Incorporating Exceptions: Efficient Mining of
e-Relevant Subgroup Patterns

Florian Lemmerich and Martin Atzmueller

University of Wiirzburg,
Department of Computer Science VI
Am Hubland, 97074 Wiirzburg, Germany
{lemmerich, atzmueller } @informatik.uni-wuerzburg.de

Abstract. Subgroup discovery is a prominent method for discovering local pat-
terns. However, often a set of very similar (and overlapping) subgroup patterns is
retrieved, potentially decreasing its interestingness and suppressing other relevant
patterns. This paper presents an approach for the efficient mining of relevant sub-
group patterns by allowing exceptions to the strict relevancy criteria. We provide
an evaluation of the presented approach using representative data sets and show
the impact and benefit of the proposed approach.

1 Introduction

Subgroup discovery is a flexible data mining method for discovering local patterns that
can be utilized for global modeling in the context of exploratory data analysis, descrip-
tion, characterization and classification tasks. However, since subgroup discovery is a
non-covering approach, in real-world applications often a set of very similar (and over-
lapping) subgroups is mined. Then, in a typical k-best scenario, a set of very similar
subgroup patterns is returned: This can cause a decreased interestingness of the set of
patterns, but also a suppression of vital information since further potentially interesting
and more diverse subgroup patterns are not presented to the user.

In this paper, we present an efficient method for discovering e-relevant subgroup
patterns. This helps to increase the interestingness of the retrieved set of subgroups
by handling the problem of overlapping subgroup descriptions that are irrelevant to
each other; these non-interesting patterns can then be suppressed. We introduce the
concept of e-relevancy in detail, and we propose an efficient algorithm, that is, the BSD-
algorithm based on efficient bitsets for the discovery of e-relevant subgroup patterns. A
detailed evaluation of the proposed methods applying representative (real-world) data
sets demonstrates the impact and benefit of the presented approach.

The rest of the paper is structured as follows: Section 2 summarizes the basics of
subgroup discovery, and (ir-)relevant patterns. After that, Section 3 presents the ap-
proach for the efficient mining of e-relevant subgroup patterns: We first provide the
theoretical foundations of the presented technique, show how the relevant patterns can
be determined, introduce the efficient BSD-algorithm and finally discuss related work.
An evaluation of the approach is given in Section 4. Finally, Section 5 concludes with a
summary and interesting directions for future research.

2 Preliminaries

In the following, we first introduce the necessary notions concerning the used know-
ledge representation, before we introduce subgroup mining, subgroup discovery, and
the relation between relevant subgroup patterns and closed (item-)sets.

2.1 Subgroup Mining and Subgroup Discovery

The main application areas of subgroup mining are exploration and descriptive induc-
tion to obtain an overview of the relations between a (dependent) target variable and a
set of explaining (independent) variables. Then, the goal is to uncover properties of the
selected target population of individuals featuring the given target property of interest.
Therefore, not necessarily complete relations but also partial relations, i.e., (small) sub-
groups with "interesting" characteristics can be sufficient. Specifically, these interesting
subgroups should have the most unusual (distributional) characteristics with respect to
the concept of interest given by the target variable [1]. Subgroup discovery is the core
data mining step of the subgroup mining process, e.g., [2], that is usually implemented
using automatic (algorithmic) and interactive techniques, e.g., visualization methods.

A subgroup discovery task mainly relies on the following four main properties:
the target variable, the subgroup description language, the quality function, and the
discovery strategy. Since the search space is exponential concerning all the possible
selectors of a subgroup description efficient discovery methods are necessary.

For some basic notation, let {24 denote the set of all attributes. For each attribute
a € (24 arange dom(a) of values is defined. Let DB be the database (dataset) con-
taining all available cases (instances). A case ¢ € DB is given by the n-tuple ¢ =
((a1 =v1),..., (an = vy)) of n = |£24] attribute values, v; € dom(a;) for each a;.

The subgroup description language specifies the individuals belonging to the sub-
group. For a commonly applied single-relational propositional language a subgroup
description can be defined as follows:

Definition 1 (Subgroup Description). A subgroup description sd(s) = {e1,...,en}
of the subgroup s is defined by the conjunction of a set of selection expressions (se-
lectors). The individual selectors e; = (a;, V;) are selections on domains of attributes,
a; € 24,V; C dom(a;). We define g as the set of all selection expressions and {24
as the set of all possible subgroup descriptions.

