
Decision Rule-based Algorithm
for Ordinal Classification

based on Rank Loss Minimization

Krzysztof Dembczyński1,2, Wojciech Kotłowski1,3

1Institute of Computing Science, Poznań University of Technology
2KEBI, Philipps-Universität in Marburg

3Centrum Wiskunde & Informatica, Amsterdam

PL-09, Bled, September 11, 2009

1 Ordinal Classification

2 RankRules

3 Conclusions

1 Ordinal Classification

2 RankRules

3 Conclusions

Ordinal classification consists in predicting a label ta-
ken from a finite and ordered set for an object described
by some attributes.

This problem shares some characteristics of multi-class
classification and regression, but:

• the order between class labels cannot be neglected,

• the scale of the decision attribute is not cardinal.

Recommender system predicting a rating of a movie for a gi-
ven user.

Email filtering to ordered groups like: important, normal, later,
or spam.

Denotation:

• K – number of classes

• y – actual label

• x – attributes

• ŷ – predicted label

• F (x) – prediction function

• f(x) – ranking or utility function

• θ = (θ0, . . . , θK) – thresholds

• L(·) – loss function

• J·K – Boolean test

• {yi,xi}N1 – training examples

Ordinal Classification:

• Since y is discrete, it obeys a multinomial distribution for a
given x:

pk(x) = Pr(y = k|x), k = 1, . . . ,K.

• The optimal prediction is clearly given by:

ŷ∗ = F ∗(x) = arg min
F (x)

K∑
k=1

pk(x)L(y, F (x)),

where L(y, ŷ) is the loss function defined as a matrix:

L(y, ŷ) = (ly,ŷ)K×K

with v-shaped rows and zeros on diagonal.

L(y, ŷ) =

 0 1 2
1 0 1
2 1 0

Ordinal Classification:

• A natural choice of the loss matrix is the absolute-error loss
for which

ly,ŷ = |y − ŷ|.

• The optimal prediction in this case is median over class
distribution:

F ∗(x) = medianpk(x)(y).

• Median does not depend on a distance between class
labels, so the scale of the decision attribute does not matter;
the order of labels is taken into consideration only.

Two Approaches to Ordinal Classification:

• Threshold Loss Minimization (SVOR, ORBoost-All, MMMF),

• Rank Loss Minimization (RankSVM, RankBoost).

In both approaches, one assumes existence of:

• ranking (or utility) function f(x), and

• consecutive thresholds θ = (θ0, . . . , θK) on a range of the
ranking function,

and the final prediction is given by:

F (x) =
K∑
k=1

kJf(x) ∈ [θk−1, θk)K.

Threshold Loss Minimization:

• Threshold loss function is defined by:

L(y, f(x),θ) =
K−1∑
k=1

Jyk(f(x)− θk) ¬ 0K,

where

yk = 1, if y > k, and yk = −1, otherwise.

f((x))
−5 −4 −3 −2 −1 0 1 2 3 4 5

θθ0 == −− ∞∞ ... θθ1 == −−3.5 θθ2 == −−1.2 ... θθk−−1 == 1.2 θθk−−2 == 3.8 ... θθK == ∞∞

Rank Loss Minimization:

• Rank loss function is defined over pairs of objects:

L (y◦•, f(x◦), f(x•)) = Jy◦•(f(x◦)− f(x•)) ¬ 0K,

where
y◦• = sgn(y◦ − y•).

• Thresholds are computed afterwards with respect to a given
loss matrix.

yi1 > yi2 > yi3 > . . . > yiN−1 > yiN

f(xi1) > f(xi3) > f(xi2) > . . . > f(xiN−1) > f(xiN)

Comparison of the two approaches:

Threshold loss:

• Comparison of an object to thresholds instead to all other
training objects.

• Weighted threshold loss can approximate any loss matrix.

Rank loss:

• Minimization of the rank loss on training set has quadratic
complexity with respect to a number of object, however, in
the case of K ordered classes, the algorithm can work in
linear time.

• Rank loss minimization is closely related to maximization of
AUC criterion.

