Pattern-Based Classification: A Unifying Perspective

LeGo Slovenia, Bled 2009 07.09.2009

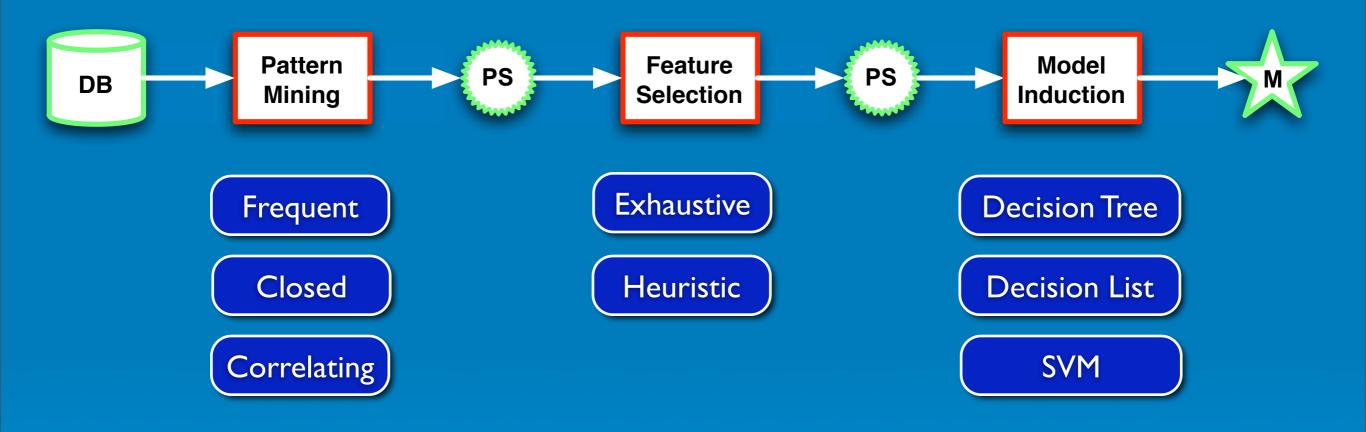
<u>Albrecht Zimmermann</u>, Siegfried Nijssen, <u>Björn Bringmann</u> Katholieke Universiteit Leuven, Belgium

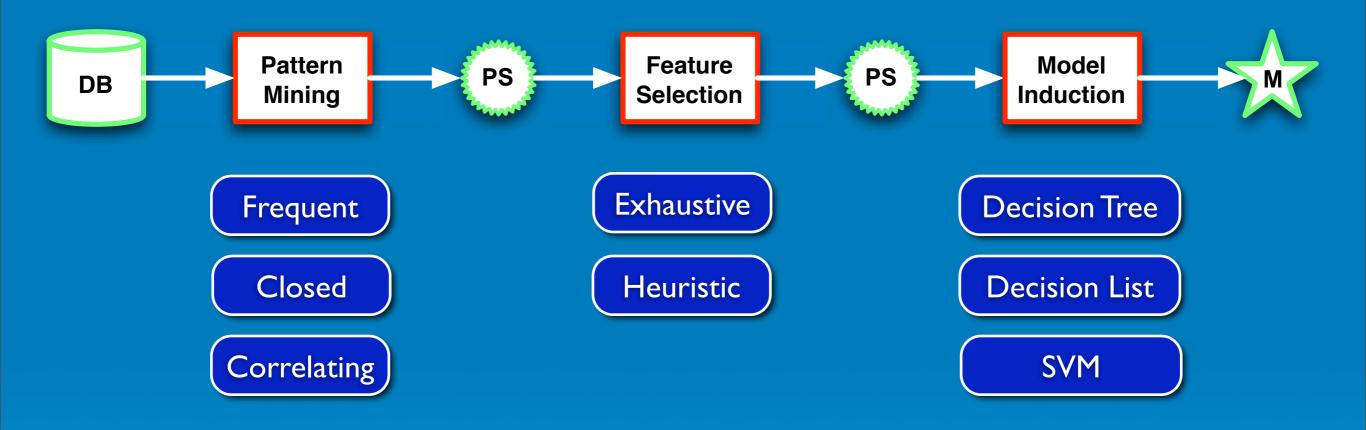
MACHINE LEARNING

Observations

The LeGo schema

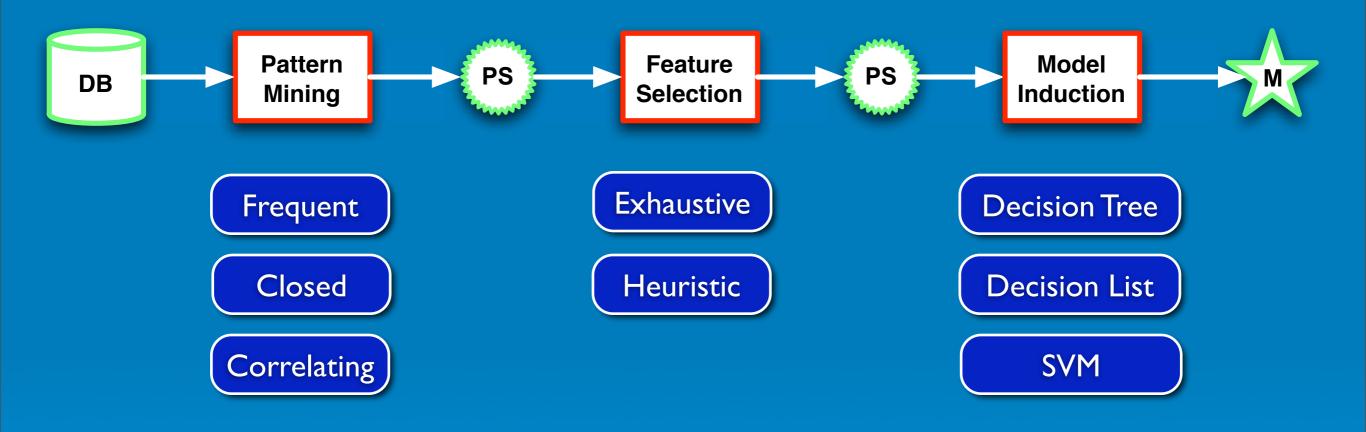
- General schema
- Augment/replaces data mining step in KDD
- Topic of this workshop



