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Abstract. Aimed at on-board robot training, an approach hybridizing
active preference learning and reinforcement learning is presented: Inter-
active Bayesian Policy Search (IBPS) builds a robotic controller through
direct and frugal interaction with the human expert, iteratively emitting
preferences among a few behaviors demonstrated by the robot. These
preferences allow the robot to gradually refine its policy utility estimate,
and select a new policy to be demonstrated, after an Expected Utility of
Selection criterion.
The paper contribution is on handling the preference noise, due to ex-
pert’s mistakes or disinterest when demonstrated behaviors are equally
unsatisfactory. A noise model is proposed, enabling a resource-limited
robot to soundly estimate the preference noise and maintain a robust
interaction with the expert, thus enforcing a low sample complexity. A
proof of principle of the IBPS approach, in simulation and on-board, is
presented.

1 Position of the problem

Reinforcement learning (RL) [5, 19, 22], aimed at optimal sequential decision
making, has been particularly investigated in robotics (see [12] for a survey). In
practice, its success critically depends on the smart design of i) the state and
action spaces; ii) the reward function. This paper focuses on the reward shaping
issue: Not only should the reward function reflect the target robot behavior;
it should also induce a robust and tractable optimization problem. Some ap-
proaches, based on the demonstration of the target behavior by the expert and
ranging from inverse reinforcement learning [17], to learning by imitation [6]
or learning by demonstration [14], have been proposed to learn an appropriate
reward function. Such approaches however require a strong expertise in the so-
lution of the task at hand. Alleviating this requirement, alternative approaches
have been proposed since the late 2000s, based on the expert’s preferences about
the robot demonstrations, and automatically deriving a reward function [7], a
posterior over the parametric policy space [24] or a policy utility estimate [2, 3].

The general limitations of preference-based RL are twofold. On the one hand,
it should require little feedback from the expert (of the order of a few dozen
preference judgments) to be effectively usable. On the other hand, it must resist
the preference noise due to expert’s actual mistakes or disinterest, e.g. when
demonstrated robot behaviors are equally unsatisfactory.



The contribution of the paper, the Interactive Bayesian Policy Search (IBPS)
framework, simultaneously estimates the policy utility and the confidence thereof,
through modelling the expert preference noise. The goal is to decrease the sample
complexity of the interactive robot education process, that is the number of pref-
erence judgments required to reach a satisfactory behavior. This goal is achieved
on-board through a more robust selection of the policies to be demonstrated.

Notations. The standard notations of Markov Decision Processes are used
in the rest of the paper [19, 22]. Inverse reinforcement learning (IRL), a.k.a.
learning by imitation or apprenticeship learning, considers an MDP\r (reward
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Assuming that the expert trajectories maximize some target reward r∗, the
IRL goal is to find a policy with quasi-optimal performance under r∗ (rather
than finding r∗ itself) [1]. Specific exploration mechanisms, e.g. based on Gibbs
sampling [13], are used to overcome under-optimal expert trajectories. [11] com-
bines classification-based RL [15, 14] and IRL, formalizing IRL as a structured
classification problem.

Preference learning-based RL was designed to alleviate the strong expertise
assumption underlying the exploitation of human demonstrated trajectories. In
[7] the authors use preference learning in replacement of classification algorithms
in rollout classification-based policy iteration (RCPI) [9]. The authors advocate
that action ranking is more flexible and robust than a supervised learning based
approach. In [2], the authors use preference learning to define a policy utility
estimate; the main difference with [7] is that the former defines an order relation
on the action space depending on the current state, whereas the later defines an
order relation on the trajectories. Active preference-based policy learning [24,
3] exploits pairwise preferences among trajectories demonstrated by the agent,
whereas IRL exploits trajectories demonstrated by the human expert. The main
difference between [24] and [3] concerns the demonstrated trajectories: short
trajectories are selected in [24], assuming that the initial states can be sampled
after some prior distribution P (s0) in order to enforce visiting interesting regions
of the state space. No such selection of interesting excerpts is required in [3]; in
counterpart, the expert judgment errors might become more likely as the expert
is required to see the whole trajectories.

Formally, [24] infers a distribution over the parametric policy space. On the
one hand, this setting enables the direct sampling of policies from the posterior.
On the other hand, it makes it more expensive to update the posterior distribu-
tion after a preference constraint is added: the similarity between a parametric
policy and the trajectories involved in a preference constraint requires a good
amount of rollouts of the parametric policy to be computed. The policy selec-
tion in [3] is inspired from the expected utility of selection principle [23]. For
tractability, a criterion based on the ranking-SVM objective value is used to
estimate the utility of selecting a policy, conditionally to it being better/worse



than the current best policy. However, the preference judgment noise is not taken
into account.

