M ultiobj ective Reinforcement L earning Using Adaptive
Dynamic Programming And Reservoir Computing

Mohamed Oubbati, Timo Oess, Christian Fischer, and Giifthkn

Institute of Neural Information Processing, 89069 Ulm, @any.

Abstract. This paper introduces a multiobjective reinforcementriear approach
which is suitable for large state and action spaces. Theaphris based on actor-
critic design and reservoir computing. A single reservestireates several util-
ities simultaneously and provides their gradients thatrageiired for the actor
enabling an agent to adapt its behavior in presence of desmreces of rewards.
We describe the approach in theoretical terms, supporteihiylation results.

1 Introduction

In recent years, there has been an increasing interestendairy reinforcement learn-
ing (RL) techniques to multiobjective problems (MOP) [1}. & single-objective RL
the aim is to optimize one objective that is expressed as etitmof a scalar reward,
whereas in multiobjective RL (MORL) objectives are expeskas a vector with a re-
ward element for each objective. The aim of any MORL methad &elect policies that
produce suitable trade-offs between the several objecti¥é¢good” trade-off can be
defined in terms of Pareto dominance [2]: any feasible swiutas to be nondominated
by other solutions, i.e. there exists no other solution thiitmake an improvement
in one objective without causing a degradation in at leastather objective. The set
of nondominated solutions (also known as noninferior oeRaoptimal solutions) is
denoted as the Pareto set, and its image in the objective sgdeareto front.

The majority of MORL algorithms proposed so far convert th@RIinto a single-
objective task and then find one optimal solution (e.g. [B, Bhis is the easiest way to
handle MOPs, but itis very unlikely to have a single solutivex satisfies all objectives
simultaneously. Moreover, this approach neagsiori information from the decision
maker (e.g. defining the objective-ordering, or specifyabgective weights), which is
also a drawback, because the decision maker does not nelydssaw the complexity
of the learning process a priory, and may have too optimisgaessimistic expectations.
Alternative approaches are those that produce a set of@udyilso called pareto-based
approaches (e.g. [5, 6]). Within pareto-based approadieeddcision maker provides
his inputa posteriori. Althougha posteriori decision may provide the decision maker
with better insight about the relationships between thedhbjes, a disadvantage might
be that the decision maker has to analyze a large amountarhiation and to choose
one solution from too many feasible ones. Despite the ingpbrdvances during the
last years, research on MORL is still in its infancy, and éhexist no study comparing
the performance of different algorithms, and no standast lienchmarks are avail-
able for such a study [1]. Moreover, when considering cartirs state spaces, most

2 Oubbati et al.

of the existing MORL approaches will suffer from the the coamty known “curse of
dimensionality” [7], i.e. computational complexity ina®es exponentially with dimen-
sionality of the application or the size of the state space.

The framework of adaptive dynamic programming (ADP) [8]exdes the “curse of
dimensionality” by approximating the utilityusing a system called “Critic” (usually a
neural network). The decision-making process is usuatiyced to a simple directive:
“maximizing theexpected utility” [9]. The utility is supposed to be related to the agent’s
preference, and expectation corresponds to somethinghiéagent’s belief related to
the outcomes after performing a given action. Although werable advances have
occurred within ADPs (a recent review can be found in [10bwprful computational
tools that perform in real-time are still required.

Recurrent neural networks (RNNs) emerge as efficient andp@mising tools to
be implemented within ADPs. RNNs are universal approximsatd dynamical sys-
tems [11] and can, indeed, be trained to approximate thectegaeutility. Moreover,
they can exhibit continuous dynamics which is a suitablgerty to manage continu-
ous state/action spaces that are quite common in real eménts. Recently, we intro-
duced a single objective RL approach in high dimentionatepaising ADP and the
framework of reservoir computing (RC)[12]. RC consists sifig a non-trainable RNN
(the reservoir) that transforms the input stream into afaighensional states. Only a
readout layer is then trained to map these states to a desitpdt. This concept re-
duces the complexity of training while preserving the reent property of the network.
The proposed RC-ADP is a model-free approach, which useR€rform real-time
estimation of the value function, and to calculate the gratdi required for the actor
[13,14].

