Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Mehdi Khiari, Patrice Boizumault, Bruno Crémilleux

Greyc, Université de Caen Basse-Normandie

GREYC 🌮

September 7, 2009

ECML/PKDD, Workshop LeGo 2009

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Experiments

Conclusi

Future work

Pattern Flooding: a well-known limitation of local patterns

examples of local patterns:

- regularities: frequent patterns, area (can be used to discover synexpression groups),...
- contrasts: emerging patterns,. . .
- \Rightarrow in practice, usual techniques provide an overwhelming number of patterns

2 / 32

GREYC

How to reduce/summarize local patterns?

- exact/approximate condensed representations of patterns (Pasquier et al. ICDT'99, Boulicaut et al. DMKD'03, Calders et al. LNAI'05, Casali et al. DaWaK'05, Soulet et al. DMKD'08,...)
- 2 the constraint-based paradigm:
 - a lot of contributions on local patterns (Ng et al. SIGMOD'98, Bucilla et al. SIGKDD'02, De Raedt et al. ICDM'02, Besson et al. IDA'05, Soulet et al. PAKDD'05, . . .)
 - integrating external resources and background knowledge (Klema et al. ISB'08)

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

How to reduce/summarize local patterns?

- selecting patterns on the basis of their usefulness in the context of the other selected patterns:
 - pattern teams (Knobbe et al., PKDD'06)
 - constraint-based pattern set mining (De Raedt et al., SDM'07), the chosen few (Bringmann et al., ICDM'07)
- compression of the dataset by exploiting the MDL Principle (Siebes et al., SDM'06)
- using constraint programming (0/1 Linear Programming) (De Raedt et al., KDD'08, Nijssen et al., KDD'09)

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREVE

Experiment

Conclusio

Future work

Global Constraints

Definition (Global constraint)

A constraint q is said *global* if several patterns have to be compared to check if q is satisfied or not.

In this talk, a global constraint is a n-ary constraint

5 / 32

(introduction)

Experiments

Conclu

Future work

Example of global constraint

Trans.			lte	ems		
<i>o</i> 1	A	В			c_1	
<i>o</i> ₂	A	В			c_1	
<i>0</i> 3			С	D	c_1	
04	A	В		D	c_1	
<i>0</i> 5	A	В		D	c_1	
<i>0</i> 6	A	В		D	c_1	
07			С			<i>c</i> ₂
<i>0</i> 8	A	В	С	D		<i>c</i> ₂
<i>0</i> 9				D		<i>c</i> ₂

the exception rules constraint (Suzuki 2002)

 $exception(X \to \neg I) \equiv \begin{cases} true & \text{if } \exists Y \in \mathcal{L}_{\mathcal{I}} \text{ such that } Y \subset X, \text{ one have} \\ & (X \setminus Y \to I)^a \wedge (X \to \neg I)^b \\ false & \text{otherwise} \end{cases}$

^acommon sense rule: frequent + high confidence value ^bexception rule: rare + very high confidence value

ocal Constraint-Based Mining and Set Constraint Programming for Pattern Discovery.

REYC

(introduction)

Experiments

Conclusion

Future work

Example of global constraint

Trans.			lte	ems		
<i>o</i> ₁	A	В			<i>c</i> ₁	
<i>o</i> ₂	A	В			c_1	
<i>0</i> 3			С	D	c_1	
<i>O</i> 4	A	В		D	c_1	
<i>0</i> 5	A	В		D	c_1	
<i>o</i> 6	A	В		D	c_1	
07			С			<i>c</i> ₂
<i>0</i> 8	A	В	С	D		<i>c</i> ₂
09				D		<i>c</i> ₂

$$\begin{cases} AB \longrightarrow c_1 \\ ABC \longrightarrow \neg c_1 \end{cases}$$

the exception rules constraint (Suzuki 2002)

$$exception(X \to \neg I) \equiv \begin{cases} true & \text{if } \exists Y \in \mathcal{L}_{\mathcal{I}} \text{ such that } Y \subset X, \text{ one have} \\ & (X \setminus Y \to I)^a \wedge (X \to \neg I)^b \\ false & \text{otherwise} \end{cases}$$

^a common sense rule: frequent + high confidence value ^b exception rule: rare + very high confidence value

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

REYC

- Constraint programming:
 - A powerful declarative paradigm for solving difficult combinatorial problems,
 - Efficient filtering and solving techniques.
- Set CSPs
 - Variables \leftrightarrow Unknown patterns,
 - Domains $\leftrightarrow 2^{\mathcal{I}}$ (where \mathcal{I} is the set of all the items in the data set)
 - Handling of set constraints (\subset, \cup) (local and global).

