
An Enhanced Incremental Prototype Classifier
using Subspace Representation Scheme

Ye Xu1, Furao Shen1, Jinxi Zhao1, and Osamu Hasegawa2

1 National Key Laboratory for Novel Software Technology, Nanjing University
yexu@smail.nju.edu.cn; {frshen; jxzhao}@nju.edu.cn

2 Imaging Science and Engineering Lab, Tokyo Institute of Technology
hasegawa@isl.titech.ac.jp

Abstract. Prototype classifiers have been studied for many years. But
most methods adopt single vectors as prototypes to represent the original
data. It is difficult to learn the local information [1] with such prototypes.
In this paper, we propose an incremental classifier named Subspace Based
Prototype Classifier (SBPC) to handle the issue. SBPC designs an aug-
mented strategy to enhance traditional prototype classifiers. Instead of
using single vector, each prototype of SBPC represents a subset of input
data using a subspace. And we employ an incremental subspace repre-
sentation method to learn a subspace for each prototype. By designing
a self-adaptive threshold policy, SBPC automatically learns the number
and value of prototypes without any prior knowledge. Through adopt-
ing both condensing scheme and editing scheme [3], the prototypes are
incremental learned, automatically adjusted (condensing scheme) and re-
moved (editing scheme). Results of experiments described herein show
that the proposed SBPC accommodates the non-stationary data environ-
ment and provides good recognition performance and storage efficiency.

Key words: Prototype Classifier, Subspace Based Prototype, Incre-
mental Learning, Subspace Representation

1 Introduction

Prototype based method [7] is a class of powerful tools in classification family.
It searches for a set of representative prototypes that reflects the distribution
in original data space. Then the label of a test sample, usually called query, is
defined by the previously generated set of prototypes. [4] shows that the error
rate of prototype based classifiers is at most twice of Bayes error rate. Therefore,
Prototype based method has been widely used in object classification [29], vi-
sualization recognition system [30][28], optimization [10], and subspace learning
[21].

Nearest Neighbor Classifier (NNC) [2] is the most famous prototype classifier.
It applies all samples in training set as prototypes. NNC works well on large
training set. But a trivial consequence of NNC is the large size of prototype
sets that aggravates the computation burden. What’s worse, the performance of

2 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

NNC decreases rapidly if some noisy samples are interrupted in the training set.
According to this, some different ways of learning prototypes have been proposed
recently.

One class of prototype methods is classifier based on condensing scheme [3].
Condensing scheme focuses on finding representative prototypes that reflect the
distribution of original samples. This scheme improves the generalization capac-
ity and storage efficiency of classifiers. A simple reported condensing scheme
method is K-Means Classifier (KMC) [6]. It is based on k-means prototypes po-
sitioning with 1-NN rule. Learning Vector Quantization (LVQ) [11], along with
some LVQ family methods such as Generalized Learning Vector Quantization
(GLVQ) [15] and Incremental Learning Vector Quantization (ILVQ) [26], takes
advantage of class information to move the prototype vectors, in order to improve
the quality of the classifier decision region. Mollineda et. al. [13] adopt geometric
property and clusters to search a condensed set of prototypes. Pekalska and Duin
[14] extract prototypes from proximity-based representation space.

Another class of methods is classifier based on editing scheme. Editing scheme
aims at removing useless prototypes that are likely to be outliers and detecting
prototypes located in the overlap among classes. This scheme is good at elimi-
nating prototypes in low probability density regions. Thus it handles noisy data
environment effectively and avoids overfitting. Some editing scheme based clas-
sifiers have been proposed. For instance, Wilson editing classifier [24] removes
all examples that have been misclassified by 1-NN rule from training sets. Eick
et. al. [5] propose a editing scheme using supervised clusters. Nearest Subclass
Classifier (NSC) [20] applies a technique to merge prototypes based on a defined
variance constraint parameter.

But all these typical methods have some shortcomings. (1) Almost all of the
reported prototype classifiers merely use single vectors to represent prototypes;
local learning [1] has not been considered. Therefore, for these methods, local
information is not able to be completely represented by vector based proto-
types; the generalization performance may be affected to some extent [19]. (2)
Many methods need users to predetermine the number of prototypes based on
some prior knowledge. However, such knowledge is not available sometimes; an
improper prototype number will affect the classification performance. (3) Most
classifiers adopt either condensing scheme or editing scheme. Few methods com-
bine the two schemes. As a result, storage efficiency and noise detection issues
can not be addressed at the same time. (4) Many of those algorithms are batch
methods. Such methods can not handle non-stationary data environment, ren-
dering it difficult in real time application tasks.

In this paper, we try to introduce an incremental classification algorithm
named as Subspace Based Prototype Classifier (SBPC) to handle the discussed
shortcomings of typical prototype classifiers. The primary contribution of the
proposed method is the augmented strategy introduced to enhance traditional
“vector” based prototype classifiers. Instead of using a single vector, we apply a
subspace to describe the local geometry of input data. Here, we employ an incre-
mental subspace representation method – Incremental Orthogonal Basis Anal-

Subspace Based Prototype Classifier 3

ysis (IOBA) [27] to represent the local geometry. For each prototype, the base
vectors of the subspace are incrementally learned and automatically adjusted.
Therefore, the set of prototypes can effectively represent both global and local
characteristics of original data space, which benefits the classification capacity.
The second contribution of SBPC is that, based on a self-adaptive threshold, the
number of prototypes is automatically determined by the distribution of origi-
nal data space without any prior knowledge. Users need not to predetermine the
number and the initial value of prototypes. The third contribution of the pro-
posed method is the combination of condensing scheme and editing scheme. In
our work, the prototypes are incremental learned, automatically adjusted (con-
densing scheme) and removed (editing scheme) according to the distribution of
the training data. Last but not least, SBPC realizes online learning. Thus it can
be used in non-stationary environment effectively.