This paper aims to extend the RC-ADP for MOPs. A single resemstimates
several utilities simultaneously and provides their geath that are required for the
actor enabling an agent to adapt its behavior in presencevefal sources of rewards.
The remainder of the paper is organized as follows. Secfansoduces the reservoir
computing approach, and section 3 explains the extensi®®CaADP for MOPs. In
section 4 we show our first preliminary results, and sectigivés a general conclusion.

2 Reservoir Computing

Originally, reservoir computing has been introduced wiklo tsimilar architectures:
Echo State Networks (ESN) [15] and Liquid State Machineg.[®%éhile most liquid
state machines use spiking integrate-and-fire neuronsavidffnamic synaptic con-
nection model in the reservoir, the ESN standardly usesirnomis valued sigmoid
neurons. In this paper we adopt the ESNs as the main learoaigAn ESN hask’
inputs, a dynamic reservoir (DR) which contaiNsneurons and. output neurons. Ac-
tivations of input neurons at time stépareU,,, (k) = (u1(k),u2(k), ..., ux(k)), of
internal neurons ar& (k) = (xz1(k),...,xn(k)), and of output neurons aié(k) =
(y1(k),...,yr(k)). Weights for the input connection in(@xK) matrix areW;,, =
(wj}), for the internal connection in @x V) matrix areW = (w;;), and for the con-

nection to the output neurons in &x (K + N + L) matrix areWo,; = (wg}*), and

Y In computational intelligence, the term utility is ofteriérpreted as a reward.

Multiobjective RC-ADP 3

in a(NXL) matrix Wyaer, = (wﬁ?j‘?c’“) for the connection from the output to the internal
neurons. The activation of the reservoir neurons is updatedrding to

X(k4+1) = f(WinUin(k + 1) + WX (k) + WyaerY (k4 1)) 1)

wheref = (f1,..., fnv) are the internal neurons output sigmoid functions, andrihe i
put weightsiv;,,, the reservoir weight matrid” and the output backpropagated weights
Wiacr are generate randomly. The outputs are calculated as

Y(k+1)= fourWout(U(k+ 1), X(k+1),Y(k))) (2)

An essential condition for successful using of ESN is théntestate” property. It is
a property of the network prior to training, related to thegiematriceg W, W, Wback),
A network (W W, Wbe<k) has echo states, if the current reservoir stite:) is
uniquely determined by the history of the input/output datae following procedure
seems to give a practical solution to guaranty echo stateepiy[15]:

1. The order of input and output neurons should be statedr@iocpto the task at
hand.

Generate randomly the input weighis, and output backpropagated weighitdec.
Generate randomly an internal weight maiii.

NormalizelV, with its spectral radiug,,,., and putitinWy : Wy = Mwimnl Wh.
Scalell; with a factor0 < o < 1 and put the new internal matriv’ = aW; (in
the remaining of this paper is called the spectral radius).

akrown

If the echo state condition is met, only weights connectimos the reservoir to the
output (¥,.;) are to be adjusted.

2.1 Training

One simple way to traifl’°“! is to use the least square (LS) method. It consists of the
following steps':

1. Compute the network states by presenfingput/output training sequen¢e(k), d(k)):
X(k) = f(Win Ui (k) + WX (k —1)) (3)

wherek =1,...,T.

2. Collect at each time the stalé(k) as a new row into a state collecting mattix,
and collect similarly at each time the sigmoid-invertedttes outputanh =1 D(k)
into a teacher collection matrix'. After these collections, the matrik/ has the
size of(T'+ 1) x (K + N + L), and the matriC has the size of7" + 1) x L.

3. Adjust the output weights: Compute the pseudoinverse @ind put:

Wout _ (M—lc)t (4)
t: indicates transpose operation.

! The implementations in this paper use no back-connedtidfc* from the output to the reser-
voir and no connections from the input directly to the output

4 Oubbati et al.

The ESN is now trained off-line. For exploitation, the netlwean be driven by new
input sequences and using equations (1) and (2).

