
Kernel Principal Component Ranking:
Robust Ranking on Noisy Data

Evgeni Tsivtsivadze, Botond Cseke, and Tom Heskes

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

firstname.lastname@science.ru.nl

Abstract. We propose the kernel principal component ranking algo-
rithm (KPCRank) for learning preference relations. The algorithm can
be considered as an extension of nonlinear principal component regres-
sion applicable to preference learning task. It is particularly suitable for
learning from noisy datasets where a lower dimensional data representa-
tion preserves most expressive features. In many cases near-linear depen-
dence of regressors (multicollinearity) can notably decrease performance
of the learning algorithm, however, KPCRank can effectively deal with
this situation. It is accomplished by projecting the data onto p-principal
components in the feature space defined by a positive definite kernel
and consecutive learning of the ranking function. Despite the fact that
the number of the pairwise preferences is quadratic, the training time of
KPCRank scales linearly with the number of data points in the training
set and is equal to that of the principal component regression. We com-
pare the algorithm to several ranking and regression methods, including
probabilistic regression on pairwise comparison data. Our experiments
demonstrate that the performance of KPCRank is better than that of
the baseline methods, when learning to rank from the data corrupted by
noise.

1 Introduction

The task of learning preference relations (see e.g. [5]) has received significant
attention in machine learning literature. This paper primarily concerns the task
of ranking, which is a special case of a preference learning task when a total
order is associated with the set of data points under consideration. Both the
preference learning and the ranking tasks can be formulated as the problems
where the aim is to learn a function capable of arranging data points according
to a given preference relation. When comparing two data points, the function is
able to evaluate whether the first point is preferred over the second one. To learn
this function we propose the kernel principal component ranking (KPCRank)
algorithm.

The algorithm can be considered as an extension of the nonlinear principal
component regression applicable to the preference learning task. Similar to the
kernel principal component regression (KPCR) [14], KPCRank is particularly

suitable for learning from noisy datasets where lower dimensional data represen-
tation preserves most expressive features. By projecting the original data onto
the components with higher eigenvalues we can discard the noise contained in the
original data. We derive the algorithm and describe an efficient way for selecting
optimal number of the principal components suitable for the task in question.
To demonstrate that the algorithm can learn to rank well from noisy data, we
evaluate KPCRank on the dataset corrupted by noise.

We consider a label ranking problem setting in which we are given a train-
ing data consisting of the scored data points, that is, each input data point is
assigned a real valued score indicating its goodness. The pairwise preferences
between these data points are then determined by the differences of the scores.
Learning these preferences can also be treated as an extension of pairwise classi-
fication [7] where class label indicates direction of the preference. For example, in
[2, 1] the pairwise preference approach is used together with Gaussian processes
to learn preference relations. Pairwise approach is also used with support vector
machines (SVM) for learning to rank. For example, the RankSVM algorithm
was proposed in [8] to rerank the results obtained from a search engine.

We evaluate our algorithm on a parse ranking task that is a common problem
in natural language processing (see e.g. [3]). In this task, the aim is to rank a set
of parses associated with a single sentence, based on some goodness criteria. We
consider the parse ranking task as label ranking. However, in the parse ranking
task the labels (i.e. the parses of a sentence) are instance-specific. That is, for
each sentence, we have a different set of labels, while in the conventional label
ranking setting labels are not instance specific [5]. As baseline methods in the
conducted experiments we consider the regularized least-squares (RLS) [13], the
RankRLS [11], and the kernel principal component regression (KPCR) [14] al-
gorithms. Furthemore, we compare the KPCRank algorithm to the probabilistic
regression on pairwise preference data that is generated using sinc function. The
results show that the performance of the KPCRank algorithm is better than
that of the baseline methods, when learning to rank from the data corrupted by
noise.

