
Preference-based Evolutionary
Direct Policy Search

Róbert Busa-Fekete1, Balázs Szörényi2, Paul Weng3,
Weiwei Cheng1, and Eyke Hüllermeier1

1 Department of Mathematics and Computer Science,
University of Marburg, Germany

2 INRIA Lille - Nord Europe, SequeL project, Villeneuve d’Ascq, France
3 Laboratory of Computer Science of Paris 6, University Pierre

and Marie Curie, Paris, France

Abstract. We present a novel approach to preference-based reinforce-
ment learning, namely a preference-based variant of a direct policy search
method based on evolutionary optimization. The core of our approach is
a preference-based racing algorithm that selects the best among a given
set of candidate policies with high probability. To this end, the algo-
rithm operates on an ordinal preference structure and only uses pairwise
comparisons between sample rollouts of the policies. We present first ex-
perimental studies showing that our approach performs well in practice.

1 Introduction

Preference-based reinforcement learning (PBRL) is a novel research direction
combining reinforcement learning (RL) and preference learning [1]. It aims at
extending existing RL methods so as to make them amenable to training infor-
mation and external feedback more general than numerical rewards, which are
often difficult to obtain or expensive to compute.

Akrour et al. [2] and Cheng et al. [3] tackle the problem of learning policies
solely on the basis of pairwise comparisons between trajectories, suggesting that
one system behavior is preferred to another one but without committing to
precise numerical rewards. Building on novel methods for preference learning,
this is accomplished by providing the RL agent with qualitative policy models,
such as ranking functions. More specifically, Cheng at al. train a model that
ranks actions conditional to given information about the state, using a method
called label ranking. Their approach generalizes classification-based approximate
policy iteration [4]. Instead of ranking actions given states, Akrour et al. exploit
preferences on trajectories in order to learn a model that ranks complete policies.

In this paper, we present a preference-based extension of evolutionary direct
policy search (EDPS) as proposed by Heidrich-Meisner and Igel [5]. As a direct
policy search method, it shares commonalities with the approach by Akrour
et al. [2], but also differs in several respects. In particular, their approach (as
well as follow-up work such as [6]) is arguably more specialized and tailored for

2 Busa-Fekete et al.

applications in robotics, in which a user interacts with the learner in an iterative
process. Moreover, policy search is not performed in a parametrized policy space
directly but in a feature space capturing important background knowledge about
the task to be solved.

EDPS casts policy learning as a search problem in a parametric policy space,
where the function to be optimized is a performance measure like expected total
reward, and evolution strategies (ES) such as CMA-ES [7] are used as optimiz-
ers. Moreover, since the evaluation of a policy can only be done approximately,
namely in terms of a finite number of rollouts, the authors make use of rac-
ing algorithms to control this number in an adaptive manner. These algorithms
return a sufficiently reliable ranking over the current set of policies (candidate
solutions), which is then used by the ES for updating its parameters and popula-
tion. A key idea of our approach is to extend EDPS by replacing the value-based
racing algorithm with a preference-based one. Correspondingly, the development
of a preference-based racing algorithm can be seen as a core contribution of this
paper.

In the next section, we briefly overview the EDPS framework for policy learn-
ing. Our preference-based generalization of this framework is introduced in Sec-
tion 3. Experiments are presented in Section 4, and Section 5 concludes the
paper.

2 Evolutionary Direct Policy Search

A Markov Decision Processes (MDP) is a 4-tuple M = (S,A,P, r), where S is
the (possibly infinite) state space and A the (possibly infinite) set of actions.
P : S × S × A → [0, 1] is the transition probability that defines the random
transitions s′ ∼ P(· | s, a) from a state s applying the action a, and r : S×A → R
is the reward function, i.e., r(s, a) defines the reward for taking action a ∈ A in
state s ∈ S.

In the evolutionary direct policy search (EDPS) approach introduced by
Heidrich-Meisner and Igel [5], the authors assume a parametric policy space
Π = {πΘ |Θ ∈ Rp} to be given, where Θ is the parameter vector. Searching
a good policy can then be seen as an optimization problem where the search
space is the parameter space and the target function is a policy performance
evaluation, such as expected total reward. To solve this optimization task, the
authors make use of evolution strategies [8], hence the name EDPS. Evolution
strategies in general iterate the following steps:

1. Generate a population of candidate solutions (in this case, a set of policies
with different parameters).

2. Evaluate the candidate solutions (estimate the performance of the policies
based on simulations/histories).

3. Select the best µ individuals based on their fitness and use them to seed the
next generation.

From a practical point of view, the number of simulations in the second step is
crucial: On the one hand, the learning process gets slow if this number is too

Preference-based Evolutionary Direct Policy Search 3

large, while on the other hand, the ranking over the current population is not
reliable enough if the number of rollouts is too small; in that case, there is a
danger of selecting a suboptimal subset of the offspring population instead of
the best µ ones. Therefore, Heidrich-Meisner and Igel [5] propose to apply an
adaptive uncertainty handling scheme, called racing algorithm, for controlling
the size of rollout sets in an adaptive manner.