The IBPS approach, building upon the APRIL framework [3], focusses on
the policy robustness w.r.t. noisy expert preferences (section 2). A noise model
is estimated on-board, enabling a limited-resource robot to cope with less-than-
ideal experts. Under this model, the expected utility of selection is proved to
be a good approximation of the expected posterior utility, the ideal but hardly
tractable active selection criterion. The in-situ evaluation of IBPS establishes a
proof of principle of the approach and sheds some light on the expert judgment
errors (section 3). Their impact on the robot training (with and without noise
modelling) is discussed in section 4.

2 Interactive Bayesian Policy Search

The IBPS algorithm elaborates on an active preference policy learning setting,
inspired from [3] and distinguishing two search spaces. The first space X , referred
to as input or parametric space, is used to describe and sample policies (in the
following X = IRd). Policy πx is represented as a vector x, describing the state-
action mapping (subscript x will be omitted for readability when clear from the
context). The second space Φ(X ) and referred to as feature or behavioral space,
is used to describe a policy behavior or trajectory, and learn the policy utility
function. Formally, a robot trajectory generated from policy πx, expressed as a
state-action sequence (s0, πx(s0), s1 . . . πx(sH−1), sH) is represented as a vector

u ∈ IRD, with u =
∑H
i=0 γ

iφ(si), 0 < γ ≤ 1 and φ a feature function mapping

the state space (or the state × action space) onto IRD. In the following, we shall
restrict ourselves to linear trajectory utilities, where the utility of trajectory u is
set to 〈w,u〉 and w is a unit vector in IRD. The πx policy utility is the trajectory
utility expectation, over the trajectories generated from πx.

Following the general framework described in [3, 24], active preference-based
policy learning iterates a 3-step process: i) the learning agent demonstrates at
least one new trajectory; ii) the expert expresses pairwise preferences between
two newly demonstrated trajectories or a new trajectory and the former best
trajectory (or his recollection thereof); iii) the policy utility estimate, that is
the robot model of expert’s preferences, is updated and a new policy is selected
according to an active criterion.

After [3], the use of both the input/parametric and the feature/behavioral
spaces is motivated by the expressiveness/tractability dilemma. On the one hand,
a high dimensional continuous search space is required to express competent
policies. Still, such high-dimensional search spaces makes it difficult to learn a
preference-based policy return from a moderate number of expert preferences.
On the other hand, the behavioral space does enable to learn a preference-based
policy return from the little evidence provided by the expert, despite the fact
the behavioral description is insufficient to describe a flexible policy.



2.1 Preference and noise model

Letting w∗ denote the true (hidden) utility of the expert, his preference judg-
ment on the pair of trajectories {u,u′} is modeled as a noisy perturbation of
his true preference 〈w∗, (u− u′)〉. The preference noise is usually modelled in
the literature as a Gaussian perturbation ([8, 24]) or following the Luce-Shepard
model [16, 18, 23]. In both cases, the noise model involves an extra-parameter
(respectively the standard deviation of the Gaussian perturbation or the tem-
perature of the Luce-Shepard rule) controlling the magnitude of the noise.

The noise model considered in IBPS involves a single scalar parameter δ ∈
IR, δ > 0, where the probability of the expert preferring u over u′ given the true
preference z = 〈w∗, (u− u′)〉 is defined as: P (u � u′ | w∗, δ) = 1

2δz + 1
2 , if

|z| < δ and P (u � u′ | w∗, δ) = 1 (resp. 0) if z ≥ δ (resp. z ≤ −δ).
This simple ridged model allows IBPS to handle the uncertainty on the noise

threshold δ through analytical integration over the δ distribution. A first option
is to consider that the expert consistently answers according to a hidden but fixed
δ∗. The second option assumes that δ can vary over time. Arguably, the former
option is less flexible and less robust, as one abnormally large mistake can prevent
the robot from identifying an otherwise consistent ranking model. Inversely, the
latter option while being more robust could slow down the identification of the
expert’s utility function. This latter option is however clearly more appropriate
to accommodate the cases where the task (or the expert’s understanding thereof,
or his preferences) might change over time. In the remainder of the paper, a
distinct noise scale parameter δt is considered to model the expert preference
noise after the t-th preference judgment has been emitted.

