Levelwise Cluster Mining under a Maximum
SSE Constraint

Jeroen De Knijf, Bart Goethals, and Adriana Prado

University of Antwerp, Belgium

Abstract. In this work we cast the problem of finding clusters in the
dataset into a frequent itemset mining problem. We show that the SSE
measures is monotone with respect to set inclusion, and use this property
in an Apriori style algorithm to find optimal clusters in the data. Some
preliminary experiments are reported on real life data.

1 Introduction

Clustering is identified as one the core problems in data mining [1]. Moreover,
clustering plays a prominent role in many different disciplines in science and
engineering, including bio-informatics, linguistics, pattern recognition, earth sci-
ence and so on. The past decades a waste number of clustering algorithms have
been proposed, for example [2-6]. These algorithms mainly differ in required
level of domain knowledge, type of cluster that can be found and suitability for
high dimensional data. In general, a clustering algorithm uses a similarity mea-
sure between objects in order to find an optimal grouping. That is, each group
consists of objects that are similar to themselves and dissimilar to objects in
other groups. The definition of similarity varies between the different clustering
algorithms and depends upon the application domain. Principally, all possible
groupings of the data points needs to be considered, which result in an expo-
nential search space. Because of the exponential search space an exact, optimal
solution is often infeasible to compute, even for dataset of small size. Therefore,
clustering algorithms make use of heuristics to approximate an optimal solution
under the similarity measure used. One of the most popular clustering methods
for points in Euclidean space is called k-means clustering. Given a set P of n
data points in d-dimensional space R? , and an integer k, the problem is to
determine a set of k points in R?, usually referred to as centers, that minimizes
the mean squared Euclidean distance from each data point to it nearest center.
This measure is often referred to as Sum of Squared Error, or distortion.

The problem of finding groups of data under given constraints, is a well
studied problem in the area of frequent pattern mining. For example, in frequent
itemset mining [7] the goal is to derive all sets that occur more often than a
user-specified threshold. To accomplish this, a level wise algorithm is used that
employs the monotonicity of the constraint to limit the search space. Recent
involvements in frequent itemset mining is to derive the most ’interesting’ sets
that best represent the input data [8-14].

In this paper we use the constraints to find an optimal clustering in an
Apriori-style algorithm. We show that the SSE constraint is monotone under
set inclusion, and use this fact in our mining algorithm, to perform a level wise
search towards the optimal solution. The resulting sets represents groups of
points that are more close towards each other than to any other points in the
input data. Finally, the post-processing step takes as input all derived sets and
combine the ones that best partition the data. Contrary to k-means, we do not
use a parameter that specify the number of desired clusters in the data. Instead,
our algorithm produces several clusterings, where the kth iteration produces in
general far less clusters than the k — 1 iteration. As a result, a user is not faced
with cumbersome process of apriori determining the exact clusters and hence
our algorithm can be used for truly explorative data analysis tasks.

The rest of this paper is organized as follows: in the next section we introduce
the basic concepts and the notation used. In section 3 we present the mining
algorithm Maximum SSE Miner (MSSEM). The following section describes the
experiments performed on several real life datasets. Finally, in the last section we
discuss the results, draw conclusions and give some pointers for further research.

2 Preliminaries

Given z,y, with z,y € R%, let A(z,y) denote the Euclidean distance between z
and y, i.e.

Moreover, let A?(x,7y) denotes the squared distance between x and v, i.e.

d

A(z,y) = (i —ui).

9

For a finite set X C R? and a point y € R¢ the SSE of X relatively to y, denoted
as SSE(X,y), equals the sum of the squared distances between any point in X
and y, i.e.

SSE(X,y) = Z A%(x,y).

zeX

In this paper, we only use the SSE of X relatively to the mean of X, which we
abbreviate to SSE(X).

2.1 Problem Statement

Given a finite set P C R? of size n, the goal is to derive k sets { Py, ..., P} such
that the k sets are a partition of P with minimal SSE, more formally:

1. NP =@ for 1 <i,j<kandi#j.

2. U, P=P

3. A{My,..., My} such that:
(a) MinM; =@ for 1 <4,j <kandi#j.
(b) Uy Mi= P
(¢) X5y SSE(M;) < 375, SSE(F).

As stated earlier, in this work we don’t apriori fix the k& value. Instead we
derive a whole range of k values and the corresponding clusterings. Further
noteworthy, the trivial solution for the problem stated above is to take the k
value equal to the number of points in the input data, i.e. k = |P|. However,
this valid solution is from a user perspective worthless.

3 Algorithm

In this section we describe the different components of MSSEM in more
detail. But first we show that the SSE measure is monotone under set inclusion.