A subgroup s described by sd(s) is given by all cases ¢ € DB covered by the
subgroup description sd(s). A subgroup s’ is called a refinement of s, if sd(s) C sd(s’).

A quality function measures the interestingness of the subgroup and is used to rank
these. Typical quality criteria include the difference in the distribution of the target
variable concerning the subgroup and the general population, and the subgroup size.

Definition 2 (Quality Function). Given a particular target variable t € (2g, a qual-
ity function q : {254 X 2p — R is used in order to evaluate a subgroup description
sd € (254, and to rank the discovered subgroups during search.

For binary target variables, examples for quality functions are given by

n

p
QWRACC:N'(p_pO)a qgps =n-(p—po), quirr=—,n>T
DPo

where p is the relative frequency of the target variable in the subgroup, py is the relative
frequency of the target variable in the total population, N = |DB]| is the size of the
total population, n denotes the size of the subgroup, and 7 specifies a minimal size
constraint for the subgroup.

As discussed by Lavrac et al. [3] qwracc (weighted relative accuracy) trades off
the increase in the target share p vs. the generality (n) of the subgroup. The Piatetsky-
Shapiro quality function gpg (e.g., [4]) is a variation of gwracc Without considering
the size of the total population. Finally, the quality function qz ;77 focuses on the de-
crease/increase of the target share.

2.2 Relevant Subgroup Patterns

Let T be the set of positive examples, i.e., the cases for which the target concept is true,
and F be the set of negative examples. Given a subgroup description sd(s), we denote
the set of positive examples, which fulfill sd and in which the target concept is true as
TP(s) =T N s. Analogously, we denote as F'P = F N s the set of cases, which fulfill
sd and in which the target concept is false.

As proposed in [5] in the context of closed sets for labeled data, we consider a
subgroup s as relevant with respect to another subgroup description s, if it covers all
positive examples of s’, but no negative examples not covered by s’ as well. Formally
s’ is irrelevant with respect to s, iff

TP(s") CTP(s)and FP(s) C FP(s).

3 Subgroup Mining of Relevant Patterns

In the following section we present strategies for the efficient mining of relevant sub-
group patterns. We first introduce the concept of e-relevant subgroups and discuss basic
strategies for the filtering of subgroups. Next, we discuss a method for fast and effective
mining of the set of the best k relevant subgroups.

3.1 e-relevancy

While the concept of strict irrelevance provides good results in many scenarios, it lacks
applicability in other real world scenarios. This is partially due to the fact, that even
after the filtering of irrelevant subgroups, there remain subgroups patterns, that are con-
sidered as irrelevant by domain specialists: For example, these could cover almost the
same cases as another subgroup, and are therefore perceived as irrelevant.

So, since the difference with respect to the covered cases might be caused by noisy
data, these subgroup patterns are expected to be treated in a way similar to the filtered
subgroup patterns. However, the technical definition of irrelevance does not cover these.
To overcome these problems we propose a generalized definition for the irrelevance of
subgroup patterns shown below.

Definition 3. We consider a subgroup s as €,/ € r,, irrelevant with respect to a subgroup
s" if and only if there exists Ey, C DB, Ey,, C DB, such that:

TP(S) g TP(S/) U Etp, ‘Etp‘ S €tp and
FP(s") C FP(s)U Eyp, |Epp| < €gp

As a simplification we use a single variable € = ¢, + €y, to specify the boundary
for irrelevance:

Definition 4. We consider a subgroup s as e-irrelevant with respect to a subgroup s’ if
and only if there exist By, C DB, Ey, C DB, such that:

TP(s) CTP(s')U Ep,|Ey| < €y and
FP(s") C FP(s)UEyy, |Efy| < €5y and
€tp +€pp S €

A subgroup s is e-irrelevant with respect to a set R of subgroups, if IR contains any
subgroup s’ € R, such that s is irrelevant with respect to s’. By this definition a sub-
group s is e-irrelevant to another subgroup s, if there exist a set of ¢ cases (exceptions)
in the database, such that s is irrelevant (according to the traditional definition [5]) with
respect to s’, when these cases are excluded from the database.