2.1 Racing

The racing framework is an uncertainty handling scheme introduced in [9, 10].
Given K random variables with finite expected values, the goal is to select the
µ best ones, i.e., those having the highest expected value, with probability at
least 1 − δ. In addition, there is an upper bound nmax on the number of re-
alizations a random variable is allowed to sample. For example, the Hoeffding
race algorithm constructs confidence bounds for the empirical mean estimates
based on the Hoeffding bound [11] and eliminates those random variables from
sampling that are either among the best µ ones or among the worst K − µ ones
with high probability. The elimination rule based on the confidence intervals can
be specified as follows: If the upper confidence bound for a particular random
variable is smaller than the lower bounds of K−µ other random variables, then
it can be discarded with high probability; the inclusion of a random variable can
be decided analogously.

In our EDPS approach, the random samples correspond to the outcomes of
the simulations (e.g., the sum of rewards incurred following a policy) and the
means to be estimated are the performances of the polices in terms of the perfor-
mance evaluation used. From this point of view, doing a simulation in an MDP
by following policy π is equivalent to drawing an example from a probability
distribution Pπ. Consequently, a policy along with an MDP and initial distribu-
tion can simply be seen as a random variable. Therefore, we shall subsequently
consider the general problem of comparing random variables that are denoted
by X1, · · · , XK .

3 Preference-based EDPS

The preference-based policy learning settings considered in [12, 2] proceed from
a (possibly partial) preference relation ≺ over histories, and the goal is to find
a policy which tends to generate preferred histories with high probability. In
this regard, it is notable that, in the EDPS framework, the precise values of the
function to be optimized (in this case the expected total rewards) are actually not
used by the evolutionary optimizer. Instead, for seeding the next generation, the
ES only needs the ranking of the candidate solutions. The values are only used by
the racing algorithm in order to produce this ranking. Consequently, an obvious
approach to realizing the idea of a purely preference-based version of evolutionary
direct policy search (PB-EDPS) is to replace the original racing algorithm by a
preference-based racing algorithm that only uses pairwise comparisons between

4 Busa-Fekete et al.

policies (or, more specifically, sample histories generated from these policies).
We introduce a racing algorithm of this kind in Section 3.1.

A main prerequisite of such an algorithm is a “lifting” of the preference
relation ≺ on the space of histories to a preference relation � on the space of
policies; in fact, without a relation of that kind, the problem of ranking policies
is not even well-defined.

A natural definition of the preference relation � that we shall adopt in this
paper is as follows:

X � Y if and only if P(Y ≺ X) < P(X ≺ Y) ,

where P(Y ≺ X) denotes the probability that the realization of X is preferred
(with respect to ≺) to the realization of Y . Despite the appeal of� as an ordinal
decision model, this relation is not necessarily transitive and may even have
cycles [13]. Consequently, the (racing) problem of selecting the µ best options in
the sense of � as an underlying preference relation may not be well-defined. To
overcome this difficulty, we make use to the Copeland relation �C as a surrogate
of �. For a set X = {X1, . . . , XK} of random variables, it is defined as follows
[14]: Xi �C Xj if and only if di < dj , where di = #{k : Xk � Xi, Xk ∈ X}.
The interpretation of the Copeland relation is quite simple: an option Xi is
preferred to Xj whenever Xi “beats” (w.r.t. �) more options than Xj does.
Since the preference relation �C , which is “contextualized” by the set X of
random variables, has a numeric representation in terms of the di, it is a total
preorder.

3.1 Preference-based racing

Our preference-based racing (PBR) setup assumesK random variablesX1, . . . , XK

with distributions PX1
, . . . ,PXK

, respectively, taking values in a partially or-
dered set (Ω,≺). The goal of our PBR algorithm is to find the best µ random
variables with respect to the surrogate decision model �C introduced above:∑

i∈I

∑
j 6=i

I{Xj � Xi} −→ max
I⊆[K]: |I|=µ

(1)

Our solution to this optimization task under uncertainty is an algorithm that
iterates the following steps:

1. Draw samples from each random variables that are active.

2. Calculate ŝi,j = 1
ninj

∑ni

`=1

∑nj

`′=1 I{x
(`)
i ≺ x

(e′)
j } where {x(1)i , . . . , x

(ni)
i } is

the sample set drawn from Xi so far4.
3. Calculate confidence interval ci,j for ŝi,j by using the Hoeffding bound (with

a confidence parameter δ given by the user).