We organize the rest of this paper as follows. In section 2, SBPC is specifically
introduced. In section 3, we will do experiments to compare SBPC with some
typical prototype classifiers to show the efficiency of our approach.

2 Subspace Based Prototype Classifier

As mentioned in section 1, we try to propose a Subspace Based Prototype Clas-
sifier (SBPC) in order to fulfill the following goals. (1) To enhance traditional
prototype classifier by substituting subspace based prototypes for single vector
based prototypes. (2) To automatically learn the number of prototypes needed
without any prior knowledge and to adaptively adjust it according to the distri-
bution of training data. (3) To combine condensing scheme and editing scheme
during learning process. (4) To realize online learning.

To fulfill the above targets, we give the derivation of algorithm and then
highlight the key aspects of the construction and update of the subspace based
prototypes, the self-adaptive threshold policy, and the condensing and editing
schemes.

2.1 Algorithm Derivation

Let us consider a dataset {(xi, yi)}N
i=1. Therein, xi ∈ Rd×1 is the input pattern,

yi is the label of input pattern, and N is the size of training set. The goal of the
proposed method is to select a set of subspace based prototypes {(Bj, lj)}m

j=1

that minimize the following error function:

E =
N∑

j=1

(g(xi)− yi)2 (1)

Therein, g(xi) is the computed label of xi obtained by:

g(xi) = argmin
lj

ProDist(xi,Bj) (2)

4 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

Therein, lj is the label of prototype Bj, and ProDist(xi,Bj) means the projec-
tion distance of pattern xi onto the subspace of prototype Bj:

ProDist(xi,Bj) = ‖xi −
l∑

k=1

(b(j)
k)

>
xib

(j)
k ‖2 (3)

where {b(j)
k }lk=1 are basis of the subspace of prototype Bj.

For each new incoming pattern xi, we find the “winner” prototype Bwinner

by
Bwinner = argmin

Bj

ProDist(xi,Bj) (4)

and the “runner-up” prototype Brunnerup by

Brunnerup = argmin
Bj∧j6=winner

ProDist(xi,Bj). (5)

Then, we set up topological relationship among prototypes: “winner” prototype
Bwinner and “runner-up” Brunnerup are connected if a connection between them
does not exist. The topological structure among prototypes is helpful for us to
detect noise. (This point will be discussed later.)

If the label of xi is different from it of the “winner”, i.e., the current pro-
totype set misclassifies xi according to the supposition that training data and
test data are subject to the same distribution, we will use xi to create a new
prototype, in order to minimize the value of (g(xi) − yi)2. Also, the distance
between prototypes should be taken into account when we determine whether
a new prototype ought to be added. If the projection distance of xi onto “win-
ner” prototype Bwinner is large, it is very likely that pattern xi locates in the
border rather than in the center of a class. Here, we use a threshold T to make
the decision: if ProDist(xi,Bwinner) > T , we insert a new prototype. Border
prototypes are more effective than central prototypes in classification tasks [24].
To not miss useful border prototypes, we also consider the projection distance
of xi onto Brunner−up. It is because that in this case (the projection distance
of xi onto Brunner−up is large), xi is still very likely to locate in the border of
a class. To sum up, we use xi to construct a new prototype if:

yi 6= lwinner ∨ ProDist(xi,Bwinner) > T ∨ ProDist(xi,Brunnerup) > T (6)

Otherwise, we update learned “winner” and those prototypes in the neighbor of
“winner” using pattern xi in order to minimize ProDist(xi,Bj) if these proto-
types have the same label as xi’s. In this way, the value of cost function E is
reduced.

For every several epoch of learning, we adopt an editing scheme to delete
those useless prototypes and connections between prototypes.

In the rest of section 2, we focus on several key issues of SBPC: (1) Design a
scheme to learn subspace for each prototype. (2) Propose a threshold technique
to learn the proper number of prototypes according to the original data distribu-
tion. (3) Develop a method to incrementally learn useful prototypes (condensing
scheme) and dynamically remove those prototypes (editing scheme) that are
likely to be noise or outliers.

Subspace Based Prototype Classifier 5

2.2 Learn a Subspace for Each Prototype

Most reported prototype algorithms represent original data with sets of single
vectors. Such methods only focuses on global learning [19], but fails to learn local
information. Hence, the generalization performance is affected especially when
the distribution of patterns in the input space is uneven [25]. In order to cope
with this issue, we propose an augmented strategy: learning a subspace for each
prototype. Therefore, for SBPC, the set of prototypes reflect the overall condition
of data distribution, and each prototype can represent the local distribution of
input data.

Subspace Representation Method: Incremental Orthogonal Basis Anal-
ysis We need a subspace representation algorithm to learn subspace for each pro-
totype. Principal Component Analysis (PCA) [3] is the most popular subspace
representation method. It searches for several component vectors from original
data along which variations are extremal. Recently, many subspace represen-
tation methods have been proposed based on different purposes. For example,
Candid Convariance-free Incremental Principal Component analysis (CCIPCA)
[23] can be used for online learning.

In this paper, we employ a new incremental subspace representation algo-
rithm named Incremental Orthogonal Basis Analysis (IOBA) [27]. It aims at
learning a group of components (base vectors) for feature space from original
data. IOBA has several characteristics that are very proper for SBPC to in-
crementally learn a subspace for each prototype: (1) IOBA learns numerically
orthogonal presentation (a group of orthogonal base vectors) according to a series
of input patterns. Orthogonal base vectors contain little redundant information;
it renders SBPC efficient in learning the local data distribution. (2) In IOBA,
the target dimension of subspace is just data-dependent. It means we need not
to predetermine the number of base vectors for the subspace using any prior
knowledge. (3) IOBA is an incremental method. As patterns comes one by one
in online manner, the base vectors of subspace are incrementally learned and
automatically adjusted. Thereby, the prototypes in SBPC can be incrementally
learned and dynamically adjusted during learning.

