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Pattern Flooding: a well-known limitation of
local patterns

examples of local patterns:

regularities: frequent patterns, area (can be used to discover
synexpression groups),...

contrasts: emerging patterns,. . .

⇒ in practice, usual techniques provide an overwhelming number
of patterns
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How to reduce/summarize local patterns?

1 exact/approximate condensed representations of patterns (Pasquier
et al. ICDT’99, Boulicaut et al. DMKD’03, Calders et al. LNAI’05,
Casali et al. DaWaK’05, Soulet et al. DMKD’08,. . . )

2 the constraint-based paradigm:

a lot of contributions on local patterns (Ng et al. SIGMOD’98,
Bucilla et al. SIGKDD’02, De Raedt et al. ICDM’02, Besson et al.
IDA’05, Soulet et al. PAKDD’05, . . . )
integrating external resources and background knowledge (Klema et
al. ISB’08)
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How to reduce/summarize local patterns?

3 selecting patterns on the basis of their usefulness in the context of
the other selected patterns:

pattern teams (Knobbe et al., PKDD’06)
constraint-based pattern set mining (De Raedt et al., SDM’07), the
chosen few (Bringmann et al., ICDM’07)

4 compression of the dataset by exploiting the MDL Principle (Siebes
et al., SDM’06)

5 using constraint programming (0/1 Linear Programming) (De Raedt
et al., KDD’08, Nijssen et al., KDD’09)
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Global Constraints

Definition (Global constraint)

A constraint q is said global if several patterns have to be
compared to check if q is satisfied or not.

In this talk, a global constraint is a n-ary constraint
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Example of global constraint
Trans. Items

o1 A B c1

o2 A B c1

o3 C D c1

o4 A B D c1

o5 A B D c1

o6 A B D c1

o7 C c2

o8 A B C D c2

o9 D c2

the exception rules constraint (Suzuki 2002)

exception(X → ¬I ) ≡

8<:
true if ∃Y ∈ LI such that Y ⊂ X , one have

(X\Y → I )a ∧ (X → ¬I )b

false otherwise

acommon sense rule: frequent + high confidence value
bexception rule: rare + very high confidence value
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ABC −→ ¬c1

the exception rules constraint (Suzuki 2002)

exception(X → ¬I ) ≡

8<:
true if ∃Y ∈ LI such that Y ⊂ X , one have

(X\Y → I )a ∧ (X → ¬I )b

false otherwise

acommon sense rule: frequent + high confidence value
bexception rule: rare + very high confidence value

7 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

Motivations

Constraint programming:

A powerful declarative paradigm for solving difficult combinatorial
problems,
Efficient filtering and solving techniques.

Set CSPs

Variables ↔ Unknown patterns,
Domains ↔ 2I (where I is the set of all the items in the data set)
Handling of set constraints (⊂, ∪) (local and global).

⇒ Investigating the links between data mining and Set Constraint
Satisfaction Problems (Set CSPs) is a promising approach.
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Set Intervals

Definition (Set Interval)

Let lb and ub be two sets such that lb ⊂ ub, the set interval
[lb..ub] is defined as follows:
[lb..ub] = {E such that lb ⊆ E and E ⊆ ub}.

Examples

[{1}..{1, 2, 3}]={{1}, {1, 2}, {1, 3}, {1, 2, 3}}

[{}..{1, 2, 3}] = 2{1,2,3}
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Set CSPs

Definition (Set CSP)

A set constraint satisfaction problem (set CSP) is a 3-uple
(X ,D, C) where C = {c1, ..., cm} is a set of constraints associated
to a set X = {X1, ...,Xn} of variables. For each variable Xi , an
initial domain of set intervals (or union of set intervals) DXi

is
given and D = {DXi

, ...,DXn}.
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Example of a set CSP

Example

We have to assign sets of radio frequencies to two transmitters
according to some constraints. Available frequencies are {1, 2, 3, 4}
for the first transmitter and {3, 4, 5, 6} for the second one.

⇒ set CSP (X ,D, C), where:

X = {t1, t2} where t1 and t2 are the two transmitters.