2 Label Ranking

Let X be a set of instances and Y be a set of labels. In the label ranking setting
[4, 5], we would like to predict for any instance x ∈ X a preference relation Px ⊆
Y×Y among the set of labels Y. An element (y, y′) ∈ Px means that the instance
x prefers the label y compared to y′, also written as y �x y′. We assume that
the preference relation Px is transitive and asymmetric for each instance x ∈ X .
As a training information, we are given a finite set {(qi, si)}ni=1 of n data points,
where each data point (qi, si) = ((xi, yi), si) ∈ Q×R consists of an instance-label
tuple qi = (xi, yi) ∈ Q, where Q = X × Y and the score si ∈ R. We consider
two data points (q, s) and (q′, s′) to be relevant, iff x = x′. For relevant data
points, instance x prefers label y to y′, if s > s′. If s = s′, the labels are called
tied. Accordingly, we write y �x y

′ if s > s′ and y ∼x y
′ if s = s′. To be able to

incorporate the relevance information we define an undirected preference graph
which is determined by its adjacency matrix W such that Wij = 1 if (qi, qj)
are relevant and Wij = 0 otherwise. Furthermore, let Q = (q1, . . . , qn)t ∈ Qn
be the vector of instance-label training tuples and s = (s1, . . . , sn)t ∈ Rn the
corresponding vector of scores. Given these definitions, our training set is the
tuple T = (Q,W, s). We also note that our definitions allow considering bipartite
ranking, ordinal regression, and label ranking setting at the same time.

We define mapping from the input space Q to some (higher dimensional)
feature space F . In many cases, the number of training data points is much
smaller than the number of dimensions m of the feature space and we can write
F = Rm, where m� n. Further, let

Φ : Q → F .
The inner product

k(q, q′) = 〈Φ(q), Φ(q′)〉
of the mapped instance-label pairs is called a kernel function. We also denote
the sequence of feature mapped inputs as

Φ(Q) = (Φ(q1), . . . , Φ(qn)) ∈ (Fn)t

for all Q ∈ (Qn)t. We define the symmetric kernel matrix K ∈ Rn×n, where
Rn×n denotes the set of real matrices of dimension n× n, as

K = Φ(Q)tΦ(Q) =

 k(q1, q1) · · · k(q1, qn)
...

. . .
...

k(qn, q1) · · · k(qn, qn)

 .

Unless stated otherwise, we assume that the kernel matrix is strictly positive
definite.

3 Dimensionality Reduction

Before presenting the KPCRank algorithm we briefly describe the procedure for
kernel principal component analysis (KPCA), following [15]. KPCA allows us
to perform standard PCA in the higher dimensional space F using the kernel
function described in Section 2. After the initial mapping, the data falls onto
some hyperplane in F and the extracted principal components will map onto
manifolds in the lower dimensional space. The KPCA algorithm boils down to
diagonalization of the covariance matrix

C =
1
m

n∑
i=1

Φ(qi)Φ(qi)t =
1
m
Φ(Q)Φ(Q)t,

where the Φ(qi) are the centered mappings of the individual instance-label pairs.
To find the first principal component we need to solve the eigenvalue equation

Cv = λv. (1)

The key observation made in [15] states that all solutions v with λ 6= 0 can be
written as a linear combination of Φ(qi). Therefore, there are some ai ∈ R such
that v =

∑n
i=1 aiΦ(qi). Then Equation (1) can be written as

1
m
Φ(Q)Φ(Q)tv = λv

1
m
Φ(Q)Φ(Q)tΦ(Q)a = λΦ(Q)a

1
m
Φ(Q)tΦ(Q)Φ(Q)tΦ(Q)a = λΦ(Q)tΦ(Q)a

1
m
Ka = λa,

where a ∈ Rn. Thus, we have arrived to the equivalent eigenvalue problem that
requires diagonalization of K instead of C. Now we can compute the projection
of the mapped instance-label pair Φ(q) onto l − th eigenvector vl

〈vl, Φ(q)〉 =
1√
mλl

n∑
i=1

ali〈Φ(qi)Φ(q)〉 =
1√
mλl

n∑
i=1

alik(qi, q). (2)

If we denote by V ∈ Rm×p the matrix consisting of the columns of the eigenvec-
tors {vi}pi=1 of the covariance matrix C, by Λ̄ ∈ Rp×p the diagonal matrix of the
eigenvalues corresponding to the extracted eigenvectors of K, and by V̄ ∈ Rn×p
the matrix of extracted eigenvectors {ai}pi=1 of the kernel matrix K, then the
projection of the instance-label pairs Q onto first p eigenvectors can be written
as

Φ(Q)tV = Φ(Q)tΦ(Q)V̄ Λ̄−
1
2 = KV̄ Λ̄−

1
2 . (3)

4 Kernel Principal Component Ranking Algorithm

A ranking function is a function f : Q → R mapping the instance-label pair
q to a real value representing the relevance of the label y with respect to the
instance x. This induces for any instance x ∈ X a transitive preference relation
Pf,x ⊆ Y × Y with (y, y′) ∈ Pf,x ⇔ f(q) > f(q′). Informally, the goal of our
ranking task is to find a label ranking function f : Q → R such that the ranking
Pf,x ⊆ Y×Y induced by the function for any instance x ∈ X is a good prediction
for the true preference relation Px ⊆ Y × Y.