Let Ut = {u0,u1, . . . ; (ui1 � ui2), i = 1 . . . t} denote the archive of all tra-
jectories demonstrated to the expert and the expert’s preference judgments up
to the t-th iteration. Let us set a uniform prior p(w) over the unit sphere W of
IRD, and let us likewise assume that the prior over the noise scale parameter δi
is uniform on interval [0,M ]. Given Ut, the posterior distribution of the utility
function reads:

p(w;Ut) ∝
∏
i=1,t

PN (ui1 � ui2 | w) =
∏
i=1,t

(
1

2
+

zi(w)

2M

(
1 + log

M

| zi(w) |

))
(1)

where zi is set to 〈w, (ui1 − ui2)〉 if it is not greater (resp. lower) than M (resp.
−M) in which case it takes the value M (resp. −M); PN (ui1 � ui2 | w) is set

to
∫ +∞

0
P (ui1 � ui2 | w, δ) dδ (where PN stands for noisy ranking probabil-

ity). When zi(w) = 0, PN (ui1 � ui2 | w) = 1/2. Note that PN is a sigmoid
only depending on the utility difference 〈w, (u− u′)〉, thus very similar to the
Gaussian noise model1. However it is amenable to formal analysis (section 2.2)
and its parameterization is more intuitive, as the upper bound M on the util-
ity margin subject to preference noise is expressed using the same unit as the
utility itself. For instance in the case where u and u′ are state histograms with

1 Reading PGauss(u � u′ | w∗, δ) = 1
2

+ 1
2
erf(
〈w∗,u−u′〉√

2δ
)



L1 norm 1, setting M =
√

2/2 guarantees that if |〈w,u− u′〉| is more than
half the maximum utility difference, these cannot be mistakingly ordered (since
maxw,u,u′ |〈w, (u− u′)〉| ≤ maxw,u,u′ ||w||2 ||u−u′||2 ≤

√
2 ||u−u′||∞ ≤

√
2).

2.2 Active policy selection

Given a trajectory u, its expected utility EUN (u;Ut) reads
∫
W
p(w;Ut) 〈w,u〉dw

where p stands for the posterior w distribution on the unit sphere W. By con-
struction, the most informative pair of trajectories to submit to the expert’s
judgment is {u1,u2} with maximum expected posterior utility:

EPUN ({u1,u2};Ut) =
∑
i=1,2

PN (ui � u3−i | Ut) EU∗(Ut ∪ {ui � u3−i}) (2)

where PN (u � u′ | Ut) =
∫
W
PN (u � u′ | w)p(w;Ut)dw and EU∗(Ut) =

maxu EU(u;Ut).
This selection criterion ensures that the selected pair alters the posterior distri-
bution in such a way that it maximizes the EU one step ahead. After [23], in the
noiseless case (subscript NL) it is equivalent to maximize the expected utility of
selection and the expected posterior utility (EUS∗NL =

∑
i=1,2 PNL(ui � u3−i |

Ut) EU(ui;Ut ∪ {ui � u3−i}) = EPU∗NL, where EPUNL differs from EPUN as
PN is replaced with PNL(u � u′ | w), set to 1 if z = 〈w, (u− u′)〉 > 0, 1/2 if
z = 0 and 0 otherwise.

The above result establishes the computational tractability of the approach
in the noiseless case, as no optimization resolution is required to compute EUS
as opposed to EPU. Specifically in the considered context, using EUS instead of
EPU saves the resolution of two control problems for every evaluation of a pair
of trajectories.

A first contribution of the present paper is to show that in the noisy case,
and when considering the above noise model, the optimal EUS is upper-bounded
by the optimal EPU less a constant term: EUS∗N ≤ EPU∗N −LN , where LN is a
positive constant only depending on the noise hyper-parameter M .

Lemma 1 For any set q = {u,u′} of two trajectories u and u′, and for any
archive Ut, we have:

EUSNL(q,Ut)−
M

2λ
(1− 1 + lnλ

λ
) ≤ EUSN (q;Ut) ≤ EUSNL(q,Ut)

With λ = e−
1
2−W−1(− 1

2 e
− 1

2 ) and W−1 is the lower branch of the Lambert W
function. Let LN = M

2λ (1− 1+lnλ
λ ) ≈ M

19.6433

The lower bound is tight but corresponds to a degenerate case where p(w;Ut)
is concentrated on a set of w such that |w · (u−u′)| is neither too small in which
case the probability of preferring the wrong object is high but the loss in utility
is small, nor too large translating in a high but unlikely loss in utility. The upper



bound holds for any noise model. There is equality between EUSN and EUSNL
when |w · (u − u′)| ≥ M for all w s.t. p(w;Ut) > 0. Due to space constraints,
proofs are provided in the supplementary material.