Here, we give the detailed IOBA in Algorithm 1.
In Algorithm 1, we first initialize the basis B to the empty basis, and the

initial dimension of B is 0. For each incoming pattern xj, we apply the online
Gram–Schmidt orthogonalization method to generate a potential basis vector
bk+1. But unlike traditional Gram–Schmidt method, we consider the indepen-
dence between input data xj and currently learned components b1,b2, ...,bk be-
fore decide whether to accept the computed potential basis vectors. It is because
that if a base vector is transformed from a pattern that has strong dependence
on learned basis, the computation error would arise and affect the orthogonal-
ity among base vectors [9]. Thus if we accept bk+1 as a new base vector for
feature space without considering the independence between input data xj and
learned components, the numerical orthogonality between {b1,b2, ...,bk} and
bk+1 can’t be guaranteed.

6 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

Input: d dimension input patterns x1,x2, ...,xN, ...

1: Initialize the basis B = ∅ and the basis dimension k = dim(B) = 0.
2: For each input new pattern xj(j > k):
3: for i = 1 to k do
4: Compute ri,k+1 by ri,k+1 = xj

>bi.
5: end for
6: Compute ˆbk+1 by ˆbk+1 = xj −

∑k
i=1 ri,k+1bi.

7: Compute rk+1,k+1 by rk+1,k+1 = ‖ ˆbk+1‖2.
8: Compute potential base vector bk+1 by bk+1 =

ˆbk+1

rk+1,k+1
.

9: if
rk+1,k+1
‖ξk+1‖ ≥ dim(B)

d
(A self-adaptive threshold technique that guarantees the

numerical orthogonality of learned base vectors) then
10: Accept bk+1 as a base vector and add it into basis B.
11: Update basis dimension k ← k + 1.
12: end if
13: Goto step 3 to continue the learning process.

Output: Basis dimension dim(B) and all base vectors b1,b2, ...,bk.

Algorithm 1: Incremental Orthogonal Basis Analysis

According to this, we employ an independence measure and then select po-
tential components to ensure the numerical orthogonality of learned components
(basis).

Based on linear dependence theorem [9], we measure the numerical indepen-
dence between input data xk+1 and currently learned components b1,b2, ...,bk

by the projection distance of xk+1 onto subspace span{b1,b2, ...,bk}:
‖ξk+1 − span{b1,b2, ...,bk}‖2 (7)

The distance in (7) can be rewritten in the following form:

min
a1,a2,...,ak

‖ξk+1 − (a1b1 + a2b2 + ... + akbk)‖2 (8)

where α = (a1, a2, ..., ak)> is a coordinate vector.
We define matrix Bk = [b1,b2, ...,bk] ∈ Rd×k, thus (7) can be rewritten in

the form:
min

α
‖Bkα− ξk+1‖2 (9)

The column vectors in Bk are orthogonal. Thereby, based on Bk, we can
easily construct an orthogonal matrix Q2 in the following form:

Q2 = [Bk,Q1] (10)

Therein, Q2 ∈ Rd×d, Q1 ∈ Rd×(d−k), and the column vectors of Q1 and Bk are
orthogonal.

Since orthogonalization transformation never changes the 2-norm of a vector,
(9) is equal to the following expression:

‖Bkα− ξk+1‖2 = ‖Q2
>(Bkα− ξk+1)‖2 = ‖

(
α
0

)
−

(
Bk

>ξk+1

Q1
>ξk+1

)
‖2 (11)

Subspace Based Prototype Classifier 7

We let α = Bk
>ξk+1. Thereby, the value of expression (7) is equal to

‖Q1
>ξk+1‖2, i.e., the independence between learned feature space and input

vector ξk+1 can be measured by the value of ‖Q1
>ξk+1‖2. The theorem below

will denote the relationship between the 2-norm of vector Q1
>ξk+1 and the value

of rk+1,k+1.

Theorem 1 The 2-norm of Q1
>ξk+1 shown in (11) is equal to the value of

rk+1,k+1 achieved in the (k + 1)th iteration of IOBA, i.e., rk+1,k+1 = ‖Q1
>ξk+1‖2.

The proof is quite straightforward and we omit it here for brevity.
So we can measure the independence between the learned basis {bi}k

i=1 and
the input vector ξk+1 via the value of rk+1,k+1. If rk+1,k+1 is large, i.e., the
independence between bk+1 and learned feature space span{b1,b2, ...,bk} is
strong, we accept bk+1 into basis M of feature space. Otherwise, we reject
computed vector bk+1. Here, we adopt a threshold policy: if rk+1,k+1 ≥ T , we
accept potential component bk+1 into basis M . And we set the value of threshold
T = dim(B)

d , so the threshold is self-adaptive.
According to this threshold policy, we only accept those potential base vec-

tor that are transformed from patterns strongly independent of learned basis.
Thus the numerical orthogonality of learned basis can be guaranteed. Moreover,
the difficulty of accepting components increases with the increase of the basis
dimension dim(B) for feature space. It is very helpful to achieve a nice storage
efficiency for subspace learning methods.

At last, we should point out that the value of dim(B)
d is confined to the

interval of [0, 1]. Therefore, we use rk+1,k+1
maxi rii

instead of rk+1,k+1 for comparison
convenience given that the value of rk+1,k+1

maxi rii
is definitely between 0 and 1.