Most of the time, however, it is computationally more effitiéf we update the
estimates in (4) recursively. The LS algorithm above canxteneled to the Recursive
version (RLS). The recursive updateldé®“ is given by:

Wt (k) = W (k — 1) + L(k) (Yaesirea(k) — Y (k) ()

whereYyesirea (k) is the desired mapping. The gain vecidik) is updated as

—1

L(k) = P(K)X (k) = P(k — 1)X (k) (1 + X*(k)P(k — 1)X (k) (6)

and
P(k) = (I = L(k)X"(k)) P(k — 1) (7)

P(k) is usually referred to as the covariance matrix.

3 Multiobjective RC-ADP

We consider the coupled agent-environment as one dynasyiseEdm described by
s(k+1) = F[s(k), a(k)] (8)

wheres € R" represents the state,c R™ denotes the control action to make tran-
sitions between state, the discrete time and’ is in general a nonlinear function.
Suppose that for each objectivene associates the performance index

Tils(D)] =D A* T Uils(k), a(k)], (9)
k=i

wherel is the utility function for objectivé and+ is a discount factor with < ~ < 1.
According to Bellman [17], the optimal cost-to-go functifam objectivel at timek is

Ji[s(k)] = min {Ui[s(k), a(k)] +~J [s(k + 1)]} (10)

and the corresponding actian (%) that achieves this optimal cost at tirhés

a*(k) = arg min {Ui[s(k), a(k)] + 7 J [s(k + 1)]} (11)

Obtaininga*(k) is a hard task since it depends upon solutions to the Hamilton
Jacobi-Bellman equation which is generally a nonlineatigladifferential (or dif-
ference) equation [18]. Moreover, solutions to Hamilt@eabi-Bellman equation are
computationally intractable, due to the curse of dimeraion[7]. The framework of
ADP addresses this problem by using a system called “criticipproximate/* and
to adapt a control law such that the utilityis maximized in the long run. The overall
learning system we envisage to produce is depicted in Fiyure

Multiobjective RC-ADP 5

Scalarization

TD-

error [*

i i

Multiobjective
Reservoir Computing

(MRC) Utility functions
- U=[U, U, ..U]

S(k) a(k-1)

estimated state

World-Model

Actor

action

a(k)

J

External Environment

Fig. 1. Multi-objective optimization with RC-ADP

3.1 World Model

We consider a continuous state spagk) that reflects the position of the agent in its
environment, and a continuous action space in a form of teatsgheading:(k). In
order to simulate a real environment, the stdte) is estimated by € R? using three
stationary landmarks. Each elementa$ calculated as

. 1

1
e 20 [|lm; — pos|| = %di (12)

Where8—10 is a scaling factor relying on the size of the environment| @nis the
distance between the agent and landmiawke also add random noise with a signal-to-
noise-ration oR% to the measurments.

3.2 TheMultiobjective Reservoir Computing
The activation of internal neurons is updated according to
X(k+1) = f(WinUin(k + 1) + WX (k) (13)

whereU,,, = s(k), X is the reservoir state, anfd= tanh(). According to (10) the out-
put weightsiV,,,; are adjusted recursively using the temporal difference) (ERxning
algorithm [19], by minimizing the following error

IE|l =" Ex =Y _[RCi(k) — Ui(k) — yRCi(k + 1))? (14)
k k

6 Oubbati et al.

After each adjustment of,,.; (using the recursive algorithm of section)¢}
(the estimation of/; is calculated as

RCy(k) = four (W™ X (K))) (15)

wheref,,;: Identity.