Let EUS∗N (Ut) = maxu,u′ EUSN ({u,u′};Ut) and EPU∗N (Ut) = maxu,u′ EPUN ({u,u′};Ut).
Using Lemma 1 and results from [23] it immediately follows that:

Theorem 1 EUS∗N (Ut) ≥ EPU∗N (Ut)− LN
Since EPU is always greater than EUS and in particular for the set {u∗,u′∗}
maximizing the EUS, this theorem unsure that the set EPUN ({u∗,u′∗};Ut) is
no lower than LN from EPU∗N (Ut).

2.3 Optimization of the active selection criteria

In the direct policy search context, the optimization of the EUS criterion raises
two main issues as the policy search operates in the input space X , while the
utility criterion is defined on the feature space Φ(X ). The first issue results from
the stochastic input-to-feature space mapping due to e.g. environment noise:
while selecting a pair of trajectories with high EUS, these trajectories cannot
always be demonstrated verbatim to the expert, possibly resulting in poorly in-
formative trajectory demonstrations2. The latter issue regards the optimization
of the EUS criterion on the feature space, exploring a large search space X , thus
entailing potentially prohibitive computational costs.

In [24], both issues are dealt with by assuming a pool of trajectories, sampled
from the current posterior over the parametric space, to be recorded beforehand
in each iteration. The selected trajectories can thus be demonstrated verbatim to
the expert. In [3], the pair of trajectories to be compared always includes the best
trajectory so far noted ut. The policy π to be demonstrated is selected by max-
imizing the approximate EUS, averaging the EUS(u,ut) over a few trajectories
u generated from π.

Forcing ut, the best so far trajectory in the archive Ut, as one of the two
trajectories of the next preference query has several benefits. Firstly, it cuts the
burden on the human expert by half: a single new trajectory needs be demon-
strated in each iteration as ut is known to the expert. Secondly, the optimization
problem on X × X reduces to a more tractable optimization problem on X . In
counterpart, it entails the loss of optimality of the selection process (since the
optimal query pair does not necessarily contains ut). A further justification why
the selection of ut as reference term of the preference query might work well in
practice, comes from the fact that EUSN approximates EUSNL up to LN and
EUSNL is a sub-modular function: after [23], selecting a query pair x1, x2 by
greedily selecting x1 with highest expected utility (EU) and x2 the one max-
imizing EUSNL w.r.t. x1, results in EPUNL(x1, x2) ≥ .75EPU∗NL. Indeed, ut
has a high expected utility in the noiseless case; the probability distribution on

2 This limitation can be alleviated through recording the trajectories considered by
the robot on its own, and showing the most informative one to the expert, as in [24].



the utility functions concentrates on w such that it ranks ut above all other
trajectories in Ut.

The former issue, related to the stochastic input-to-feature space mapping, is
circumvented in the case of an ergodic MDP when considering long trajectories
relatively to the policy mixing time. These conditions are however hard to meet in
practice. A fall back procedure consists of selecting policy π which maximizes an
empirical estimate of IEu∼πEUSN (u;ut,Ut), where trajectories u are generated
after π.In the noiseless case, a lower bound on the above criterion is given by
EUSNL(IEu∼π(u);ut,Ut) (due to the convexity of the max operator on W and
the Jensen inequality). The optimization of this lower bound only requires to
integrate over W once, thus with tractable cost.

In the noisy case, the optimization of the EUSN (u;ut,Ut) criterion can hardly
be handled through RL methods as the criterion is not linear in u. The approach
used to tackle this optimization problem is based on the resolution of a sequence
of linear optimization problems3. Formally, a sequence of linear problems aimed
at optimizing EUSNL is considered to find an approximate optimum of EUSN .
At each iteration, RL is used to find a policy that will increase EUSNL until
reaching a fixed point. The algorithm iteratively proceeds as follows: i) an initial
utility w0 is sampled from the posterior p(w;Ut); ii) at the k-th iteration RL

is used to find πk = arg maxπ IE[〈wk,
∑i=∞
i=0 γiφ(si) | si+1 ∼ p(si, π(si))〉]; iii)

the average trajectory ūk associated to policy πk is determined; iv) a new utility
function wk+1 =

∫
W
p(w | Ut)1{〈w,ūk−ut〉>0}dw is generated; v) k is incremented

until a stopping criterion is reached (see below).
The convergence of the above iterative process follows from its monotonicity:

it is shown that (see supplementary material)

EUSNL(ū0;ut,Ut) ≤ EUSNL(ū1;ut,Ut) ≤ · · · ≤ EUSNL(ūk+1;ut,Ut)

The quality of the local optimum (wk, πk) thus discovered is improved through
restarting the process from diverse initial w0 independently sampled from p(w;Ut).
It is worth noting that albeit the optimization considers the noiseless EUSNL
(which is according to Lemma 1 at most LN far from EUSN ), the noise in expert
preferences is still taken into account when updating the posterior. This iterative
algorithm is similar to the Query Iteration [23], augmented with an RL step.

