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Abstract. Programming a robot to perform a new task normally in-
volves a time consuming process. Reinforcement learning has been used
in robotics for learning new tasks through its interaction with the envi-
ronment. This, however, normally involves long training times. In this
paper, we combine several techniques that include human intervention
to accelerate the reinforcement learning process. In particular, a user
provides initial demonstrations of the task that provide preferences over
the search space. The states and actions are represented in an abstracted
qualitative way which reduces the state-action space, produces more gen-
eral policies, and for the case of programming by demonstration, simpli-
fies the correspondence problem. Before converging into an (sub)optimal
policy, the robot tries to complete the task, during which the user can
provide on-line feedback in the form of commanding actions or qualifiers
over the performance of the robot. It is shown that this user-based ap-
proach can produce significant reduction in the learning process when
compared to more traditional approaches.

Keywords: robot learning, reinforcement learning, programming by demon-
stration, reward shaping

1 Introduction

Service robots are becoming increasingly popular and it is expected that, in the
near future, they will become as common in homes as computers are today. Each
user, however, may have different needs for their service robots and such needs
may change with time. To personalize service robots to the user’s requirements,
non-expert users will have to be able to program new robot tasks in natural and
accessible ways.

Robot learning of new tasks has been an active research topic within the
Reinforcement Learning (RL) community. The idea is to allow the robot to learn
a control policy from its interaction with its environment [14]. Even if the user
could easily specify a goal and assuming the robot has a suitable representation
for states and actions, RL is a very time-consuming process. Also exploratory
actions by a robot in a home environment could be disastrous without human
supervision (e.g., the robot could break delicate ornaments or fall down the



2 L.A. León, A.C. Tenorio, E.F. Morales

stairs, etc.). In this paper, we describe a learning framework to instruct a robot
how to perform a new task in a “natural” way involving human intervention
that avoids some of the previously mentioned problems.

In particular, we combine RL with Programming by Demonstration (PbD)
[2]. In PbD the user shows the robot how to perform a task and the robot repro-
duces this task according to its capabilities. Some disadvantages of this approach
are that the performance of the system depends on the skills of the teacher and
that this approach normally requires of special hardware and controlled condi-
tions. In our approach, we are not restricted to a single expert demonstration
under controlled conditions. One or more non-expert users can show the robot
how to perform the target task, the demonstrations are expected to be sub-
optimal and noisy and can even follow different strategies.

Trace logs of the demonstrations are obtained and transformed into a rela-
tional qualitative representation and then given to a reinforcement learning algo-
rithm. This means that the states and actions, over which the learning process
takes place, are not completely defined in advance, but are constructed from
the user’s demonstrations, in effect defining preferences for the learning task.
Also, this more abstracted representation allows the system to learn generalized
policies applicable to different instances of the task.

Contrary to previous approaches the user can provide on-line feedback, if
necessary, while the robot is attempting to complete the task with its current
policy, to accelerate the learning process. This feedback is traduced into addi-
tional rewards in an kind of dynamic reward shaping function as it depends on
when the user decides to provide feedback and what kind of feedback is given.

All these ingredients form a human-oriented framework to teach a new task
to a robot by non-expert users. We have previously reported results following
some of these ideas in [18, 15, 7]. In this paper, we present a general learning
framework that comprises and extends, in a unified way, our previous work and
provides additional results for a pick-&-place task.

This paper is organized as follows: Section 2 describes the most closely re-
lated work to this research. In Section 3 the proposed system is described in
detail. Section 4 details the experiments and discusses the results obtained in
this research. In Section 5, conclusions and future research work directions are
given.

2 Background and Related Work

There are several related areas to our research, these include: reinforcement
learning, programming by demonstration, reward shaping, relational representa-
tions, and human intervention. In the following sub-sections we will concentrate
mainly on reinforcement learning approaches.

Reinforcement Learning (RL) is a technique used to learn in an autonomous
way a control policy (π) in a sequential decision process. It can be characterized
as a Markov Decision Process (MDP): M =< S,A,R, P > where, S is a set of
states, A is a set of actions, R is a reward function, and P a probability state
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transition function. In RL, for a given state s ∈ S at time t, an agent (the robot)
chooses an action a ∈ A, transitions (moves) into a new state s′ and receives a
reward rt ∈ R. A sequence of actions eventually leads the agent to a terminal
(goal) state. Formally, the control policy π(s, a) is a mapping function that gives
the probability of taking action a when in state s. The goal of RL is to learn an
optimal control policy π∗ that produces the maximum total expected reward for
the agent [14].