4. Define d̂i = {j | ŝi,j − ci,j > 1/2} as a lower bound of di.

4 It is clear that P (Xi ≺ Xj) ≈ ŝi,j based on finite sample sets.

Preference-based Evolutionary Direct Policy Search 5

5. Based on the d̂i, some of the random variables X1, · · · , XK can be elimi-
nated from sampling based on similar rules like in the value-based case (see
Section 2.1).

6. If the number of iterations exceeds nmax, then stop and return the current
approximation of Copeland’s ranking based on d̂1, · · · , d̂K .

The PBR algorithm can be shown to return the best µ random variables with
respect to the surrogate decision model�C with high probability, provided nmax

is set large enough. Moreover, an expected sample complexity analysis can be
conducted using techniques from Even-Dar et al. [15].

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Tumor size

T
ox

ic
ity

Random (0.355)
Const. π(s) = 0.1 (0.405)
Const. π(s) = 0.4 (0.318)
Const. π(s) = 0.7 (0.383)
Const. π(s) = 1.0 (0.448)
SARSA(λ) (0.337)
PBPI (0.259)
EDPS (0.283)
PB-EDPS (0.209)
Pareto front

(a)

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Tumor size

T
ox

ic
ity

Random (0.785)
Const. π(s) = 0.1 (0.962)
Const. π(s) = 0.4 (0.786)
Const. π(s) = 0.7 (0.766)
Const. π(s) = 1.0 (0.999)
SARSA(λ) (0.755)
PBPI (0.695)
EDPS (0.724)
PB-EDPS (0.711)
Pareto front

(b)

Fig. 1. Illustration of patient status under different treatment policies. On the x-axis
is the tumor size after 6 and 12 months, on the y-axis the highest toxicity during the
treatment. The death rates are shown in parentheses at the upper right corner.

4 Experiments on medical treatment design

Here, we tackle a problem that has been used in previous work on preference-
based RL [3, 6], namely the medical treatment design for cancer clinical trials.
The problem is to learn an optimal treatment policy π mapping states s =
(S,X) ∈ S = R2

+, where S is the tumor size and X the toxicity (inversely
related to the wellness) of the patient, to actions in the form of a dosage level
d ∈ [0, 1]; the drug is given once a month, and a patient is simulated over a fixed
time horizon of N months (we shall experiment with N = 6 and N = 12). A
corresponding simulation model (based on first-order difference equations) was
originally introduced in [16].

As argued by Cheng et al. [3], the numerical rewards assigned to different
health states of a patient (including the extreme case of death) are quite arbitrary
in this model. Therefore, the authors propose an alternative formalization, in
which histories are compared in a qualitative way: h′ � h if the patient survives
in h but not in h′, and both histories are incomparable (h′⊥h) if the patient
does neither survive in h′ nor in h. Otherwise, if the patient survives in both

6 Busa-Fekete et al.

histories, let CX and C ′X denote, respectively, the maximal toxicity during the
treatment in h and h′, and CS and C ′S the respective size of the tumor at the
end of the therapy. Then, preference is defined via Pareto dominance: h′ � h
if (and only if) CX ≤ C ′X and CS ≤ C ′S . Let us again emphasize that � thus
defined, as well as the induced strict order ≺, are only partial order relations.
We used the same experimental setup as in [3], except for adding Gaussian noise
N (0, 0.01) to the state observation [17], thereby making the underlying MDP
partially observable.

We run the implementation of [5] with the Hoeffding race algorithm and
CMA-ES [7]; we refer to this implementation as EDPS. We set λ = 6 and
µ = 3 according to [7]. The initial global step size in CMA-ES was selected from
{0.1, 1, 5, 10, 15, 25, 50, 100}. The racing algorithm has two hyperparameters, the
confidence term δ and the maximum number of samples allowed for a single
option, nmax. We optimized δ in the range {0.01, 0.05, 0.1}, while nmax was
initialized with 40 and then adapted using the technique of [5]. All parameter
values were determined by means of grid search, repeating the training process
in each grid point (parameter setting) 100 times, and evaluating each model on
300 patients in terms of expected utility; we found σ0 = 2, δ = 0.1 to be optimal.

Our preference-based variant PB-EDPS as introduced in Section 3 was run
with the same parameters. We used a sigmoidal policy space defined as

πΘ(s) = 1/(1 + exp(−ΘT s)) .