The search for πk given wk proceeds as follows. When considering a discrete
state space of restricted size, the canonical feature function measures the visiting
frequency of each state4 (φj(s

i) = δi,j with δi,j = 1 iff i = j and 0 otherwise). In

3 Another approach, based on Direct Policy Search (DPS), would be to find
arg maxπ IEu∼πEUSN (u;ut,Ut), using e.g. [10]. Interestingly, such an approach could
accommodate finite horizon and does not require the linearity w.r.t. u; non-linear
feature functions ψ could thus be considered, extending the set of policies learnable
with IBPS. The investigation of the DPS approach, and its comparison with the
current IBPS approach, is left for further study.

4 In the general case of a feature function on a discrete state space, a change of
representation on the feature space can be used to get back to the canonical feature
function case; see supplementary material.



this case, the i-th coordinate wi of the utility can be interpreted as the reward
associated to si and standard RL algorithms such as Policy Iteration can be used
to find πk from wk. In the case of a large or continuous state space, state of the
art approximate RL algorithms such as LSTD or GTD [15, 20] can be used5.

2.4 Estimation of the active selection criteria

EUS(u;ut,Ut) involves computing an integral over the hypersphere W weighted
by the posterior p(w;Ut). It is approximated using importance sampling, first
generating n samples uniformly in W, and updating their weight after each
update of the archive. When, at some k-th iteration, the number of effective
particles 1/

∑n
i=1 w

2
i (where wi is the normalized weight of particle i) falls be-

low a threshold n
r , r > 1, a new set of particles is generated using a Monte-

Carlo Markov Chain algorithm. On the newly generated samples, the importance

weight (before normalization) of iterations k′ > k is
p(w; U ′k)

p(w; Uk)
= p(w; Uk,k′),

where the archive Uk,k′ only contains constraints of time-stamp i, k < i ≤ k′.
IBPS iterates the importance sampling-based selection, using MCMC to gener-
ate new particles whenever the number of number of effective particles falls below
the threshold. For the MCMC algorithm, the proposal distribution q(w′ | w) is
defined as follows: a radius d is chosen uniformly on [dmin, dmax] and a new
point uniformly sampled from the ball B(w, d) is projected on W by normal-
ization. Since distribution q only depends on the distance between w′ and w it
follows that q(w′ | w) = q(w | w′). Hence their ratio cancels out in the MCMC
algorithm and q(w′ | w) does not need to be evaluated.

2.5 IBPS Algorithm

The IBPS algorithm is as follows: i) A first random trajectory is generated;
ii) The agent evaluates (section 2.4) and optimizes (section 2.3) the EUSNL
criterion, and returns the policy π with best empirical average EUSNL over u
sampled from π; iii) One trajectory is sampled from π; iv) The expert qualifies
this trajectory as ”better” or ”worse” than the former best trajectory; v) The
posterior p(w;Ut) is updated (section 2.1) and the process is iterated from ii).
At any given time, if the agent is asked to stop learning and return a policy, he
returns the one maximizing the EU, i.e. π = arg maxπ EU(IEu∼π(u),Ut).

3 Experimental results

This section presents two experimental validations of the IBPS approach. The
first setting considers the in-situ interaction between a robot and a human ex-
pert, and demonstrates the applicability of IBPS to real world problems. The

5 Note that while the used RL algorithms assume infinite length trajectories, only
finite-length trajectories will be demonstrated to the expert. The trajectory length
H must thus be adjusted depending on the discount factor γ, to ensure that the
cumulative reward for t > H can be safely discarded.



second setting considers a simulated grid world problem and presents a sensibil-
ity analysis of both the agent and the simulated expert noise models, and their
interaction.

3.1 Reaching a target robot

The first problem, inspired from the swarm robotics framework [21], aims at
having a swarm robot aligned in a very precise way with another robot to dock
to each other and form a multi-robot organism. The simplified setting considered
here involves a single e-puck robot equipped with a (52x39, 4img/s) camera; the
target behavior is to reach an immobile robot with its leds turned on. The
starting state, from the perspective of the expert is displayed in Fig. 1.a. Sixteen
states and five macro-actions are manually defined; The macro-actions involve:
stay motionless for one time step, moving forward (resp. backward) for 3 time
steps, and rotate to the left (resp. to the right) for one time step. The mapping
from the robot camera image onto the state space {1, . . . 16} is defined as follows.
Given the set of pixels Slum = {(xi, yi)} associated to the target (the stationary
robot) leds, the distance to the target is defined by discretizing max(yi) in 5
values; the orientation w.r.t. the target is defined by discretizing 1

2 (min(xi) +
max(xi)) in 3 values. The case where Slum is the empty set (no target in sight)
corresponds to the 16th state.