Learning an optimal control policy normally requires the exploration of the
whole search space and very long training times and different approaches have
been suggested to produce faster convergence rates, like reward shaping and
human feedback.

The idea of reward shaping is to give additional rewards to a learning agent
to guide its learning process and converge faster [11, 6]. In effect, the learning
algorithm is running on a transformed MDP, M ′ =< S,A, T,R′ >, where R′ =
f(R, s, s′). Normally f has been used as an additive function, i.e., R′ = R + F ,
but in general, it does not need to be the case. So in the new MDP when an
agent takes in state s action a and moves to s′ it receives a reward defined as
R+ F .

Reinforcement learning including feedback has been considered in some re-
cent approaches [17, 10, 3, 9, 8]. Hardware devices such as joysticks, keyboards,
among others, are used to provide such feedback. Other approaches use voice
commands to teach how to perform a task, as presented in [13, 19]. In [13] a
human instructor demonstrates how to do a task and gives instructions with
voice commands. Their verbal instructions, however, are very similar to control
structures of a programming language that can be difficult to give by general
end-users, and the learning is focused on learning by demonstration. By contrast,
the method that we propose uses a more natural spoken interaction and uses
reinforcement learning in addition to the demonstrations.

Some authors have provided feedback from the user and incorporated it into
the reinforcement learning algorithm [4, 1, 5]. In [1] the robot first derives a
control policy from user’s demonstrations and the teacher modifies the policy
through a critiquing process. A similar approach is taken in [4], however the
user’s critique is incorporated into the optimization function used to learn the
policy. In [5], the authors combine TAMER, an algorithm that models a hypo-
thetical human reward function, with eight different reward shaping functions.

Contrary to previous works, our method starts with traces of demonstrations
provided by a teacher and the user can provide, through voice commands, feed-
back that can be given at any time during the learning process, directly affecting
the reward function. We also use a more powerful (relational) representation lan-
guage to create more general policies, as explained later.

3 Learning from Human Demonstration and Shaping

Our learning framework involves three stages: (i) human demonstrations of how
to perform a task, (ii) a transformation of the trace-logs into a relational repre-
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sentation, and (iii) a reinforcement learning scheme with possible on-line feed-
back by the user (see Figure 1). The general idea is to involve the user during
the learning process in a more “natural” way.

Fig. 1. General learning scheme

The demonstrations can be given by the one or by several users, they can
follow different strategies, they are expected to be sub-optimal, and the infor-
mation from them can be noisy. We want from them to learn how to perform
the task in an (sub)optimal way to the robot, for which we use a modified rein-
forcement learning algorithm. We also want to learn a policy that can be used
by the robot, even under different, although similar, settings. For example, if
the user teaches the robot how to exit a room, we would like the robot to be
able to exit any room. For that purpose we change the low-level sensor informa-
tion from the demonstrations into a more abstracted relational representation
from which generalized policies can be learned. Finally, in order to accelerate
the learning process, the user can intervene, at any time, by providing on-line
feedback to the system, which is translated into additional rewards, in a kind of
dynamic reward shaping function. These steps are described in more detail in
the following sections.

3.1 Relational representation

There are several advantages for using a high-level representation for learning
tasks: (i) An abstracted state or action can represent several more specific states
and actions, thus reducing the search space, and (ii) the learned policies rep-
resented in this abstracted formalism can be used in other, although similar,
domains without any further learning.

For example, an abstracted state could be represented by the conjunction of
two predicates: place(in-room,State) and doors detected(right,close,State), rep-
resenting that the robot is in a room and a door is not too far away to its right.
So all the instances (potentially infinite) that satisfies these two conditions are
represented by this single state.

Similarly, low level actions are transformed into generalized actions repre-
sented by an action predicate and the set of applicable state predicates as pre-
conditions. For instance:
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If place(in-room,State) and doors detected(right,close,State)
Then turn(right,State)

meaning that when the robot is in a room with a door to its right then one
possible action is to turn to the right, representing all the possible movements
to the right of the robot under these conditions.

