in upper bounding the absolute-
error.

In this paper, however, we introduce the algorithm that solves the problem
in a similar way to [1]. We first construct the function f(x). To this end we use
the rank loss that is defined on pairs of examples:

L (y•, y◦, f(x•), f(x◦)) = L (y•◦(f(x•)− f(x◦))) , (5)

where y•◦ = sgn(y•− y◦) and L(f) is one of margin loss functions. The learning
algorithm minimizes this loss over the pairs of training examples i, j = 1, . . . , N :

R(f) =
∑
yij>0

L(f(xi)− f(xj)),

where yij denotes y•◦ defined for the i-th and j-th training example. In the next
step, thresholds θ are computed by minimizing the threshold loss function for
known f(x):

θ∗ = arg min
θ

1
N

N∑
i=1

L(yi, f(xi),θ), (6)

subject to (3). Thus, this approach is also suited for minimization of the absolute-
error loss.

Let us remark that in the case of binary classification, the above formulation
is closely related to the so-called AUC (area under the “Receiving Operator
Characteristic” curve) criterion, becoming a popular measure for evaluating the
performance of classifiers. The AUC criterion is defined as:

AUC(f) = Pr(f(x•) > f(x◦)|y• = 1, y◦ = −1).

It is easy to see that maximizing the AUC criterion boils down to minimizing
the rank loss, since:

AUC(f) = 1− Ey•,y◦,x•,x◦ [L0−1(yij(f(x•)− f(x◦)))]
2 Pr(y• = 1, y◦ = −1))

.

3 RankRules

We start the description of RankRules with the formal definition of a decision
rule. Let Xp be a domain of attribute p ∈ {1, . . . , n}. Condition part of the rule,
denoted by Φ, consists of a conjunction of elementary conditions of the general
form

xp ∈ Sp,
where xp is the value of x on attribute p and Sp is a subset of Xp. In partic-
ular, elementary conditions are of the form xp ≥ sp, xp ≤ sp, for quantitative
attributes, and xp = sp, xp 6= sp, for qualitative attributes, where sp is taken
from a domain of p-th attribute. Let Φ(x) be a function indicating whether an
object satisfies the condition of the rule. In other words, Φ(x) defines an arbi-
trary axis-parallel region in the attribute space. We say that a rule covers object
x if it belongs to this region, i.e., Φ(x) = 1, otherwise Φ(x) = 0. The number
of training examples covered by the rule is referred to as rule coverage. Decision
(also called response), denoted by α, is a real non-zero value assigned to the
region defined by Φ. Therefore, we define a decision rule as:

r(x) = αΦ(x).

We assume that the rule ensemble is a linear combination of M decision rules:

fM (x) =
M∑
m=1

rm(x).

In order to make prediction one determines θ and computes

F (x) =
K∑
k=1

kJfM (x) ∈ [θk−1, θk)K.

The rule ensemble is constructed by minimizing the rank loss based on the
exponential loss. We use the exponential loss, since it is a convex function, which
makes the minimization process easier to cope with. Moreover, due to modularity
of the exponential function, minimization of rank loss can be performed in an
efficient way.

We follow the boosting approach that results in an iterative procedure in
which rules are added one by one to the ensemble greedily minimizing the loss
over training examples. In the m-th iteration, the rule is obtained in the following
way:

rm = arg min
r
R(fm−1 + r) = arg min

Φ,α

∑
yij>0

w
(m)
ij e−α(Φm(xi)−Φm(xj)), (7)

where fm−1 is rule ensemble after m− 1 iterations, and

w
(m)
ij = e−(fm−1(xi)−fm−1(xj))

can be treated as weights associated with pairs of training examples. Let us
remark that the overall loss changes only for pairs in which one example is
covered by the rule and the other is not (i.e., Φ(xi) 6= Φ(xj)). The details how
the rule is generated are given in the next subsection.

After generating the rule ensemble, the algorithm determines values of thresh-
olds by solving (6) based on the exponential loss:

θ = arg min
θ

N∑
i=1

K−1∑
k=1

e−yik(fM (xi)−θk), (8)

subject to (3). We use yik to denote the auxiliary variable yk for the i-th training
example. The solution of (8) is then given, for k = 1,. . . ,K - 1, by:

θk =
1
2

log
∑N
i=1Jyik > 0KefM (xi)∑N
i=1Jyik < 0Ke−fM (xi)

.