Learn Subspace by IOBA As mentioned in section 2.1, we need to insert
a new prototype if (6) satisfies. Here, we adopt xi

‖xi‖2 as the base vector of the
subspace for the new constructed prototype. During the online learning process,
we use IOBA to adjust the subspace of constructed prototypes in prototype set.

For each prototype in prototype set, if a prototype Bj becomes the “winner”
prototype of an incoming pattern xk, and condition (6) does not satisfy, we
use xk to update subspace of Bj by IOBA. According to the process of IOBA,
we know that if xk is orthogonal of current subspace of Bj, we accept a new
base vector that is directly computed by xk. On the contrary, if the threshold
condition does not satisfy, which means xk is dependent on subspace of Bj, we
need to do nothing. According to this analysis, we know that after this update
process, xk is absolutely contained in the subspace of Bj, i.e.,

xk ∈ span{b(j)
1 ,b(j)

2 , ...,b(j)
l } = {

l∑

i=1

tib
(j)
i ; ti ∈ R1} (12)

Therein, {b(j)
i }li=1 are base vectors of the subspace of prototype Bj.

8 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

Condition (6) does not satisfy, thus prototype Bj and input pattern xk

share the same label. Therefore, we can conclude that after the update process,
ProDist(xk,Bj) is reduced, guaranteeing that (g(xk)− yk)2 remains zero.

For those prototypes Bs which locate in the neighborhood of winner and
share the same label with xi, we still use xi to update subspace of Bs by IOBA.
Because under this circumstance, pattern xi is in the local area of Bs, and it is
necessary for such prototypes to learn some local information.

In Algorithm 2, we give the detailed procedure of learning subspace based
prototypes. Due to the subspace based prototype policy, the proposed method
learns not only global data distributions by the whole set of prototypes, but also
the local knowledge by each single prototype. It means that SBPC achieves a
nice compromise between globality and locality.

Input: Input data with label (x1, y1), (x2, y2), ..., (xN, yN), ...

1: For each input new pattern (xk, yk):
2: if (6) satisfies then
3: Construct a new prototype and adopt xi

‖xi‖2 as the base vector of the
subspace for the constructed prototype.

4: else
5: if (Bj is winner of xk) then
6: Use pattern xk to update the subspace of Bj via IOBA.
7: end if
8: if (Bs locates in the neighbor of winner) ∧ (yk = ls) then
9: Use pattern xk to update the subspace of Bs via IOBA.

10: end if
11: end if
12: Goto step 1 to continue the learning process.

Output: Dimension dim(Bj) and basis {b(j)
i }k

i=1 for the subspace of each
prototype Bj.

Algorithm 2: Learning Subspace for Each Prototype

2.3 Learn Proper Prototype Number Using Self-adaptive Threshold

As mentioned in section 2.1, we insert a new prototype if (6) satisfies. Therefore,
the threshold T in (6) is very important to determine the number of prototypes.

The network is gradually growing and self-adjusted; it is not wise to set
up a constant threshold for each prototype. To properly insert prototypes for
SBPC, the value of threshold for each prototype should not remain the same.
Therefore, we can conclude that Tj should be a self-adaptive threshold that can
be automatically adjusted according to the data. In SBPC, we adjust threshold
Tj of prototype Bj when Bj becomes the “winner” or “runner-up”.

The threshold Tj of prototype Bj ought to be larger than the within-class
distance of Bj to avoid ruling out useful prototypes in the network. Also, Tj needs

Subspace Based Prototype Classifier 9

to be less than the between-class distance of Bj to distinguish the prototypes
from different classes. Here, within class distance means the average value of
distance between Bwinner and those prototypes that share the same label with
Bwinner; between-class distance of prototype Bj means the distance between Bj

and those prototypes in the neighborhood of Bj that have different label from
Bj’s.

In Algorithm 3 we specifically state the algorithm to compute the distance
threshold Tj of prototype Bj.

1: Compute the within-class distance DWithinj by
DWithinj = 1

Nlabeli

∑
(i,j)∈E

∧
li=lj

Dist(Bi,Bj).

2: Find the minimum between-class distance
DBetweenj = min(k1,j)∈E

∧
lj 6=lk1

Dist(Bj,Bk1).
3: if DBetweenj < DWithinj then
4: Set DBetweenj with the second minimum between-class distance:
5: DBetweenj = min(k2,j)∈E

∧
lj 6=lk2

∧
k1 6=k2 Dist(Bj,Bk2).

6: end if
7: Go to step2 to update DBetweenj until DBetweenj ≥ DWithinj .
8: Set Tj = DBetweenj .
9: return Tj

Algorithm 3: Compute the distance threshold Tj of prototype Bj

We need to find a proper measurement to measure the distance between
two subspaces of corresponding prototypes in Algorithm 3. And we hope that
the distance measurement should have several characteristics. (i) The used mea-
surement must be a metric, namely, it satisfies non-negativity, symmetry, and
triangle inequality. (ii) Because we adopt the metric to compute the distance
between two subspaces, we hope that the distance is relatively small if the two
subspaces are similar, and the distance is large if two subspaces are different.
(iii) The used distance between two subspaces should be compatible with the
projection distance defined by (3).

According to the above analysis, we adopt the L2−Hausdorff [22] distance
to measure the distance between two prototypes Bw1 and Bw2 :

Dist(Bw1 ,Bw2) = max(d(Bw1 ,Bw2),d(Bw2 ,Bw1)) (13)

Therein, d(Bw1 ,Bw2) is the directional distance from m−dimensional subspace
Bw1 to n−dimensional subspace Bw2 :

d(Bw1 ,Bw2) =

√√√√m−
m∑

i=1

n∑

j=1

‖b(w1)
i − b(w2)

j ‖22 (14)

Therein, {b(w1)
i }mi=1 are the basis of the subspace of prototype Bw1 , and {b(w2)

j }nj=1

are the basis of the subspace of prototype Bw2 .