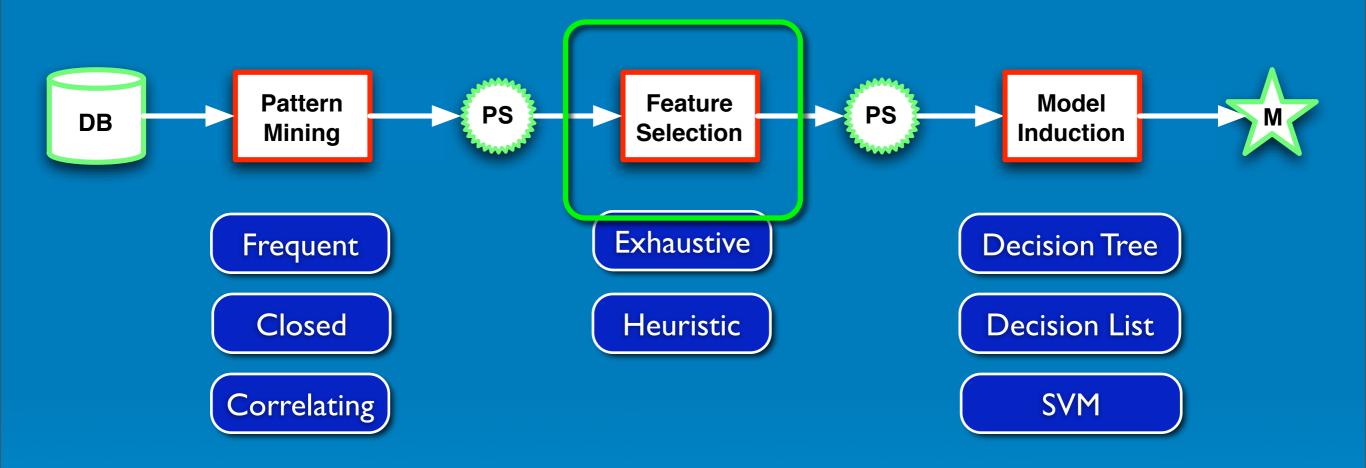


No overview

Ramamohanarao et al '07



No overview \rightarrow reinventions \rightarrow revisited dead ends \rightarrow lost progress



What patterns and how?

- Which pattern type
 - Itemsets
 - Multi-itemsets
 - Sequences
 - Trees
 - Graphs

- Which data-structure
 - FP-Trees
 - ZBDDs
 - TID-Lists
 - Bit-Vectors

What patterns and how?

Which pattern type

Results hold for lattices (itemsets) or even partial orders (graphs)

> Independent of Pattern Type

Sequences \subset Trees \subset Graphs

Which data-structure

- FP-Trees
- ZBDDs
- TID-Lists
- Bit-Vectors

What patterns and how?

Which pattern type

Results hold for lattices (itemsets) or even partial orders (graphs)

> Independent of Pattern Type

Sequences \subset Trees \subset Graphs

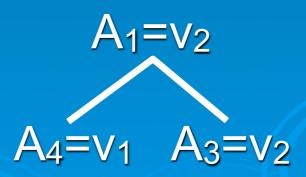
Which data-structure

Independent of Data Structure

Why mine explicit patterns? Traditional classification

Attributes: $\{A_1, \dots, A_d\}$ Values: $V(A) = \{v_1, \dots, v_r\}$

Rules: $A_1 = v_2 \land A_4 = v_1 \Rightarrow +$ $A_3 = v_2 \land A_2 = v_1 \Rightarrow -$ **Decision Trees:**

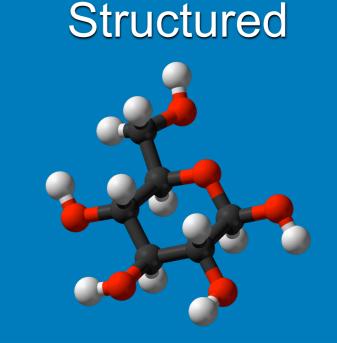


Why mine explicit patterns? Pattern based classification

Transactions

are

 $t \subseteq \{i_1, \dots, i_\Im\}$



Patterns provide instance description

- Models can be built independent of data type
- Yield interpretable classifiers

Alternatives are opaque (Kernels, NN, ...)

Thus leverage pattern mining techniques

Advantages:

● 15 years of research
 → fast and scaleable

Described in structured language
 → persistent, not opaque

Challenge(s):

(Re-)Entangle instance description and classification

Roadmap

Class-sensitive patterns & the mining thereof Model-independence Post-processing Iterative Mining Model-dependence Post-processing Iterative Mining

Roadmap

DISCLAIMER Clas We will probably miss Mod some approaches that P should have been Ite included in the Mod presentation. P

Ite

which just proves our point

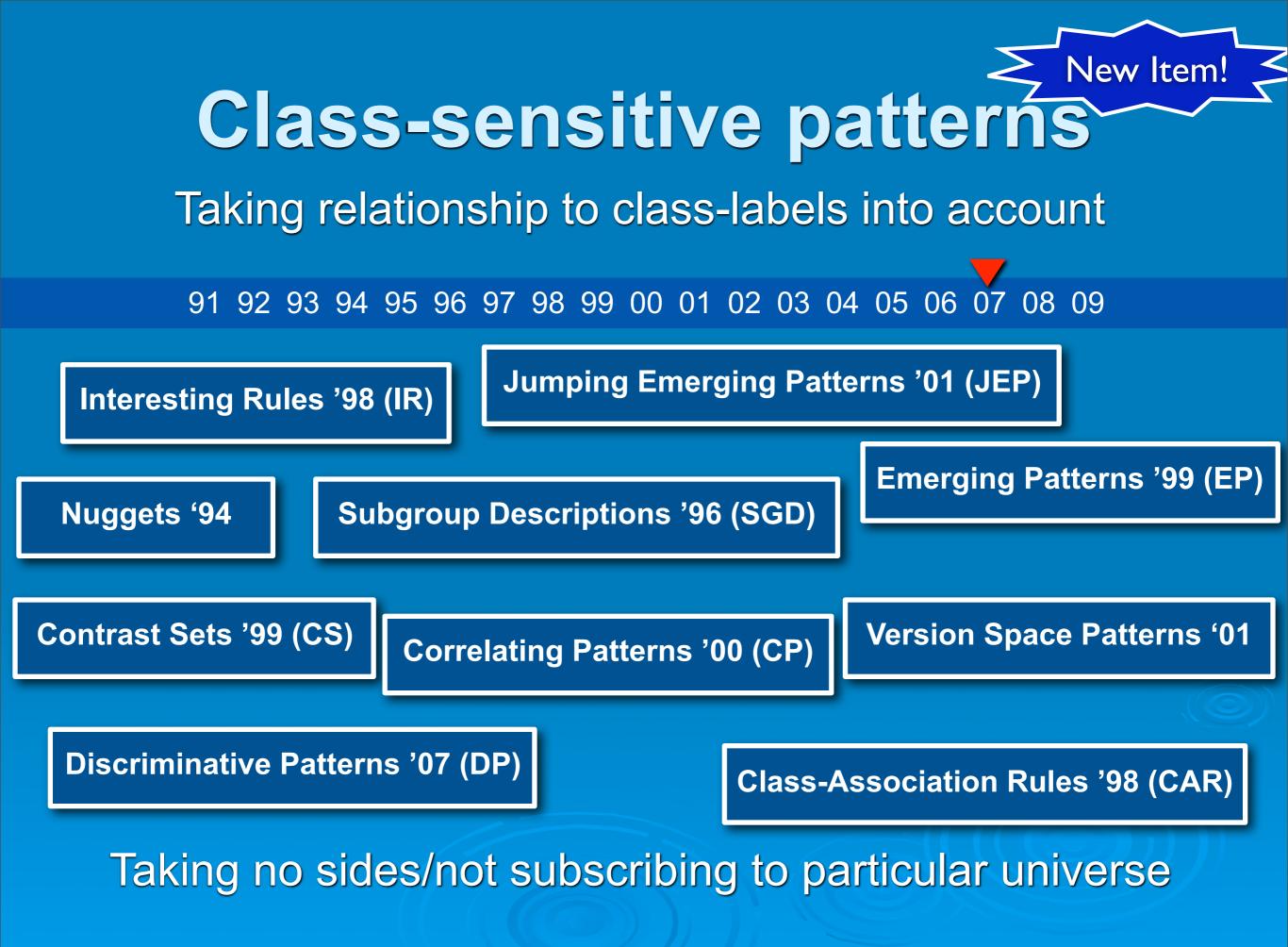
thereof

Should we use frequent patterns?