3.3 Scalarization

In this first vqrsion of multi-objective RC-ADP we combiné aftimatedJ, into one
cost functionJ.

j = Z wiji (16)

wherew; are scalar weights from the intervél 1]. The control policy is then used
to optimize the combined cost functioh

3.4 Theactor

In the actual version of RC-ADP uses the control policy thatimizes the gradient of
the utility

dJ (k)
da* (k)

whered is the learning rate, and the signis related to the task at hand. The gradient
of J(k) with respect ta:*(k) can be computed using the chaine rule

a*(k+1)=a"(k)+0 (17)

= (18)

;s*((klj) represents the model of the coupled system (8). The & k)) is
a S

calculated as follows

The term

aJ(k) aJ(k) 0X (k)

9s(k) 0X (k) 0s(k) (19)
From (15) we have K
T = W) (20)
To compute the terrga);—(k]? we proceed as follows. We put
I''=Wi,s(k)+ WX (k—1) (21)

and using the chaine rule again for each elemed¥ 6f [z1, 22, ... x| we obtain

Multiobjective RC-ADP 7

os(k) oI, 0S(k)
i =1,... N (the number of reservoir neurons), afid= tanh() (the reservoir neurons

output function).
From (19), (20) and (22) we obtain

= (1 —af(k))w" (22)

K2

0J(k)
0s(k)
wherel denotes the column vector of 1.

Equation (23) shows that the partial derivativejofvith respect tos depends only
on theW,,; update and on the current reservoir state. Thus, in cortasttypical
layered neural networks, RC structure offers a simple wayatoulate the/ gradients.
Thus, the power of RC-ACD lies in the fast training of RC andhe simplicity to
propagate the required gradients to the actor.

= Wout (k){(I = X*(k))Win ()} (23)

4 Results

Fig. 2 illustrates a scenario of an agent that explores am@mment containing three
utility regions. Each utility is defined as following

th
0 ,if dist > th

wheredist is the distance of the maximum utility to the agent, ahds a threshold
from which the utility gradient is provided to the agent. Ehhe utilities are not dis-
tributed over all the environment, i.e. they are not autéca#ly provided with respect
to each state/action.

In the simulations we puth = 30, and we set RC parameters@s= 0.65, N =
500, the connectivity of the reservoiry,, = 30% and the connectivity of the input
weight matricec; = 20%. We start the experiment with an untrained RC. The agent
begins each run (episode) at the start position, and and®pisads if the agent drives
beyond the borders of the environment or if it reaches thbdsgvalue of the utility,
which is defined a280% of the maximum value that could be reached. This was repeated
for a variety of weightgw, ws, ws), and the resulting sets of solutions are shown in
Fig. (3). The projection of the Pareto front onto the thregctive planes are illustrated
in Fig. 4. In Fig. 4 (b), the expected value féy linearly decreases once the valuejgf
starts to increase. This means that the agent is not ableitnisg both utility functions
simultaneously. One reason is that the intersecting areatbf utility functions is not
large enough. However, the agent was able to optinhiseith either./; or .J; as shown
in Figs. 4 (a) and (c).

The trajectories of the agent for two solutions from the otetd Pareto set are il-
lustrated in Fig. 5. For the case= 0.86.J; + 0.73.J, + 0.81.J3, the optimum is found
approximately at the center of the three maxima. This wasetegl, since the weights
are almost similar. In the next solution for the cdst 0.04.J; + 0.17.J5 + 0. 87J3, the
agent ignores; and.J», and optimiseJs.

2% (1— 4ty if dist <
U{ * () if dist <th (24)

8 Oubbati et al.

® Start Position

* Start Position

(a) 3D View (b) Aerial View

Fig. 2. Utility Functions

2
15
= N
) ooy Uity WHTRIOSY
1 - 7
/ 5 ¢ .
"’"’3{""[5 .&olmﬁ«: =
0.5 NI
/ ' ()
Q
0 0

1
j]
(a) Several feasible solutions (b) Pareto Set

Jo 2 2

Fig. 3. The global Pareto-frontier solutions obtained across20irlins using multiobjective RC-
ADP.

o Pareto Point ° Pareto Point

0 04 08 12 16 2 0 04 08 12 16 2 0 04 08 12 16 2
Jy Jy Iy

(a) Pareto set of, vs. .J; (b) Pareto set ofis vs. J; (c) Pareto set of;5 vs. Jo

Fig. 4. Projection of the Pareto front onto the three objective @sall black points are domi-
nated by at least one red point

Multiobjective RC-ADP 9

Environment with Agent Path Environment with Agent Path

Agent"s Path Agent"s Path
* Start Position ® Start Position

X

(a) Control policy for.J = 0.86.J; + (b) Control policy fo/ = 0.04./; + 0.17.J> +
0.73J2 4+ 0.81J3 0.87J3

Fig. 5. Testing results of two solutions from the pareto set.

