
Multiobjective Reinforcement Learning Using Adaptive
Dynamic Programming And Reservoir Computing

Mohamed Oubbati, Timo Oess, Christian Fischer, and Günther Palm

Institute of Neural Information Processing, 89069 Ulm, Germany.

Abstract. This paper introduces a multiobjective reinforcement learning approach
which is suitable for large state and action spaces. The approach is based on actor-
critic design and reservoir computing. A single reservoir estimates several util-
ities simultaneously and provides their gradients that arerequired for the actor
enabling an agent to adapt its behavior in presence of several sources of rewards.
We describe the approach in theoretical terms, supported bysimulation results.

1 Introduction

In recent years, there has been an increasing interest in extending reinforcement learn-
ing (RL) techniques to multiobjective problems (MOP) [1]. In a single-objective RL
the aim is to optimize one objective that is expressed as a function of a scalar reward,
whereas in multiobjective RL (MORL) objectives are expressed as a vector with a re-
ward element for each objective. The aim of any MORL method isto select policies that
produce suitable trade-offs between the several objectives. A “good” trade-off can be
defined in terms of Pareto dominance [2]: any feasible solution has to be nondominated
by other solutions, i.e. there exists no other solution thatwill make an improvement
in one objective without causing a degradation in at least one other objective. The set
of nondominated solutions (also known as noninferior or Pareto optimal solutions) is
denoted as the Pareto set, and its image in the objective space as Pareto front.

The majority of MORL algorithms proposed so far convert the MOP into a single-
objective task and then find one optimal solution (e.g. [3, 4]). This is the easiest way to
handle MOPs, but it is very unlikely to have a single solutionthat satisfies all objectives
simultaneously. Moreover, this approach needsa priori information from the decision
maker (e.g. defining the objective-ordering, or specifyingobjective weights), which is
also a drawback, because the decision maker does not necessarily know the complexity
of the learning process a priory, and may have too optimisticor pessimistic expectations.
Alternative approaches are those that produce a set of solutions, also called pareto-based
approaches (e.g. [5, 6]). Within pareto-based approaches the decision maker provides
his inputa posteriori. Althougha posteriori decision may provide the decision maker
with better insight about the relationships between the objectives, a disadvantage might
be that the decision maker has to analyze a large amount of information and to choose
one solution from too many feasible ones. Despite the important advances during the
last years, research on MORL is still in its infancy, and there exist no study comparing
the performance of different algorithms, and no standard test benchmarks are avail-
able for such a study [1]. Moreover, when considering continuous state spaces, most
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of the existing MORL approaches will suffer from the the commonly known “curse of
dimensionality” [7], i.e. computational complexity increases exponentially with dimen-
sionality of the application or the size of the state space.

The framework of adaptive dynamic programming (ADP) [8] adresses the “curse of
dimensionality” by approximating the utility1 using a system called “Critic” (usually a
neural network). The decision-making process is usually reduced to a simple directive:
“maximizing theexpected utility” [9]. The utility is supposed to be related to the agent’s
preference, and expectation corresponds to something likethe agent’s belief related to
the outcomes after performing a given action. Although considerable advances have
occurred within ADPs (a recent review can be found in [10]), powerful computational
tools that perform in real-time are still required.

Recurrent neural networks (RNNs) emerge as efficient and very promising tools to
be implemented within ADPs. RNNs are universal approximators of dynamical sys-
tems [11] and can, indeed, be trained to approximate the expected utility. Moreover,
they can exhibit continuous dynamics which is a suitable property to manage continu-
ous state/action spaces that are quite common in real environments. Recently, we intro-
duced a single objective RL approach in high dimentional spaces using ADP and the
framework of reservoir computing (RC)[12]. RC consists of using a non-trainable RNN
(the reservoir) that transforms the input stream into a high-dimensional states. Only a
readout layer is then trained to map these states to a desiredoutput. This concept re-
duces the complexity of training while preserving the recurrent property of the network.
The proposed RC-ADP is a model-free approach, which uses RC to perform real-time
estimation of the value function, and to calculate the gradients required for the actor
[13, 14].