The parametric policy space is finite, associating one action to each state.
The parametric-to-behavioral space is defined as follows. Letting the current
trajectory generated from policy πx be noted s0, . . . sH−1, where si ∈ {1, . . . , 16}
is the index of the robot state at time i, the associated behavioral representation
is set to Φ(x) ∈ IR16 with Φ(x)[j] =

∑H−1
h=0 γ

hδj,sh where δj,sh is 1 iff the robot is
in state j at time h, and 0 otherwise. Parameter γ is set to .95 in the experiment.
The resulting u was normalized thereafter s.t. ||u||1 = 1. M was set to 1/2 in
the response model. The robot demonstrates the selected policy for 80 time
steps; it then gets the expert’s feedback and the expert sets the robot back to its
initial position. The feedback is interpreted using a built-in procedure: the expert
activates the front (resp.) the back e-puck sensors to indicate that the current
behavior is better (resp. worse) than the previous best one. Due to the small
scale of the experiment and the fast convergence, MCMC was not necessary and
the integration on W was estimated using importance sampling from an initial
set of 50, 000 particles drawn uniformly from the hypersphere in IR16. During
the EUSNL optimization phase, 50 initial utilities w0 sampled from p(w,Ut)
were considered and a Policy Iteration algorithm was used, taking as input a
provided transition matrix and w and returning the average trajectory ū of the
policy maximizing w.

Figure 1.b shows the visit to the goal state (averaged out of 5 runs) vs
the number of expert’s feedback, a.k.a. number of interactions. Interestingly, all
5 policies were found to reach the goal state after 5 interactions; the observed
performance decrease is explained by inspecting the logs, showing that the expert
made an error in one of the runs, favoring a trajectory that spent significantly
less time in the goal state. Figs. 1.c shows the average utility weight vector



vs the number of interactions for this particular run. Interestingly, the weight
associated to some states increases after the first interactions, and thereafter
decreases, due to the fact that these states are intermediate between the starting
and the goal states. Fig. 1.c is the run where the expert made a mistake (at the
third feedback), causing the weight associated to the ”nothing in sight” state to
increase and out-pass the other weights; this in turn leads astray the optimal
policy; however IBPS recovers one iteration later. Concerning the execution
time, since the RL is based on the transition matrix, almost all of the time is
solely consumed by the demonstrations of trajectories to the expert.

3.2 Reaching a target state in a grid world

The second problem (Fig. 1.d) is concerned with reaching a goal state in a
simulated grid world, where the state space includes 25 states and the action
space includes 5 actions (up, down, left, right or stay motionless). The robot
stays motionless with probability 1/2 upon selecting the action up, down, left or
right (respectively with probability 1 if the selected action would send it in the
wall). The expert’s feedback is emulated according to the true utility w∗ shown
in Fig. 1.d (up to renormalization) and a noisy response model with hyper-
parameter ME ; MA is the hyper-parameter of the expert noise model estimated
by the agent, with ME and MA ranging in {1, 1/2, 1/4} subject to MA ≥ME).
A large ME is interpreted as less competent expert; a large MA means that
the agent underestimates the expert’s competence, resulting in slow updates of
the posterior. Time horizon is set to H = 300 and discount γ to .95. Same
parameters as in section 3.1 are used for the optimization of EUSNL, and the
integration is estimated using n = 10, 000 particles, re-sampled each time the
number of effective particles falls under n/5 (section 2.4). During re-sampling,
the particle with highest weight is selected as the initial point for MCMC and n
new particles are selected from a chain of length 500n (the rest of the particles
being discarded). For the proposal distribution, parameters dmin and dmax are
respectively set to .4 and 3.