It is well known from literature (see for example [2]) that the best point to
minimize the SSE of a set X is the mean or center of X. Given this observation,
we can state our theorem on which this algorithm is base.

Theorem 1 (Monotonicity of the SSE measure w.r.t. set inclusion)
For any two finite set X,Y € R it holds that:

X CY = SSE(X) < SSE(Y).

Proof. Let Z contain the points of Y which are not part of X, ie. Z =Y\ X.
Moreover, let ¢; be the center of X and ¢y be the center of Y. Because, the
center of a set is the points that minimizes the SSE of the set we have that
SSE(X,c2) > SSE(X,c1). Moreover, because SSE(Z,c2) > 0 it follows that
SSE(X, ca) + SSE(Z, ¢2) > SSE(X). Hence, SSE(X) < SSE(Y).

Given the previous theorem, a straightforward approach would be to de-
rive all maximal sets for a user defined maximum SSE threshold. Next, a post-
processing step is applied to extract a cover of the data. However, such a simple
approach result in multiple problems. First, for realistic dataset it is unlikely
that in the ideal clustering, all clusters have more or less the same SSE value.
This, because some regions are more dense than other and the number of points
in the true clusters can vary drastically. Hence, the maximum SSE value needed
to find interesting clusters in one region of the input space, results in an explo-
sion of patterns in another region. The other way around, the maximum SSE
value needed in a dense region would overlook possible clusters in sparse regions.
Second, determining a reasonable value for the maximum SSE is an almost im-
possible task for a user.

To overcome these problems we applied a mining algorithm for every point
in the data and its region. A region of a point is defined as the points that

are not further away than the average distance between all point in the data.
Moreover, the support threshold for a region depends on the density of the
region. Finally, we define an order among the points depending on the number
of points in its region. Points in more dense regions are processed before points in
sparser regions, moreover the points in dense regions are removed from all other
regions after they have been processed. As a result, for every point p € P and
its region denoted as p, the mining algorithm enumerate sets {i,...,j} where
{i,...,7} Cpr and Va € {i,...,5} : ord(z) > ord(p). Where ord(p) denotes the
order assigned to p which depends on |p;|.

Algorithm 1 Derive all sets that satisfy the constraints

Input: P, npoints
Output: all set that satisfy the constraint

1: OUT « o

2: meana(P) < mean distance between all pair of point in P
3: for all p € P do

4t pr—prU{qlg € PNA(p,q) < meana(P)}

5: end for

6: sort(P) according to |p,| in descending order

7: Vp € P, ord(p) equals the position of p in array

8: remove of all occurrences of point p in g, if ord(p) < ord(q)
9: for all p € P do
10: OUT < OUT U mine({p}, 2=mearaBixmeana(P)xapoints)
11: end for "
12: return OUT

The next question to answer is, what is a good maximum SSE threshold for
a region p, and perhaps even more important how does the threshold for p,
relates to a threshold for ¢,., with ¢ € P. Let meana(P) denote the average
distance between all pair of points in P. Obviously, if we take meana(P) x
meana(P) X |py| as maximum SSE then {p} Up, is the maximal set that satisfy
the SSE constraint. Clearly, taking this value as maximum SSE is senseless.
Instead, we let a user specify how many points should approximately be in
the largest set. Given this parameter, we derive the maximum SSE as follows:

mea”A(P)Xmea"Al(P)X# of points *Note that, we use the same input parameter

(# of points) for all different regions. The pseudo-code of these pre-processing
steps is given in Algorithm 1. The input arguments are the set of points P and
the used defined parameter npoints. The lines 2 — —8 are used to compute the
region for each point in the dataset. On line 10, the levelwise mining algorithm is
called (Algorithm 2), for each point in the dataset and its previously computed
region.

The pseudo-code of the actual mining algorithm, is given in Algorithm 2. As
stated earlier, this algorithm is a straightforward levelwise algorithm that uses
Theorem 1 to limit the search space. Again, we assume an ordering on the points

Algorithm 2 level wise search algorithm

Input: {p1,...,pn},pr, maxsse

Output: all subsets of p, with a lower SSE than maxsse

1: meana(P) < mean distance between all pairs of points in P

2: for all ¢ € p, do

if maz({ord(p1),...,ord(pn)}) < ord(q) A SSE({p1,...,pn} U {¢}) < maxsse
then
4 OUT «— OUT U {{p1,...,pn} U{q}}

5 OUT « OUT U mine({p1,...,pn} U{q}, pr, maxsse)
6: end if
7
8

w

: end for
: return OUT

in the region. However, this order can be the same as determined in Algorithm 1.
In general, the output of the levelwise search algorithm consists of overlapping
sets that satisfy the constraint. Hence, the output is not an partition of the input
space.