It is easy to see, that this definition includes the existing definition of irrelevant sub-
groups [5] as a special case, using ¢ = 0. Furthermore, if S;(s) is the set of subgroups,
that are ¢-irrelevant with respect to a subgroup s, then Sp(s) C Si(s) C ... C Si(s)
holds for any s, as i-relevancy implies % + 1 relevancy by definition.

A B C D E Target
1 - + + + + +
2 + + + + + +
3 + + + + + +
4 - - + - - +
5 - - + - - +
6 + + + + + -
7 - + + + - -
8 - + + - - -
9 - - + - - -
10 - - - - - -

Fig. 1. A small example dataset. It shows 10 cases, the coverage of the subgroups A, B, C, D and
the value of the target concept (class label)

We illustrate the idea of e-irrelevancy using the small sample dataset shown in figure
1: Using the traditional definition, the subgroups A and B both are relevant with respect
to each other, as B indeed covers more cases labeled as false, but also one single case
more, that is labeled positive. However, B is considered 1-irrelevant with respect to

A, as it gets irrelevant, if case 1 is excluded from the database. On the other hand, all
positive examples covered by B are also covered by C, which also covers some more
positive examples. Since C covers one negative case more than B, B is considered
as relevant with respect to C' in the traditional sense. By excluding case 9 from the
database B gets irrelevant and is thus considered 1-irrelevant with respect to C.

Equi-relevant subgroups and potential problems Using O-relevancy, if two sub-
groups are mutually irrelevant to each other, then both subgroups cover exactly the
same cases. This does not occur, if we use the notion of generalized e-relevancy. Us-
ing the example dataset from figure 1, consider the two subgroups A and D. Using the
traditional irrelevance definition both subgroups are relevant with respect to each other.
However, when excluding case 7, A gets irrelevant to D and when excluding case 1 D
gets irrelevant to A. Thus A is 1-irrelevant to D and D is 1-irrelevant to A. We call
this type of relationship equi-relevant. Please note, that this equi-relevancy is not an
equivalence relation, i.e., it is not transitive. E.g., in the sample dataset the subgroups
FE is equi-relevant with respect to subgroup D and D is equi-relevant with respect to
subgroup B, but E is not equi-relevant with respect to B. Therefore, we propose the
concept of a chain of equi-relevant patterns:

Definition 5. A chain of equi-relevant patterns is a set C' of subgroups, such that
for each pair of subgroups s, and s, in C, there exists a sequence of subgroups
(81y..-,8n),8; € C, such that s; is equi-relevant to s; 11, S, is equi-relevant to s
and s, is equi-relevant to sy,.

If all subgroups in the chain are e-irrelevant to a subgroup sy, then we call sy, a head of
the chain C'. Please note, that there may be more than one head in a chain, but there is
not necessarily a head in the chain.

Chains of equi-relevant subgroups can be used to solve a problem during the min-
ing of e-relevant subgroup patterns: If we completely discard one of two equi-relevant
subgroups s; and sy, which cover different cases, then further subgroups found later
in the mining process may be irrelevant to the discarded subgroup, but not to the one
left in the result set. Thus, both subgroups should be arranged in one chain in the re-
sult set, but should be saved separately. The mining process then results not in a set of
subgroups, but in a set of chains of equi-relevant patterns. For the result presentation
representative subgroups can be chosen for each of these chains. We can consider the
following selection criteria for determining these representatives:

— Head of Chain: All subgroups in the chain are e-irrelevant to the representing sub-
group.

— Quality: The representing subgroup has the best quality in the chain. Please note,
that the subgroup quality should only differ slightly using reasonably small € values.

— Description Length: Since short subgroup descriptions, i.e., descriptions containing
only few selectors, are in general better to interpret by the user, subgroups with a
short description should be preferred.

— User Defined Ordering: Some influencing factors could be marked as more relevant
to the user, e.g., by giving an ordering of the considered attributes.

In practice, the value e should be rather small, so chains should be of limited length.

3.2 Basic Mining Strategies

In the following section we first outline two (naive) approaches for determining the &
best relevant subgroups. These can easily complement standard subgroup mining algo-
rithms for determining the relevant patterns. Section 3.3 considers advanced methods
and proposes the BSD-algorithm, that is based on efficient bitset-based techniques.