The condition (3) is satisfied by this solution, as proved in [13].

3.1 Single Rule Generation

In the remainder, we use the following notation: Φ(xi,xj) = Φ(xi) − Φ(xj),
W> =

∑
yij>0JΦ(xi,xj) > 0Kw(m)

ij , W< =
∑
yij>0JΦ(xi,xj) < 0Kw(m)

ij , W0 =∑
yij>0JΦ(xi,xj) = 0Kw(m)

ij , and W = W> +W< +W0.
Thus, we can rewrite the term minimized in (7) to e−αW> + eαW< + W0.

A decision rule is obtained by an approximate solution of this minimization
problem. We separately treat the problem of finding αm and Φm.

Let us remark that for given Φm the problem of finding αm becomes much
simpler. After simple calculations, one obtain a closed-form solution:

αm =
1
2

ln
W>

W<
. (9)

To avoid division by zero, we add to the numerator and denominator a small
positive value that regularizes the estimate of the response.

The challenge is to find Φm. To this end, we derive an impurity measure
Lm(Φ) from (7) in such a way that the minimization problem does not longer
depend on α. For given Lm(Φ) the procedure constructing Φm resembles the way
in which decision trees are built. It constructs only one path from the root to the
leaf. At the beginning, Φm is empty and in each subsequent step an elementary
condition xp ∈ Sp minimizing Lm(Φ) is added to Φm. This procedure ends if
Lm(Φ) cannot be decreased. Let us underline that minimal value of Lm(Φ) is
a natural stop criterion of the procedure and no other parameters have to be

specified. This is due to the fact that rules represent a natural trade-off between
misclassification and coverage of the rule.

Below, we analyze four techniques for deriving the form of the impurity
measure that have been often used in the boosting algorithms. We show the
relations between them by focusing on the above mentioned trade-off. Because
of the nature of the algorithm, we analyze the coverage with respect to pairs of
training examples. Moreover, these pairs are represented mainly by the weights
wij . However, there is a clear relationship between coverage of pairs and single
examples. The presented results generalize to some extent results obtained for
binary classification [11].

Simultaneous minimization. Putting optimal value of αm given by (9) into (7)
results in the following impurity measure:

Lm(Φ) = 2
√
W>W< +W0.

This can be simplified by using short multiplication formulas and replacing W0

by W −W> −W< (remark that W is constant in a given iteration) to:

Lm(Φ) = −|
√
W> +

√
W<|. (10)

We called this technique simultaneous minimization, since for both parame-
ters the closed-form solution exists.

Gradient descent. This technique approximates (7) up to the first order with
respect to α:

rm ' arg min
Φ,α

∑
yij>0

(
w

(m)
ij − αΦ(xi,xj)w

(m)
ij

)
. (11)

It is easy to see that the optimal solution with respect to Φ is obtained by
minimizing:

Lm(Φ) = −
∣∣ ∑
yij>0

Φ(xi,xj)w
(m)
ij

∣∣ = −|W> +W<|, (12)

since sign and magnitude of α may be established afterwards. We can now state
the following relation between simultaneous minimization and gradient descent:

Theorem 1. Consider minimization of the rank loss based on the exponential
loss on the training set. Let ΦGDm be the optimal condition part obtained by min-
imization of (12):

ΦGDm = arg min
Φ
−|W> +W<|, (13)

and let ΦSMm be the optimal condition part obtained by minimization of (10):

ΦSMm = arg min
Φ
−|
√
W> +

√
W<|. (14)

Then, the following holds:

WSM
> +WSM

< ≤WGD
> +WGD

< ,

where WSM
> , WSM

< , WGD
> , WGD

< denote the sum of respective weights in optimal
solutions for ΦSMm and ΦGDm .