• Well-researched

- Frequent → expected Frequent → no/antito hold on unseen correlation w/classes
- Efficient mining

• (Too) many patterns



Evaluating class-sensitivity

 Confidence, Lift, WRAcc (Novelty), X², Correlation Coefficient, Information Gain, Fisher Score

 Some of them mathematically equivalent, some semantically

Lavrac et al. '09

How to mine them?

- Mining frequent patterns & post-processing
 - Liu et al. '98 (CAR)
 - Kavask et al. '06 (SGD)
 - Atzmüller et al. '06 (SGD)
 - Cheng et al. '07 (DP)

- Bounding specific measure
 - Wrobel '97 (SGD)
 - Bay et al. '99 (CS)
 - Wang et al. '05 (CAR)
 - Arunasalam et al. '06 (CAR)
 - Nowozin et al. '07 (CAR)
 - Cheng et al. '08 (DP) (1 bound)

CAR	 Class Association Rules
CS	- Contrast Sets
DP	- Discriminative Patterns
SGD	- SubGroup Descriptions

How to? (cont.)

General Branch-and-bound

- Webb '95 (CAR)
- Klösgen '96 (SGD)
- Morishita et al. '00 (2-bounds)
- Grosskreutz et al. '08 (SGD)
- Nijssen et al. '09 (4-bounds)*

Earlier than most specifics, subsumes them!

Iterative deepening

- Bringmann et al. '06 (CP)
- Cerf et al. '08 (CAR)
- Yan et al. '08 (DP)
- Sequential sampling
 - Scheffer et al. '02 (SGD)

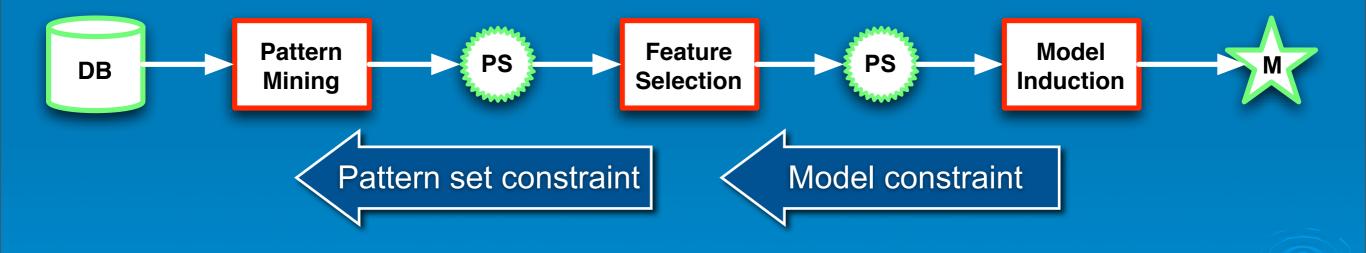
*) itemset-specific, constraint programming