Naive Subgroup Filtering 1: Postprocessing The simplest filtering approach requires
the application of a standard (exhaustive) discovery algorithm, e.g., the SD-Map* [6] or
the DpSubgroup algorithm [7], without incorporating adaptations. Then, any irrelevant
subgroup patterns can be removed during a separate postprocessing step.

While this procedure allows for a relatively fast mining process, the size of the result
set is rather unpredictable, as the number of irrelevant, filtered subgroups is dataset de-
pendent. As shown in the evaluation in Section 4, it can vary from few single subgroups
to the vast majority of the result set. Thus, in order to find the set of the best k relevant
subgroups, a very large set of subgroups must be retrieved in the search-algorithm, thus
strongly limiting the pruning possibilities of the applied methods. However, even then
there is no guarantee, that enough relevant subgroups have been discovered in order to
mine a result set containing the & best and relevant subgroups.

Naive Subgroup Filtering 2: During Search To avoid a potentially massive reduction
of the size of the result set during postprocessing, a relevancy-check can be included
into the subgroup discovery algorithm. Thus, whenever a subgroup s is added to the set
S of the best k subgroups, it is checked, if s is irrelevant to any subgroup s’ € S. If
this is not the case, then the subgroup s can be added to the set S. Afterwards for any
subgroup s’ € S it is checked, if s” is covered by s and thus can be removed. Please
notice, that by doing so more than one subgroup can be removed from the set, while
only one is added.

However, in contrast to the postprocessing approach the resulting reduction of the
size of the result set is very limited in practice, so potential problems can be avoided by
only a slight increase of the size of the result set in most cases. This assessment is also
confirmed by our evaluation (see section 4).

The naive approach requires one pass over the database for each such check. Thus,
the time needed to check for irrelevant subgroups can easily exceed the time needed for
the regular subgroup search by far.

First improvements can be made by reducing the amount of required checks: In
order to store the result set of subgroups we use a linked list, which is sorted by the
subgroups quality. If a subgroup s is irrelevant in respect to another subgroup s’, then
q(s) < q(s’"). When adding a subgroup to the result set, we can use this relationship and
test only subgroups § with ¢(8) > ¢(s), if they cover s and identify s as an irrelevant
subgroup. On the other hand, if s is relevant and added to the result set, then only
subgroups 5 with ¢(5) < ¢(s) can be irrelevant to s and need to be tested.

3.3 BSD: A Bitset based Subgroup Discovery Algorithm

Checking each possible coverage of subgroups in a separate database pass is obviously a
very time consuming task. To speed up this process we propose a new vertical subgroup
mining algorithm, which is tailored to the task of finding relevant subgroups. It utilizes
a vertical, bitset based representation of the needed information. Bitsets are vectors
of set and unset bits, which are implemented very time and memory efficient in most
programming languages. In Java, for example, even a boolean primitive needs 4 bytes
of memory space, while one value inside a bitset just needs one single bit. In addition,
logical operations, e.g. logical or/and, are implemented very efficiently for bitsets in
most common programming languages.

The bitset based subgroup discovery algorithm BSD for exhaustive mining of rel-
evant sets of subgroups uses a branch-and-bound strategy, where a conditioned search
space is mined recursively, similar to the SD-Map* [6] or the DpSubgroup algorithm,
e.g., [7]. In the initialization phase we construct a bitset for each selector involved in
the subgroup discovery. The length of each bitset is given by the number of cases (in-
stances) in the database. The ordering of the cases in the database is the same for all
selectors, so the i-th bit in each selector describes the i-th instance in the database. Ad-
ditionally, a bitset is constructed for the target concept in the same way. This bitset has
set bits on all positions, where the respective case is labeled as true. The construction
of these bitsets can be accomplished in one single pass through the database. The rest
of the algorithm can operate on the generated data structures and does not need further
database passes. The memory consumption of the bitsets for n instances in the database
and m selectors is then given by n - (m + 1) bits.