Proof. Denoting by W+ = max(W>,W<) and by W− = min(W>,W<), we have
from (13) that:

−WGD
+ +WGD

− ≤ −WSM
+ +WSM

− , (15)

and from (14), we have that:

−
√
WGD

+ +
√
WGD
− ≥ −

√
WSM

+ +
√
WSM
− . (16)

Since all the sums of weights are positive, we can use
√
WGD
− ≥

√
WGD

+ −√
WSM

+ +
√
WSM
− in −WGD

+ ≤ −WSM
+ + WSM

− + WGD
− . In result we obtain

that
√
WGD

+ ≥
√
WSM

+ . From this and (16) we have immediately that
√
WGD
− ≥√

WSM
− . Finally, we get WSM

+ +WSM
− ≤WGD

+ +WGD
− , as claimed. �

Value of W> + W< is the (weighted) number of pairs of objects affected
by the rule; therefore it can be regarded as a measure of rule coverage. Thus,
Theorem 1 shows that gradient descent produces more “general” rules (with
larger coverage) than simultaneus minimization.

We can also easily prove that the gradient descent technique determines a
precise trade-off between misclassified and uncovered pairs of training examples.

Theorem 2. Let W− = min(W>,W<), then minimization of (12) is equivalent
to minimization of:

W− +
1
2
W0. (17)

Proof. Using W− in (12), and substituting max(W>,W<) by W −W− −W0

results in W− + 1
2W0, since W is constant in a given iteration. �

This theorem has a nice interpretation: the term W− corresponds to pairs “mis-
classified” by the rule, while the second term – to pairs that are not “classified”
by the rule at all. Value 1

2 plays the role of a penalty for abstaining from classifi-
cation and establishes a trade-off between not classified and misclassified pairs.

Gradient boosting. Gradient boosting is similar to gradient descent, but in this
case we fit a rule to the negative gradient by minimizing the squared-error cri-
terion:

rm(x) ' arg min
Φ,α

∑
yij>0

(
w

(m)
ij − αΦ(xi,xj)

)2

. (18)

This problem can be solved for α = W>+W<P
yij>0 |Φm(xi,xj)| . Therefore, we finally

obtain:

Lm(Φ) = −
∣∣W> +W<

∣∣√∑
yij>0 |Φm(xi,xj)|

, (19)

which is equivalent to (12) normalized by the square root of the rule coverage. In
other words, this technique produces more specific rules than gradient descent.

Constant-step minimization. In this technique, we restrict α in (7) to α ∈
{−β, β}, where β is a fixed parameter of the algorithm. In result we obtain:

Lm(Φ) = e∓βW> + e±βW< +W0. (20)

We can easily show that the constant-step minimization generalizes the gradient
descent technique.

Theorem 3. Solution of (20) for the exponential loss and step length β is equiv-
alent to minimization of

W− + `W0, (21)

where W− is defined as before and ` = 1−e−β
eβ−e−β .

Proof. Using W− in (20), and substituting max(W>,W<) by W −W− −W0,
we get

(eβ − e−β)W− + (1− e−β)W0 + e−βW.

The last element does not change the solution, so it suffices to minimize the first
two terms. Moreover, dividing by (eβ − e−β) we obtain: Lm(Φ) = W− + `W0,
where ` = 1−e−β

eβ−e−β , as claimed. �

It is easy to see that for β > 0, ` ∈ [0, 0.5). Expression (21) has a similar
interpretation as (17), but with varying value of `. Increasing ` (or decreasing β)
results in more general rules, covering more pairs. For β → 0 we get the gradient
descent technique. This means that gradient descent produces the most general
(in the sense of coverage) rules.

3.2 Fast Implementation of RankRules

We can notice that the complexity of all impurity measures defined above is
quadratic O(N2) with respect to the number of training examples N . However,
we can reduce the complexity to O(KN). First of all, let us remark that the
minimization problem defined in m-th iteration (7) can be rewritten to:

rm = arg min
Φ,α

∑
yij>0

w
(m)
ij e−α(Φm(xi)−Φm(xj)) = arg min

Φ,α
e−αW> + eαW< +W0

= arg min
Φ,α

K−1∑
k=1

(
e−αW+

k W
0−
k + eαW−k W

0+
k +W+

k W
−
k +W 0+

k W 0−
k

)
,

where W 0−
k =

∑
Φ(xi)=0Jyik < 0Kw(m−)

i , W−k =
∑
Φ(xi)=1Jyik < 0Kw(m−)

i ,

W+
k =

∑
Φ(xi)=1Jyik > 0Kw(m)

i , W 0+
k =

∑
Φ(xi)=0Jyik > 0Kw(m)

i , with w
(m)
i =

e−fm−1(xi), w(m−)
j = efm−1(xj). These values depend on single examples (not

pairs) and can be easily computed and updated in each iteration.
Computation of α requires then a linear time with respect to the number of

training examples:

αm =
1
2

ln
∑K−1
k=1 W+

k W
0−
k∑K−1

k=1 W−k W
0+
k

.

To reduce the complexity, we also have to find the way in which Lm(Φ) can
be efficiently computed. This requires the training examples to be sorted on
each attribute, since the elementary conditions to be added to Φm are tested
consecutively for all values (midpoints between training examples) on all condi-
tion attributes. The sorting phase can be performed once before generating any
rule. For each consecutive candidate elementary condition, the coverage of new
Φ then differs with one training example.

Let us focus on the gradient descent technique, for simplicity, but the main
idea is the same for other techniques. In this case, one minimizes −|W> +W<|.
Let us observe that we can write:

W> =
K−1∑
k=1

W+
k W

0−
k W< =

K−1∑
k=1

W−k W
0+
k .

All these values can be easily updated by adding or subtracting w(m)
j or w(m−)

j ,
for any consecutive candidate Φ.

3.3 Regularization

The generalization ability of the rule ensemble can be increased by performing
three steps regularizing the solution.

The first one consists in shrinking [14] a newly generated rule rm(x) =
αmΦm(x) towards rules already present in the ensemble:

fm(x) = fm−1(x) + ν · rm(x),

where ν ∈ (0, 1] is a shrinkage parameter that can be regarded as controlling the
learning rate. For small ν we obtain accurate ensemble, but less interpretable,
since we need to generate more rules.

The algorithm works better when decision rules are less correlated. That is
why the procedure for finding Φm can work on a subsample of original data that
is a fraction ζ of all training examples, drawn without replacement [15]. Such
an approach leads to a set of rules that are more diversified and less correlated.
Moreover, finding Φm on a subsample reduces the computational costs. However,
we pay once again the price of the interpretability.

Independently of the fact whether Φm was found using a subsample or not,
value of αm is calculated on all training examples in the introduced algorithm.

This usually decreases |αm|, and avoids overfitting the rule to the training set.
These three elements (shrinking, sampling, and calculating αm on the entire
training set) constitute an alternative technique to post-pruning often used in
rule induction algorithms.

4 Experimental Results

We thoroughly tested the RankRules algorithm in ordinal classification tasks.
The first experiment was performed on artificial data. Based on the results of
this experiment, we selected the default parameters for the algorithm. In the
second experiment, we compared RankRules to other methods using benchmark
data sets. In all the experiments, we measured the mean absolute error (MAE).

4.1 Artificial Data

The artificial data were generated by the following model. Examples x ∈ Rn are
drawn according to the normal distribution, x ∼ N(0, I), where I is a unit matrix
of size n. Each example belongs to one of the classes y ∈ {1, . . . , 10}. Assume that
the function f(x) ∈ R can be transformed to conditional probabilities Pr(y >
k|x) by log Pr(y>k|x)

Pr(y≤k|x) = π(f(x)− θk), k = 1, . . . , 9, where π corresponds to the
level of noise, measured by the Bayes risk of the absolute-error that we set to 1.
We defined function f(x) to be: f(x) = x1−x2+0.2(x3−x4)+5e−(x2

5+x
2
6+0.2x2

7)−∏10
j=8 I(−0.5 ≤ xj ≤ 0.5)+I(x11 ≥ 0∧x12 ≥ 0)−I(x13 ≥ 0∧x14 ≥ 0). Notice that

this function contains linear terms (which are hard to approximate by trees and
rules), Gaussian term (ball in the coordinate origin), cube and two rectangles.
Thresholds θ = {θk}100 are chosen so that the prior probabilities of all classes
are approximately equal. We generated 30 training and testing sets according to
this model. Each of them consisted of 1000 examples.