1 Ordinal Classification

2 RankRules

3 Conclusions

RankRules:

• Ranking function is an ensemble of decision rules:

f(x) =
M∑
m=1

rm(x),

where
rm(x) = αmΦm(x)

is a decision rule defined by a response αm ∈ R, and
an axis-parallel region in attribute space Φm(x) ∈ {0, 1}.

• Decision rule can be seen as logical pattern:

if [condition] then [decision].

RankRules:

• RankRules follows the rank loss minimization.

• We use the boosting approach to learn the ensemble.

• The rank loss is upper-bounded by the exponential function:

L(y, f) = exp(−yf).

• This is a convex function, which makes the minimization
process easier to cope with.

• Due to modularity of the exponential function, minimization
of the rank loss can be performed in a fast way.

RankRules:

• In the m-th iteration, the rule is computed by:

rm = arg min
Φ,α

∑
yij>0

wije
−α(Φm(xi)−Φm(xj)),

where fm−1 is rule ensemble after m− 1 iterations, and

wij = e−(fm−1(xi)−fm−1(xj))

can be treated as weights associated with pairs of training
examples.

• The overall loss changes only for pairs in which one example
is covered by the rule and the other is not (Φ(xi) 6= Φ(xj)).

RankRules:

• Thresholds are computed by:

θ = arg min
θ

N∑
i=1

K−1∑
k=1

e−yik(f(xi)−θk),

subject to

θ0 = −∞ ¬ θ1 ¬ . . . ¬ θK−1 ¬ θK =∞.

• The problem has a closed-form solution::

θk =
1
2

log
∑N
i=1Jyik > 0Kef(xi)∑N
i=1Jyik < 0Ke−f(xi)

, k = 1, . . . ,K − 1.

• The monotonicity condition is satisfied by this solution as
proved by Lin and Li (2007).

Single Rule Generation:

• The m-th rule is obtained by solving:

rm = arg min
Φ,α

∑
yij>0

wije
−α(Φm(xi)−Φm(xj)).

• For given Φm the problem of finding αm has a closed-form
solution:

αm =
1
2

ln

∑
yij>0∧Φm(xi)>Φm(xj)wij∑
yij>0∧Φm(xi)<Φm(xj)wij

.

• The challenge is to find Φm by deriving the impurity
measure L(Φm) in such a way that the optimization problem
does not longer depend on αm.

Boosting Approaches and Impurity Measures:

• Simultaneous minimization: finds the closed-form solution
for Φ (Confidence-rated AdaBoost, SLIPPER, RankBoost).

• Gradient descent: relies on approximation of the loss
function up to the first order (AdaBoost, AnyBoost).

• Gradient boosting: minimizes the squared-error between rule
outputs and the negative gradient of the loss function
(Gradient Boosting Machine, MART).

• Constant-step minimization: restricts α ∈ {−β, β}, with β
being a fixed parameter.

Boosting Approaches and Impurity Measures:

• Each of the boosting approaches provides another impurity
measure that represents different trade-off between
misclassification and coverage of the rule.

• Gradient descent produces the most general rules in
comparison to other techniques.

• Gradient descent represents 1
2 trade-off between

misclassification and coverage of the rule.

• Constant-step minimization generalizes the gradient
descent technique to obtain different trade-offs between
misclassification and coverage of the rule, namely ` ∈ [0, 0.5),
with

β = ln
1− `
`

.

Rule Coverage (artificial data)

0 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Rule

N
u
m

b
er

 o
f

co
v
er

ed
 t

ra
in

in
g
 e

x
a
m

p
le

s
RR SM−Exp νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.1 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.2 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.5 νν == 0.1 ζζ == 0.25
RR GD−Exp ββ == 0 νν == 0.1 ζζ == 0.25
RR GB−Exp νν == 0.1 ζζ == 0.25

Fast Implementation:

• We rewrite the minimization problem of complexity O(N2):

rm = arg min
Φ,α

∑
yij>0

wije
−α(Φm(xi)−Φm(xj)),

to the problem that can be solved in O(KN).

• We use the fact that

wij = e−(fm−1(xi)−fm−1(xj)) = e−fm−1(xi)efm−1(xj) = wiw
−
j ,

and use denotation:

Wk =
∑

yi=k∧Φ(xi)=1

w−i , W 0
k =

∑
yi=k∧Φ(xi)=0

w−i .