After the initialization, the main recursive step is called with no conditioned se-
lectors, a current bitset, in which all bits are set and all selectors possibly relevant for
the search. The main step is shown in Algorithm 1. It consists of two phases: During
phase one (lines 1 to 20) all possible refinements using the possibly relevant selectors
sel ¢ are considered. For each of these selectors the subgroup description, that consists
of the current conditioned selectors sel.,,q and this new selector S.,,., i evaluated.
Therefore, the bitset representation ceyrrent Of all cases, which fulfill this new descrip-
tion, is computed by performing a logical AND operation on the current bitset of all
cases and the bitset of the new selector (line 3). In doing so, the i-th bit in the resulting
bitset is set, if all conditioned selectors and the new selector apply to the respective
instance. Thus, the cardinality (i.e., the number of ones) of this bitset determines the
number of cases n described by these selectors. If this cardinality exceeds the required
minimum support for the result, the number ¢p of these cases with a positive target con-
cept is computed by performing another logical AND with the bitset of positives target
concepts (line 6) and then again counting the set bits.

By using the values n and ¢p an optimistic estimate can be computed, e.g., [1,7].
If this optimistic estimate of the subgroup quality indicates, that there may be refine-
ments of the current subgroup with the new selector, that have a sufficient quality to be
included in the overall result, then this selector is added to the list of relevant selectors
for the next level of search (line 9). Additionally it is tested, if the quality of the current
subgroup description (consisting of the conditioned selectors and the new selector) is
high enough to be added to the result set.

Algorithm 1 function bsd

Require:
selcong: List of conditioned selectors,
selre;: List of potentially relevant selectors,
Ceond: Bitset of instances that fulfill each sy € s€lcond,
depth: Current search depth,
result: The result set
Ensure:
result as a set of the best relevant subgroups

1: newSel,.;:= new List()

2: for all Selector Scyrr in sel;¢; do

3: Ceurrent= Ccond AND (SCurr‘bitset)

4: N = Ceurrent-cardinality()

5: if n > MinTP then

6: CeurrentPos= Ceurrent AND (POSitiVeS)

7: tp = Ceurrent Pos-cardinality()

8: if fulfillsMinSupport (¢p)

AND optEstimateHighEnough (result, tp, n) then

9: newSel,¢;.add (Seyrr)
10: if qualityHighEnough (result, tp, n) then
11: r = checkRel (resull, Ccurrent, CcurrentPos)
12: if then
13: sg = createSubgroup (selcond, Scurr)
14: result.add (Sg, Ceurrents CeurrentPos)
15: result.checkRelevancies(sg)
16: end if
17: end if
18: end if
19: end if
20: end for

21: sort (selyer)
22: if depth < MAXDEPTH then
23: for all Selector relSel: sel,.; do

24: if optEstimateHighEnough (relSel) then

25: newdSel,e;.remove (relSel)

26: selcond.add (relSel)

27: Cnew= getCurrentBitSetFor (relSel)

28: bsd (s€lcond, newSelyer, depth + 1, Crew, result)
29: newSel,¢;.add(relSel)

30: selcong.remove (relSel)

31: end if

32: end for

33: end if

In this case a relevancy check is performed (line 11). If the subgroup is considered
as relevant, it is saved in the result set, together with the bitset representations of the
positive cases and all cases of the subgroup (line 14). Additionally, if any subgroup
already contained in the result set is irrelevant to the new subgroup, then this subgroup
is removed from the result (line 15).

Using the stored bitset representations, it can be efficiently checked, if a subgroup
s is irrelevant with respect to another subgroup s’: A representation of all cases with
a positive target concept, that are contained in s, but not in s’ can be computed by
performing a logical AND-NOT between the positives bitset of s and s’. Analogously,
a bitset reflecting all cases labeled as negative, that are contained in s’ and not in s can
be computed by another AND-NOT operation between the respective bitsets of negative
cases. If both bitsets resulting from these operations do not contain any set bits, then
the s is irrelevant.

At the start of phase two, the list of relevant selectors is sorted by their computed
optimistic estimate (line 21). By doing so, more promising paths in the search space are
evaluated first, so more branches of the search tree can be pruned earlier. Afterwards
for each relevant selector this selector is added to the list of conditioned selectors and
the main procedure of the algorithm is called recursively using the respective bitset and
the conditioned selectors.

3.4 Related Work

The issue of relevancy is a very important topic in machine learning and data mining.
For example, it has been introduced for feature selection in the machine learning context
by Koller and Sahami [8]. Lavrac and Gamberger [9] apply relevancy filtering for fea-
ture extraction/filtering. This approach was later extended by Garriga et al. [5], covering
closed itemsets and putting relevancy in context with supervised learning techniques. In
contrast to these techniques, the presented approach is able to incorporate some ’fuzzi-
ness’ concerning the relevancy definition, and so larger parts of the pattern space can
be filtered. This is especially useful concerning exceptions and noise in the data, which
cannot be handled by the existing approaches.