First, we examined the effect of regularization. We set for the regularized
algorithm some ad hoc values corresponding to high regularization. These are
ν = 0.1 (shrinkage parameter), and ζ = 0.25 (fraction of training examples). We
used 6 instances of the algorithm, each using different minimization technique: si-
multaneous minimization (SM), gradient descent (GD), gradient boosting (GB),
and constant-step minimization with β = 0.1, 0.2, and 0.5. We generated up to
M = 1000 rules. Top panels of Fig. 1 present the error curves, i.e., error as a
function of M . The results are also summarized in Table 1, in which MAE for
M = 1000, standard errors and computing times are given. We see that regu-
larization improves results. The error curves are much smoother. Simultaneous
minimization seems to perform the best. We can observe that higher values of β
increase the error. This is, however, partially due to the greedy nature of the pro-
cedure building the single rule. Taking a subsample of training examples speeds
up the algorithm. In bottom left panel of Fig. 1, we also show the computing
time as a function of N (size of the training set) for two instances of RankRules
(for ζ = 1.0 and ζ = 0.5). We see that the algorithm scales linearly.

0 200 400 600 800 1000

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of rules

T
es

t
er

ro
r

(M
A

E
)

●

●

●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

●

●

RR SM−Exp νν == 1 ζζ == 1
RR CS−Exp ββ == 0.1 νν == 1 ζζ == 1
RR CS−Exp ββ == 0.2 νν == 1 ζζ == 1
RR CS−Exp ββ == 0.5 νν == 1 ζζ == 1
RR GD−Exp ββ == 0 νν == 1 ζζ == 1
RR GB−Exp νν == 1 ζζ == 1

0 200 400 600 800 1000

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of rules

T
es

t
er

ro
r

(M
A

E
)

●

●

●

●
●

● ● ● ● ●

●

●

●
● ● ● ● ● ● ●

●

●

RR SM−Exp νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.1 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.2 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.5 νν == 0.1 ζζ == 0.25
RR GD−Exp ββ == 0 νν == 0.1 ζζ == 0.25
RR GB−Exp νν == 0.1 ζζ == 0.25

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0

Number of training instances

T
im

e

RR SM−Exp νν == 0.1 ζζ == 1
RR SM−Exp νν == 0.1 ζζ == 0.5

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

Rule

N
um

be
r

of
 c

ov
er

ed
 t

ra
in

in
g

ex
am

pl
es

●

●
● ●

● ● ● ● ●
● ●

●

●
●

● ● ● ● ● ● ● ●

●

●

RR SM−Exp νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.1 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.2 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.5 νν == 0.1 ζζ == 0.25
RR GD−Exp ββ == 0 νν == 0.1 ζζ == 0.25
RR GB−Exp νν == 0.1 ζζ == 0.25

Fig. 1. Comparison of unregularized (on top left) and regularized (on top right)
RankRules on artificial data. Computing time (bottom left panel) as a function of
the size of the training set. Coverage of rules (bottom right panel) for the regularized
algorithms with different minimization techniques (lines are smoothed).

We also verified the theoretical results concerning the relation between mini-
mization techniques. Bottom right panel of Fig. 1 shows the coverage of the rules
for different variants of RankRules. Since the algorithm works on pairs of exam-
ples, we plot the number of examples covered by the rule or placed outside the
rule, dependently on which value is smaller. We see that gradient descent gen-
erates the most general rules. Length of the step in constant-step minimization
controls the coverage.

Finally, we selected the default parameters for the algorithm. We tested 6
variants of RankRules as before with all combinations of the following values of
the parameters: ν ∈ {1, 0.5, 0.2, 0.1}, ζ ∈ {1, 0.75, 0.5, 0.25}. For each algorithm,
an error curve over 30 trials was drawn showing MAE for M up to 1000. Using
these curves, the best variant of the algorithm was chosen. This is simultaneous
minimization (SM) with ν = 0.1 and ζ = 0.5.

Table 1. Test errors (MAE) and standard errors for regularized and unregularized
RankRules. Computing time in seconds is given obtained on AMD Opteron 250 Pro-
cessor 2.5 GHz with 8 GB of RAM running MS Windows Server 2003.