Algorithm 3 Post-processing the results
Input: A List L of all sets that satisfy the max SSE constraint
Output: RES a clustering of the input
1: while L # @ do
2: sort L first according to cluster size, then according to SSE
RES «— RES U top(L)
for all X € L do
if X Ntop(L) # @ then
L—L\X
end if
8: end for
9: end while
10: return RES

To select a partition from all the sets that best describe the input data we
use a simple heuristic to take the cover of the input data. The pseudo-code of
this post-processing step is given in Algorithm 3. First we order the output sets
on the number of points they contain (line 2). In case two sets have equal size
they are ordered on SSE value. Then the first set in the ordered list is taken and
added to the results (line 3). Next, all sets that contain one or more points of the
set that is previously added to the results are removed (line 4 — —8). We repeat
this procedure till all output sets are either removed or in the results sets.

Finally, to deliver a whole range of number of clusters we repeat the algo-
rithms on the output derived. More precisely, let {X7,..., X} be the k clusters
derived on input P. Then, for each X; with 1 < i < k we take the center of

Algorithm 4 Max SSE Miner
Input: P, npoints

1: RES «— @

2: while |RES| # |P| do

3: L « Pre-process(P, npoints)
4: RES « Post-process(L)

5. DISPLAY(RES)

6: P—o

7: for all X € RES do

8

9
10:

P — PUmean(X)
end for
end while

X; and add these points to a new input set P’. We repeat the previously de-
scribed algorithms on the newly created input set. This repetition stops when
the number of clusters obtained stays the same. The pseudo-code of the MSSEM
algorithm is given in Algorithm 4. The input parameters of this algorithm is the
set of points P and the user specified parameter npoints, the output is range of
clusterings of the input set.

We implemented a prototype of the described MSSEM algorithm. However,
for practical reasons more optimizations could be applied. One obvious optimiza-
tion is to derive only maximal sets that satisfy the user defined threshold. Note
that in this case it is, because of the post-processing step used, highly likely that
we need to recompute the support of one or more of the subsets of a maximal
set. Further, note that concepts as closed sets are not interesting because of the
continuous scale of the support.

4 Experiments

In this section, we report on the preliminary results obtained of the MSSEM
mining algorithm on three real life datasets. The goal of the experiments is
to qualitatively compare our results, with the results obtained by k-means as
implemented in Weka [15]. For the evaluation of the clusters, we use the sum
of the SSE values for the different clusters. To compare the results to k-means,
we performed for each obtained clustering of MSSEM a run of k-means with as
input parameter exactly the same number of clusters as the number of clusters
that obtained by MSSEM. Another criterion mentioned is, if MSSEM is able to
derive the true number of clusters, where the true number of clusters means the
actual classes in the dataset.

We used three real-word datasets, all available in the UCI repository [16].
The characteristics of the datasets are presented in Table 4. We only consider
the descriptive dimensions for clustering, while the class attribute is used in
order to evaluate the result.

SSE
»

1 1 1
[10 20 30 40 50 60
of clusters

SSE

120

100

80

60+

400

20

e |

L
80

L
100
of clusters

120

L
140 160 180

200

Fig. 1. Results for the Iris dataset (left) and the Ecoli dataset (right). The dashed line
with square markers states the results obtained by the MSSEM approach. The dotted
line with circle markers denote the results obtained by the k-means algorithm.

lDataset [#points [#dimensions [#classesl

Iris 150 5 3
Ecoli 336 8 8
Sonar 208 61 2

Table 1. Characteristics of the dataset used.

The results obtained for the Iris dataset and the Ecoli dataset are displayed
in Figure 1. For both datasets MSSEM obtained the true number of clusters.
The results shows that for almost all clusterings obtained by MSSEM the cor-
responding SSE value is better than the SSE value obtained by k-means. For
the Ecoli dataset the difference is considerable. For different support values the
results were more or less the same, except that MSSEM did not always succeed
in finding the true number of clusters. The results for the Sonar dataset (dis-
played in Figure 2) show a somewhat different pictures. The results obtained for
MSSEM are, in all but one case, slightly worse than those obtained by k-means.
Moreover, MSSEM was not able to find the true number of clusters.

5 Related Work

Although a lot of clustering algorithms have been proposed, for example [2-6],
almost no approaches uses local patterns. In this section we briefly review some
clustering approaches that does uses local patterns.

For market basket data, Wang et al. [17] uses the frequency of itemsets to
form clusters. With this approach they avoid pairwise comparison between the
different items. Recently, Van Leeuwen et al. [18] uses an MDL based approach
to partition transactional data. First, a so called code table is constructed from

450

400t ! E

350 g

300+ \ 4

200 = 1

150 ~ |

100F <

50 L L L L L
0 10 20 30 40 50 60 70 80 90 100

of clusters

Fig. 2. Results for the Sonar dataset. The dashed line with square markers states the
results obtained by the MSSEM approach. The dotted line with circle markers denote
the results obtained by the k-means algorithm.

local patterns, then they search for an optimal decomposition of the code tables
that partition the data. One major difference between MSSEM and the two
previously described approaches is that MSSEM operates on numerical data
while the other approaches require transactional data.