The states and actions relevant for the task are not predefined in advanced, as
in traditional RL algorithms, but are constructed from the user’s demonstrations.
This has two immediate effects: (i) Only a subset of states and actions are
considered for learning and consequently the algorithm can converge faster. (ii)
There are no guarantees of finding optimal policies and the robot may not know
what to do when encountering new states. Also during the learning process the
agent performs exploratory actions that can lead the robot to new (unseen)
states. In such cases, a new abstracted state is constructed, and the robot can
ask the user what to do or perform a primitive action, and construct a new
action for that state. The states and actions are incrementally constructed from
the user’s demonstrations as described in Algorithm 1.

Every sensor produces information at a particular rate. Once new informa-
tion has been received from all the sensors (a frame), it is transformed into states
and actions, if new. For instance, the definition of the predicate doors detected,
involves finding two discontinuities from laser readings. A discontinuity is de-
fined as an abrupt variation in the measured distance of two consecutive laser
readings. A door is detected if a right discontinuity (increased distance from two
consecutive readings) is followed by a left discontinuity (decreased distance from
two consecutive readings). The door’s orientation angle and distance values are
calculated by averaging the values of the right and left discontinuities angles and
distances. In our research, the user needs to define the predicates, i.e., how to
transform the low-level information from the sensors into a set of relational pred-
icates, such as place, doors detected, etc., and how to transform the information
from the actuators into action predicates, such as turn, etc.

Once a set of states and actions are defined from the sensor readings obtained
in the demonstrations, a reinforcement learning algorithm is used to learn a
policy for the task, as described in the following section.

Algorithm 1 Transformation into a Relational Representation.

Given: τ1, τ2, . . . τn, a set of n demonstrations of how to perform a task
Given: a set of predicate definitions
for i = 1 to n do
k ← number of frames in demonstration i
for j = 1 to k do

Transform frameij (frame j from demonstration i) into a set of applicable
state predicates (r-state) and action predicate (r-action)

end for
end for
Output: r-state-r-action pairs
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3.2 Reinforcement Learning

As the demonstrations correspond to different examples of the same task and as
they might have been generated by different users, there can be several actions
associated to the same state. RL is then used to develop a control policy that
selects the best action for each state. The goal of this stage is to improve over
the traces performed by the user.

Algorithm 2 gives the pseudo-code for Q-learning using this relational repre-
sentation, although other RL algorithms could be used as well.

Algorithm 2 The rQ-learning Algorithm, where α is the learning rate and γ
the discount rate.

Initialize Q(sR, aR) arbitrarily
repeat

Initialize s
sR ← rels(s) % set of relations on state s
for each step of episode do

Choose aR from sR using a persistently exciting policy (e.g., ε-greedy)
Randomly choose action a applicable in aR
Take action a, observe r (reward), s′ (next state)
s′R ← rels(s′)
Q(sR, aR)← Q(sR, aR) + α(r + γmaxa′

R
Q(s′R, a

′
R)−Q(sR, aR))

sR ← s′R
end for

until s is terminal

This is like a normal Q-learning algorithm, however, the action is a randomly
selected action from the possible instantiations of the r-action, and once it is
executed, the sensor readings from the resulting state are transformed into a set
of relations to identify the corresponding r-state. The reward function (r) is a
traditional reward function defined in advanced by the user, in our experiments
we used the values of 100 when reaching a goal, −10 when reaching a state out
of the robot’s working area, and −1 otherwise.

The user’s demonstrations focus the search space into a small set of possible
actions and also are used to seed initial Q-values for the states and actions
visited by the user. All the state-action pairs involved in each demonstration are
used as a tried episode in the RL algorithm, and consequently their Q-values are
affected accordingly. During the exploration stage the robot can visit new states
and create new state-action, either by asking the user what action to perform in
such new state or choosing a random primitive action. The robot learns policies
in terms of this representation. For instance, if in the previous state the robot
learns that the best action is to turn right, even if the robot is in a completely
new environment, as long as it recognizes a room and a door to its right it will
turn to its right.
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3.3 Dynamic Reward Shaping

A natural way of teaching is to instruct a student how to perform a task, let the
student try the task on its own, and give feedback to the student while she/he
is attempting to complete the task. This is basically the idea followed with our
dynamic reward shaping approach.

Our reward function is defined as: R = RRL+Ruser where RRL is the reward
function from Algorithm 2 that comes from the definition of the task and Ruser is
the reward obtained from voice commands given by the user. The main difference
with previous reward shaping functions is that in our case the rewards can be
given sporadically and can be contrary to what it is needed for achieving a goal.
The feedback from the user is given while the agent is attempting to complete
an episode using its current policy, either as a critique to the states reached
and actions followed by the robot or as a command for the robot to execute an
alternative action. User’s feedback is transformed into rewards and used at that
instance as a shaping reward. If the user does not intervene, the agent follows a
normal reinforcement learning process.