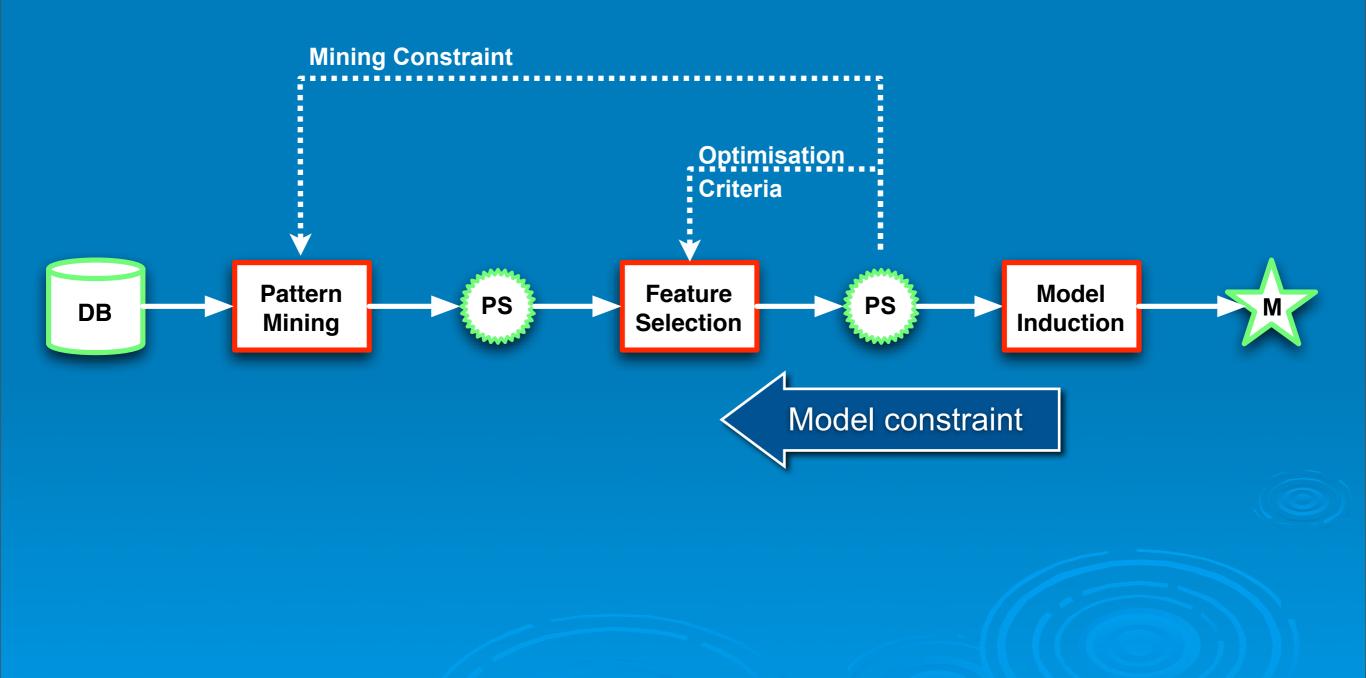
What traversal strategy

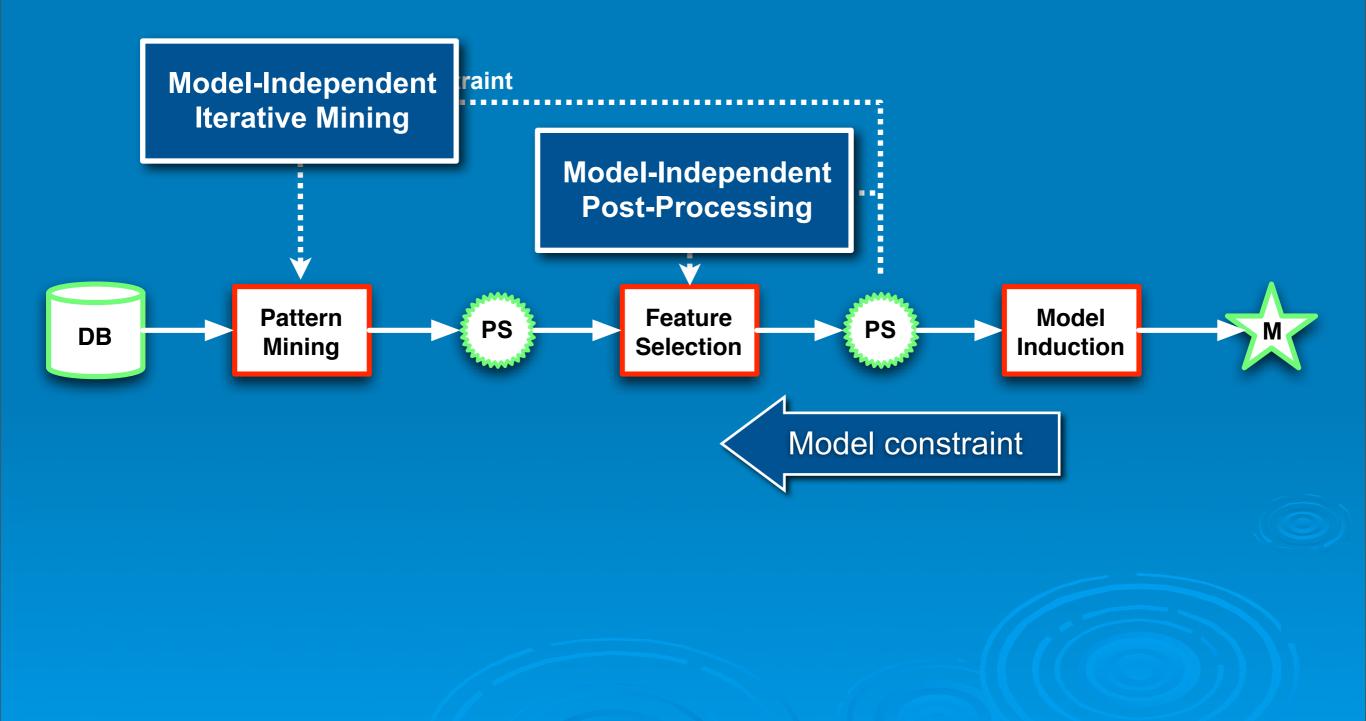
Seriously ?

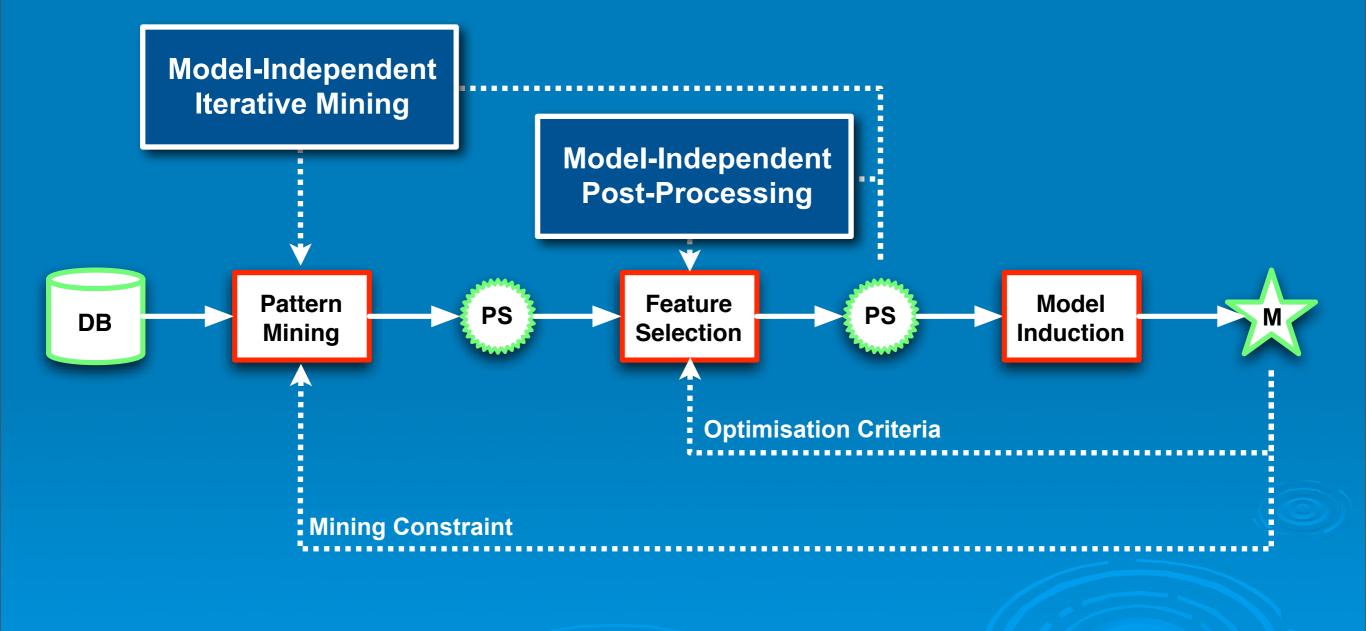
Result sets

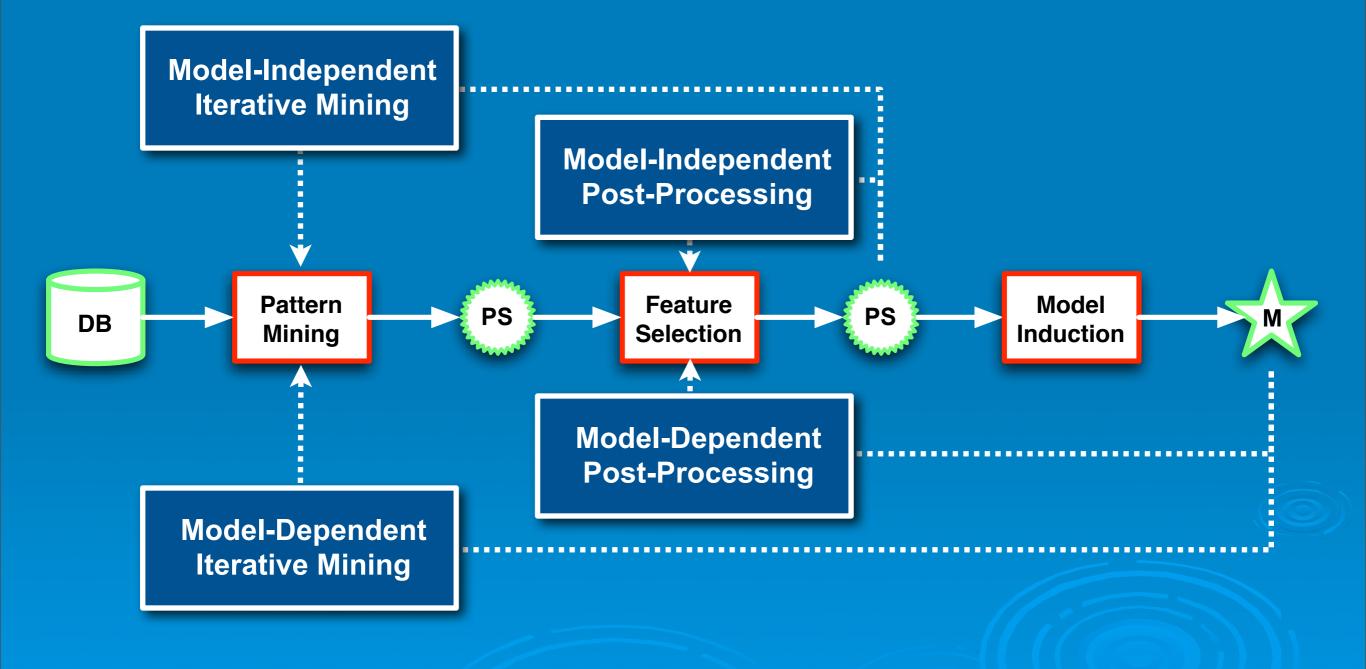
Are still too big
May include irrelevant patterns
May include much redundancy