10 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

In Theorem 2, we specify that the L2 −Hausdorff distance satisfies char-
acteristics i), ii) and iii).

Theorem 2 The L2−Hausdorff distance shown in (13) satisfies (i), (ii), and
(iii).

Proof. Firstly, it is apparently that L2 − Hausdorff distance satisfies non-
negativity and symmetry. The triangle inequality is demonstrated in [17]. There-
fore, L2 −Hausdorff is a metric.

Secondly, if two subspaces Bw1 and Bw2 overlap completely, the dimension
of the two subspaces are equal, and base vectors of each subspace {b(w1)

i }m
i=1 and

{b(w2)
j }n

j=1 are totally the same. Under this circumstance, the L2−Hausdorff
distance between Bw1 and Bw2 are 0. On the contrary, if subspace Bw1 is
perpendicular to Bw2 , i.e., the base vectors for each subspace are mutually
orthogonal, Dist(Bw1 ,Bw2) reaches the maximum value: max(m,n).

Thirdly, note that the projection distance of a normalized pattern ξ onto
subspace B:

ProDist(ξ,B) = ‖ξ −
n∑

i=1

b>i ξbi‖2 =

√√√√(ξ −
n∑

i=1

b>i ξbi)>(ξ −
n∑

i=1

b>i ξbi)(15)

=

√√√√ξ>ξ −
n∑

i=1

(b>i ξ)2 =

√√√√1−
n∑

i=1

(b>i ξ)2 = d(span{ξ},B)(16)

Equation (15) and (16) mean that the projection of pattern ξ onto subspace
B is equal to the directional distance from 1−dimensional subspace span{ξ}
to the n−dimensional subspace B. Therefore, the L2 −Hausdorff distance is
compatible with the projection distance defined by (2).

Due to the three characteristics, L2−Hausdorff distance is able to measure
the distance between two subspaces well.

2.4 Incremental Method Using both Condensing and Editing
Scheme

To fulfill the incremental task, the set of prototypes should grow incrementally.
Therefore, we should gradually insert prototypes into the set of prototypes. How-
ever, permanent insertion policy should not be taken: it might result in waste
of storage capacity and overfitting. Instead, we must apply certain criterion to
decide when and how to inset a new prototype and when the insertion ought to
be stopped. As discussed in section 2.1, we only insert a new prototype when
the input pattern is misclassified by the current prototype set or the pattern is
very likely to locate in the border of a class:

yi 6= lwinner∨ProDist(xi,Bwinner) > Twinner∨ProDist(xi,Brunnerup) > Trunnerup

(17)

Subspace Based Prototype Classifier 11

Therein, Bwinner and Brunnerup are “winner” and “runner-up” prototypes that
are found by (4) and (5) respectively. The condensing technique can reduce the
error function E shown in (1) according to the supposition that training data
and test data are subject to the same distribution.

Training patterns may contain noise. During the learning process, we may use
such noise data to learn prototypes. Thereby, we apply an editing scheme to han-
dle this issue. Because establishing a topological relationship among prototypes is
beneficial to detect noise prototypes [16], we build a topological structure among
learned prototypes. Enlightened by Martinetz topological representing rule [12],
we connect two prototypes when they become the “winner” and “runner-up” pro-
totype of an incoming pattern. To cater to incremental learning, the topological
structure should be dynamically updated. The prototypes that are neighboring
at an early stage may not be neighboring at a more advanced stage. Therefore, it
is necessary to remove connections that have not been updated for a long time.
Based on the dynamical topological structure, we delete prototypes that may
be noise: for every several epochs of learning, we remove those prototypes that
have only one or no topological neighbor. The prototype that seldom becomes
“winner” or “runner-up” is very likely to be a noise, so that this strategy can
work effectively for removing prototypes caused by noise.

2.5 Summary of SBPC

Here, we give the detailed Subspace Based Prototype Classifier in Algorithm 4.
In the beginning of the proposed method, we initialize prototype set G to

contain two 1−dimensional prototypes. The base vector of subspace for each
prototype is initialized with the first two incoming data respectively. We initialize
the connection set E that stores connection between prototypes to empty set.

For every incoming data (xi, yi), we find the “winner” and “runner-up” proto-
types by (4) and (5). Then we update the threshold of “winner” and “runner-up”
using Algorithm 3.

If the “winner”’s label is different from yi, which means the current learned
prototype sets misclassified pattern xi, we use xi to construct a new prototype.
To make the condensing scheme better, we insert new prototypes if the projection
distance of xi onto subspace of Bwinner is greater than Twinner or the projection
distance of xi onto Brunnerup is greater than Trunnerup. Because under this
condition, xi is very likely to locate in the border of a class.

If the above insertion condition doesn’t satisfy, we adopt pattern xi to up-
date the learned prototypes. First, we set up a connection relationship between
“winner” and “runner-up”. Then, we use xi to update the subspace of “winner”
and those prototypes in the neighbor area of winner, as indicated in Algorithm 2.
We only update the subspace of those prototypes that share the same label with
xi. Last, we update the winner count of prototype and “age” of connections.
Here, winner count records the times that a prototype becomes “winner”.

The proposed SBPC is an incremental method, so that the neighborhood
relationship among prototypes should not remain constantly. Connections that

12 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

Input: Input patterns {(xi, yi)}N
i=1.

1: Initialize prototype set G to contain two prototypes, and use the first two
input data to initialize basis of subspace for the two prototypes respectively.