This paper aims to extend the RC-ADP for MOPs. A single reservoir estimates
several utilities simultaneously and provides their gradients that are required for the
actor enabling an agent to adapt its behavior in presence of several sources of rewards.
The remainder of the paper is organized as follows. Sections2 introduces the reservoir
computing approach, and section 3 explains the extension ofRC-ADP for MOPs. In
section 4 we show our first preliminary results, and section 5gives a general conclusion.

2 Reservoir Computing

Originally, reservoir computing has been introduced with two similar architectures:
Echo State Networks (ESN) [15] and Liquid State Machines [16]. While most liquid
state machines use spiking integrate-and-fire neurons witha dynamic synaptic con-
nection model in the reservoir, the ESN standardly uses continuous valued sigmoid
neurons. In this paper we adopt the ESNs as the main learning tool. An ESN hasK
inputs, a dynamic reservoir (DR) which containsN neurons andL output neurons. Ac-
tivations of input neurons at time stepk areUin(k) = (u1(k), u2(k), . . . , uK(k)), of
internal neurons areX(k) = (x1(k), . . . , xN (k)), and of output neurons areY (k) =
(y1(k), . . . , yL(k)). Weights for the input connection in a(NxK) matrix areWin =
(win

ij ), for the internal connection in a(NxN) matrix areW = (wij), and for the con-
nection to the output neurons in anL x (K +N + L) matrix areWout = (wout

ij ), and

1 In computational intelligence, the term utility is often interpreted as a reward.
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in a (NxL) matrixWback = (wback
ij ) for the connection from the output to the internal

neurons. The activation of the reservoir neurons is updatedaccording to

X(k + 1) = f(WinUin(k + 1) +WX(k) +WbackY (k + 1)) (1)

wheref = (f1, . . . , fN ) are the internal neurons output sigmoid functions, and the in-
put weightsWin, the reservoir weight matrixW and the output backpropagated weights
Wback are generate randomly. The outputs are calculated as

Y (k + 1) = fout(Wout(U(k + 1), X(k + 1), Y (k))) (2)

An essential condition for successful using of ESN is the “echo state” property. It is
a property of the network prior to training, related to the weight matrices(W in,W,W back).
A network (W in,W,W back) has echo states, if the current reservoir stateX(k) is
uniquely determined by the history of the input/output data. The following procedure
seems to give a practical solution to guaranty echo state property [15]:

1. The order of input and output neurons should be stated according to the task at
hand.

2. Generate randomly the input weightsWin and output backpropagatedweightsW back.
3. Generate randomly an internal weight matrixW0.
4. NormalizeW0 with its spectral radiusλmax and put it inW1 : W1 = 1

|λmax|
W0.

5. ScaleW1 with a factor0 < α < 1 and put the new internal matrixW = αW1 (in
the remaining of this paperα is called the spectral radius).

If the echo state condition is met, only weights connectionsfrom the reservoir to the
output (Wout) are to be adjusted.

2.1 Training

One simple way to trainW out is to use the least square (LS) method. It consists of the
following steps1:

1. Compute the network states by presentingT input/output training sequence(u(k), d(k)):

X(k) = f(WinUin(k) +WX(k − 1)) (3)

wherek = 1, . . . , T .
2. Collect at each time the stateX(k) as a new row into a state collecting matrixM ,

and collect similarly at each time the sigmoid-inverted teacher outputtanh−1D(k)
into a teacher collection matrixC. After these collections, the matrixM has the
size of(T + 1)× (K +N + L), and the matrixC has the size of(T + 1)× L.

3. Adjust the output weights: Compute the pseudoinverse ofM and put:

W out = (M−1C)t (4)

t: indicates transpose operation.

1 The implementations in this paper use no back-connectionW
back from the output to the reser-

voir and no connections from the input directly to the output.
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The ESN is now trained off-line. For exploitation, the network can be driven by new
input sequences and using equations (1) and (2).

Most of the time, however, it is computationally more efficient if we update the
estimates in (4) recursively. The LS algorithm above can be extanded to the Recursive
version (RLS). The recursive update ofW out is given by:

W out(k) = W out(k − 1) + L(k)(Ydesired(k)− Y (k)) (5)

whereYdesired(k) is the desired mapping. The gain vectorL(k) is updated as

L(k) = P (k)X(k) = P (k − 1)X(k)
(

1 +Xt(k)P (k − 1)X(k)
)−1

(6)

and
P (k) =

(

I − L(k)Xt(k)
)

P (k − 1) (7)

P (k) is usually referred to as the covariance matrix.