D(t1) = [{} .. {1, 2, 3, 4}] D(t2) = [{} .. {3, 4, 5, 6}]
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Example of a set CSP

two radio frequencies have to be assigned to each transmitter:

c1 | t1 |= 2
c2 | t2 |= 2

both transmitters do not share frequencies:

c3 t1 ∩ t2 = ∅

two frequencies within a transmitter must have at least a distance
equals to 2:

c4 ∀v1, v2 ∈ ti , abs(v1 − v2) ≥ 2 i = 1, 2

the first transmitter requires the frequency 3:

c5 3 ∈ t1

the second transmitter requires the frequency 4:

c6 4 ∈ t2
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Example of a set CSP

Set CSP (X ,D, C), where:

X = {t1, t2} where t1 and t2

are the two transmitters.

D(t1) = [{} .. {1, 2, 3, 4}],
D(t2) = [{} .. {3, 4, 5, 6}]

C = {c1, c2, c3, c4, c5, c6}
c1 | t1 |= 2
c2 | t2 |= 2
c3 t1 ∩ t2 = ∅
c4 ∀v1, v2 ∈ ti ,
| v1 − v2 |≥ 2 i = 1, 2
c5 3 ∈ t1

c6 4 ∈ t2

⇒ A unique solution: t1 = {1, 3} and t2 = {4, 6}.
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Filtering rules for Set CSPs

Let Dx = [ax ..bx ] and Dy = [ay .. by ] two domains represented by
set intervals and D ′

x and D ′
y the filtered domains.

Constraint: X ⊂ Y

Filtering rule: if ax ⊂ by then
D ′

x = [ax .. bx ∩ by ]
D ′

y = [ax ∪ ay .. by ]
else

D ′
x = ∅,D ′

y = ∅

X ⊂ Y

Dx = [{1, 2}..{1, 2, 3, 4}],Dy = [{1}..{1, 2, 3}]
D ′

x = [{1, 2}..{1, 2, 3}],D ′
y = [{1, 2}..{1, 2, 3}]

15 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

Filtering rules for Set CSPs

Let Dx = [ax ..bx ], Dy = [ay .. by ] and Dz = [az .. bz ] three
domains represented by set intervals and D ′

x ,D
′
y and D ′

z the
filtered domains.

Constraint: Z = X ∩ Y

Filtering rule: if (bx ∩ by ) ⊂ bz and (bx ∩ by ) 6= ∅ then
D ′

x = [ax ∪ az .. bx \ ((bx ∩ ay ) \ bz ]
D ′

y = [ay ∪ az .. by \ ((by ∩ ax) \ bz ]
D ′

z = [az ∪ (ax ∩ ay ) .. bz ∩ bx ∩ by ]
else

D ′
x = D ′

y = D ′
z = ∅
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Set CSPs for Pattern Discovery: our aproach

Our approach is based on three major points:

1 the wide possibilities of modelization and resolution given by the
CSPs

set CSPs
numeric CSPs

2 the recent progress on mining local patterns

3 local constraints can be solved before and regardless global
constraints.

18 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

General overview of our 3-steps method
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Step-1: Modeling the query as CSPs

1 Set CSP P = (X ,D, C) where:

X = {X1, ...,Xn}. Each variable Xi represents an unknown itemset.
D = {DX1 , ...,DXn}. The initial domain of each variable Xi is the
set interval [{} .. I].
C is a conjunction of set constraints by using set operators
(∪, ∩, \,∈, /∈, ...)

2 Numeric CSP P ′ = (F ,D′, C′) where:

F = {F1, ...,Fn}. Each variable Fi is the frequency of the itemset
Xi .
D′ = {DF1 , ...,DFn}. The initial domain of each variable Fi is the
integer interval [1 .. nb].
C′ is a conjunction of arithmetic constraints.

20 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

Example of modeling

the exception rules constraint

exception(X → ¬I ) ≡

 true if ∃Y ∈ LI such that Y ⊂ X , one have
(X\Y → I ) ∧ (X → ¬I )

false otherwise

the exception rules constraint (2)

exception(X → ¬I ) ≡


∃Y ⊂ X such that :

freq((X \ Y ) t I ) ≥ γ1

∧ (freq(X \ Y )− freq((X \ Y ) t I )) ≤ δ1

∧ freq(X t ¬I ) ≤ γ2

∧ (freq(X )− freq(X t ¬I )) ≤ δ2

γ1 and γ2: frequency thresholds

δ1 and δ2: confidence thresholds
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the exception rules constraint (2)

exception(X → ¬I ) ≡


∃Y ⊂ X such that :

freq((X \ Y ) t I ) ≥ γ1

∧ (freq(X \ Y )− freq((X \ Y ) t I )) ≤ δ1

∧ freq(X t ¬I ) ≤ γ2

∧ (freq(X )− freq(X t ¬I )) ≤ δ2

The CSP variables are defined as follows:

Set variables {X1,X2,X3,X4} representing unknown itemsets:

X1 : X \ Y ,
X2 : (X \ Y ) t I (common sense rule),
X3 : X ,
X4 : X t ¬I (exception rule).