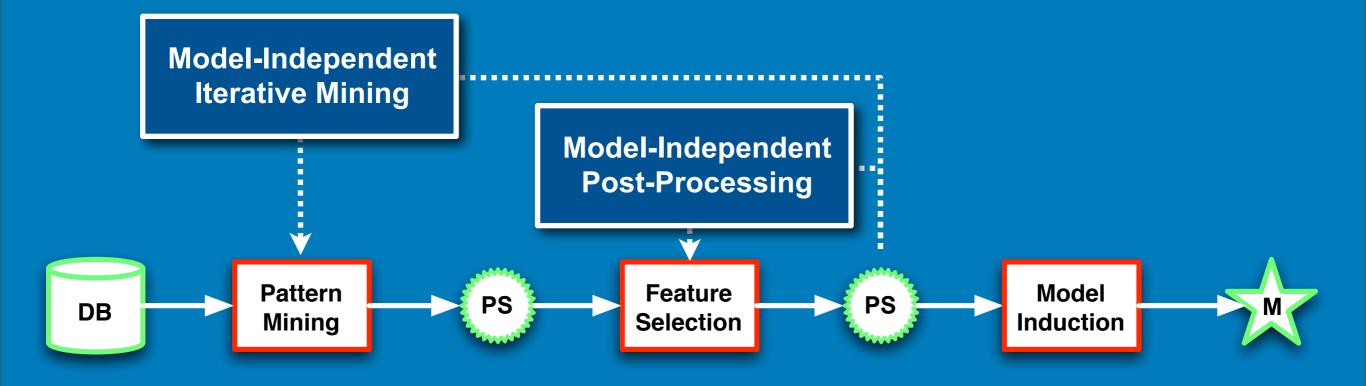








Model-independence



Only patterns affect other patterns' selection
 Modular: usable in any classifier (often SVM)

Model independent Post-processing



Mine large set of patterns

- Select subset
 - Exhaustively: too expensive
 - Heuristically: usually ordered

Use measure to quantify combined worth

Model independent Post-Processing Pattern Set Scores

Pattern sets can be scored based on \bigcirc

computable for all data types

Feature

Selectior

Model

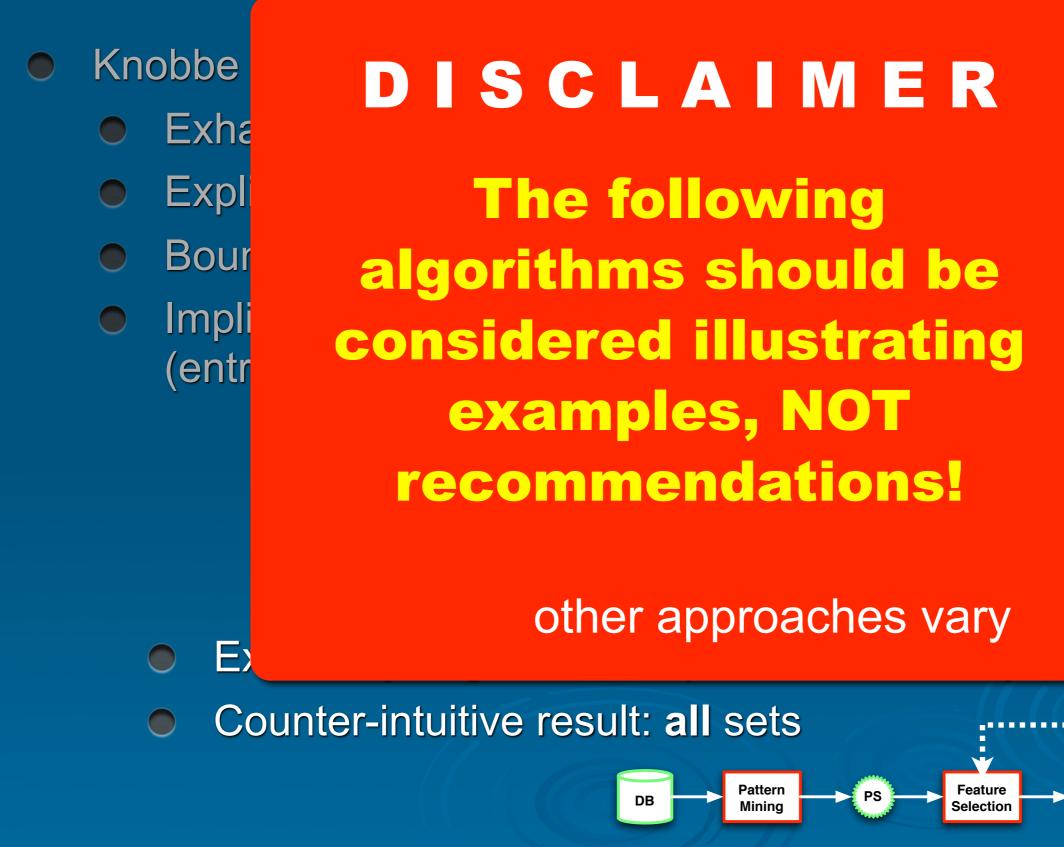
Inductior

- TID lists of patterns only 0
 - significance: incorporate support/class-sensitivity \bigcirc
 - redundancy: similarity between TID lists 0
- **requires** specialization Pattern structure & TID lists 0
 - using a pattern distance measure 0
 - by computing how well the patterns compress data 0

Pattern

Mining

Model independent Post-Processing Exhaustive



eration nts able pruning cy control

es

Model

Induction

Model independent Post-Processing Exhaustive

- Knobbe et al. '06
 - Exhaustive enumeration
 - Explicit size constraint
 - Boundable pruning
 - Implicit redundancy control (entropy)