 \Rightarrow Investigating the links between data mining and Set Constraint Satisfaction Problems (Set CSPs) is a promising approach.

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREYC

Future work

GREYC 🏠

Our approach

Experiment

Conclus

Future work

Set Intervals

Definition (Set Interval)

Let *lb* and *ub* be two sets such that $lb \subset ub$, the set interval [lb..ub] is defined as follows: $[lb..ub] = \{E \text{ such that } lb \subseteq E \text{ and } E \subseteq ub\}.$

Examples

- $[{1}.{1,2,3}] = {\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}}$
- [{}..{1,2,3}] = $2^{\{1,2,3\}}$

GREYC 🏠

10 / 32

Set CSPs)

Our approach

Experiment

Conclus

Future work

Definition (Set CSP)

A set constraint satisfaction problem (set CSP) is a 3-uple $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ where $\mathcal{C} = \{c_1, ..., c_m\}$ is a set of constraints associated to a set $\mathcal{X} = \{X_1, ..., X_n\}$ of variables. For each variable X_i , an initial domain of set intervals (or union of set intervals) D_{X_i} is given and $D = \{D_{X_i}, ..., D_{X_n}\}$.

GREYC 🏠

11 / 32

introduction

Dur approach

Experiments

Conclusio

Future work

Example of a set CSP

Example

We have to assign sets of radio frequencies to two transmitters according to some constraints. Available frequencies are $\{1, 2, 3, 4\}$ for the first transmitter and $\{3, 4, 5, 6\}$ for the second one.

 \Rightarrow set CSP ($\mathcal{X}, \mathcal{D}, \mathcal{C})$, where:

- $\mathcal{X} = \{t_1, t_2\}$ where t_1 and t_2 are the two transmitters.
- $D(t_1) = [\{\} .. \{1, 2, 3, 4\}] D(t_2) = [\{\} .. \{3, 4, 5, 6\}]$

GREYC

12 / 32

introduction

Example of a set CSP

• two radio frequencies have to be assigned to each transmitter:

•
$$c_1 | t_1 | = 2$$

- $c_2 | t_2 | = 2$
- both transmitters do not share frequencies:
 - c_3 $t_1 \cap t_2 = \emptyset$
- two frequencies within a transmitter must have at least a distance equals to 2:

• $c_4 \quad \forall v_1, v_2 \in t_i, \ abs(v_1 - v_2) \geq 2 \quad i = 1, 2$

• the first transmitter requires the frequency 3:

• c_5 $3 \in t_1$

• the second transmitter requires the frequency 4:

• c_6 $4 \in t_2$

GREYC 🌮

13 / 32

Set CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$, where:

• $\mathcal{X} = \{t_1, t_2\}$ where t_1 and t_2 are the two transmitters.

•
$$D(t_1) = [\{\} ... \{1, 2, 3, 4\}],$$

 $D(t_2) = [\{\} ... \{3, 4, 5, 6\}]$

•
$$C = \{c_1, c_2, c_3, c_4, c_5, c_6\}$$

• $c_1 | t_1 |= 2$
• $c_2 | t_2 |= 2$
• $c_3 t_1 \cap t_2 = \emptyset$
• $c_4 \forall v_1, v_2 \in t_i,$
| $v_1 - v_2 |\ge 2$ $i = 1, 2$
• $c_5 3 \in t_1$
• $c_6 4 \in t_2$

 \Rightarrow A unique solution: $t_1 = \{1,3\}$ and $t_2 = \{4,6\}$.