2: Initialize E storing connection between prototypes to empty set.
3: For each incoming pattern (xi, yi):
4: Search set G to find winner Bwinner and runner-up Brunnerup by (4) and (5).
5: Update winner and runner-up’s thresholds Twinner and Trunnerup by

Algorithm 3.
6: if (Expression (17) satisfies) then
7: Create a new prototype and use normalized xi as the first base vector of its

subspace.
8: Goto Step3 to process the next input pattern.
9: end if

10: if (Bwinner,Brunnerup) 6∈ E then
11: Add edge (Bwinner,Brunnerup) to edge set E by

E ← E
⋃{(Bwinner,Brunnerup)}.

12: Set the age of edge (Bwinner,Brunnerup) to zero.
13: end if
14: for Bj in the neighbor area of Bwinner do
15: Update Age(Bwinner,Bj) ← Age(Bwinner,Bj) + 1
16: end for
17: Update winner count of Bwinner by WTimewinner ← WTimewinner + 1.
18: Use (xi, yi) to update subspace of Bwinner by IOBA.
19: for Prototype Bj in the neighbor area of Bwinner and lj = yi do
20: Use (xi, yi) to update subspace of Bj by IOBA.
21: end for
22: Delete those edges in set E whose age outstrips the parameter AgeOld.
23: if The iteration step index is the integer multiple of parameter λ then
24: Delete the prototypes Bj in set G that have no neighbor prototype.

25: Delete Bj that has 1 neighbor prototype and WTimej<0.5
∑|G|

i=1
WTimei
|G| .

26: end if
27: Goto step 3 to continue the online learning process.

Output: Prototype set G.

Algorithm 4: Subspace Based Prototype Classifier

have not been refreshed recently need to be removed. Thus we delete those
connections whose age outstrips AgeOld (a user defined parameter).

For every λ (another user defined parameter) iteration steps, we adopt an
editing scheme to remove those noise interrupted into prototype set. It is well
known that those prototypes that seldom become “winner” or “runner-up” are
very likely to be “noise”. Therefore, we eliminate those prototypes that have no
neighbor, or have only one neighbor and relatively small winner count.

Subspace Based Prototype Classifier 13

3 Experiment

In this section, we use seven typical datasets: Glass, Ionosphere, Iris, Liver Disor-
der, Optical Digits, Sonar, and Wine from the UCI Machine Learning Repository
[18] to test the proposed algorithm. In Table 1, we give the overview of these
datasets.

Table 1. Overview of the datasets used in the experiments

Dataset No. of samples No. of features No. of classes

Optical Digits 5620 64 10

Glass 214 9 6

Ionosphere 351 34 2

Iris 150 4 3

Liver disorders 345 6 2

Sonar 208 60 2

Wine 178 13 3

Table 2. Overall characteristics for each method: “Y” means “Yes”; “N” means “No”;
“S” means “Subspace”; “V” means “Vector”

Algorithm SBPCNNCKMCLVQMDCNSCGLVQILVQ

Prototype S V V V V V V V

Online learning Y N N N N N Y Y

Determine prototype no. automatically Y Y N N Y Y N Y

Use Condensing scheme Y N Y Y Y N Y Y

Use Editing Scheme Y N N N N Y N N

To evaluate the proposed method better, aside from Nearest Neighbor Clas-
sifier (NNC), we compare SBPC with some typical prototype classifiers: Learn-
ing Vector Quantization (LVQ), K-Means Classifier (KMC), Multiscale Data
Condensation algorithm (MDC), Nearest Subclass Classifier (NSC), General-
ized Learning Vector Quantization (GLVQ), and Incremental Learning Vector
Quantization (ILVQ). LVQ, KMC, and MDC are typical condensing classifiers;
NSC is an editing classifier that is proposed recently. MDC and NSC are specially
designed to reduce compression ratio, i.e., the number of prototypes divided by
the size of the dataset; GLVQ and ILVQ are two incremental classifiers. We list
the overall characteristics of each classifier in Table 2.

3.1 Handwritten Digits Recognition

We use Optical Digits from the UCI Machine Learning Repository to test the
proposed method. In this database, the training set includes 3823 samples; the

14 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

test set includes 1797 samples. During training process, 50000 samples are ran-
domly picked up from training set to learn prototypes. For SBPC, we tune the
parameters λ = 3000 and AgeOld = 3000 by ten times 10-fold cross validation
policy. After the set of prototypes is learned, we test the label of patterns from
the test set to achieve the recognition rate. We repeat the experiment ten times
to achieve an average recognition result, as listed in Table 3. Some typical clas-
sifiers listed in Table 2 are used to compare with SBPC. The recognition rate
and compression ratio are used as the benchmark to compare different classifiers.
From Table 3, we know that, under the dataset of Optical Digits, the recognition
performance of SBPC is 97.5%. It is better than KMC, LVQ, MDC, NSC, and
GLVQ. The recognition rate of SBPC is a little worse than it of NNC (98.0%),
which is the best-recorded performance under Optical Digits. But we should note
that to the aspect of compression ratio, NNC is very poor (100%), while SBPC
is the best (1.8%) among the eight classifiers.

Table 3. Recognition rate (RR), number of prototypes, and Compression ratio (CR)
under dataset of Optical Digits

Algorithm SBPC NNC KMC LVQ MDC NSC GLVQ ILVQ

RR 97.5% 98.0% 90.0% 97.3% 96.3% 97.3% 96.5% 97.5%

Prototype No. 70 3823 100 230 375 271 256 268

CR 1.8% 100% 2.6% 6.0% 9.8% 7.1% 6.7% 7.0%

Table 4. Automatically learned prototype number for each class of SBPC

Class 0 1 2 3 4 5 6 7 8 9 Total

No. of Prototypes 4 8 6 8 7 8 5 5 8 11 70

Patterns from each class might be subject to different distributions. There-
fore, it is not proper to represent them with the same number of prototypes.
However, it is extremely difficult to predetermine a suitable number of proto-
types for each class to represent them with no prior knowledge, as do many other
classifiers. For SBPC, not only the total number of prototypes, but also the num-
ber of prototypes for each class are automatically learned according to original
data distribution. Experiments show that SBPC generates different number of
prototypes for each class, as illustrated in Table 4. It means that SBPC is able
to adopt small number of prototypes to represent data of simple classes and use
relatively more prototypes to represent complex classes.