- De Raedt et al. '07
 - Exhaustive enumeration
 - Arbitrary constraints
 - Monotone, boundable pruning

Model

Induction

Explicit redundancy control

Feature

Selection

- Extremely large search space -> scalability issues
- Counter-intuitive result: all sets

DB

Pattern

Mining

Model independent Post-Processing Heuristic Search Strategies

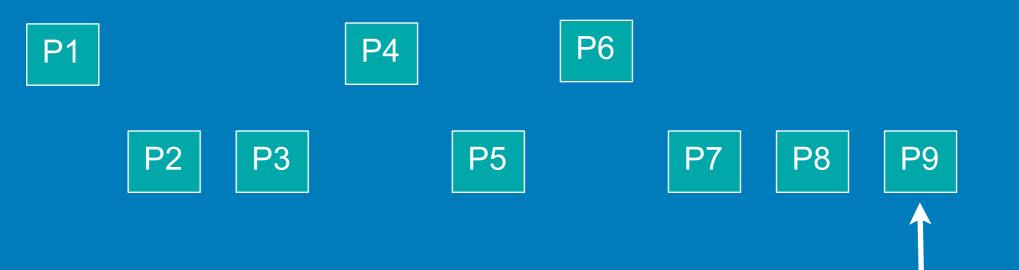
 Fixed Order: Scan patterns in (possibly random) fixed order, add each pattern that improves running score (O(n))



 Greedy: Repeatedly reorder patterns to pick pattern that improves score most (O(n2))

Model independent Post-Processing Heuristic Search Strategies

 Fixed Order: Scan patterns in (possibly random) fixed order, add each pattern that improves running score (O(n))



 Greedy: Repeatedly reorder patterns to pick pattern that improves score most (O(n2))

Ρ4

P3

P2

P9

P8

P6

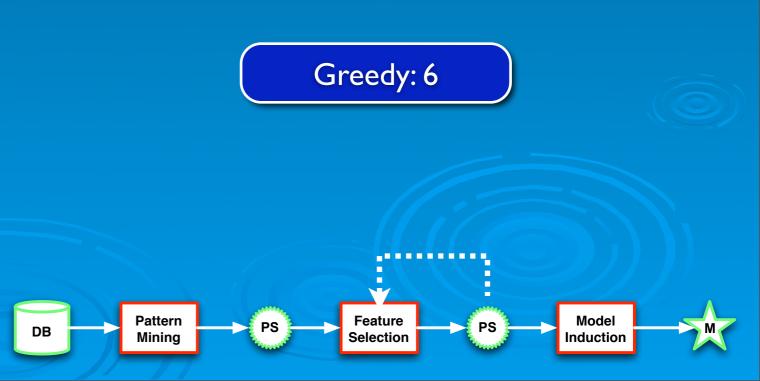
Model independent Post-Processing Example I (Siebes et al '06) Score pattern set by MDL encoding of db: $L_C(db) = L_{(C,S_C)}(db) + L(CT_C)$ Order patterns by size and support Fixed order scan Pick first improving score Some pruning Fixed Order: 3 Also: Bringmann et al '07 Al Hasan et al '07 Model Pattern Feature Mining Induction Selectior

Model independent Post-Processing Example II (Xin et al '06)

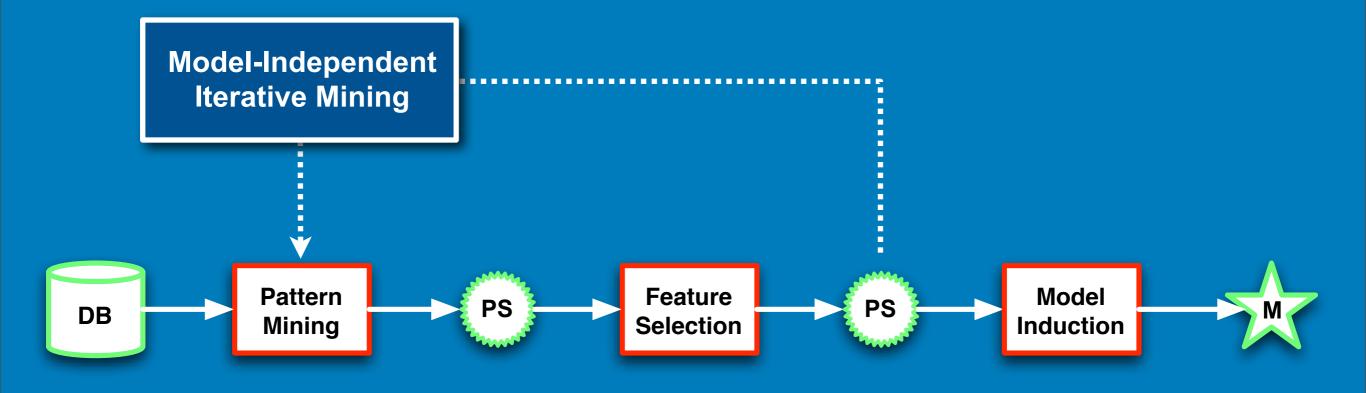
Significance S traded off against redundancy L:

$$G_{gen}(\mathcal{P}^k) = \sum_{i=1}^{\kappa} S(p_i) - L(P^k)$$

- Use TIDs only
- Greedy:
 - Add pattern improving G most
 - Until |S| = k
- Also:
 - Garriga et al '07
 - Cheng et al '07
 - Miettinen et al '08
 - Bringmann et al '09
 - Thoma et al '09



Model independent Iterative Mining



Mine (set of) pattern(s)
Adjust scoring function according to pattern
Re-Mine

Model independent Iterative Mining Sequential Mining (Cheng et al '08)

Pattern

Mining

DB

- Information Gain
- Sequential covering:
 - Mine most discriminating pattern
 - Add to set
 - Remove covered instances
 - Until |S| = k
- Also:
 - Rückert et al '07
 - Thoma et al '09