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Filtering rules for Set CSPs

Let $D_x = [a_x ... b_x]$ and $D_y = [a_y ... b_y]$ two domains represented by set intervals and D'_x and D'_y the filtered domains.

Constraint: $X \subset Y$

Filtering rule: if
$$a_x \subset b_y$$
 then
 $D'_x = [a_x \dots b_x \cap b_y]$
 $D'_y = [a_x \cup a_y \dots b_y]$
else
 $D'_x = \emptyset, D'_y = \emptyset$

$$\begin{split} X &\subset Y \\ D_x &= [\{1,2\}..\{1,2,3,4\}], D_y = [\{1\}..\{1,2,3\}] \\ D'_x &= [\{1,2\}..\{1,2,3\}], D'_y = [\{1,2\}..\{1,2,3\}] \end{split}$$

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREYC 24

introduction

GREYC

16 / 32

Filtering rules for Set CSPs

Let $D_x = [a_x ... b_x]$, $D_y = [a_y ... b_y]$ and $D_z = [a_z ... b_z]$ three domains represented by set intervals and D'_x, D'_y and D'_z the filtered domains.

Constraint: $Z = X \cap Y$

Filtering rule: if
$$(b_x \cap b_y) \subset b_z$$
 and $(b_x \cap b_y) \neq \emptyset$ then
 $D'_x = [a_x \cup a_z \dots b_x \setminus ((b_x \cap a_y) \setminus b_z]$
 $D'_y = [a_y \cup a_z \dots b_y \setminus ((b_y \cap a_x) \setminus b_z]$
 $D'_z = [a_z \cup (a_x \cap a_y) \dots b_z \cap b_x \cap b_y]$
else
 $D'_x = D'_y = D'_z = \emptyset$

GREYC 🏠

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Set CSPs for Pattern Discovery: our aproach

Our approach is based on three major points:

- the wide possibilities of modelization and resolution given by the CSPs
 - set CSPs
 - numeric CSPs
- the recent progress on mining local patterns
- Iocal constraints can be solved before and regardless global constraints.

GREYC 🏠

18 / 32

General overview of our 3-steps method

GREYC 🌮

19 / 32

Step-1: Modeling the query as CSPs

Set CSP $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where:

- $\mathcal{X} = \{X_1, ..., X_n\}$. Each variable X_i represents an unknown itemset.
- D = {D_{X1},...,D_{Xn}}. The initial domain of each variable X_i is the set interval [{} .. I].
- C is a conjunction of set constraints by using set operators (U, \cap , \setminus , \in , \notin , ...)
- **2** Numeric CSP $\mathcal{P}' = (\mathcal{F}, \mathcal{D}', \mathcal{C}')$ where:
 - $\mathcal{F} = \{F_1, ..., F_n\}$. Each variable F_i is the frequency of the itemset X_i .
 - \$\mathcal{D}' = {D_{F_1}, ..., D_{F_n}}.\$ The initial domain of each variable \$F_i\$ is the integer interval [1 ... nb].
 - \mathcal{C}' is a conjunction of arithmetic constraints.

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREYC

Example of modeling

the exception rules constraint

$$exception(X \to \neg I) \equiv \begin{cases} true & \text{if } \exists Y \in \mathcal{L}_{\mathcal{I}} \text{ such that } Y \subset X, \text{ one have} \\ & (X \setminus Y \to I) \land (X \to \neg I) \end{cases}$$

$$false & \text{otherwise} \end{cases}$$

the exception rules constraint (2)

$$exception(X \to \neg I) \equiv \begin{cases} \exists Y \subset X \text{ such that }:\\ freq((X \setminus Y) \sqcup I) \ge \gamma_1 \\ \land (freq(X \setminus Y) - freq((X \setminus Y) \sqcup I)) \le \delta_1 \\ \land freq(X \sqcup \neg I) \le \gamma_2 \\ \land (freq(X) - freq(X \sqcup \neg I)) \le \delta_2 \end{cases}$$