This approach, however, pose several problems: (i) Even with simple voice
commands, speech recognition systems are not completely reliable which can
produce a noisy reward shaping function, (ii) the user can provide her/his re-
wards with certain delay, and (iii) the user is not consistent with her/his feedback
and it can vary over time, at first providing a substantial amount of feedback
and after a while just giving occasional suggestions.

On the other hand, this feedback can be used to correct user’s demonstra-
tions, corrrect delayed rewards, or even create new alternative goals by persis-
tently giving positive feedback to certain states.

4 Experiments and Results

In this paper, we focus on learning how to perform a manipulation task (pick
and place) using demonstrations from the user and a Kinect sensor to capture
the movements of the user. We used a 6 DoF robot manipulator, named Armonic
Arm 6M (see Figure 2 right), in our experiments.

The interaction between the different components of the system is shown in
Figure 3, where the initial demonstrations are used to seed the initial Q-values
and the system follows a process where the user can intervene during the RL
process.

In the demonstrations, the instructor shows the robot the task to learn with
his/her arm movements (see Figure 4). The 3D positions of the hand and of
the objects in the environment are tracked using the Kinect R© sensor. Each
state s ∈ S is described by a six-term tuple with the following elements: s =
(H, W, D, dH, dW, dD), where:

– H = Height: {Up,Down}
– W = Width: {Right, Left}
– D = Depth: {Front,Back}



8 L.A. León, A.C. Tenorio, E.F. Morales

Fig. 2. Robot Katana Armonic Arm 6M

Fig. 3. The imitation and feedback learning framework.
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– dH = Height distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dW = Width distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dD = Depth distance to target: {V eryFar, Far, Close, V eryClose,Over}

In this case, this is just a discretization of states, however, in other more
complex domains, the predicate definition can involve predicate variables.

Each action a ∈ A is described as a movement in one direction with infor-
mation of how much to move the manipulator, a = (D, pD), where:

– D : Direction {Up,Down,Right, Left, Front,Back}
– pD : a real value that defines the magnitude of the movement performed by

the robot according to how close it is from an object. For example, a right
movement will have a greater displacement to the right when it is far from
the target object than a right movement when it is close to the target object.

The main advantage of this representation is that, since it is a relative relation
between the human or robotic arm with the target object, it does not need to
have any special transformation between the traces shown by the user and the
traces used by the robot. On the other hand, the states and the learned policies,
as it will be shown later, are relative to the target object so the initial position
of the robot arm and the initial and final position of the target object can be
completely different from the positions shown by the user, and the learned policy
is still suitable for the task.

During the execution of actions it is possible to produce continuous actions by
combining the discrete actions of the current policy. This is performed as a lineal
combination of the discrete action on each direction with the larger Q-values.
The lineal combination is proportional to the magnitude of the used Q-values
and the updating function over the Q-values is also proportionally performed
over all the involved discrete actions.

While the robot is exploring the environment to improve over its current
policy, the user can provide on-line voice feedback to the robot. We build over
the work described in [16], where a fixed vocabulary was defined for the user’s
commands. In the experiments, we associated rewards to certain words of the
vocabulary: +100 for reaching the goal, +50 for “excellent”, +10 for “good”,
−50 for “terrible”, and −10 for “bad”. Similar rewards were used for the rest of
the vocabulary and the phrases. We used Sphinx 3 as speech recognizer based
on the corpus DIMEx100 [12].

For the experiments, we designed different conditions to test the individual
parts of the proposed system:

1. Using only Reinforcement Learning (RL)

2. Human demonstrations followed by Reinforcement Learning (HD)

3. Human demonstrations followed by Reinforcement Learning interleave with
simulation (S)

4. Human demonstrations followed by Reinforcement Learning, interleaved Sim-
ulation and User’s Feedback (FB)
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Table 1. Translation into English of part of the vocabulary used in the experiments.
We used individual words and simple short phrases. We considered six possible actions:
Up, Down, Right, Left, Front, Back and a small set of qualifiers arranged into five
categories (goal, very good, good, bad, and very bad).