Sequential Mining: 3

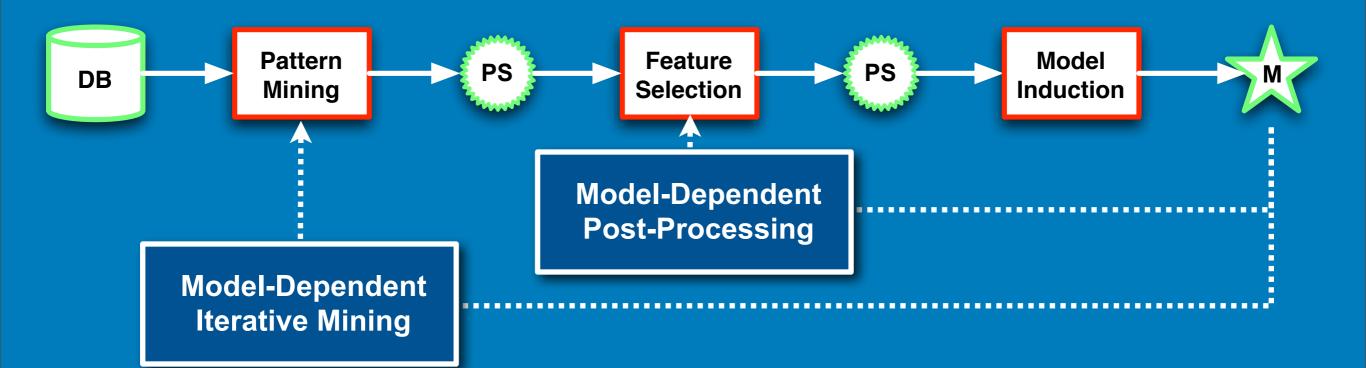
Feature

Selection

Model

Induction

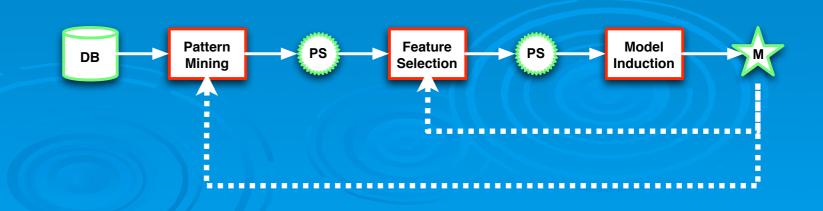
Model dependence



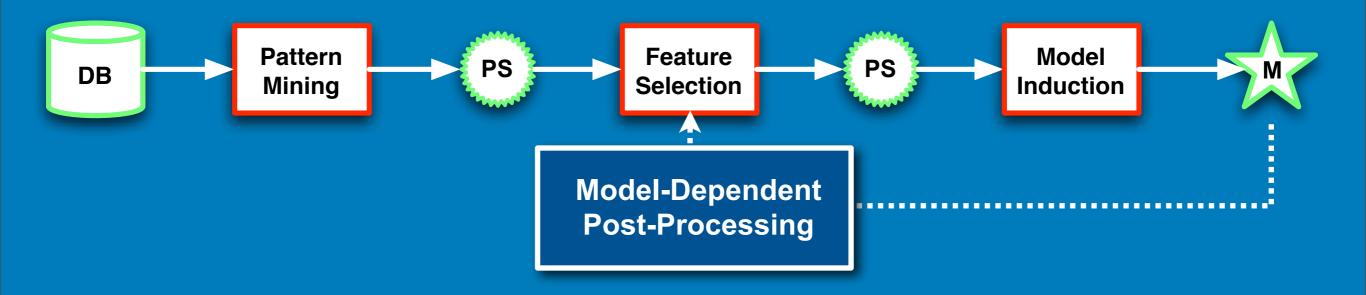
Final model influences patterns' selection
Can be used in any model, optimized for one
Less modular, stages need to coordinate

Model dependent techniques Model types

Votes of patterns
Weighted votes
Compression-based
Ordered list of patterns
Some of which can be compressed into trees
Tree of patterns



Model dependent Post-Processing



Mine large set of patterns Post-process depending on model constraints (Check on model effectiveness)

Model dependent Post-Processing Fixed order scan

Sorting order

- Confidence/support
- Growth rate/support
- Size/support
- X²/support
- Unimportant every pattern above threshold chosen

DB

Pattern

Mining

Feature

Selection

Model

nduction

Patterns chosen

- Independent of particular classes
- Per class

Model dependent Post-Processing Example I (Zaki et al '03)

- Model: weighted vote
- Fix measure for predictive strength
- Filter patterns on strength threshold

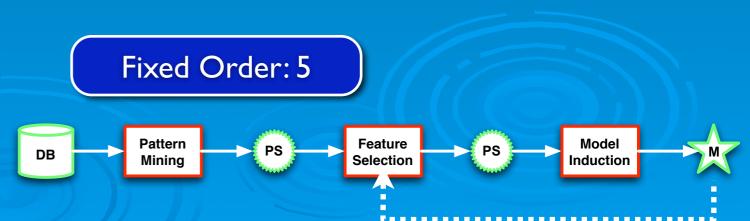
Also:

- Wang et al '05
- Arunasalam et al '06

Threshold Selection: 3

Model dependent Post-Processing Example II (Liu et al '98)

- Model: ordered list
- Order: confidence/support
- Hill-climbing:
 - Pick first pattern correctly predicting at least one training instance
 - Remove covered training data
- Also:
 - Dong et al '99
 - Li et al '01
 - Zimmermann et al '05
 - Van Leeuwen et al '06



Model dependent Post-Processing Example II (Liu et al '98)

- Model: ordered list
- Order: confidence/support
- Hill-climbing:
 - Pick first pattern correctly predicting at least one training instance
 - Remove covered training data
- Also:
 - Dong et al '99
 - Li et al '01
 - Zimmermann et al '05
 - Van Leeuwen et al '06

Siebes et al '06!

Feature

Selection

PS

Model

nduction

Pattern

Mining

Model dependent Post-Processing Example II (Liu et al '98)

- Model: ordered list
- Order: confidence/support
- Hill-climbing:
 - Pick first pattern correctly predicting at least one training instance
 - Remove covered training data
- Also:
 - Dong et al '99
 - Li et al '01
 - Zimmermann et al '05
 - Van Leeuwen et al '06

Fixed Order: 8

PS

Feature

Selection

Model

nduction

Pattern

Mining

Model dependent Post-Processing Example III (Nijssen et al '07)

- Model: patterns as tree
- Mine/filter patterns based on model constraints
- Each itemset a DT branch
- Scan lattice bottom up, enforcing model constraints

Pattern

Minina

- Also:
 - Gay et al '07

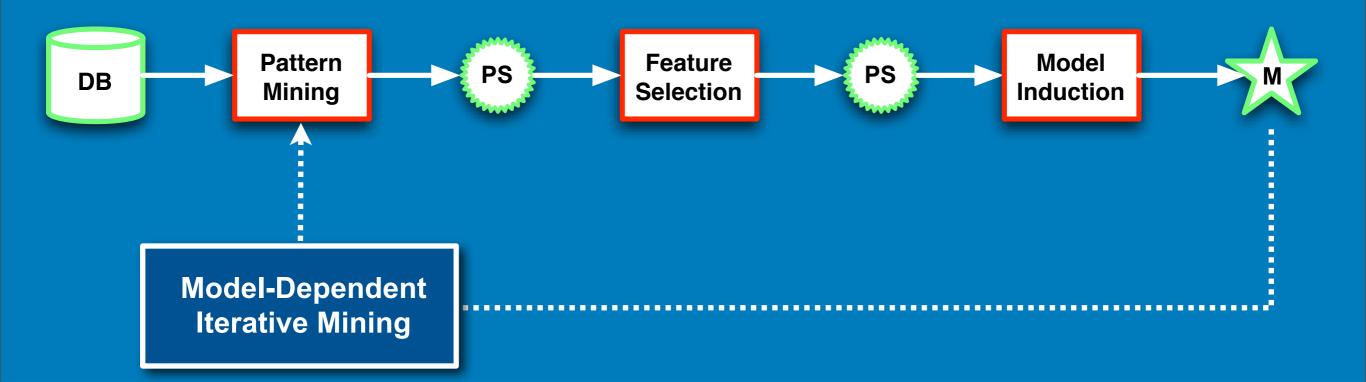
Decision Tree Construction: 2

Feature

Selection

Model nduction

Model dependent Iterative Mining



Clearest connection to ML
Features made-to-fit
Overfitting danger

Model dependent Iterative Mining Sequential Covering (Galiano et al '04)