Let us define RQ = {f : Q → R} and let H ⊆ RQ be the hypothesis space
of possible ranking functions. To measure how well a hypothesis f ∈ H is able
to predict the preference relations Px for all instances x ∈ X , we consider the
following cost function that captures the amount of incorrectly predicted pairs
of the relevant training data points:

d(f, T) =
1
2

n∑
i,j=1

Wij

sign(si − sj)− sign(f(qi)− f(qj)
), (4)

where sign(·) denotes the signum function

sign(r) =

{
1, if r > 0
−1, if r ≤ 0

.

The use of cost functions like Equation (4) leads to intractable optimization
problems, therefore, we consider the following least squares approximation, which
regresses the differences si − sj with f(qi)− f(qj) of the relevant training data
points qi and qj :

c(f, T) =
1
2

n∑
i,j=1

Wij

(
(si − sj)− (f(qi)− f(qj))

)2

. (5)

In the above described setting we assume that every instance-label pair has an
associated score. A straightforward extension of the proposed algorithm (similar
to the one presented in [11]) makes it applicable to the situation when only
pairwise preferences are available for the training of the ranker.

4.1 KPCRank

The next theorem characterizes a method we refer to as kernel principal compo-
nent ranking (KPCRank).

Theorem 1 Let the training information provided to the algorithm be a tuple
T = (Q,W, s). Further, let the projection of the training instance-label pair onto
the l− th principal component be 〈vl, Φ(q)〉 = 1√

mλl

∑n
j=1 a

l
jk(qj , q). Consider-

ing the linear ranking model in dimensionality reduced feature space, the predic-
tion function can be written as f(q) =

∑p
l=1

1√
mλl

w̄l

∑n
j=1 a

l
jk(qj , q). Then the

coefficient vector w̄ for the algorithm

A(T) = argmin
f∈H

J(f),

with objective function

J(f) =
1
2

n∑
i,j=1

Wij((si − sj)− (f(qi)− f(qj))2

minimizing the least squares approximation of the disagreement error in the di-
mensionality reduced feature space is

w̄ = Λ̄
1
2 (V̄ tKLKV̄)−1V̄ tKLs, (6)

where L is the Laplacian matrix of the graph W .

Proof. We use the fact that for any vector r ∈ Rn and an undirected weighted
graph W of n vertices, we can write

1
2

n∑
i,j=1

Wij(ri − rj)2 = rtDr − rtWr = rtLr,

where D and L are the degree matrix and the Laplacian matrix of the graph
determined by W . Considering a linear ranking model in the feature space F
the prediction function can be written as f(Q) = Φ(Q)w, where w ∈ Rn. The
objective function in matrix form can be written as

J(w) = (s− Φ(Q)tw)tL(s− Φ(Q)tw). (7)

We also assume that our instance-label pairs are centered around zero mean.
Therefore, kernel PCA can be performed on the covariance matrix Φ(Q)Φ(Q)t

to extract corresponding eigenvectors. Projecting the data onto the principal
components we can rewrite Equation (7) as

J(w̄) = (s− Φ(Q)tV w̄)tL(s− Φ(Q)tV w̄)

or equivalently

J(w̄) = (s−KV̄ Λ̄− 1
2 w̄)tL(s−KV̄ Λ̄− 1

2 w̄).

By taking the derivative of J(w̄) with respect to w̄ we obtain

d

dw̄
J(w̄) = −2Λ̄−

1
2 V̄ tKLs+ 2Λ̄−

1
2 V̄ tKLKV̄ Λ̄−

1
2 w̄.