For the subgroup discovery task several efficient approaches for exhaustive mining
have been proposed, e.g., SD-Map [10] and SD-Map* [6]. Similarly, Grosskreutz et
al. [7] introduced the DpSubgroup algorithm that incorporates pruning using tight opti-
mistic estimates. While the general structure of the DpSubgroup algorithm is somewhat
similar to the BSD algorithm, the underlying data representation is completely different.
BSD algorithm uses a vertical data structure utilizing bitsets, while SD-Map, SD-Map*
and DpSubgroup use FP-Trees.

Using vertical data representations for fast data mining algorithms was proposed
by Zaki [11]. Burdick et al. [12] used a bitset (bitmap) representation for the mining of
maximal frequent itemsets. They also utilize a method for bitset compression, that could
be utilized in the future to further adapting the BSD algorithm for very large datasets.

To the best of the authors’ knowledge, up to now no exhaustive specialized algo-
rithm for subgroup discovery has been proposed, that especially focuses on the mining
of relevant subgroups.

4 Evaluation

In the following, we present several empirical observations and evaluations with respect
to the described concepts and methods using datasets from the UCI-repository [13], real
world and synthetic evaluation data.

Evaluation datasets For the evaluation we used a variety of datasets. From the UCI-
repository we took the datasets “mushroom”, “soybean” and “credit-g”. Furthermore,
the approach was tested with a larger real world dataset. This dataset describes spam-
mers in a social network tagging system and consists of more than 17.000 cases and
25 attributes. Additionally we used synthetic evaluation data generated from a bayesian

network, that consists of 10.000 cases and 15 attributes.

Influence of different € values In our first experiments we evaluated, how different
values of e influence the number of filtered subgroups. To accomplish this, we per-
formed an exhaustive subgroup search algorithm to find the 100 best subgroups for the
target variable. From the results we filtered and counted the e-irrelevant subgroups. In
case of equi-relevant subgroups we counted only one to the irrelevant subgroups. For
the tests we considered different datasets, different maximum search depths and two
different quality functions, i.e., the relative gain and the Piatetsky-Shapiro quality func-
tion. The results are depicted in Figure 2.

Dataset credit-g credit-g credit-g credit-g spammer spammer sowvbean
Depth 2 3 2 k) 2 5 2
Quality Function Ps PS RG RG RG RG PS
e=0 3 19 2 14 33 79 96
e=2 14 45 5 48 64 79 98
e=4 17 48 9 68 67 80 99
e=6 19 36 19 80 70 81 99
e=8§ 21 65 31 86 73 82 99
e=10 22 71 33 Q0 73) 99
e=12 24 77 40 94 75 &5 99
e=14 24 80 48 95 75 87 99
e=16 24 83 49 96 77 g9 99
e=18 24 83 33 96 77 Q0 99
e=20 28 84 58 96 77 Q0 99

Fig. 2. Number of e-irrelevant subgroups after an exhaustive search for the 100 best subgroups,
using different e

These results indicate, that an increase of € leads to a significant increase in the
number of irrelevant subgroups in all datasets. The increase is stronger for the relative
gain quality functions and for higher maximum search depths, as the subgroups in the

result set tend to be smaller in these cases. This increases the likelihood of e-irrelevance
using a constant value of e. However, which value of € is useful in an application is
strongly dependent on the quality of the underlying data and should be considered care-
fully together with domain specialists.

Post-processing Next, we evaluate the post-processing approach with respect to the
task of finding relevant subgroup patterns. To estimate the applicability of this method,
we investigated, how many subgroups remained in the result set after the filtering pro-
cess. For a more general result, we used O-relevancy in this evaluation. The results are
shown in Figure 3.

Dataset/max. depth 2 3 4 5 6
Mushroom 49 71 86 89 90
Soybean 56 79 89 96 96
credit-g 5 8 10 19 19
Spammer 19 62 81 88 88

Fig. 3. Number of O-irrelevant subgroups after an exhaustive search for the 100 best subgroups,
using different datasets and maximum depth boundaries. As quality function the Piatetsky-
Shapiro quality functions was applied.