5 Conclusion

We have presented some preliminary results of the exten@edBP for solving mul-
tiobjective problems. A single reservoir was able to estasaveral utilities simultane-
ously, and an actor adapts the policy in order to maximizetimbined agent’s utility.
Our next step is to increase the complexity of the envirortrbgadding some dynam-
ics to the external world. Also, we are working on integrgtanhigher-level decision
maker as a meta-learner to learn how to select the most paafdrpolicies between
the pre-selected ones in the pareto set. It should consiadémienum necessary perfor-
mance with regard to one or more utilities in selecting optipolicies.

References

1. P.Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Bekkmpirical evaluation meth-
ods for multiobjective reinforcement learning algorithmslach. Learn., 84(1-2):51-80,
2011.

2. Carlos A Coello Coello and Gary B Lamont. Applications aflthobjective evolutionary
algorithms.Advances in natural computation, 1, 2004.

3. A. Castelletti, G. Corani, A. Rizzolli, R. Soncinie-Sasand E. Weber. Reinforcement learn-
ing in the operational management of a water system FAC Workshop on Modeling and
Control in Environmental Issues, pages 325-330, 2002.

4. Shie Mannor and Nahum Shimkin. A geometric approach tdi+oriterion reinforcement
learning.Journal of Machine Learning Research, 5:325-360, 2004.

5. C.R. Shelton. Importance sampling for reinforcementrieg with multiple objectives.
Technical Report No. 2001-003, Massachusetts Institufeolfinology Al Lab, 2001.

6. L.Barrett and S. Narayanan. Learning all optimal poficiéth multiple criteria. IrProc. of
the 25th international conference on Machine learning, ICML 08, pages 41-47, 2008.

7. S. Dreyfus and A. LawArt and Theory of Dynamic Programming. Academic Press, Inc.,
Orlando, FL, USA, 1977.

8. F. Wang, H. Zhang, and D. Liu. Adaptive dynamic progranmgnifin introduction. |[EEE
Computational Intelligence Magazine, 4(2):39-47, 2009.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

Oubbati et al.

Jos Luis BermudeDecision Theory and Rationality. Oxford University Press, 2009.

. Warren B. Powell. Perspectives of approximate dynamogrnamming. Annals of Opera-

tions Research, pages 1-38, 2012.

Ken-ichi Funahashi and Yuichi Nakamura. Approximatiaynamical systems by contin-
uous time recurrent neural networkseural Network, 6(6):801-806, 1993.

M. LukoSevicius and H. Jaeger. Reservoir computimg@gches to recurrent neural network
training. Computer Science Review, 3(3):127-149, August 2009.

M. Oubbati, J. Uhlemann, and G. Palm. Adaptive learningpintinuous environment using
actor-critic design and echo-state networksFtom Animals to Animats 12. Lecture Notes
in Computer Science., volume 7426, pages 320-329, 2012.

P. Koprinkova-Hristova, M. Oubbati, and G. Palm. Hetigidynamic programming using
echo state network as online trainable adaptive crifioternational Journal of Adaptive
Control and Sgnal Processing, 26(11), 2012.

H. Jaeger. The echo state approach to analysing anthgraicurrent neural networks.
Technical Report 148, AIS Fraunhofer, St. Augustin, Geiynaa01l.

W. Maass, T. Natschlager, and H. Markram. Real-timemding without stable states:
a new framework for neural computation based on perturbstio Neural Comput.,
14(11):2531-2560, 2002.

R.E. BellmanDynamic Programming. NJ: Princeton Univ. Press, 1957.

D. Vrabie and F. Lewis. Neural network approach to carirs-time direct adaptive optimal
control for partially unknown nonlinear systemseural Networks, 22(3):237-246, 2009.
Richard S. Sutton. Learning to predict by the method=wipbral differencesMachine
Learning, 3:9-44, 1988.