3.2 Remaining UCI databases

Here, we adopt some other databases from UCI Machine Learning Repository to
test the proposed SBPC. Similar to section 3.1, some typical prototype classifiers

Subspace Based Prototype Classifier 15

are used to make comparison. For each method, we still use ten times ten-fold
cross validation policy to tune the parameters. Because these datasets contain
small number of samples, we use ten-fold cross validation to test the recognition
performance for each classifier. The recognition results are shown in Table 5; the
Compression Ratio (CR) and the tuned parameters for each method are listed
in Table 6. The best and near the best performances are emphasized with figures
in bold typeface.

Table 5. Recognition Rate of experiments

Dataset SBPC NNC KMC LVQ MDC NSC GLVQ ILVQ

Glass 71.4±1.2 72.3±1.2 68.8±1.1 68.3±2.0 73.1±0.7 70.2±1.5 72.8±0.8 73.3±0.5

Ionosphere 93.7±0.7 86.1±0.7 87.4±0.6 86.4±0.8 86.0±0.7 91.9±0.8 88.6±0.9 89.5±0.2

Iris 97.3±1.0 96.7±0.6 96.2±0.8 96.1±0.6 95.3±0.4 96.3±0.4 96.7±0.3 97.1±0.9

Liver 67.1±1.5 67.3±1.6 59.3±2.3 66.3±1.9 61.0±1.5 62.9±2.3 67.4±1.5 67.3±1.3

Sonar 82.0±1.3 81.8±1.4 81.9±2.5 78.3±2.4 82.7±1.0 81.3±1.1 81.5±1.6 80.0±1.3

Wine 77.6±2.2 73.9±1.9 71.9±1.9 72.3±1.5 75.2±1.7 75.3±1.7 72.9±4.8 73.5±4.1

Average 81.5±1.3 79.7±1.2 77.6±1.5 78.0±1.5 78.9±1.2 79.7±1.3 80.0±1.7 80.1±1.4

Table 6. Compression Ratios (CR) and tuned parameters of experiments

Dataset SBPC NNC KMC LVQ MDC NSC GLVQ ILVQ
(CR,λ,AgeOld) (CR,k) (CR,M)(CR,M)(CR,k) (CR,σ2) (CR,M) (CR,M1,M2)

Glass (42.0,137,137) (100,1) (17,6) (45,97) (100,1)(97,0.005)(48.7,105)(25.5,786,140)

Ionosphere (1.6,36,36) (100,2) (4.0,7) (6.8,24) (100,1) (31,1.25) (34,120) (25.6,525,525)

Iris (4.4,1,1) (100,14) (8.0,4) (15,22) (9.3,5) (7.3,0.25) (22.5,33) (19.9,21,17)

Liver (11.1,72,54) (100,14) (11,19) (8.4,29) (100,1) (4.9,600) (20.9,72) (6.7,16,18)

Sonar (30.5,216,33) (100,1) (17,18) (19,40) (100,1) (70,0.05) (74.5,70) (14.5,42,42)

Wine (13.2,50,10) (100,1) (29,17) (32,57) (100,1) (96,4.0) (10.1,18) (12,199,94)

Average CR 17.1 100 14.3 21.0 84.9 51.0 35.1 17.4

From Table 5, we can find that, under the datasets of Ionosphere, Iris, Liver,
Sonar, and Wine, the proposed SBPC achieves the best or near the best recog-
nition performance. For all the six databases, the average recognition rate of
SBPC (81.5%) is the best among the eight classifiers. SBPC only performs a
little worse (71.4%) than four other methods under the database of Glass. But
Table 6 indicates that most methods that outstrip SBPC under Glass have larger
compression ratio than it of SBPC. For NNC and MDC, the two classifiers have
a 100% compression ratio; for GLVQ, the compression ratio (48.7) is still larger
than it of SBPC.

To the respective to compression ratio, SBPC is averagely better than NNC,
LVQ, GLVQ, and ILVQ; it is also better than MDC and NSC, which are spe-

16 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

cially designed to reduce compression ratio. Although the compression ratio of
SBPC (17.1) is a slightly larger than it of KMC (14.3), it deserves noting that
the performance of KMC (77.6%) is far worse than it of SBPC. It is because the
number of prototypes learned by KMC is too less to represent the original data
space. Therefore, we can conclude that, compared with KMC and other classi-
fiers, SBPC achieves the best compromise between recognition performance and
storage efficiency.

4 conclusion

As described in this paper, we propose an incremental subspace based prototype
algorithm (SBPC) for online classification tasks. By designing an augmented
strategy of constructing a subspace to represent local geometry of input data, it
enhances the traditional “vector” based prototype. By addressing a self-adaptive
threshold policy, SBPC learns not only the total prototype number, but also the
number of prototypes for each class according to data distribution; it needs not to
use any prior knowledge to learn the number and value of prototypes. By adopt-
ing both condensing scheme and editing scheme, SBPC automatically learns
new prototypes and adjusts learned prototype set, so that it fulfills incremental
learning tasks well.

In the experiment section, we conduct several experiments to test the validity
of the proposed method. To compare with SBPC, we use several typical proto-
type classifiers such as NNC, KMC, LVQ, MDC, NSC, GLVQ, and ILVQ. KMC,
LVQ, and MDC are typical condensing classifiers; NSC is an editing classifiers.
MDC and NSC are specially proposed for reducing compression ratio; GLVQ
and ILVQ are typical incremental methods. The results of experiment show that
SBPC obtains the best recognition rate among the eight classifiers. To the aspect
of compression ratio, SBPC is better than most compared classifiers. Although
KMC works a little better than SBPC in compression efficiency, we can conclude
that SBPC achieves the best compromise between classification capacity, storage
efficiency, and incremental learning.