We set the derivative to zero and solve with respect to w̄

w̄ = Λ̄
1
2 (V̄ tKLKV̄)−1V̄ tKLs. (8)

Finally we obtain the predicted score of the unseen instance-label pair based on
the first p principal components by

f(q) =
p∑
l=1

1√
mλl

w̄l

n∑
j=1

aljk(qj , q). (9)

�

In the next section we demonstrate how to even further simplify Equation (8)
and describe ways for efficient multiplication of the matrices involved in the
expression. To extract the individual principle components we can use power
method described in [6] whose computational complexity scales to O(n2) for
extraction of individual principal component. The procedure must be repeated
for the principal components used for the projection. The computational com-
plexity for making the prediction on a single test data point scales as O(pn2)
due to the fact that multiplication of matrices KLK can be accomplished effi-
ciently because of the sparseness of L (see Section 4.2) and inversion involved in
the Equation (8) is less expensive than multiplication in case n� p. There are
several other strategies that can reduce complexity of the KPCRank algorithm,
however, they are outside of the scope of this paper.

4.2 Efficient Selection of Principal Components

Selecting the optimal number of principal components for the KPCRank algo-
rithm can notably improve its performance. There are different ways for efficient
extraction of the principal components (e.g. power method) whose complexity
scales to O(n2) for extracting a single component. Here we describe another
method for selecting the optimal number of principal components for the learn-
ing task based on a single time performed eigendecomposition of the kernel
matrix.

When considering Equation (8) we can observe that by eigendecomposition
of the kernel matrix K = Ṽ Λ̃Ṽ t and by sorting eigenvalues and corresponding
eigenvectors in decreasing order we can further simplify the expression, that is

w̄ = Λ̄
1
2 (V̄ tKLKV̄)−1V̄ tKLs

= (Λ̄−
1
2 V̄ tṼ Λ̃Ṽ tLṼ Λ̃Ṽ tV̄ Λ̄−

1
2)−1Λ̄−

1
2 V̄ tṼ Λ̃Ṽ tLs

= (Λ
1
2 tṼ tLṼ Λ

1
2)−1Λ

1
2 tṼ tLs,

where Λ
1
2 ∈ Rn×p is the diagonal matrix containing eigenvalues of K in decreas-

ing order. The latter simplification is possible due to the fact that V̄ tṼ = Ip×n
as well as that both Λ̄−

1
2 and Λ̃ are diagonal matrices containing manipulations

on eigenvalues of the kernel matrix. The multiplication of the Λ
1
2 tṼ tLs can be

accomplished in O(n2) time since s ∈ Rn . Furthermore Λ
1
2 tṼ tLṼ Λ

1
2 is a square

matrix of dimensions p×p, and in case p is selected to be much smaller than n, the
dominating term is multiplication of Ṽ tLṼ , whose computation cost is O(un2),
where u is the number of instances. This reduction in complexity is achieved
due to the sparseness of the Laplacian matrix [17]. Let M = Λ

1
2 tṼ tLṼ Λ

1
2 . We

can efficiently search for the optimal number of principal components in time
O(n2). Once we have performed eigendecomposition of the matrix M = V̂ Λ̂V̂ t

(here we assume initial projection of the training data onto all principal compo-
nents), the subsequent calculation of Mp

−1 based on the p principal components
(p < n) is computationally inexpensive. It can be performed as follows. When
matrix M is decomposed, Λ̂ = diag(λ1, . . . , λn) is a diagonal matrix contain-
ing the eigenvalues. Set to 0 some of the eigenvalues and leave only p non-zero
ones, corresponding to the number of principal components onto which data is
projected. Then inverse of matrix Mp can be calculated as

Mp
−1 = V̂ diag(1/λ1, . . . , 1/λp, 0, . . .)V̂ t.

Thus, by a single decomposition of the matrix M and subsequent manipulation
on eigenvalues we can efficiently search for the optimal number of principal
components.

5 Probabilistic Regression on Pairwise Preference Data

In this section we consider learning a ranking function based on pairwise com-
parison data, that is, data about the ranking function values is provided in terms

of pairwise comparisons at the given locations. Let D = {(il, jl, wl)}l=1:N be a
dataset, where N is the number of pairwise comparisons, and wl ∈ {−1, 1} spec-
ifies the direction of the preference. We aim to learn the ranking score function
f(x). Further, we assume that the observations about the comparisons are noisy
and p (w|f) is a Bernoulli distribution, defined as

p (wl|f) = φ (wl (f(xil)− f(xjl))) ,

where φ is the normal cumulative density function, however, any sigmoid function
can be suitable choice. We have chosen the former because it makes some of the
computations tractable. We model the function f with a zero mean Gaussian
process [9] having covariance function k (·, ·;θ). Let the vector f denote the
values of the function f in the input variables, that is, the random vector f =
(f(x1), . . . , f(xn)). Using Bayes’ theorem the Gaussian posterior probability of
f can be written as

p (f |D,θ) =
1

p (D|θ)