In subspace clustering, the goal is to find clusters in one or more axis-parallel
subspaces of the input space. CLIQUE [5] is a grid based subspace mining al-
gorithm. For all dimensions, the data space is partitioned by a grid of equisized
bins. All bins that contains more than a user defined threshold number of point
are considered dense. A cluster is defined as a maximal set of adjacent dense
bins. Starting with all one-dimensional dense units, the algorithms uses a level
wise search to enumerate (k + 1) dimensional dense unit. In general the number
of clusters found by CLIQUE can be enormous. The difference with our approach
is that CLIQUE find clusters in all different axis-parallel subspaces and that the
similarity measure is density instead of SSE.

6 Discussion and Conclusion

In this paper, we showed that the SSE measure is monotone with respect to
set inclusion and proposed an algorithm that uses the SSE measure as mono-
tone constraint in an Apriori style algorithm. We implemented a prototype of
MSSEM and conducted some preliminary experiments on real datasets. Besides
implementation issues, there are some more points of consideration:

1. While MSSEM reports a whole range of possible clusterings, it is not guaran-
teed that the true number of clusters will be derived. Moreover, the number
of clusters derived is rather sensitive for the user defined input parameter.

One possible direction to solve these problems is to perform more advanced
post-processing, i.e. instead of our simple heuristic algorithm to cover the in-
put space a more fundamental approach might be needed. Another direction
is to take a large number of derived clusters as input of another clustering
algorithm (for example an hierarchical clustering algorithm). In such an ap-
proach MSSEM could be considered as a pre-processing step for a clustering
algorithm.

2. An issue prevalent in most clustering algorithms are outliers. Obviously,
MSSEM is likely to be sensitive for outliers. A straightforward approach to
handle theses cases might be to disregard point that have a larger mean
distance to other points than the average mean distance between any pair
of points.

However, besides the open issues the results also show that MSSEM is able to
find in case of the Ecoli dataset far better solutions than k-means algorithm.
Moreover, for the other two datasets the difference in obtained results was mini-
mal. Concluding, our work shows local patterns can be used to capture essential
clusters in a dataset. However, more research is needed to fine-tune the algo-
rithm.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2006)

2. Macqueen, J.: Some methods of classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability. (1967) 281-297

3. Ester, M., Kriegel, H., Sander, J., Xu, J.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. (1996) 226-231

4. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large
databases. In: Proceedings ACM SIGMOD International Conference on Manage-
ment of Data. (1998) 73-84

5. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data. Data Min. Knowl. Discov. 11(1) (2005) 5-33

6. Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., Papadopoulos,
D.: Locally adaptive metrics for clustering high dimensional data. Data Min.
Knowl. Discov. 14(1) (2007) 63-97

7. Agrawal, R., Mannila, H., Srikant, R., H.Toivonen, Verkamo, A.: Fast discovery of
association rules. In Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., eds.: Advances
in Knowledge Discovery and Data Mining. (1996) 307-328

8. Geerts, F., Goethals, B., Mielikinen, T.: Tiling databases. In: Discovery Science,
Springer (2004) 278-289

9. Heikinheimo, H., Seppénen, J., Hinkkanen, E., Mannila, H., Mielikainen, T.: Find-
ing low-entropy sets and trees from binary data. In Berkhin, P., Caruana, R., Wu,
X., eds.: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. (2007) 350-359

10.

11.

12.

13.

14.

15.

16.

17.

18.

Knobbe, A., Ho, E.: Maximally informative k-itemsets and their efficient discovery.
In Eliassi-Rad, T., Ungar, L., Craven, M., Gunopulos, D., eds.: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. (2006) 237—
244

Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable pat-
terns. In: IEE International Conference on Data Mining. (2007) 63-72

Tatti, N., Vreeken, J.: Finding good itemsets by packing data. In: IEE International
Conference on Data Mining. (2008) 588-597

Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In Ghosh, J.,
Lambert, D., Skillicorn, D., Srivastava, J., eds.: STAM International Conference on
Data Mining. (2006)

Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery 15(1) (2007) 55-86
Witten, 1., E., F.: Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, San Francisco (2005)

Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998)

Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: Proceed-
ings of the eighth international conference on Information and knowledge manage-
ment. (1999) 483-490

van Leeuwen, M., Vreeken, J., Siebes, A.: Identifying the components. Data Mining
and Knowledge Discovery 19(2) (2009) 176-193