Integer variables {F1,F2,F3,F4} representing their frequency values
(variable Fi denotes the frequency of the itemset Xi ).
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Constraints CSP formulation Local Global
F2 ≥ γ1 ×
∧

freq((X \ Y ) t I ) ≥ γ1 I ∈ X2 ×
∧

X1  X3 ×
F1 − F2 ≤ δ1 ×

freq(X \ Y )− freq((X \ Y ) t I ) ≤ δ1 ∧
X2 = X1 t I ×

F4 ≤ γ2 ×
freq(X t ¬I ) ≤ γ2 ∧

¬I ∈ X4 ×
F3 − F4 ≤ δ2 ×

freq(X )− freq(X t ¬I ) ≤ δ2 ∧
X4 = X3 t ¬I ×

Table: Exception rules modeled as CSP constraints

23 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

Steps 2 & 3: From Local to Global

Step-2: Solving local constraints

---------------

./music-dfs -i donn.bin -q "{c1} subset X2 and freq(X2)>=4;"

X2 in [{A, c1}..{A, c1, B}] U {B, c1} -- F2 = 5 ;

X2 in {D, c1} -- F2 = 4

---------------

Step-3: Solving global constraints

---------------

[eclipse 1]:

?- exceptions(X1, X2, X3, X4).

Sol1 : X1 = {A,B}, X2={A,B,c1}, X3={A,B,C}, X4={A,B,C,c2};

.../...

---------------
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Number of pairs of rules
(postoperative-patient-data: 90× 23)

Figure: Number of rules according to γ1 (left) and δ1 (right)

Correct and complete set of all pairs of exception rule

Easy control of the quality (confidence and frequency) of the rules

26 / 32

Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery



introduction Set CSPs Our approach Experiments Conclusion Future work

Runtime according to the number of intervals

Problem: unsuitable set intervals union operator:
[lb1 .. ub1]

⋃
interval [lb2 .. ub2] = [lb1 ∩ lb2 .. ub1 ∪ ub2].

⇒ [{1}..{1, 2}]
⋃

interval [{3}..{3, 4}] = [{}..{1, 2, 3, 4}] = 2{1,2,3,4}

Expected result: {{1}, {1, 2}, {3}, {3, 4}}
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Runtime according to the number of intervals

Problem: unsuitable set intervals union operator:
[lb1 .. ub1]

⋃
interval [lb2 .. ub2] = [lb1 ∩ lb2 .. ub1 ∪ ub2].

Solution: Search is successively performed upon each Interval

⇒ Nevertheless, we do not fully profit from filtering.
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Conclusion

A new approach for dicovering patterns under global constraints,

Takes benefit from the recent progress on mining local patterns,

Flexible way for modeling several global constraints,

Complete and sound approach.
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Discovering synexpression groups

∃X1, ...Xk(k unfixed) such that

∀1≤i≤k , area(Xi ) > minarea

∧(∀1≤i<j≤k , area(Xi ∩ Xj) > α×minarea)

.

where minarea denotes the minimal area and α is a threshold given by the

user to fix the minimal overlapping between the local patterns.

we can now solve:
∃X1, ...Xk(k fixed) such that

∀1≤i≤k , area(Xi ) > minarea

∧(∀1≤i<j≤k , area(Xi ∩ Xj) > α×minarea)

Constraints Local Global

∀i ∈ {1..n}area(Xi ) > minarea ×
area(Xi ∩ Xj) > α×minarea, (1 ≤ i < j ≤ k) ×
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Future work

Introducing the universal quantification (∀) that classic CSPs are
unable to manage ⇒ Quantified CSPs (Bordeaux et al. CP’02),

Solving CSPs with unknown number of variables,

Implementing a new set interval union operator in the kernel of the
solver,

Using a non exact condensed representation to reduce the number
of produced intervals,
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