∏
l

p (wl|f) p (f |θ) (10)

=
1

p (D|θ)

∏
l

φ (wl (f(xil)− f(xjl)))N (f |0,K) ,

where K is the covariance matrix with elements k (xi,xj ;θ). Since the poste-
rior p (f |D,θ) is analytically intractable we will approximate its mean m and
covariance C with the expectation propagation method [10]. Prediction for the
ranking function values at a new evaluation point x∗ can be computed as

p (f(x∗)|D,θ) =
∫
p (f(x∗)|f ,θ) p (f |D,θ) df

≈ N
(
f(x∗)|k

t

∗K
−1m, k∗ + k

t

∗K
−1 (C −K)K−1k∗

)
,

where k∗ = k (x∗,x∗;θ), K = [k (xi,xj ;θ)]i,j and k∗ = [k (x∗,xj ;θ)]i. Predic-
tion for the comparisons of the ranking function values for locations x1

∗ and x2
∗

is

p
(
f
(
x1
∗
)
> f

(
x2
∗
)
|D,θ

)
≈ φ

((
k1
∗ − k

2
∗
)T
K−1m

√
r11 + r22 − 2r12

)
, (11)

where the 2× 2 matrix R is given by

R =
[
k(xi∗,x

j
∗,θ)

]
i,j=1,2

+
[
k1
∗,k

2
∗
]t

K−1 (C −K)K−1
[
k1
∗,k

2
∗
]
.

Since we can approximate the marginal likelihood p (D|θ) using expectation
propagation, we carry out maximum likelihood procedure on the hyper-parameters.
We use the square exponential covariance function.

Probabilistic counterpart of the RankRLS algorithm would be regression with
Gaussian noise and Gaussian processes prior, given the score differences wij =
si − sj , that is,

p (wij |f (xi) , f (xi) , v) = N (wij |f (xi)− f (xj) , 1/v) .

Then the posterior distribution of the random vector f is

p (f |D, v,θ) =
1

p (D|v,θ)

n∏
i,j=1

N (wij |f (xi)− f (xj) , 1/v)N (f |0,K) .

The posterior distribution p (f |w, v,θ) is Gaussian, its mean and covariance
matrix can be computed by solving a system of linear equations and inverting a
matrix, respectively. Here we choose to optimize the model parameters v and θ by
maximizing the marginal likelihood p (D|v,θ). Prediction can be done similar to
Equation (11), except that no approximations are needed. Note that predictions
obtained by the KPCRank algorithm correspond to the predicted mean values
of the Gaussian process regression.

6 Experiments

6.1 Parse Ranking Dataset

We apply the KPCRank algorithm to rank the parses generated from the BioIn-
fer corpus [12] which consists of 1100 manually annotated sentences.1 The pre-
processed data in format of RankSVM [8] is available for download.2 The parse
ranking is similar to the document ranking task frequently encountered in the
information retrieval domain. Analogously to the document ranking task, where
for each query we have an associated set of retrieved documents, in the parse
ranking task for each sentence there is a set of parses that needs to be ranked
according to some criteria. A more detailed description of the task is provided in
[11]. The main motivation for applying machine learning techniques to the prob-
lem of parse ranking is that in many cases a set of built-in heuristics included
in the parser software that is used to rank parses is performing not satisfactory
and, hence, subsequent ranking or selection methods are needed.

We obtain a scoring for an instance-label pair by comparing the parse to the
hand annotated correct parse of its sentence. The feature vectors for instance-
label pair are generated using graph kernel (see [11]). The relevant instance-label
pairs for the ranking task are those associated with the same instance (see Section
2). All the other pairs are considered to be irrelevant to the task of parse ranking.