RankRules Unregularized Regularized
MAE Time MAE Time

SM 1.40±0.010 76.75 1.37±0.008 20.45
CS β = 0.1 1.43±0.010 86.61 1.38±0.008 18.11
CS β = 0.2 1.49±0.011 66.94 1.38±0.007 18.45
CS β = 0.5 1.72±0.019 46.52 1.41±0.008 26.14
GD β = 0.0 1.46±0.008 66.00 1.38±0.008 15.69
GB 1.42±0.009 83.57 1.38±0.008 21.80

Table 2. Data sets used in the experiment. First columns describe data sets, n denotes
number of attributes, N – number of training examples, and T – number of testing
examples. The first eight data sets were used in [16, 3]

.

Data set n N T Data set n N T

Pyrim 27 50 24 Auto Price 15 100 59
Machine cpu 6 150 59 Bank8FM 8 3000 5192
Housing 13 300 206 CPU small 12 4000 4192
Abalone 8 1000 3177 Delta ailerons 5 3500 3629
Bank32nh 32 3000 5192 Elevators 18 4000 4752
CPU act 22 4000 4192 House 8L 8 6000 16784
Cal housing 8 5000 15640 Stock 9 450 500
House 16H 16 6000 16784 Triazines 60 100 86
2dplanes 10 10000 30768 Wisconsin 31 150 44
AutoMpg 7 250 148

4.2 Benchmark Data Sets

In the second part of the experiment, RankRules is tested on 19 benchmark data
sets4. These data concern originally metric regression problems. We transform
and prepare these data in a similar way as in [16, 3]. The dependent variables
are discretized into ten ordered class labels using equal-frequency binning. Tests
are performed on 20 random splits for each file. The size of training and test
partitions are the same as in the referred papers. Data sets are summarized in
Table 2.

First we compared the following algorithms:

– RankBoost AE [3]: the boosting algorithm based on the exponential rank
loss; the thresholds are computed in order to minimize the absolute-error
loss by dynamic programming; the base classifiers are perceptron and sigmoid
functions, the algorithm generates 2000 base classifier.

4 Data sets are taken from http://www.liacc.up.pt/~ltorgo/Regression/

DataSets.html.

Table 3. Comparison of MAE between RankRules and algorithms introduced in [16,
3]. Means over 20 trials with ranks (in parentheses) are given.

Data set RankRules RankBoost AE SVM-IMC ORBoost-All
(percept.) (sigmoid) (percept.) (sigmoid)

Pyrim 1.423(4) 1.619(6) 1.59(5) 1.294(1) 1.36(2) 1.398(3)
Machine CPU 0.903(2) 1.573(6) 1.282(5) 0.99(4) 0.889(1) 0.969(3)
Housing 0.811(4) 0.842(5) 0.892(6) 0.747(1) 0.791(3) 0.777(2)
Abalone 1.259(1) 1.517(5) 1.738(6) 1.361(2) 1.432(4) 1.403(3)
Bank32nh 1.608(4) 1.867(5) 2.183(6) 1.393(1) 1.49(2) 1.539(3)
CPU act 0.573(1) 0.841(5) 0.945(6) 0.596(2) 0.626(3) 0.634(4)
Cal housing 0.948(2) 1.528(6) 1.251(5) 1.008(4) 0.977(3) 0.942(1)
House 16h 1.156(1) 2.008(6) 1.796(5) 1.205(3) 1.265(4) 1.198(2)

Ave. Rank (2.375) (5.5) (5.5) (2.25) (2.75) (2.625)

– ORBoost-All [3]: the boosting algorithm applied to threshold loss based on
the exponential loss; the base classifiers are perceptron and sigmoid func-
tions; the algorithm generates 2000 base classifier.

– SVM-IMC [16]: this is SVM that minimizes threshold loss based on the hinge
loss; the Gaussian kernel is used, the optimal parameters are determined in
5-fold cross-validation.

– RankRules: we use ν = 0.1, ζ = 0.5, and M = 500 (above this value the
algorithm did not give significant improvement in the experiment on artificial
data sets).