It is easy to see, that the number of irrelevant subgroup patterns in the result set is
difficult to estimate. So, in order to guarantee a minimum size of the result set after the
filtering process a huge number of saved subgroup descriptions would be needed. This
indicates, that for many problems filtering irrelevant subgroups in a post processing step
is not practical. In comparison, we performed the same tests with filtering steps during
the search whenever the subgroup changed, and in none of the performed tests the
(theoretically possible) phenomenon occurred, that the algorithm ends up with less than
the required subgroup size. These results stress the importance of a subgroup discovery
method, that can seamlessly integrate the filtering of irrelevant subgroups during the
search process.

BSD Algorithm In the last part of our evaluation we analyze the runtime of the pre-
sented novel subgroup discovery algorithm, i.e., the Bitset based subgroup discovery
algorithm (BSD algorithm). We compared the runtimes of the state-of-the art exhaus-
tive subgroup discovery algorithm DpSubgroup with and without filtering of irrelevant
subgroups with the BSD algorithm. The evaluation was done using different datasets
and depth boundaries. As quality functions the Piatetsky-Shapiro function and relative
gain were used. The results are shown in Figures 4, 5, 6 and 7.

The results indicate, that the naive filtering approach incorporated in the DpSub-
group algorithm has a strong increasing effect on the runtimes. The BSD algorithm
performed all tasks significantly faster than the DpSubgroup algorithm when filtering
out irrelevant subgroups. In several cases it is more than an order of magnitude faster.

3000

2500 ====BSDw/o
BSD w/o BSDw/ DpSw/o DpSw/ / rel. check
rel. check rel. check rel. Check rel. check 2000 BSDw/
2 46 301 188 1203 & / rel c}:eck
3 45 579 171 1750 E 1500
a 47 656 157 2296 = —— DpSw/o
5 47 688 187 2625 1000 rel. Check
6 47 765 157 2531 w0 DpS v/
rel. check
o L=
2 ES 5 6
Max. Search depth
Fig. 4. Runtime evaluation using credit-g dataset.
25000
BSD w/o BSD w/ DpSw/o DpSw/ 20000 85D
rel. check rel. check rel. Check rel. check T w/o
15000 rel. check
2 187 1422 2344 12874 & BSD w/ rel.
3 219 2234 3343 17812 ‘g 10000 check
4 1172 4828 6484 19227 = 2 DpS w/o
5 5171 9578 7577 19446 <000 /""":7'__ rel. Check
6 10281 15577 7734 19705 . DpS wy rel.
0 | Zloiimae-=- - check

3
Max. Search depth

Fig. 5. Runtime evaluation using a synthetic dataset.

In several tests, especially if the maximum-depth is bounded to a low search depth,
the BSD algorithm outperforms the DpSubgroup algorithm without relevancy checks.
Besides the well integrated tests for irrelevance we explain that by the fact, that the
BSD algorithm needs only one database pass compared to the two passes needed by
DpSubgroup and the lower construction costs of the used data structures. On the other
hand, for large maximum depth boundaries, the runtime of the BSD algorithm shows
a sharp increase in some datasets, e.g., the synthetic dataset, in comparison to the Dp-
Subgroup algorithm. This can be explained by the elaborated pruning strategies, that
can be performed using the more complex data structures, i.e., FP-trees, used in the
DpSubgroup algorithm. However, for most practical problems a maximum depth of 5
or 6 can be considered as sufficient, since the search depth only limits the number of
describing selectors of a subgroup, and subgroups with more selectors are often very
difficult to interpret by humans. Furthermore, only few additional subgroups can be
found at larger depths. Therefore, we regard the BSD algorithm as the currently best
choice when mining for relevant subgroups and propose to consider it also for subgroup
discovery without relevancy checks, for low and medium maximum depths.

BSDw/o BSD w/ DpSw/o DpS w/ BSDw/o BSD w/ DpSw/o DpS w/

rel. check rel.check rel. Check rel. check rel. check rel.check rel. Check rel. check
2 31 406 141 2609 2 242 1453 1140 214433
3 31 562 110 6640 3 250 2140 1171 855317
4 32 609 109 12217 4 265 2297 1219 2256945
5 47 749 93 17138 5 265 2234 1266 4561555
6 16 1000 109 19575 6 266 2266 1281 7452757

Fig. 6. Runtime evaluation using the soybean dataset (on the left) and the mushroom dataset (on
the right).