Before conducting the experiments we ensure that the data is centered in the
feature space. This can be accomplished with the following modifications to the
training kernel matrix Ktrain and the test kernel matrix Ktest [16]

K̂train = (I − 1
n

1n1tn)Ktrain(I − 1
n

1n1tn)

and
K̂test = (Ktest −

1
n

1ntest1
t
nKtrain)(I − 1

n
1n1tn),

1 www.it.utu.fi/BioInfer
2 www.cs.ru.nl/~evgeni

where n is number of training data, ntest number of test data, 1n and 1ntest
are

the column vector containing ones of the dimensions Rn and Rntest respectively.
In order to select the optimal number of principal components and regu-

larization parameters for the baseline methods, we divide complete dataset of
1100 annotated sentences with the maximum of 3 parses associated with each
sentence into two parts. The first part consisting of 500 instance-label pairs is
used for training and second part of 2698 instance-label pairs is reserved for final
validation. The appropriate values of the regularization and the kernel parame-
ters are determined by grid search with 5-fold cross-validation on the parameter
estimation data. The performed experiments can be subdivided into three parts:
the experiments on the dataset without noise, experiments on the dataset where
scores were intentionally corrupted by Gaussian noise with standard deviation
σ = 0.5 and mean µ = 0.0, and finally with standard deviation σ = 1.0 and
mean µ = 0.0. We note that parse goodness scores present in the dataset are
based on the F-score function and, thus, vary between 0 and 1. To avoid influ-
ence of the random initialization of the Gaussian noise, we perform the complete
experiment 3 times and average the obtained results. The algorithms are trained
on the parameter estimation data set with the best found parameter values and
tested on instance-label pairs reserved for the final validation. The results of the
validation are presented in Table 1.

When no noise is added to the labels of the dataset, the RLS and RankRLS
algorithms outperform the KPCRank and KPCR algorithms. Unsatisfactory per-
formance of the KPCRank algorithm can be explained by the fact that by pro-
jecting data onto a small number of principal components (in our case less than
100) features that are not most expressive, but that still contribute to the learn-
ing performance of the algorithm are lost. Opposite to this, RLS and RankRLS
are the methods that do not reduce dimensionality of the feature space, but use
regularization controlling the tradeoff between the cost on the training set and
the complexity of the hypothesis learned in complete feature space. However,
once the noise is added to the dataset KPCRank algorithm performs notably
better than the other methods. This is due to the fact that RLS and RankRLS
again use complete feature space for learning, but this time inclusion of less
expressive noisy features (instance-label pairs) degrades the performance. The
normalized version of the disagreement error Equation (4) is used to measure the
performance of the ranking algorithms. The error is calculated for each sentence
separately and the performance is averaged over all sentences.

6.2 Sinc Dataset

To test performance of the method on pairwise preference data we have con-
structed simple artificial dataset using sinc function as follows. A sinc function

sinc(x) =
sin(πx)
πx

,

where x ∈ [−4, 4] is used to generate the values used for creating magnitudes of
pairwise preferences. We get 2000 equidistant points from the interval [−4, 4],

Table 1. Comparison of the parse ranking performances of the KPCRank, KPCR,
RLS, and RankRLS algorithms using a normalized version of the disagreement error
Equation (4) as performance evaluation measure.

Method Without noise σ = 0.5 σ = 1.0

KPCR 0.40 0.46 0.47

KPCRank 0.37 0.41 0.42

RLS 0.34 0.43 0.46

RankRLS 0.35 0.45 0.47

and sample 1000 for constructing the training pairs and 338 for constructing
the test pairs. From these pairs we randomly sample 379 used for the training
and 48 for the testing. We consider both models proposed in Section 5, that is,
(a) using only pairwise preferences and (b) using pairwise preferences with score
differences. The magnitude of pairwise preference is calculated as

w = sinc(x)− sinc(x′).

We have compared probabilistic pairwise regression described in Section 5 to the
KPCRank algorithm. To evaluate performance of the methods we use normalized
count of incorrectly predicted pairs of data points. The error obtained by using
the probabilistic pairwise regression on test dataset is 0.035. The KPCRank
algorithm has an error of 0.025, indicating that both methods have a good per-
formance when learning pairwise comparison data.

−4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Posterior mean approximation

sinc function
GP posterior mean

−4 −2 0 2 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
GP approximation (MLII) and KPCRank

sinc function
GP post. mean
KPCRank

Fig. 1. The sinc function and the approximate posterior means of the random vector f
using the pairwise preference data and a full Bayesian procedure with a uniform prior
on the log of the kernel width parameter (left). The approximation is done with expec-
tation propagation [10]. We have randomly corrupted 5% of the pairwise preferences.
That is why the difference between the sinc function and the approximate posterior
mean f (left) has no influence on the disagreement error as long as the “shape” is
correct. The approximate posterior means of the random vector f using the score dif-
ferences data and the maximum likelihood method on the hype-parameter (right). Note
that the model is invariant to the translations of the score function.