 γ_1 and γ_2 : frequency thresholds δ_1 and δ_2 : confidence thresholds

GREYC 🌮

21 / 32

$$\begin{array}{c|c} \hline \text{reduction} & \text{Set CSPs} & \hline \text{Our approach} & \text{Exporiments} & \hline \text{Conclusion} & \text{Future worl} \\ \hline \end{array}$$

$$\begin{array}{c} \text{the exception rules constraint (2)} \\ \hline \text{exception}(X \to \neg I) \equiv \begin{cases} \exists Y \subset X \text{ such that } :\\ freq((X \setminus Y) \sqcup I) \geq \gamma_1 \\ \land (freq(X \setminus Y) - freq((X \setminus Y) \sqcup I)) \leq \delta_1 \\ \land freq(X \sqcup \neg I) \leq \gamma_2 \\ \land (freq(X) - freq(X \sqcup \neg I)) \leq \delta_2 \end{cases}$$

The CSP variables are defined as follows:

- Set variables $\{X_1, X_2, X_3, X_4\}$ representing unknown itemsets:
 - $X_1 : X \setminus Y$,
 - X_2 : $(X \setminus Y) \sqcup I$ (common sense rule),
 - X₃ : X,
 - $X_4 : X \sqcup \neg I$ (exception rule).
- Integer variables {F₁, F₂, F₃, F₄} representing their frequency values (variable F_i denotes the frequency of the itemset X_i).

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREVC

Constraints	CSP formulation	Local	Global
	$F_2 \ge \gamma_1$	×	
	\wedge		
$freq((X \setminus Y) \sqcup I) \geq \gamma_1$	$I \in X_2$	×	
	\wedge		
	$X_1 \subsetneq X_3$		×
	$F_1 - F_2 \leq \delta_1$		×
$freq(X \setminus Y) - freq((X \setminus Y) \sqcup I) \leq \delta_1$	\wedge		
	$X_2 = X_1 \sqcup I$		×
	$F_4 \leq \gamma_2$	×	
$\mathit{freq}(X \sqcup eg I) \leq \gamma_2$	\wedge		
	$\neg I \in X_4$	×	
	$F_3 - F_4 \leq \delta_2$		×
$freq(X) - freq(X \sqcup \neg I) \leq \delta_2$	\wedge		
	$X_4 = X_3 \sqcup \neg I$		×

Table: Exception rules modeled as CSP constraints

GREYC 🏠

23 / 32

Steps 2 & 3: From Local to Global

Step-2: Solving local constraints

Step-3: Solving global constraints

```
------
[eclipse 1]:
?- exceptions(X1, X2, X3, X4).
Sol1 : X1 = {A,B}, X2={A,B,c1}, X3={A,B,C}, X4={A,B,C,c2};
.../...
```

BEYC 24

24 / 32

GREYC 🌮

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Number of pairs of rules

(postoperative-patient-data: 90×23)

Figure: Number of rules according to γ_1 (left) and δ_1 (right)

- Correct and complete set of all pairs of exception rule
- Easy control of the quality (confidence and frequency) of the rules

Runtime according to the number of intervals

• **Problem**: unsuitable set intervals union operator: $[lb_1 \dots ub_1] \bigcup_{interval} [lb_2 \dots ub_2] = [lb_1 \cap lb_2 \dots ub_1 \cup ub_2].$

• \Rightarrow [{1}..{1,2}] $\bigcup_{interval}$ [{3}..{3,4}] = [{}..{1,2,3,4}] = 2^{{1,2,3,4}}

• Expected result: $\{\{1\},\{1,2\},\{3\},\{3,4\}\}$

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

REYC

Runtime according to the number of intervals

- **Problem**: unsuitable set intervals union operator: $[lb_1 \dots ub_1] \bigcup_{interval} [lb_2 \dots ub_2] = [lb_1 \cap lb_2 \dots ub_1 \cup ub_2].$
- Solution: Search is successively performed upon each Interval
- ullet \Rightarrow Nevertheless, we do not fully profit from filtering.

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

REYC

- Our approach
- 4 Experiments

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

28 / 32

(Conclusion)

- A new approach for dicovering patterns under global constraints,
- Takes benefit from the recent progress on mining local patterns,
- Flexible way for modeling several global constraints,
- Complete and sound approach.