Fig. 1.e shows the true utility of the optimal policy w.r.t. the expected utility,
averaged out of 21 independent runs, vs the number of expert’s feedbacks for all
six (ME ,MA) settings. Fig. 1.e indicates that the agent learning speed primarily
depends on ME , and secondarily on MA (as (ME = 1/4,MA = 1) converges
faster than (ME = 1/2,MA = 1/2)) However Fig. 1.f shows that the combined
impact of ME and MA is more intricate than thought at first sight. Indeed,
by computing the frequency of expert mistakes during the first k interactions
(k = 1, 60), it is seen that the expert makes more mistakes when MA = 1 than
when MA = 1/4 for same ME = 1/4. This is explained by the fact that the error
rate does not only depend on the expert’s competence but also on the relevance
of the comparisons he is provided with. For MA = 1/4, the agent learns faster,
thus submitting more relevant queries to the expert, thus priming a virtuous
educational process. This also explains the fast decrease of the error rate for
ME = 1/4,MA = 1/4 which seems to follow a different regime (empirically
faster than linear) than ME = 1/4,MA = 1. Fig 1.f is also in line with the
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Fig. 1. a) Initial state from an observer’s perspective. b) Performance of the policy
maximizing the average utility vs number of interactions with the expert, averaged
out of 5 runs. c) Average utility weight vector in IR16 vs number of interactions for
a representative run. d) The grid world: the agent initially in the center state must
visit the upper rightmost goal state. The numbers represent the true hidden utility; e)
Performance of the policy maximizing the average utility vs number of interactions with
the expert, averaged out of 21 runs. f) Expert error rate up vs number of interactions.

intuition that the most delicate stage of the algorithm is the initial one, where
the demonstrated trajectories are of low utility, making them harder to compare
and increasing the probability of expert mistakes.

4 Discussion and Perspectives

The main contribution of the present paper is to show the feasibility of training a
robot on-board, online, along an active preference-based learning framework, by
interacting with a fallible human expert. The Bayesian IBPS framework enables
the robot to gradually model both the expert’s preferences and the expert’s
competence.

Several lessons are learned from the preliminary experiments in-situ and in
simulation. Unsurprisingly, the human experts (the authors) do make errors,
leading astray the learning robot; but IBPS is shown to recover from such er-
rors in the simple experimental settings considered. The main lesson regards
the intricate interaction between the learning robot and the human expert: an
pessimistic competence model leads the robot to present the expert with poorly
informative queries, thereby increasing the probability for the expert to make er-
rors and be deemed inconsistent. A cumulative (dis)advantage phenomenon is
thus observed: a hyper-linear progress (decrease of expert’s errors and increase
of agent skills) are observed when the agent trusts a competent expert. The im-



portance of a good educational start is witnessed as poor initial demonstrations
lead to a poor utility model, leading itself to poorly informative queries.

Further work, inspired from [24], will investigate how to extend IBPS in order
to learn effectively from short and well focused sub-behaviors. Indeed, the better
framed the sub-behaviors, the more informative the expert’s preferences will be.
The challenge is to identify the most relevant starting states, conditioning the
behavior segmentation. A multiple instance ranking approach [4] is envisioned,
considering a long trajectory as a set of sub-behaviors where a few sub-behaviors
are responsible for the expert’s preferences. Incidentally this approach would
alleviate the IBPS dependency on the starting state.
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5 Supplementary Material

This supplementary material contains the proof of Lemma 1 and Theorem 1, in
addition to proofs of two claims made in Section 2.3.

5.1 Proof of the Lemma 1

Lemma 1 states that for any set q = {u,u′} of two trajectories u and u′, and
for any archive Ut, we have:

EUSNL(q,Ut)−
M

2λ
(1− 1 + lnλ

λ
) ≤ EUSN (q;Ut) ≤ EUSNL(q,Ut)

With λ = e−
1
2−W−1(− 1

2 e
− 1

2 ) and W−1 is the lower branch of the Lambert W
function. Let LN = M

2λ (1− 1+lnλ
λ ) ≈ M

19.6433

Proof Let q = {u,u′} and zw = w(u− u′). By definition of EUSNL(q,Ut)
and EUSN (q;Ut) and since PN (−zw) = 1− PN (zw), we have:

EUSNL({u,u′},Ut)− EUSN ({u,u′};Ut) =

∫
W

max(wu,wu′)−wuPN (zw)−wu′PN (−zw)p(w;Ut)dw

=

∫
W

max(wu,wu′)−wu′ − zwPN (zw)dw

def
=

∫
W

∆(zw)p(w;Ut)dw

It is clear from this equations that EUSNL can never be smaller than EUSN
since for any w, no convex combination of wu and wu′ can exceed their max-
imum. This also implies that ∆(zw) ≥ 0 for all w ∈ W. We want now an
upper bound of ∆(zw). For any w s.t. zw ≥ 0, ∆(zw) = zw[1 − PN (zw)]
and for zw ≤ 0, ∆(zw) = −zw[1 − PN (−zw)]. It then suffices to upper bound
zw[1− PN (zw)] for zw ≥ 0. If zw ≥ M or zw = 0, we have ∆(zw) = 0. And for
0 < z < M we search:

max
zw

∆(zw) = max
zw

1

2
(zw − zw

2(
1 + lnM

M
) +

zw
2lnzw
M

)