10000000

BSDw/o BSDw/rel. DpSw/o DpSw/ rel 1000000 -= BSID ‘i“’/ok
rel. check check rel. Check check rel. ched
2 500 2437 2500 232590 . 100000 BSD w/
3 500 4703 2594 910248 £ rel. check
£ 10000 - - —
4 315 7296 2750 2067787 H
= —DpSw/o
5 516 9109 2812 3204517 1000 rel. Check
6 516 9922 2812 3820749 00000 | T oo s ===
—— DpSw/
100 rel. check
2 3 4 5 6

Max. Search depth

Fig.7. Runtime evaluation using the real world dataset from the spam characterization domain.
Please notice, that the diagram uses a logarithmic scale on the y-axis. DpSubgroup performs up
to 2 orders of magnitude slower, if a relevancy check is performed.

5 Conclusions

In this paper, we have presented a method for discovering e-relevant subgroup patterns,
in order to handle the problem of overlapping subgroup descriptions that are irrelevant
to each other and to make the set of the presented patterns more interesting to the user.
We have introduced the concept of e-relevancy, that incorporates exceptions into the
relevancy framework. Additionally, we have proposed a new efficient and effective al-
gorithm for the discovery of (relevant) subgroup patterns. The evaluation demonstrates
the impact and benefit of the presented approach.

For future work, we plan to integrate more background knowledge for improving
the semantic features of the approach. Furthermore, bitset compression techniques for
further advancing the scalability of the algorithm, and suitable visualization techniques
for inspecting the set of relevant and the (suppressed) set of irrelevant patterns are ad-
ditional interesting research directions.

Acknowledgements

This work has been partially supported by the German Research Council (DFG) under
grant Pu 129/8-2.

References

10.

11.

12.

13.

. Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Proc. 1st Eu-

ropean Symposium on Principles of Data Mining and Knowledge Discovery (PKDD-97),
Berlin, Springer Verlag (1997) 78-87

. Atzmueller, M., Puppe, F., Buscher, H.P.. Exploiting Background Knowledge for

Knowledge-Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Arti-
ficial Intelligence (IICAI-05), Edinburgh, Scotland (2005) 647-652

. Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup Discovery with CN2-SD. Journal

of Machine Learning Research 5 (2004) 153-188

. Klosgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In Fayyad,

U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., eds.: Advances in Knowledge Dis-
covery and Data Mining. AAAI Press (1996) 249-271

. Garriga, G.C., Kralj, P,, Lavra¢, N.: Closed sets for labeled data. J. Mach. Learn. Res. 9

(2008) 559-580

. Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts.

In: Proc. 18th International Symposium on Methodologies for Intelligent Systems (ISMIS
2009), Springer Verlag (2009) accepted paper

. Grosskreutz, H., Riiping, S., Shaabani, N., Wrobel, S.: Optimistic estimate pruning strate-

gies for fast exhaustive subgroup discovery. Technical report, Fraunhofer Institute IAIS,
http://publica. fraunhofer.de/eprints/urn:nbn:de:0011-n-723406.pdf (2008)

. Koller, D., Sahami, M.: Toward optimal feature selection, Morgan Kaufmann (1996) 284—

292

. Lavrac, N., Gamberger, D.: Relevancy in Constraint-based Subgroup Discovery. In

Jean-Francois Boulicaut, Luc de Raedt, H.M., ed.: Constraint-based Mining and Inductive
Databases. Volume 3848 of LNCS. Springer Verlag, Berlin (2006)

Atzmueller, M., Puppe, F.: SD-Map — A Fast Algorithm for Exhaustive Subgroup Discovery.
In: Proc. 10th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD 2006). Number 4213 in LNAI, Berlin, Springer Verlag (2006) 6—17
Zaki, M.J.: Efficient enumeration of frequent sequences. In: CIKM ’98: Proceedings of the
seventh international conference on Information and knowledge management, New York,
NY, USA, ACM (1998) 68-75

Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algorithm for
transactional databases. In: In ICDE. (2001) 443-452

Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning
Databases, http://www.ics.uci.edu/~mlearn/mlrepository.html (1998)