5 Acknowledgements

The authors would like to thank Wei Chen for some code work. The work
was supported in part by the China NSF grant (#60573157, #60723003, and
#60775046).

References

1. Bottou, L., Vapnik, V.: Local Learning Algorithm. Neural Computation. 4(6), 888–
900 (1992)

2. Dasarathy, B.V.: Nearest Neighbor NN Norms: NN Pattern Classification Tech-
niques. IEEE Computer Society Press. (1991)

Subspace Based Prototype Classifier 17

3. Devijver, P., Kittler, J.: Pattern Recognition: A Statistical Approach. NJ:
Prentince-Hall. (1982)

4. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd Edition. Wiley Press.
(2001)

5. Eick, C. F., Zeidat, N., Vilalta, R.: Using Representative-Based Clustering for
Nearest Neighbor Dataset Editing. In: ICDM04, pp. 375–378. IEEE Computer
Society Press, (2004)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer. (2001)

7. Haykin, S.: Neural networks: a Comprehensive Foundation, 2nd Edition. China
Machine Press. (2004)

8. He, X., Cai, D., Han, J.: Learning a Maximum Margin Subspace for Image Re-
trieval. IEEE Trans. on Knowledge and Data Engineering. 20(2), 189–201 (2008)

9. He, X.: Numerical Dependence Theorem and its Application (in Chinese). Numer-
ical Mathematics, A Journal of Chinese Universities. 1(1), 11–19 (1979)

10. Kim, S. W., Oommen, B. J.: On Using Prototype Reduction Schemes and Classifier
Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods. IEEE
Trans. on PAMI. 27(3), 455–460 (2005)

11. Kohonen, T.: Improved Versions of Learning Vector Quantization. In: IJCNN90,
pp. 545–550. IEEE Computer Society Press, (1990)

12. Martinetz, T. M., Schulten, K.: Topology Representing Networks. Neural Networks.
7(3), 507–522 (1994)

13. Mollineda, R. A., Ferri, F. J., Vidal, E.: A Merge-Based Condensing Strategy for
Multiple Prototype Classifiers. IEEE Trans. on Systems, Man and CyberneticsPart
B: Cybernetics. 32(5), 662–668 (2002)

14. Pekalska, E., Duin, R. P. W.: Beyond Traditional Kernels: Classification in Two
Dissimilarity-Based Representation Spaces. IEEE Trans. on Systems, Man and
CyberneticsPart C: Applications and Reviews. 38(6), 729–744 (2008)

15. Sato, A., Yamada, K.: Generalized Learning Vector Quantization. In: NIPS95, pp.
424–429. MIT Press, (1995)

16. Shen, F., Hasegawa, O.: A Fast Nearest Neighbor Classifier Based on Self-
organizing Incremental Neural Network. Neural networks. 21(10), 1537–1547
(2008)

17. Sun, X., Wang, L., Feng, J.: Further Results on the Subspace Distance. Pattern
Recognition. 40(1), 328–329 (2007)

18. Blake, C. L., Merz, C. J.: UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Department of Information (1996)

19. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New York.
(1995)

20. Veenman, C. J., Reinders M. J. T.: The Nearest Subclass Classifier: A Compromise
between the Nearest Mean and Nearest Neighbor Classifier. IEEE Trans. on PAMI.
27(9), 1417–1429 (2005)

21. Villegas, M., Paredes, R.: Simultaneous Learning of a Discriminative Projection
and Prototypes for Nearest-Neighbor Classification. In: CVPR08, pp. 1–8. IEEE
Computer Society Press, (2008)

22. Wang, L., Wang, X., Feng, J.: Intrapersonal Subspace Analysis with Application to
Adaptive Bayesian Face Recognition. Pattern Recognition. 38(4), 617–621 (2005)

23. Weng, J., Zhang, Y., Hwang, W. S.: Candid Covariance-Free Incremental Principal
Component Analysis. IEEE Trans. on PAMI. 25(8), 1034–1040 (2003)

24. Wilson, D. L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data. IEEE Trans. on Systems, Man, and Cybernetics. 2, 408–420 (1972)

18 Ye Xu, Furao Shen, Jinxi Zhao, and Osamu Hasegawa

25. Wu, M., Scholkopf, B.: A Local Learning Approach for Clustering. In: NIPS07, pp.
1529–1536. MIT Press, (2007)

26. Xu, Y., Shen, F., Hasegawa, O., Zhao, J.: An Online Incremental Learning Vector
Quantization. In: PAKDD09, pp. 1046–1053. Springer, (2009)

27. Xu, Y., Shen, F., Zhao, J., Hasegawa, O.: To Obtain Orthogonal Feature Extraction
Using Training Data Selection. In: CIKM09. ACM Press, (2009)

28. Zhang, H., Berg, A. C., Maire, M., Malik, J.: SVM-KNN: Discriminative Nearest
Neighbor Classification for Visual Category Recognition. In: CVPR06, pp. 2126–
2134. IEEE Computer Society Press, (2006)

29. Zhang, H., Malik, J.: Learning a Discriminative Classifier Using Shape Context
Distances. In: CVPR03, pp. 242–247. IEEE Computer Society Press, (2003)

30. Zhang, J., Gruenwald, L.: Opening the Black Box of Feature Extraction: Incorpo-
rating Visualization into High-Dimensional Data Mining Processes. In: ICDM06,
pp. 18–22. IEEE Computer Society Press, (2006)