We compute the derivative w.r.t. zw:

∆′(zw) =
1

2
(1− zw(

1 + 2lnM

M
) +

2zwlnzw
M

)

And use the variable substitution zw = Met+
1
2 ,−∞ < t < − 1

2 to solve the
equation:

∆′(zw) = 0⇔ ∆′(Met+
1
2 ) = 0⇔ tet = −1

2
e−

1
2



This equation accepts an obvious solution t1 = − 1
2 that is rejected as t < − 1

2
(it corresponds to zw = M) and a second solution from the lower branch of the

Lambert W function W−1, t2 = W−1(− 1
2e
− 1

2 ) ≈ −1.7564. These are the only

two values that nullify ∆′(zw). Let λ = et2+ 1
2 . The maximum of ∆ is reached at

∆(Mλ ) = M
2λ (1− 1+lnλ

λ ).
This bound holds for any w and thus will hold after integrating over W for any
archive Ut. �

5.2 Proof of the Theorem 1

Theorem 1 states that EUS∗N (Ut) ≥ EPU∗N (Ut)− LN
Proof The consequence of Lemma 2 in [23] is that EPU∗NL(Ut) ≥ EPU∗N (Ut).

This holds for any noise model since it only depends on the fact that no con-
vex combination of a set of utilities can exceed their maximum. and since
EUS∗NL(Ut) = EPU∗NL(Ut). It thus follows, using this two results and Lemme 1
that EPU∗N (Ut) ≤ EPU∗NL(Ut) = EUS∗NL(Ut) ≤ EUS∗L(Ut) + LN . �

5.3 Proof of claims made in Section 2.3

Claim 1 In the optimization part of EUSNL, we stated EUSNL(ū0;ut,Ut) ≤
EUSNL(ū1;ut,Ut) ≤ · · · ≤ EUSNL(ūk+1;ut,Ut). To prove it we first decompose
EUSNL:

EUSNL(ūk;ut,Ut) =

∫
W

max(wūk,wut) p(w;Ut) dw

=

∫
W|(wūk>wut)

wūkp(w;Ut)dw +

∫
W|(wūk≤wut)

wutp(w;Ut)dw

Since ūk+1 is obtained by maximizing wk =
∫
W

w p(w | Ut)1{w·ūk>w·ut} dw
then ūk+1 will perform better on the subpart of W where W | (wūk > wut). It
follows that:

EUSNL(ūk;ut,Ut) ≤
∫
W|(wūk>wut)

wūk+1p(w;Ut)dw +

∫
W|(wūk≤wut)

wutp(w;Ut)dw

≤
∫
W

max(wūk+1,wut) p(w;Ut) dw

def
= EUSNL(ūk+1;ut,Ut)

The second inequality is explained by decomposing the integrals on each w:
for each w ∈ (W | (wūk > wut)), if wuk+1 > wut then in both the left and
right sides of the inequalities we associate to w, wuk+1. However in the case
where wuk+1 < wut, in the left side of the inequality wuk+1 is associated to w
while in the right side wut is associated to w, which will increase the expectation
since wuk+1 < wut. And similarly for w ∈ (W | (wūk ≤ wut)), we see that the
term associated to each w can only increase in the right side of the inequality.�



Claim 2 We claim that for any feature function φ and utility w, we can define
a feature function φ′ with φ′j(s

i) = 1 if i = j, and 0 otherwise and utility w′ s.t.

w′i = w · φ(si) having the same optimal policy as with φ and w. If we let the
matrix Φ, were the ith column of Φ,Φi = φ(si), w and w′ row vectors, and φ
and φ′ column vectors. Since in this case Φ · φ′(si) = φ(si) then:

w′
t=∞∑
t=0

φ′(st) = w · Φ
t=∞∑
t=0

φ′(st)

= w

t=∞∑
t=0

Φ · φ′(st)

= w

t=∞∑
t=0

φ(st)

And for a trajectory u′ =
∑t=∞
t=0 γtφ′(st) we can get back to a trajectory

u =
∑t=∞
t=0 γtφ(st) without knowing the sequence of visited states s0 . . . s∞

using the transformation:

u =
∑
i

u′iφ(si)

=
∑
i

[

t=∞∑
t=0

γtφ′(st)]iφ(si)

=

t=∞∑
t=0

γt
∑
i

[φ′(st)]iφ(si)

=

t=∞∑
t=0

γtφ(st), since [φ′(st)]i = 1 iff i = t, and 0 else
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