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Learning on Noisy Data

• Real world data is usually corrupted by noise (e.g. in
bioinformatics, natural language processing, information
retrieval, etc.)

• Learning on noisy data is a challenge: ML methods frequently
use low-rank approximation of the data matrix

• Any manifold learner or dimensionality reduction technique
can be used for de-noising

• Our algorithm is an extension of nonlinear principal
component regression applicable to preference learning task
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Learning to Rank

Learning to rank (total order is given over all data points)

• Applications - collaborative filtering in electronic commerce,
protein ranking (e.g. RankProp: Protein Ranking by Network
Propagation), parse ranking, etc.

• We aim to learn scoring function that is capable of ranking
data points

• Several accepted settings for learning (ref. upcoming
Preference Learning Book)

• Object ranking
• Label ranking
• Instance ranking



KPCRank Algorithm

• Main idea: Create new feature space with reduced
dimensionality (only most expressive features are preserved)
and use the ranking algorithm in that space to learn noise
insensitive ranking function

• KPCRank scales linearly with the number of data points in
the training set and is equal to that of KPCR

• KPCRank regularizes by projecting data onto lower
dimensional space (number of principal components is a
model parameter)

• In conducted experiments KPCRank performs better than the
baseline methods when learning to rank from data corrupted
by noise
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Dimensionality Reduction

Consider covariance matrix

C =
1
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To find the first principal component we solve

Cv = λv

The key observation: v =
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KPCRank Algorithm

We start with the disagreement error:

d(f ,T ) =
1

2

m∑
i,j=1

Wij

sign
(
si − sj

)
− sign

(
f (zi )− f (zj)

).
The least squares ranking objective is

J(w) = (S − Φ(Z )tw)tL(S − Φ(Z )tw)

and using projected data (reduced feature space) the objective can be
rewritten as

J(w̄) = (S − Φ(Z )tV w̄)tL(S − Φ(Z )tV w̄)

Regularization is performed by selecting optimal number of principle
components.



KPCRank Algorithm

We set the derivative to zero and solve with respect to w̄

w̄ = Λ̄
1
2 (V̄ tKLKV̄ )−1V̄ tKLS

Finally we obtain the predicted score of the unseen instance-label pair
based on the first p principal components by

f (z) =

p∑
l=1

1√
mλl

w̄l

m∑
j=1

al
jk(zj , z)

• Efficient selection of the optimal number of principal components

• Detailed computation complexity considerations

• Alternative approaches for reducing computational complexity (e.g.
subset method)



Experiments

• Label ranking - Parse Ranking dataset

• Pairwise preference learning - Synthetic dataset based on
sinc(x) function

• Baseline methods: Regularized least-squares, RankRLS, KPC
regression, Probabilistic ranker.



Parse Ranking Dataset

Method Without noise σ = 0.5 σ = 1.0

KPCR 0.40 0.46 0.47

KPCRank 0.37 0.41 0.42

RLS 0.34 0.43 0.46

RankRLS 0.35 0.45 0.47

Table: Comparison of the parse ranking performances of the KPCRank,
KPCR, RLS, and RankRLS algorithms using a normalized version of the
disagreement error as performance evaluation measure.



A Probabilistic Ranker
A probabilistic counterpart of the RankRLS algorithm would be
regression with Gaussian noise and Gaussian processes prior. Given the
score differences wij = si − sj

p (wij |f (xi ) , f (xi ) , v) = N (wij |f (xi )− f (xj) , 1/v) .

Then the posterior distribution is

p (f |D, v ,θ) =
1

p (D|v ,θ)

n∏
i,j=1

N (wij |f (xi )− f (xj) , 1/v) N (f |0,K ) .

• The posterior distribution p (f |w , v ,θ) is Gaussian, its mean and
covariance matrix can be computed by solving a system of linear
equations and inverting a matrix, respectively.

• Note that predictions obtained by the RankRLS algorithm
correspond to the predicted mean values of the Gaussian process
regression



Sinc Dataset

We use sinc function

sinc(x) =
sin(πx)

πx
,

to generate the values used for creating magnitudes of pairwise
preferences.

• We get 2000 equidistant points from the interval [−4, 4]

• Sample 1000 for constructing the training pairs and 338 for
constructing the test pairs

• From these pairs we randomly sample 379 used for the
training and 48 for the testing

The magnitude of pairwise preference is calculated as

w = sinc(x)− sinc(x ′).



Sinc Dataset
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Figure: The sinc function and the approximate posterior means of the f
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