All these algorithms are tailored for minimizing the absolute-error loss. Table 3
contains MAE averaged over 20 trials and ranks of the algorithms on the first
eight data sets from Table 2 that were used in the referred papers. Friedman test
shows that there is a significant difference between classifiers, since Friedman
statistics gives 27.786 which exceeds the critical value 11.07 (for confidence level
0.05). This is due to a poor performance of RankBoost AE. All other algorithms
are significantly better than this classifier (critical difference is CD = 2.666,
computed according to Nemenyi’s test), while there is no significant difference
among them. It is rather curious that RankBoost AE performs so poorly, since
RankRules is quite similar and obtains much better results. It follows that we
got an opposite result than [3], in which a conclusion is given that rank loss
minimization performs worse than threshold loss minimization. The main dif-
ference between RankBoost AE and RankRules stems from the choice of base
classifiers, and in the way in which the thresholds are computed. ORBoost-All,
using the same base classifiers as RankBoost AE, gets better results; that is why
we conclude that the second difference can be more important.

From the above result, we can see that there is no significant difference be-
tween various approaches to ordinal classification. We tried to verify this in an
enlarged experiment that we constrained to one type of classifier. We used other
three rule ensemble algorithms that work in similar way to RankRules, but min-
imize different loss functions:

– ENDER AE [17] – this algorithm directly minimizes absolute error using the
gradient descent technique.

– Ordinal ENDER – the ENDER algorithm [11] being similar to MLRules [9]
is used to K − 1 binary problems in which the probabilities of Pr(y > k|x)
are estimated. From those probabilities, the distribution pk(x) is obtained
and the median over this distribution is computed.

– ORDER [18] – this algorithm minimizes the exponential threshold loss using
the constant-step minimization.

The parameters of these algorithms were obtained on the artificial data set in
the same way as in the case of RankRules.

Test errors and ranks of four rule ensemble are given in Table 4. The Fried-
man statistics gives 25.844 which exceeds the critical value 7.814 (for confidence
level 0.05), and the critical difference rises CD = 1.076. In result we have that
ENDER AE is significantly outperformed by all other algorithms, and there
is no significant difference between Ordinal ENDER, ORDER and RankRules.
This is due to the fact that ENDER AE is mainly suited to ordinary regres-
sion tasks, but the rest of algorithms is suited to ordinal classification problems.
Trying to compare further Ordinal ENDER, ORDER and RankRules, we can
mention some qualitative differences. RankRules can minimize the exponential
loss in simultaneous way, but ORDER has to perform approximation (this causes
that ORDER-E, which performed the best in the experiment reported in [18],
is much slower; other techniques like constant-step are much faster). Moreover,
RankRules is directly related to maximization of AUC, while ENDER and ML-
Rules to probability estimation.

Table 4. Comparison of four rule ensemble algorithms. Test errors (MAE) and ranks
(in parenthesis) are given.

Data set ENDER AE Ordinal ORDER RankRules
ENDER

2dplanes 0.581 (4) 0.508 (1) 0.513 (2) 0.517 (3)
Abalone 1.34 (4) 1.265 (3) 1.248 (1) 1.259 (2)
AutoMpg 0.814 (4) 0.743 (3) 0.729 (2) 0.707 (1)
Auto Price 0.814 (4) 0.777 (3) 0.748 (2) 0.744 (1)
Bank32nh 1.671 (4) 1.591 (2) 1.545 (1) 1.608 (3)
Bank8FM 0.624 (4) 0.479 (2) 0.485 (3) 0.464 (1)
Cal housing 1.17 (4) 0.922 (1) 0.994 (3) 0.948 (2)
CPU act 0.741 (4) 0.567 (1) 0.602 (3) 0.573 (2)
CPU small 0.827 (4) 0.661 (1) 0.689 (3) 0.67 (2)
Delta ailerons 0.943 (4) 0.862 (1) 0.885 (2) 0.895 (3)
Elevators 1.407 (4) 1.238 (2) 1.251 (3) 1.233 (1)
House 16H 1.264 (4) 1.116 (1) 1.181 (3) 1.156 (2)
House 8L 1.242 (4) 1.135 (1) 1.183 (3) 1.161 (2)
Housing 0.901 (4) 0.768 (1) 0.795 (2) 0.811 (3)
Machine cpu 0.956 (4) 0.84 (1) 0.871 (2) 0.903 (3)
Pyrim 1.43 (3) 1.431 (4) 1.26 (1) 1.423 (2)
Stock 0.467 (4) 0.28 (1) 0.329 (2) 0.338 (3)
Triazines 1.975 (4) 1.878 (3) 1.874 (2) 1.808 (1)
Wisconsin 2.338 (1) 2.572 (4) 2.46 (2) 2.526 (3)

