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Learning on Noisy Data

¢ Real world data is usually corrupted by noise (e.g. in
bioinformatics, natural language processing, information
retrieval, etc.)
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Learning on Noisy Data

Real world data is usually corrupted by noise (e.g. in
bioinformatics, natural language processing, information
retrieval, etc.)

Learning on noisy data is a challenge: ML methods frequently
use low-rank approximation of the data matrix

Any manifold learner or dimensionality reduction technique
can be used for de-noising

Our algorithm is an extension of nonlinear principal
component regression applicable to preference learning task
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Learning to Rank

Learning to rank (total order is given over all data points)

e Applications - collaborative filtering in electronic commerce,
protein ranking (e.g. RankProp: Protein Ranking by Network
Propagation), parse ranking, etc.

e We aim to learn scoring function that is capable of ranking
data points
e Several accepted settings for learning (ref. upcoming
Preference Learning Book)
e Object ranking
e Label ranking
e Instance ranking
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KPCRank Algorithm

e Main idea: Create new feature space with reduced
dimensionality (only most expressive features are preserved)
and use the ranking algorithm in that space to learn noise
insensitive ranking function
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KPCRank Algorithm

Main idea: Create new feature space with reduced
dimensionality (only most expressive features are preserved)
and use the ranking algorithm in that space to learn noise
insensitive ranking function

KPCRank scales linearly with the number of data points in
the training set and is equal to that of KPCR

KPCRank regularizes by projecting data onto lower
dimensional space (number of principal components is a
model parameter)

In conducted experiments KPCRank performs better than the
baseline methods when learning to rank from data corrupted
by noise
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Dimensionality Reduction

Consider covariance matrix

m
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To find the first principal component we solve
Cv=JAv

The key observation: v =37 a,®(z), therefore,
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m
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KPCRank Algorithm

We start with the disagreement error:

m

1

ij=1

sign(s; — s;) — sign(f(z) — f(z)) ‘ )

The least squares ranking objective is

J(w) = (S — &(Z)w)tL(S — &(Z)tw)

and using projected data (reduced feature space) the objective can be
rewritten as

(W) = (S — &(2)'VE)L(S — &(2) Vi)

Regularization is performed by selecting optimal number of principle
components.
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KPCRank Algorithm

We set the derivative to zero and solve with respect to w

w =N (VIKLKV) ' VEKLS
Finally we obtain the predicted score of the unseen instance-label pair
based on the first p principal components by

1 ) m
W/Za}k(zj,z)
j=1

fz) = Z mA

=1

/

o Efficient selection of the optimal number of principal components
e Detailed computation complexity considerations

o Alternative approaches for reducing computational complexity (e.g.
subset method)
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Experiments

e Label ranking - Parse Ranking dataset

e Pairwise preference learning - Synthetic dataset based on
sinc(x) function

e Baseline methods: Regularized least-squares, RankRLS, KPC
regression, Probabilistic ranker.
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Parse Ranking Dataset

Method Without noise | ¢ =05 | 0 =1.0
KPCR 0.40 0.46 0.47
KPCRank 0.37 0.41 0.42
RLS 0.34 0.43 0.46
RankRLS 0.35 0.45 0.47

Table: Comparison of the parse ranking performances of the KPCRank,
KPCR, RLS, and RankRLS algorithms using a normalized version of the
disagreement error as performance evaluation measure.
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A Probabilistic Ranker

A probabilistic counterpart of the RankRLS algorithm would be
regression with Gaussian noise and Gaussian processes prior. Given the
score differences wj; = s; — s;

p(wilf (xi), f(xi),v) = N(wilf (xi) = f(x),1/v).
Then the posterior distribution is

1

p(f|D,V,0): ﬁN(Wu‘f(xl)if(XJ)al/V)N(ﬂOvK)
p(D|v,0)
’ ij=1

e The posterior distribution p (f|w, v, 0) is Gaussian, its mean and
covariance matrix can be computed by solving a system of linear
equations and inverting a matrix, respectively.

e Note that predictions obtained by the RankRLS algorithm
correspond to the predicted mean values of the Gaussian process
regression
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Sinc Dataset

We use sinc function

sinc(x) = sin(7x) ,
X

to generate the values used for creating magnitudes of pairwise
preferences.

e We get 2000 equidistant points from the interval [—4, 4]

e Sample 1000 for constructing the training pairs and 338 for
constructing the test pairs

e From these pairs we randomly sample 379 used for the
training and 48 for the testing

The magnitude of pairwise preference is calculated as

w = sinc(x) — sinc(x').
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Sinc Dataset

GP approximation (MLII) and KPCRank

l ’
I} “ = = =sinc function
- GP post. mean
0.8
p + KPCRank

Figure: The sinc function and the approximate posterior means of the f
using the preference with magnitudes and KPCRank predictions
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Thank you.
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