3 Multiobjective RC-ADP

We consider the coupled agent-environment as one dynamicalsystem described by

s(k + 1) = F [s(k), a(k)] (8)

wheres ∈ ℜn represents the state,a ∈ ℜm denotes the control action to make tran-
sitions between states,k the discrete time andF is in general a nonlinear function.
Suppose that for each objectivel one associates the performance index

Jl[s(i)] =

∞
∑

k=i

γk−iUl[s(k), a(k)], (9)

whereUl is the utility function for objectivel andγ is a discount factor with0 < γ < 1.
According to Bellman [17], the optimal cost-to-go functionfor objectivel at timek is

J∗
l [s(k)] = min

a(k)
{Ul[s(k), a(k)] + γJ∗

l [s(k + 1)]} (10)

and the corresponding actiona∗(k) that achieves this optimal cost at timek is

a∗(k) = argmin
a(k)

{Ul[s(k), a(k)] + γJ∗
l [s(k + 1)]} (11)

Obtaininga∗(k) is a hard task since it depends upon solutions to the Hamilton-
Jacobi-Bellman equation which is generally a nonlinear partial differential (or dif-
ference) equation [18]. Moreover, solutions to Hamilton-Jacobi-Bellman equation are
computationally intractable, due to the curse of dimensionality [7]. The framework of
ADP addresses this problem by using a system called “critic”to approximateJ∗ and
to adapt a control law such that the utilityU is maximized in the long run. The overall
learning system we envisage to produce is depicted in Figure1.
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Fig. 1. Multi-objective optimization with RC-ADP

3.1 World Model

We consider a continuous state spaces(k) that reflects the position of the agent in its
environment, and a continuous action space in a form of the agent’s headinga(k). In
order to simulate a real environment, the states(k) is estimated bŷs ∈ R3 using three
stationary landmarks. Each element ofŝ is calculated as

ŝi =
1

80
||lmi − pos|| =

1

80
di (12)

where 1
80 is a scaling factor relying on the size of the environment, and di is the

distance between the agent and landmarki. We also add random noise with a signal-to-
noise-ration of2% to the measurments.

3.2 The Multiobjective Reservoir Computing

The activation of internal neurons is updated according to

X(k + 1) = f(WinUin(k + 1) +WX(k)) (13)

whereUin = s(k), X is the reservoir state, andf = tanh(). According to (10) the out-
put weightsWout are adjusted recursively using the temporal difference (TD) learning
algorithm [19], by minimizing the following error

‖E‖ =
∑

k

Ek =
∑

k

[RCl(k)− Ul(k)− γRCl(k + 1)]2 (14)
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After each adjustment ofWout (using the recursive algorithm of section 2),RCl

(the estimation ofJl is calculated as

RCl(k) = fout(W
out
l X(k))) (15)

wherefout: Identity.

3.3 Scalarization

In this first version of multi-objective RC-ADP we combine all estimatedĴl into one
cost functionĴ .

Ĵ =

l
∑

i=1

wiĴi (16)

wherewi are scalar weights from the intervall[0, 1]. The control policy is then used
to optimize the combined cost function̂J .

3.4 The actor

In the actual version of RC-ADP uses the control policy that minimizes the gradient of
the utility

a∗(k + 1) = a∗(k)± δ
∂Ĵ(k)

∂a∗(k)
(17)

whereδ is the learning rate, and the sign± is related to the task at hand. The gradient
of Ĵ(k) with respect toa∗(k) can be computed using the chaine rule

∂Ĵ(k)

∂a∗(k)
=

∂Ĵ(k)

∂s(k)

∂s(k)

∂a∗(k)
(18)

The term
∂s(k)

∂a∗(k)
represents the model of the coupled system (8). The term

∂Ĵ(k)

∂s(k)
is

calculated as follows
∂Ĵ(k)

∂s(k)
=

∂Ĵ(k)

∂X(k)

∂X(k)

∂s(k)
(19)

From (15) we have
∂Ĵ(k)

∂X(k)
= Wout(k) (20)

To compute the term
∂X(k)

∂s(k)
we proceed as follows. We put

Γ = Wins(k) +WX(k − 1) (21)

and using the chaine rule again for each element ofX = [x1, x2, . . . xN ] we obtain
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∂xi(k)

∂s(k)
=

∂f(Γi)

∂Γi

∂Γi

∂S(k)
= (1 − x2

i (k))w
in
i (22)

i = 1, . . .N (the number of reservoir neurons), andf = tanh() (the reservoir neurons
output function).