Average Rank (3.789) (1.895) (2.211) (2.105)

5 Conclusions

We introduced a learning algorithm called RankRules, constructing an ensemble
of decision rules for ordinal classification problems. This algorithm employs the
notion of the rank loss. We considered four minimization techniques that result in
different forms of the impurity measure used for construction of a single decision
rule. We showed the relations between different impurity measures, emphasizing
the trade-off between misclassification and coverage of the rule. We also showed
that RankRules minimizes the rank loss in linear time (if the attribute values
are already sorted), despite of the fact that in general this problem is quadratic.
In the experiment, we reported that rank loss minimization is competitive to
two other approaches used in the ordinal classification settings. However, there
is no significant difference between those approaches.

References

1. Herbrich, R., Graepel, T., Obermayer, K.: Regression Models for Ordinal Data: A
Machine Learning Approach. Technical report, TU Berlin (1999)

2. Rennie, J., Srebro, N.: Loss functions for preference levels: Regression with discrete
ordered labels. In: IJCAI 2005 M-PREF. (2005)

3. Lin, H.T., Li, L.: Large-Margin Thresholded Ensembles for Ordinal Regression:
Theory and Practice. In: ALT. Volume 4264 of LNAI. (2006) 319–333

4. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An Efficient Boosting Algorithm
for Combining Preferences. JMLR 6(4) (2003) 933–969

5. Joachims, T.: Training Linear SVMs in Linear Time. In: ACM KDD. (2006)
217–226

6. Fürnkranz, J.: Separate-and-Conquer Rule Learning. AI Review 13(1) (1996) 3–54

7. Cohen, W.W., Singer, Y.: A Simple, Fast, and Effective Rule Learner. In: AAAI.
(1999) 335–342

8. Friedman, J.H., Popescu, B.E.: Predictive Learning via Rule Ensembles. Ann.
Appl. Stat. 2(3) (2008) 916–954

9. Dembczyński, K., Kot lowski, W., S lowiński, R.: Maximum Likelihood Rule En-
sembles. In: ICML. (2008) 224–231

10. Flach, P.A., Fürnkranz, J.: ROC’n’Rule Learning - Towards a Better Understand-
ing of Covering Algorithms. Mach. Learn. 58 (2005) 39–77

11. Dembczyński, K., Kot lowski, W., S lowiński, R.: A General Framework for Learning
an Ensemble of Decision Rules. In: LeGo, ECML/PKDD 2008 Workshop. (2008)

12. Janssen, F., Fürnkranz, J.: An empirical quest for optimal rule learning heuristics.
Technical report, TU Darmstadt (2008)

13. Lin, H.T., Li, L.: Ordinal Regression by Extended Binary Classifications. In: NIPS.
(2007) 865–872

14. Hastie, T., Tibshirani, R., Friedman, J.H.: Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer (2003)

15. Friedman, J.H., Popescu, B.E.: Importance Sampled Learning Ensembles. Tech-
nical report, Stanford University (2003)

16. Chu, W., Keerthi, S.S.: New Approaches to Support Vector Ordinal Regression.
In: ICML. (2005) 321–328

17. Dembczyński, K., Kot lowski, W., S lowiński, R.: Solving Regression by Learning
an Ensemble of Decision Rules. In: Artificial Intelligence and Soft Computing.
Volume 5097 of LNAI., Springer-Verlag (2008) 533–544

18. Dembczyński, K., Kot lowski, W., S lowiński, R.: Ordinal Classification with Deci-
sion Rules. In: Mining Complex Data 2007. Volume 4944 of LNAI., Springer (2008)
169–181