7 Conclusions

In this paper we propose the KPCRank algorithm for learning preference rela-
tions. The KPCRank algorithm can be considered as an extension of nonlinear
principal component regression for learning pairwise preferences. The algorithm
belongs to the class of so-called shrinkage methods (similar to KPCR, RLS, etc.)
that are designed to shrink the solution from the areas of low data spread and
can result in an estimate that is biased but has lower variance. This is accom-
plished by projecting the training data onto principal components in the feature
space, that in turn map onto arbitrary manifold in the input space. Another ad-
vantage of the method is that by projecting the data onto the components with
higher eigenvalues we aim at discarding the noise contained in the original data
and obtain better performance compared to the baseline methods when data is
corrupted by noise.

Our experiments confirm that the proposed algorithm works well in situations
when the ranking function has to be learned from the noisy data. The KPCRank
algorithm notably outperforms the RLS, RankRLS, and KPCR algorithms in
the experiments where data is intentionally corrupted by noise. Furthermore, we
compare the KPCRank algorithm to the probabilistic regression when learning
on pairwise preference data. Our results indicate that both methods achieve
good performance by learning correct prediction function.

In the future we are planning to extend the algorithm for learning multiple
labels simultaneously, propose methods to further decrease its computational
complexity, and test it on various ranking datasets.

Acknowledgments

We acknowledge support from the Netherlands Organization for Scientific Re-
search (NWO), in particular a Vici grant (639.023.604).

References

1. Adriana Birlutiu, Perry Groot, and Tom Heskes. Multi-task Preference learning
with Gaussian Processes. In Proceedings of the 17th European Symposium on Ar-
tificial Neural Networks (ESANN), pages 123–128, 2009.

2. Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In
Luc De Raedt and Stefan Wrobel, editors, Proceedings of the Twenty-Second Inter-
national Conference (ICML 2005), volume 119 of ACM International Conference
Proceeding Series, pages 137–144. ACM, 2005.

3. Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging:
kernels over discrete structures, and the voted perceptron. In ACL ’02: Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics, pages
263–270, Morristown, NJ, USA, 2001. Association for Computational Linguistics.

4. Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-linear models for label
ranking. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 497–504, Cambridge,
MA, 2004. MIT Press.

5. Johannes Fürnkranz and Eyke Hüllermeier. Preference learning. Künstliche Intel-
ligenz, 19(1):60–61, 2005.

6. Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1996.

7. Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label
ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17):1897–
1916, 2008.

8. Thorsten Joachims. Optimizing search engines using clickthrough data. In David
Hand, Daniel Keim, and Raymond Ng, editors, Proceedings of the 8th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’02), pages
133–142, New York, NY, USA, 2002. ACM Press.

9. David J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

10. Thomas P. Minka. A family of algorithms for approximate Bayesian inference.
PhD thesis, MIT, 2001.

11. Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jouni Järvinen, and Jorma
Boberg. An efficient algorithm for learning to rank from preference graphs. Ma-
chine Learning, 75(1):129–165, 2009.

12. Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Björne, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. BioInfer: A corpus for information extraction in
the biomedical domain. BMC Bioinformatics, 8(50), 2007.

13. Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classifica-
tion. In J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle,
editors, Advances in Learning Theory: Methods, Model and Applications, pages
131–154, Amsterdam, 2003. IOS Press.

14. Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression in
reproducing kernel hilbert space. Journal of Machine Learning Research, 2:97–123,
2002.

15. Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Kernel principal
component analysis. In Wulfram Gerstner, Alain Germond, Martin Hasler, and
Jean-Daniel Nicoud, editors, Artificial Neural Networks - ICANN ’97, 7th Inter-
national Conference, volume 1327 of Lecture Notes in Computer Science, pages
583–588. Springer, 1997.

16. John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, New York, NY, USA, 2004.

17. Evgeni Tsivtsivadze, Tapio Pahikkala, Antti Airola, Jorma Boberg, and Tapio
Salakoski. A sparse regularized least-squares preference learning algorithm. In
Anders Holst, Per Kreuger, and Peter Funk, editors, 10th Scandinavian Conference
on Artificial Intelligence (SCAI 2008), volume 173, pages 76–83. IOS Press, 2008.