As baseline methods, we run the discrete uniform random policy (randomly
choosing a dosage d ∈ D′ = {0.1, 0.4, 0.7, 1.0} each month) and the constant
policies that take the same dosage d ∈ D′ independently of the patient’s health
state. As a more sophisticated baseline, we furthermore used SARSA(λ) [18]
with discrete action set according to the original setup5. Finally, we included
the preference-based policy iteration (PBPI) method of [12] with the parameters
reported by the authors. Each policy learning method was run until reaching a
limit 5000 training episodes.

We evaluated each policy on 300 virtual patients and derived averages for
CX , the maximum toxicity level, as well as CS , the tumor size at the end of the
treatment. We repeated this process 100 times for each policy search method.
Then, we plotted its mean and the 95% confidence regions (assuming a multi-
variate normal distribution), which represent the uncertainty coming from the
repetitions of the training process. As can be seen in Figure 1, our approach
is performing quite well and lies on the Pareto front of all methods (which re-
mains true when adding the death rate, reported in the same figure, as a third
criterion).

5 We used an ε-greedy policy for exploration. Initially, the learning rate α, the explo-
ration term ε and the parameter of the replacing traces λ were set to 0.1, 0.2 and
0.95 respectively, and decreased gradually with a decay factor 1/d 10

τ
e, where τ is the

number of training episodes. We discretized each dimension of the state space into
20 bins and used a tile coding to represent the action-value function. We refer to
[19] for more details.

Preference-based Evolutionary Direct Policy Search 7

5 Conclusion and future work

By introducing a preference-based extension of evolutionary direct policy search,
called PB-EDPS, this paper contributes to the emerging field of preference-based
reinforcement learning. Our method, which merely requires qualitative compar-
isons between sample histories as training information (and even allows for in-
comparability), is based on a theoretically sound decision-theoretic framework
and shows promising results in first experimental studies. The idea of preference-
based racing should not be limited to reinforcement learning; instead, it seems
worthwhile to explore it for other applications, too, such as multi-objective op-
timization with several competing objectives [20].

References

1. J. Fürnkranz and E. Hüllermeier, editors. Preference Learning. Springer-Verlag,
2011.

2. R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In
Proceedings ECMLPKDD 2011, European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, pages 12–27, 2011.

3. W. Cheng, J. Fürnkranz, E. Hüllermeier, and S.H. Park. Preference-based policy
iteration: Leveraging preference learning for reinforcement learning. In Proceedings
ECMLPKDD 2011, European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 414–429, 2011.

4. M. Lagoudakis and R. Parr. Reinforcement learning as classification: Leveraging
modern classifiers. In Proceedings of the 20th International Conference on Machine
Learning, pages 424–431, 2003.

5. V. Heidrich-Meisner and C. Igel. Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In Proceedings of the 26th International
Conference on Machine Learning, pages 401–408, 2009.

6. R. Akrour, M. Schoenauer, and M. Sebag. April: Active preference-learning based
reinforcement learning. In Proceedings ECMLPKDD 2012, European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, pages 116–131, 2012.

7. N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal
test functions. In Parallel Problem Solving from Nature-PPSN VIII, pages 282–291,
2004.

8. H.G. Beyer and H.P. Schwefel. Evolution strategies–a comprehensive introduction.
Natural computing, 1:3–52, 2002.

9. O. Maron and A.W. Moore. Hoeffding races: accelerating model selection search
for classification and function approximation. In Advances in Neural Information
Processing Systems, pages 59–66, 1994.

10. O. Maron and A.W. Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 5(1):193–225, 1997.

11. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963.

12. J. Fürnkranz, E. Hüllermeier, W. Cheng, and S. Park. Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Machine
Learning, 89(1-2):123–156, 2012.

8 Busa-Fekete et al.

13. P. Fishburn. Nontransitive measurable utility. J. Math. Psychology, 26:31–67,
1982.

14. H. Moulin. Axioms of cooperative decision making. Cambridge University Press,
1988.

15. E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-armed bandit
and markov decision processes. In Proceedings of the 15th Annual Conference on
Computational Learning Theory, pages 255–270, 2002.

16. Y. Zhao, M.R. Kosorok, and D. Zeng. Reinforcement learning design for cancer
clinical trials. Statistics in Medicine, 28(26):3294–3315, 2009.

17. V. Heidrich-Meisner and C. Igel. Variable metric reinforcement learning methods
applied to the noisy mountain car problem. Recent Advances in Reinforcement
Learning, pages 136–150, 2008.

18. G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University, Engineering
Department, 1994.

19. Cs. Szepesvári. Algorithms for reinforcement learning. Morgan and Claypool, 2010.
20. C.A.C. Coello, G.B. Lamont, and D.A. Van Veldhuizen. Evolutionary algorithms

for solving multi-objective problems. Springer, 2007.