WORDS SHORT PHRASES

forward move forward

backward move backwards

left turn to your left

right go to your right

up move upwards

down move down

end stop here

good continue like this

bad not that way

excellent very good

terrible not like that

goal until here

Fig. 4. Human demonstration for picking-up and placing a particular object (top) and
the output produced by the Kinect (bottom).

Figure 5 shows the performance of the different experiment’s settings, plot-
ting the accumulated reward per episode (top graph) and the time to complete
the task per episode (bottom graph).
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Fig. 5. Performance of the different experimental conditions. The top figure shows the
accumulated reward, while the bottom figure shows the total time to complete the
task. Where; (i) RL = reinforcement learning, (ii) HD+RL = human demonstration
followed by RL, (iii) HD + S +RL = RL with human demonstrations interleave with
learning simulation time, and (iv) HD+S+RL+FB = the same as (iii) but including
feedback from the user.

The experiments are repeated 12 times and averaged. As can be seen, from
the figure, human demonstrations provides a significant jump start in the experi-
ments. Also using human demonstration and user’s feedback during the learning
process significantly reduce the convergence times. It should be noted that dur-
ing training each episode started from a random initial position and ended in a
random (reachable) object position.

Table 4 shows the total training times using a real robot under the different
testing conditions. The user roughly spent 5 minutes for the demonstrations and
we interleave a few seconds of simulation after each episode.

The algorithm converges even when there is no control on when and how to
provide feedback. It should be noted that in these experiments the user was not
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Table 2. Total training times with a real robot.

Time (s)

Demos Sim. RL Total Time

RL 0 0 16168.896 16168.896 (∼ 4:30 h)

HD + RL ∼ 300 0 11056.56 11356.56 (∼ 3:10 h)

HD + S + RL ∼ 300 25.628 6729.399 7055.027 (∼ 2 h)

HD + S + RL + FB ∼ 300 19.348 3242.273 3561.621 (∼ 1)

a student from Computer Science or related areas and has never worked with
robots or machine learning systems before.

Analyzing the human interventions, we noticed that roughly 60% of the inter-
ventions were action commands, while 40% were qualifiers over the performance
of the robot. Also, the number of human interventions decreased almost by half
when human demonstrations are given beforehand. As future work, we would
like to see if this percentages are similar for different users.

We tested the learned policy over 100 random initial and final reachable
positions for the objects. The robot was able to successfully complete 88% of the
tests (the object is picked-up from its initial position and correctly placed in its
target position). The tests were incomplete 7% of the time (the object cannot
be taken by the gripper or falls from the gripper during its transfer to its target
position, but the robot was able to reach the initial and target position), and
the robot did not reach either the initial or target position in 5% of the tests.

These experiments show that with a more abstracted representation the
learned policies can be used in other instantiations of the task. and reduces
the correspondence problem1. The system is relatively robust to noisy demon-
strations (our speech recognition system roughly misunderstands 20% of the
utterances). The incorporation of user’s feedback during the learning process
provides a powerful technique for more natural human teaching interaction. Fi-
nally, interleaving, even short learning simulation time between episodes, is an
attractive alternative to accelerate the learning process and also provides a more
natural teaching setting.

5 Conclusions and Future Work

Teaching a robot how to perform new tasks will soon become a very relevant
topic with the advent of service robots. We want non-expert users to be able
to teach robots new tasks in natural ways. In this paper, we propose a learning
framework for teaching robots new tasks oriented to non-expert users. This ap-
proach uses human demonstrations to focus the search space and accelerates the
learning process. Transforms the original log-traces from the sensors of the robot
into a relational representation, which accelerates the learning process. And al-
lows human feedback during the learning stages, thus, allowing a more natural

1 The problem of creating adequate correspondence between the human and robot
morphologies.
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interaction from the user into the learning loop. This process is relatively robust
to noise and errors from the user or speech understanding system, and can be
used to correct faulty demonstrations.

As future work, we would like to extend our speech recognition system to
provide more natural interactions and to consider different intentions. It is not
the same to shout stop! to a robot heading towards a staircase than to tell
gently the robot to stop before receiving a new command. Our current feedback
is translated into a numeric value. We would like to explore using a qualitative
representation for the reward function. The demonstrations are shown by the
user, alternatively we would like to give only general guidelines, like “exit the
room”, “go to the end of the aisle”, etc. We would also like to include commands
to undo some actions or rewards.

Acknowledgments

This work was supported by grant number 84162 from CONACyT, México.
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