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Introduction

The transitivity property: a classical example
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Introduction

Examples of intransitivity are found in many
fields...
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Stochastic transitivity and ranking representability

Q(x,x′) = 5/9 Q(x′,x′′) = 5/9 Q(x′′,x) = 5/9
Q(x′,x) = 4/9 Q(x′′,x′) = 4/9 Q(x,x′′) = 4/9

Proposition

A relation Q : X 2 → [0,1] is called a reciprocal relation if

Q(x,x′) + Q(x′,x) = 1 ∀(x,x′) ∈ X 2 .
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Stochastic transitivity and ranking representability

Ranking representability

Definition

A reciprocal relation Q : X 2 → [0,1] is called weakly ranking
representable if there exists a ranking function f : X → R such that for
any (x,x′) ∈ X 2 it holds that

Q(x,x′) ≤ 1
2
⇔ f (x) ≤ f (x′) .

Q(x,x′) = 5/9⇔ x � x′

Q(x′,x′′) = 5/9⇔ x′ � x′′

Q(x′′,x) = 5/9⇔ x′′ � x
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Stochastic transitivity and ranking representability

Weak stochastic transitivity

Proposition (Luce and Suppes, 1965)
A reciprocal relation Q is weakly ranking representable if and only if it
satisfies weak stochastic transitivity, i.e., for any (x,x′,x′′) ∈ X 3 it
holds that

Q(x,x′) ≥ 1/2 ∧Q(x′,x′′) ≥ 1/2⇒ Q(x,x′′) ≥ 1/2 .

Q(x,x′) = 6/9 Q(x′,x′′) = 5/9 Q(x′′,x) = 2/9
⇔

x � x′ � x′′
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Learning intransitive reciprocal relations

Definition of our framework

Training data E = (ei , yi)
N
i=1

Training data are here couples: e = (x,x′)
Labels yi = 2Q(xi ,x′i) + 1
Minimizing the regularized empirical error:

A(E) = argmin
h∈F

1
N

N∑
i=1

L(h(ei), yi) + λ‖h‖2F

Least-squares loss function: regularized least-squares
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Learning intransitive reciprocal relations

Reciprocal relations are learned by defining a
specific kernel construction

Consider the following joint feature representation for a couple:

Φ(ei) = Φ(xi ,x′i) = Ψ(xi ,x′i)−Ψ(x′i ,xi),

This yields the following kernel defined on couples:

K Φ(ei ,ej) = K Φ(xi ,x′i ,xj ,x′j)
= 〈Ψ(xi ,x′i)−Ψ(x′i ,xi),Ψ(xj ,x′j)−Ψ(x′j ,xj)〉
= K Ψ(xi ,x′i ,xj ,x′j) + K Ψ(x′i ,xi ,x′j ,xj)

−K Ψ(x′i ,xi ,xj ,x′j)− K Ψ(xi ,x′i ,x
′
j ,xj) .

And the model becomes:

h(x,x′) = 〈w,Ψ(x,x′)−Ψ(x′,x)〉 =
N∑

i=1

aiK Φ(xi ,x′i ,x,x
′) .
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Learning intransitive reciprocal relations

Ranking can be considered as a specific case in
this framework

Consider the following joint feature representation Ψ for a couple:

ΨT (x,x′) = φ(x) .

This yields the following kernel K Ψ:

K Ψ
T (xi ,x′i ,xj ,x′j) = K φ(xi ,xj) = 〈φ(xi), φ(xj)〉 ,

And the model becomes:

h(x,x′) = 〈w, φ(x)〉 − 〈w, φ(x′)〉 = f (x)− f (x′) ,
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Learning intransitive reciprocal relations

Using the Kronecker-product intransitive relations
can be learned, unlike the existing approaches

Consider the following joint feature representation Ψ for a couple:

ΨI(x,x′) = φ(x)⊗ φ(x′) ,

where ⊗ denotes the Kronecker-product:

A⊗ B =

 A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 ,

This yields the following kernel K Ψ:

K Ψ
I (xi ,x′i ,xj ,x′j) = 〈φ(xi)⊗ φ(x′i), φ(xj)⊗ φ(x′j)〉

= 〈φ(xi), φ(xj)〉 ⊗ 〈φ(x′i), φ(x′j)〉
= K φ(xi ,xj)K φ(x′i ,x

′
j),
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Experiments

Reciprocal relations in rock-paper-scissors
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Experiments

Reciprocal relations in rock-paper-scissors

Convert probabilities to a reciprocal relation:

Q(x,x′) = P(r | x)iP(s | x′) +
1
2

P(r | x)P(r | x′)

+P(p | x)P(r | x′) +
1
2

P(p | x)P(p | x′)

+P(s | x)P(p | x′) +
1
2

P(s | x)P(s | x′).

Example:

Player1 :x = (r = 1/2,p = 1/2, s = 0)

Player2 :x′ = (r = 0,p = 1/2, s = 1/2)

⇒ Q(x,x′) = 1/2(1/2 + 0/2) + 1/2(0 + 1/4) + 0(1/2 + 1/4) = 3/8
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Experiments

Rock-paper-scissors: experimental setup

100 players for training
(100 games)
100 players for testing
(1000 games)
features are the mixed
strategies
training labels
y ∈ {−1,0,1}
test labels y ∈ [0,1]

K φ linear kernel
three different settings
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Experiments

Rock-paper-scissors: setting 1

Rock

Paper

Scissors

Method MSE
Intrans. 0.000209
Trans. 0.000162
Naive 0.000001
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Experiments

Rock-paper-scissors: setting 2

Rock

Paper

Scissors

Method MSE
Intrans. 0.000445
Trans. 0.006804
Naive 0.006454
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Experiments

Rock-paper-scissors: setting 3

Rock

Paper

Scissors

Method MSE
Intrans. 0.000076
Trans. 0.131972
Naive 0.125460
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Experiments

Simulation of competition between species
results in stable populations after many iterations
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output.avi
Media File (video/avi)



Experiments

Experiment 2: competition between species in
theoretical biology
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y = sign(d(s(x ′),w(x))− d(s(x),w(x ′)))
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Experiments

The intransitive kernel clearly beats the traditional
transitive kernel
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Trans. Accuracy = 0.615⇔ Intrans. Accuracy = 0.850
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Experiments

Discussion

Existing kernel-based ranking methods cannot predict intransitive
relations.
With our framework it is possible to represent and predict
intransitive relations in an adequate way.
Empirical results on two problems confirm that our framework is
able to learn intransitive relations, unlike ranking methods.
Many applications possible (e.g. in the life sciences), but no
publicly available datasets.

http://staff.cs.utu.fi/˜ aatapa/software/RPS
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