Fast Implementation:

• The minimization problem can be rewritten to

rm = arg min
Φ,α

N∑
i=1

wie
−α(Φm(xi))

∑
yi>yj

w−j e
αΦm(xj),

where the inner sum can be given by:∑
yi>yj

w−j e
αΦm(xj) = eα

∑
yi>k

Wk +
∑
yi>k

W 0
k .

• The values

Wk and W 0
k , k = 1, . . . ,K,

can be easily computed and updated in each iteration.

Fast Implementation

0 2000 4000 6000 8000 10000

0
2
0
0

4
0
0

6
0
0

8
0
0

Number of training instances

T
im

e

RR SM−Exp νν == 0.1 ζζ == 1
RR SM−Exp νν == 0.1 ζζ == 0.5

Regularization:

• The rule is shrinked (multiplied) by the amount ν ∈ (0, 1]
towards rules already present in the ensemble:

fm(x) = fm−1(x) + ν · rm(x).

• Procedure for finding Φm works on a fraction ζ of original
data, drawn without replacement.

• Value of αm is calculated on all training examples – this
usually decreases |αm| and plays the role of regularization.

Regularization:

0 200 400 600 800 1000

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of rules

T
es

t
er

ro
r

(M
A

E
)

RR SM−Exp νν == 1 ζζ == 1
RR CS−Exp ββ == 0.1 νν == 1 ζζ == 1
RR CS−Exp ββ == 0.2 νν == 1 ζζ == 1
RR CS−Exp ββ == 0.5 νν == 1 ζζ == 1
RR GD−Exp ββ == 0 νν == 1 ζζ == 1
RR GB−Exp νν == 1 ζζ == 1

0 200 400 600 800 1000

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of rules
T

es
t

er
ro

r
(M

A
E

)

RR SM−Exp νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.1 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.2 νν == 0.1 ζζ == 0.25
RR CS−Exp ββ == 0.5 νν == 0.1 ζζ == 0.25
RR GD−Exp ββ == 0 νν == 0.1 ζζ == 0.25
RR GB−Exp νν == 0.1 ζζ == 0.25

Experimental Results:

RankRules vs. SVOR (Chu and Keerthi, 2005), RankBoost-AE and ORBoost-All (Lin and Li, 2006).

Data set RankRules RankBoost AE SVOR ORBoost-All
(percpt.) (sigmoid) (percpt.) (sigmoid)

Pyrim 1.423(4) 1.619(6) 1.590(5) 1.294(1) 1.360(2) 1.398(3)
Machine CPU 0.903(2) 1.573(6) 1.282(5) 0.990(4) 0.889(1) 0.969(3)
Housing 0.811(4) 0.842(5) 0.892(6) 0.747(1) 0.791(3) 0.777(2)
Abalone 1.259(1) 1.517(5) 1.738(6) 1.361(2) 1.432(4) 1.403(3)
Bank32nh 1.608(4) 1.867(5) 2.183(6) 1.393(1) 1.490(2) 1.539(3)
CPU act 0.573(1) 0.841(5) 0.945(6) 0.596(2) 0.626(3) 0.634(4)
Cal housing 0.948(2) 1.528(6) 1.251(5) 1.008(4) 0.977(3) 0.942(1)
House 16h 1.156(1) 2.008(6) 1.796(5) 1.205(3) 1.265(4) 1.198(2)

Ave. Rank (2.375) (5.5) (5.5) (2.25) (2.75) (2.625)

• Ensembles of decision rules are competitive to the state-of-the-art
algorithms.

• Poor performance of RankBoost AE (!?).

• Rank loss minimization performs similarly to the threshold loss
minimization (opposite result to Lin and Li (2006)).

1 Ordinal Classification

2 RankRules

3 Conclusions

Conclusions:

• Two approaches to ordinal classification: threshold loss and
rank loss minimization.

• Boosting-like algorithm for learning of rule ensemble.

• Rule coverage analysis of different boosting techniques.

• Fast implementation.

• RankRules are competitive to the state-of-the-art algorithms.

• Nature of ordinal classification?

	Ordinal Classification
	RankRules
	Conclusions