29 / 32

Our approach

4 Experiments

5 Conclusion

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

GREYC 🏠

30 / 32

Future work

Conclus

Future work

Discovering synexpression groups

• $\exists X_1, ... X_k$ (k unfixed) such that

where $\min_{\rm area}$ denotes the minimal area and α is a threshold given by the user to fix the minimal overlapping between the local patterns.

we can now solve:
 ∃X₁,...X_k(k fixed) such that

Constraints	Local	Global

GREYC 🏠

31 / 32

Conclusi

Future work

Discovering synexpression groups

• $\exists X_1, ..., X_k$ (k unfixed) such that $\forall_{1 \leq i \leq k}$, area $(X_i) > min_{area}$

where min_{area} denotes the minimal area and α is a threshold given by the user to fix the minimal overlapping between the local patterns.

• we can now solve: $\exists X_1, ..., X_k$ (k fixed) such that $\forall_{1 \le i \le k}$, area $(X_i) > min_{area}$

Constraints	Local	Global
$\forall i \in \{1n\}$ area $(X_i) > min_{area}$	×	

GREYC

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Conclu

Future work

Discovering synexpression groups

• $\exists X_1, ..., X_k$ (k unfixed) such that $\forall_{1 \leq i \leq k}, area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$

where $\min_{\rm area}$ denotes the minimal area and α is a threshold given by the user to fix the minimal overlapping between the local patterns.

• we can now solve: $\exists X_1, ..., X_k$ (k fixed) such that $\forall_{1 \leq i \leq k}, area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$

Constraints	Local	Global
$\forall i \in \{1n\}$ area $(X_i) > min_{area}$	×	
$\textit{area}(X_i \cap X_j) > lpha imes \textit{min}_{\textit{area}}, (1 \le i < j \le k)$		×

GREYC 🏠

31 / 32

Discovering synexpression groups

• $\exists X_1, ... X_k$ (k unfixed) such that $\forall_{1 \leq i \leq k}, area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$ $\land \nexists Z$, $(area(Z) > min_{area} \land \forall_{1 \leq i \leq k}, area(X_i \cap Z) > \alpha \times min_{area})$

where min_{area} denotes the minimal area and α is a threshold given by the user to fix the minimal overlapping between the local patterns.

• we can now solve: $\exists X_1, ..., X_k$ (k fixed) such that $\forall_{1 \leq i \leq k}, area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$

Constraints	Local	Global
$\forall i \in \{1n\}$ area $(X_i) > min_{area}$	×	
$\textit{area}(X_i \cap X_j) > lpha imes \textit{min}_{\textit{area}}, (1 \le i < j \le k)$		×

GREYC

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

Discovering synexpression groups

• $\exists X_1, ... X_k$ (k unfixed) such that $\forall_{1 \leq i \leq k}$, $area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$ $\land \forall Z$, $(area(Z) \leq min_{area} \lor \exists_{1 \leq i \leq k}, area(X_i \cap Z) \leq \alpha \times min_{area})$

where min_{area} denotes the minimal area and α is a threshold given by the user to fix the minimal overlapping between the local patterns.

• we can now solve: $\exists X_1, ..., X_k$ (k fixed) such that $\forall_{1 \leq i \leq k}, area(X_i) > min_{area}$ $\land (\forall_{1 \leq i < j \leq k}, area(X_i \cap X_j) > \alpha \times min_{area})$

Constraints	Local	Global
$\forall i \in \{1n\}$ area $(X_i) > min_{area}$	×	
$\textit{area}(X_i \cap X_j) > lpha imes \textit{min}_{\textit{area}}, (1 \le i < j \le k)$		×

GREYC 🏠

31 / 32

- Introducing the universal quantification (∀) that classic CSPs are unable to manage ⇒ Quantified CSPs (Bordeaux et al. CP'02),
- Solving CSPs with unknown number of variables,
- Implementing a new set interval union operator in the kernel of the solver,
- Using a non exact condensed representation to reduce the number of produced intervals,

32 / 32