From (19), (20) and (22) we obtain

∂Ĵ(k)

∂s(k)
= Wout(k){(I −X2(k))Win(k)} (23)

whereI denotes the column vector of 1.
Equation (23) shows that the partial derivative ofĴ with respect tos depends only

on theWout update and on the current reservoir state. Thus, in contrastto a typical
layered neural networks, RC structure offers a simple way tocalculate theĴ gradients.
Thus, the power of RC-ACD lies in the fast training of RC and inthe simplicity to
propagate the required gradients to the actor.

4 Results

Fig. 2 illustrates a scenario of an agent that explores an environment containing three
utility regions. Each utility is defined as following

U =

{

2 ∗ (1− dist
th

) , if dist ≤ th

0 , if dist > th
(24)

wheredist is the distance of the maximum utility to the agent, andth is a threshold
from which the utility gradient is provided to the agent. Thus the utilities are not dis-
tributed over all the environment, i.e. they are not automatically provided with respect
to each state/action.

In the simulations we putth = 30, and we set RC parameters asα = 0.65, N =
500, the connectivity of the reservoircdr = 30% and the connectivity of the input
weight matriceci = 20%. We start the experiment with an untrained RC. The agent
begins each run (episode) at the start position, and an episode ends if the agent drives
beyond the borders of the environment or if it reaches the highest value of the utility,
which is defined as20% of the maximum value that could be reached. This was repeated
for a variety of weights(w1, w2, w3), and the resulting sets of solutions are shown in
Fig. (3). The projection of the Pareto front onto the three objective planes are illustrated
in Fig. 4. In Fig. 4 (b), the expected value forĴ3 linearly decreases once the value ofĴ1
starts to increase. This means that the agent is not able to optimise both utility functions
simultaneously. One reason is that the intersecting area ofboth utility functions is not
large enough. However, the agent was able to optimiseĴ2 with eitherĴ3 or Ĵ1 as shown
in Figs. 4 (a) and (c).

The trajectories of the agent for two solutions from the obtained Pareto set are il-
lustrated in Fig. 5. For the casêJ = 0.86Ĵ1 + 0.73Ĵ2 + 0.81Ĵ3, the optimum is found
approximately at the center of the three maxima. This was expected, since the weights
are almost similar. In the next solution for the costĴ = 0.04Ĵ1 + 0.17Ĵ2 + 0.87Ĵ3, the
agent ignoreŝJ1 andĴ2, and optimiseĴ3.
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(a) 3D View (b) Aerial View

Fig. 2. Utility Functions
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Fig. 3. The global Pareto-frontier solutions obtained across all 120 runs using multiobjective RC-
ADP.
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(b) Pareto set of̂J3 vs. Ĵ1
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Fig. 4. Projection of the Pareto front onto the three objective planes. All black points are domi-
nated by at least one red point
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(a) Control policy forĴ = 0.86Ĵ1 +

0.73Ĵ2 + 0.81Ĵ3

X

Y

Environment with Agent Path

 

 

Agent"s Path
Start Position

(b) Control policy forĴ = 0.04Ĵ1 + 0.17Ĵ2 +

0.87Ĵ3

Fig. 5. Testing results of two solutions from the pareto set.

5 Conclusion

We have presented some preliminary results of the extended RC-ADP for solving mul-
tiobjective problems. A single reservoir was able to estimate several utilities simultane-
ously, and an actor adapts the policy in order to maximize thecombined agent’s utility.
Our next step is to increase the complexity of the environment by adding some dynam-
ics to the external world. Also, we are working on integrating a higher-level decision
maker as a meta-learner to learn how to select the most performant policies between
the pre-selected ones in the pareto set. It should consider aminimum necessary perfor-
mance with regard to one or more utilities in selecting optimal policies.
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