- Model: ordered list
- Algorithm:
 - Mine patterns
 - Select set of mutually exclusive patterns
 - Remove covered data
- Also:
 - Yin et al '03

Sequential Mining: 2

Model dependent Iterative Mining Decision Tree Construction (Bringmann et al '05)

- Model: tree of patterns
- Algorithm:
 - Mine most discriminating pattern (information gain)

Pattern

Mining

Split data into covered and uncovered

DB

- Also:
 - Geamsakul et al '03Fan et al '08

DT Construction: 3

Feature

Selection

Model

nduction

Model dependent Iterative Mining Lazy Learning (Li et al '00)

- Model: weighted vote
- For each testing instance:
 - Project db on syntactic elements
 - Mine highly predictive patterns
- Also:
 - Veloso et al '06

Lazy Learners: 2

Feature

Selection

Model

nduction

Pattern

Mining

DB

Model dependent Iterative Mining Boosting/Regression (Nowozin et al '07)

- Model: weighted vote
- Algorithm
 - Mine predictive pattern
 - Re-weight mis-classified training instances as in Linear Programming Boosting

Pattern

Mining

DB

- Weights derived from mining
- Also:
 - Saigo et al '08

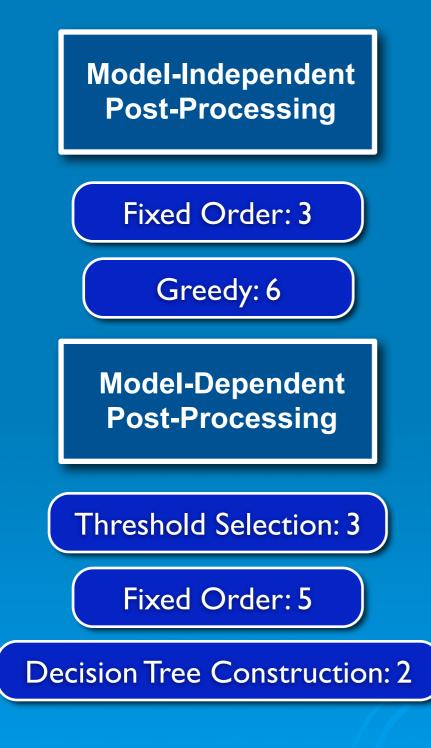
Boosting-Like: 2

Feature

Selection

Model

Induction



Model-Independent Iterative Mining

Sequential Mining: 3

Model-Dependent Iterative Mining

Sequential Mining: 2

Lazy Learners: 2

DT Construction: 3

Model-Independent Iterative Mining

Sequential Mining: 3

Model-Dependent Iterative Mining

Sequential Mining: 2

Lazy Learners: 2

DT Construction: 3

Model-Independent Iterative Mining

Sequential Mining: 3

Model-Dependent Iterative Mining

Sequential Mining: 2

Lazy Learners: 2

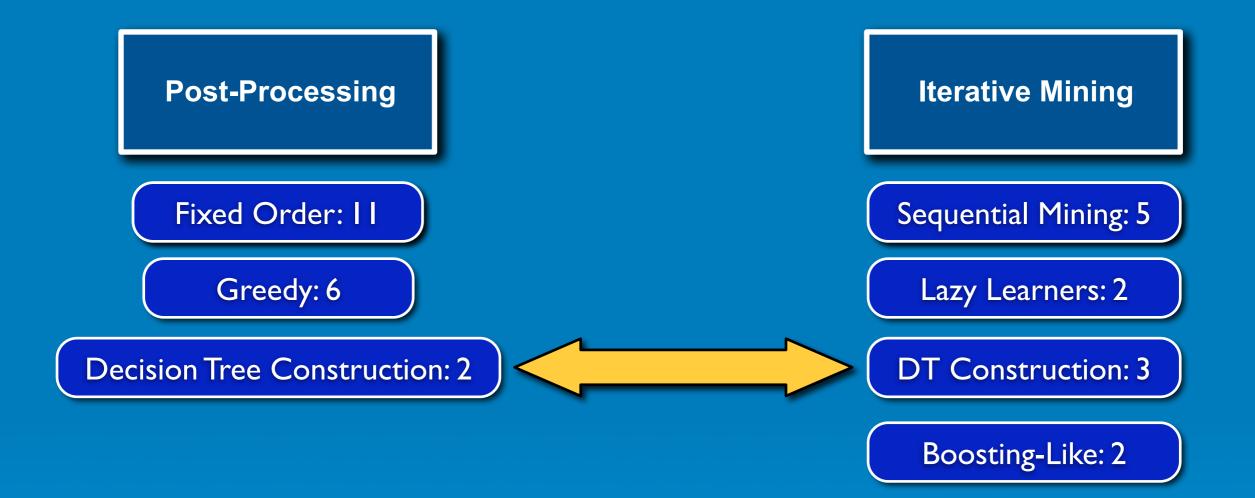
DT Construction: 3

Iterative Mining

Sequential Mining: 5

Lazy Learners: 2

DT Construction: 3



Conclusions Let's Count WE BROUGHT Postng YOU Fixed ng: 5 G **Decision** Tre n: 3 LeGo techniques

2

2

Conclusions

- Large number of existing LeGo approaches
- Two main dimensions
 - Model (in)dependence
 - Post-Processing & Iterative Mining
 - Boundaries blur
- Mostly <u>very</u> flexible

Few studies in *relative* effectiveness

- Deshpande et al '05
- Wale et al '08
- Janssen et al '09

The exact picture Model independent PP

	TID Score		Pattern Stru	ucture Score	Search			
	Sig	Red	Distance	Compress	Fixed	Greedy	Approx	Score used
Siebes et al '06		Х		Х	Х			MDL
Xin et al '06	Х	Х	Х			Х		mutual distance
Bringmann et al '07		Х			Х			partition based
Garriga et al '07		Х				Х	Х	marginal gain
Al Hasan et al '07		Х	Х			Х		clique based
Cheng et al '06	Х	Х				Х		Jaccard coeff.
Miettinen et al '08		Х		Х		Х	Х	discrete basis
Bringmann et al '09		Х				Х	X	partition based
Thoma et al '09		Х				X	X	pairs of misclass

Some greedy algorithms approximate a well-defined global optimum

The exact picture Model dependent PP

	Model Type			Order				Selection	
	Voting	Compress	List	Conf.	Growth	X ²	Threshold	Per class	Indep
Liu et al '98			Х	Х					Х
Dong et al '99	Х				Х			Х	
Li et al '01	Х			Х					Х
Zaki et al '03	Х						Х		Х
Wang et al '05	Х			Х					Х
Zimmermann et al '05			Х			Х			Х
Van Leeuwen et al '06		Х		Х				Х	
Arunasalam et al '06	Х			Х				X	

